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ABSTRACT

A significant challenge in machine learning, particularly in noisy and low-data
environments, lies in effectively incorporating inductive biases to enhance data
efficiency and robustness. Despite the success of informed machine learning
methods, designing algorithms with explicit inductive biases remains largely a
manual process. In this work, we explore how prior knowledge represented in
its native formats, e.g. in natural language, can be integrated into machine learn-
ing models in an automated manner. Inspired by the learning to learn principles
of meta-learning, we consider the approach of learning to integrate knowledge
via conditional meta-learning, a paradigm we refer to as informed meta-learning.
We introduce and motivate theoretically the principles of informed meta-learning
enabling automated and controllable inductive bias selection. To illustrate our
claims, we implement an instantiation of informed meta-learning–the Informed
Neural Process, and empirically demonstrate the potential benefits and limitations
of informed meta-learning in improving data efficiency and generalisation.

1 INTRODUCTION

The importance of informed ML and challenges of conventional methods. The major chal-
lenge of machine learning (ML), especially in small data regimes, lies in the selection of an ap-
propriate inductive bias. The hypothesis space of a model must be large enough to encompass a
solution to the problem at hand, while also exhibiting a strong preference for solutions that closely
align with the ground-truth data generating process (DGP) (Mitchell, 1980; Wilson & Izmailov,
2020). Conventional approaches of inductive bias selection generally rely on external expert knowl-
edge and its manual integration into the learning algorithm, e.g. via feature selection, specialised
loss functions, architectures or data augmentation techniques. Despite their successes, such man-
ual knowledge integration methods are limited by the extent to which expert information can be
transferred to the learner. Preferences over competing hypothesis can be challenging to formalise
and manually integrate into ML methods; with the knowledge integration step often forming the
core contribution of many ML papers Goyal & Bengio (2020). Thus, rather than relying on human-
engineered ML pipelines, it is natural to seek methods that automatically integrate task-specific
knowledge—represented in its native formats, such as natural language—into the learning algo-
rithm. In this paper, we propose the development of such automated methods for controllable bias
selection, meaning that the selected biases are contingent on human-interpretable knowledge repre-
sentations, facilitating intuitive and steerable specification of inductive biases.

Meta-learning for automating the selection of inductive biases. The problem of automatically
learning the inductive bias has been previously addressed by introduction of the meta-learning
paradigm (Thrun & Pratt, 1998; Baxter, 1997; 2000). In meta-learning, the learner is embedded
in an environment of related tasks and the problem of inductive bias learning is seen as the problem
of learning a prior over the hypothesis space that enables the learner to generalise to many tasks from
this environment. It has been shown that, under certain conditions, a prior learned in this manner
is guaranteed to perform well when applied to novel tasks originating from the same environment
(Baxter, 2000; Guan & Lu, 2022). However, despite the appeal of meta-learning methods for au-
tomated inductive bias selection, they may struggle with heterogeneous task distributions and their
performance often drops significantly when faced with out-of-distribution (OOD) tasks Chen et al.
(2019); Zhang et al. (2021). Furthermore, priors acquired through meta-learning are largely black-
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box in nature, intractably dependent on the choice of meta-training tasks. Once the meta-training
phase is concluded, it is not possible to condition the learner on external information specific to the
task at hand, and thus failing to satisfy our desideratum of inductive bias steerability.

Hypothesis space

Learnable prior

Knowledge space
(Human-interpretable)

This paper: 
Can we learn this map? 

Figure 1: Knowledge representations Ki con-
dition the heterogeneous learnable prior pθ(f).
The knowledge-conditioned priors pθ(f |Ki) are
more tightly concentrated around the ground
truth data-generating functions fi, facilitating
stronger inductive biases.

Towards automated and controllable inductive
bias selection. Drawing from the ideas of conven-
tional meta-learning, we propose a model of auto-
mated and controllable inductive bias specification
via knowledge-conditioned meta-learning (Denevi
et al., 2020; 2022). Instead of learning a fixed prior
pθ(f) over the hypothesis space, we consider learn-
ing a knowledge-conditioned prior that maps arbi-
trary representations of expert knowledge, K, to pri-
ors, pθ(f |K). The learned mapping, K 7→ pθ(f |K),
can be seen as a translator between the human-
interpretable knowledge space (e.g. the space of nat-
ural language) and the hypothesis space of a model, assigning higher prior probabilities to solutions
that are in agreement with the information conveyed in K. We refer to this model in short as in-
formed meta-learning. Within this framework, representations of knowledge condition the distri-
bution of tasks and thus inform about task similarity, mitigating the adverse effects of heterogeneous
environments of tasks (Fig. 1). As a result, learning with the informed prior, i.e. inferring the pos-
terior pθ(f |D,K) based on an observed dataset, D, can lead to improved data-efficiency, requiring
fewer samples of the empirical data to successfully recover the true solution.

The aim of our work is not to present a new method that surpasses existing baselines on a benchmark
dataset; rather, we propose a new viewpoint on meta-learning as a means of establishing an interface
between human domain knowledge and the hypothesis space of ML models.

Contributions. ▶ Section 2: We formalise the interplay between observable data, its underlying
generating process and human-interpretable knowledge representations. ▶ Section 3: We introduce
a new perspective on meta-learning as an approach enabling automated and controllable inductive
bias specification based on the provided representations of knowledge. ▶ Sections 3.2.1-3.2.2: We
provide theoretical motivations for this approach and critically discuss the potential opportunities
and challenges associated with developing robust informed meta-learners. ▶ Section 4: To illus-
trate our claims, we implement an instantiation of informed meta-learning—the Informed Neural
Process. ▶ Section 5: Through empirical evaluation on both synthetic and real-world datasets, we
demonstrate the feasibility of this approach to knowledge integration, as evidenced by improvements
in predictive performance and data efficiency. ▶ Section 6: Finally, we discuss future opportunities
for informed meta-learning in the context of emergent abilities of foundation models.

2 PROBLEM SETTING: THE RELATIONSHIP BETWEEN DATA & KNOWLEDGE

Underlying function space

Observable data space

Knowledge space

"Non-linear" "Oscilating" "Linear" "Increasing"

Figure 2: The generating process of data and
knowledge.

Let X , Y be the input and output spaces, respec-
tively. A single learning task τ = (DC ,DT ,K)
is represented by: a context (aka training) dataset
DC = {(xi, yi)}ni=1, a target (aka test) dataset DT =
{(xi, yi)}mi=1, and a representation of knowledge about
the give learning task K. We assume that context and
target datasets are generated according to an underly-
ing function f : X → Y , sampled from an unknown
stochastic process f ∼ p(f), and the observable data is
generated according to DC ,DT ∼ p(D|f)1. The ran-
domness of p(D|f) captures the unpredictable variabil-
ity of the data generation, given a particular sample function f , typically modelled with a Gaussian
noise. The knowledge K is represented in a human-interpretable format, such as natural language,
and contains truthful, but likely incomplete information about the underlying f . For instance, in
the case of 1-dimensional regression, K could describe the shape of f , e.g. K = “This function
should be non-decreasing”. We assume that knowledge about a fixed f is generated according to a
distribution p(K|f) which captures the variation of knowledge representations due to their semantic

1See Appendix A.1.1 for a formal definition of the data and knowledge generating process.
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equivalence–a single property of a sample function f can be described by many semantically equiv-
alent expressions in natural language, and due to the incompleteness of information–information
expressed in K is insufficient to unambiguously determine the values of f (e.g. For K = “This
function is linear”, we are missing the information about the slope and bias of f ).

The goal. The goal of each learning task is to make predictions on DT , given DC and the additional
knowledge K (see last pane of Fig. 3). With a single task, we would need to rely on a human ML
engineer to interpret the information represented in K and translate it into a model endowed with ap-
propriate inductive biases, penalising (or completely excluding) functions from the hypothesis space
of the model that do not conform to the expert knowledge K. This paper considers the following:

Can we learn a generalisable mapping between human-interpretable knowledge representations
and inductive biases of a model? That is, can we learn a map: K 7→ pθ(f |K), where pθ(f |K)
assigns approximately zero mass to regions of the hypothesis space that do not conform to the
knowledge expressed in K?

As detailed in the following sections, learning this mapping will necessitate access to additional,
related learning tasks {τj}j∈J represented as tuples τj = (DC,jDT,j ,Kj), with contexts, targets
and knowledge representations generated according to the same process (first two steps in Fig 3) :

fj ∼ p(f), DC,j ,DT,j ∼ p(D|fj), Kj ∼ p(K|fj).
Knowledge vs. empirical data. Having in mind the key premise of this paper which is to allow
domain experts inject their prior knowledge of a given learning task in an intuitive and flexible man-
ner, we make the following distinctions between knowledge and empirical data: D1) The domain
of knowledge should be human-interpretable and can be distinct from the domain of empirical data.
D2) While empirical data is noisy, knowledge should contain only true information. In contrast, ad-
ditional empirical data or meta-data from potentially alternative modalities, are not a priori known
to contain truthful information that is relevant for the given predictive task. D3) The way in which
information contained in K is related to the underlying DGP of a task is assumed to be a priori
understood by the domain expert. See Appendix A.2.1 for more details and formalization.

3 INFORMED META-LEARNING

3.1 META-LEARNING PRELIMINARIES

In conventional meta-learning, to enable the learning of the inductive bias, we embed the learner in
a distribution of learning tasks. We assume access to a training set of tasks {τj}j∈J , represented
as tuples of context and target datasets τj = (DC,j ,DT,j). In the probabilistic view, the aim is to
learn a posterior predictive map, Aθ : DC 7→ pθ(f |DC). This map can be also interpreted as the
learning algorithm. Aθ is parametrised by some unknown θ ∈ Θ and we seek θ that facilitates the
best generalisation from context to target data points across all datasets from our training collection.
Formally, we find θ that maximise s:

Ep(DC ,DT ) [pθ(yT |xT ,DC)] = Ep(DC ,DT )

∫
p(yT |xT , f)pθ(f |DC)df, (1)

where p(yT |xT , f) evaluates the likelihood of target data xT , yT ∈ DT for a fixed function f from
the hypothesis space. The expectation in (1) is approximated based on the context and target datasets
from the training set {τj}j∈J . Setting DC = ∅ covers cases where no context data is observed and
the learnt distribution pθ(f |∅) = pθ(f) corresponds to the learnt prior over our hypothesis space ,
i.e. the learnable inductive bias (grey distribution in Fig. 1). After selecting θ, this prior, however,
cannot be adjusted based on potentially available task-specific expert knowledge.

3.2 INFORMED = KNOWLEDGE-CONDITIONED META-LEARNING

To enable the learning of inductive biases that are dependent on external knowledge about the learn-
ing task, analogously to the ideas of meta-learning, we embed our learner in a distribution of learn-
ing tasks, with each task containing an additional representation of knowledge about the underlying
DGP of the data, τj = (DC,j ,DT,j ,Kj). Analogously to meta-learning, the aim is to learn a pos-
terior predictive map that in this case is knowledge-dependent, Aθ : (K,DC) 7→ pθ(f |DC ,K). By
setting DC = ∅, Aθ becomes our sought-after map associating arbitrary knowledge representations
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Figure 3: Informed meta-learning. Successful knowledge integration via meta-learning ensures
that predictions obtained with the informed marginal: pθ(y|x,DC ,KC): a) improve upon the unin-
formed predictions obtained with pθ(y|x,DC); b) qualitatively reflect our knowledge of the DGP.

K with an informed prior distribution pθ(f |K). This learned prior should reflect the knowledge
encoded in K. To learn Aθ we should choose θ that maximises:

Ep(DC ,DT ,K) [pθ(yT |xT ,DC ,K)] = Ep(DC ,DT ,K)

∫
p(yT |xT , f)pθ(f |DC ,K)df. (2)

Figure 3 summarises the three main steps involved in informed meta-learning. By learning the
mapping K 7→ pθ(f | K), informed meta-learning aligns the knowledge space with the hypothesis
space of a model (c.f. Fig. 1). At test time, this map can be utilised by a human domain expert
to communicate their prior knowledge about a new learning problem in an intuitive way (due to
D1-D3). If knowledge is represented in e.g. natural language, this allows for informing the learner
about the expected values of predictions in a more flexible way than it would be otherwise possible
with additional empirical data. For instance, we may want to convey information about the overall
shape of a regression function, rather than just its value at a particular input location. We also note
the generality of equations (1) and (2) enabling us to consider multiple incarnations of informed
meta-learning based on the existing gradient-based or fully amortised approaches.
Example 1 (MAML). ▶ Meta-learning: The popular gradient-based meta-learning, MAML (Finn
et al., 2018), can be recast under the probabilistic formulation of (1) (Grant et al., 2018). In MAML,
θ corresponds to the initialization of the weights of a neural network fθ and the map Aθ is re-
alised by taking a step of gradient decent with respect to DC . Given a loss function L, pθ(f |DC)
is a delta function centred at fθ′–the neural network with weights θ′ = θ − ∇L(fθ;DC), and
p(yT |xT , f) ∝ exp(−L(f ;DT )). ▶ Informed meta-learning To make the learnable prior of
MAML knowledge-dependent, we can modify its original formulation so that the initialization is not
common for all tasks, but is conditioned on K. Specifically, we may parametrise the neural network
fωK with weights ωK = gθ(K), where gθ maps knowledge representations K to the initialization
ωK. Therefore, pθ(f |DC ,K) is a delta function centred at fω′

K
with ω′

K = ωK −∇L(fωK ;DC) and
ωK = gθ(K). During meta-training, we learn the map, gθ : K 7→ ωK. Knowledge representations
inform the learner about the similarity of the task at hand with respect to the previously observed
learning task; two tasks with the same knowledge are mapped to the same initialization.
Example 2 (Amortised meta-learners). ▶ Meta-learning: Another class of meta-learning methods
that can be naturally formulated through (1) are amortised meta-learners for which Aθ is reduced
to a feed-forward map that embeds DC into a fixed vector parametrising p(yT |xT , f). Examples
include prototypical networks (Snell et al., 2017) or the family of neural processes (Garnelo et al.,
2018a;b). ▶ Informed meta-learning: Informed extensions of amortised meta-learners can be
easily obtained by introducing K as an additional inputs to the feed-forward map Aθ.

3.2.1 DOES KNOWLEDGE IMPROVE PREDICTIONS?

With informed meta-learning introducing additional inputs in the form of knowledge representa-
tions, it is intuitive to think that conditioning the learner on the extra knowledge about the DGP
should improve its final predictions on the target data. This is formalised with the following theo-
rem, drawing from the results of Ashman et al. (2024) (see Appendix A.3 for details):
Theorem 1. Suppose that the generating process of datasets and knowledge representations is such
that datasets D and knowledge representations K are conditionally independent given the underly-
ing f . Let p(y|x, I) be the marginal posterior distribution of y, given x and additional information
I , where I ∈ {DC , (DC ,K), f}. Then,

Ep(f,DC ,K) [KL (p(y|x, f)||p(y|x,DC ,K))] ≤ Ep(f,DC) [KL (p(y|x, f)||p(y|x,DC))] , (3)
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Proof. See Appendix A.1.2.

In the above, the distribution p(y|x, f) is the predictive marginal of y at a fixed location x, given
the ground-truth f that generated DC and that K describes. In practice, f is unknown and we
must infer it based on the available DC and optionally K. Theorem 1 suggests that predictions
based on p(y|x,DC ,K) should be closer to the true marginal p(y|x, f) than those based on the
uninformed predictive distribution p(y|, x,DC). For further theoretical results, including conditions
for the inequality (3) to be strict, refer to Appendix A.1.3.

3.2.2 REMARKS AND PRACTICAL CONSIDERATIONS

We make several remarks regarding the practical implementation of informed meta-learners.

Existence of the meta-training set. The required dataset of tasks consisting of pairs of datasets
and their corresponding knowledge representations may seem difficult to obtain, especially at scale.
At the same time, the importance of incorporating expert knowledge into ML predictions is greatest
where data is scarce. If for the downstream application we are interested in obtaining predictions for
a small dataset D, given expert knowledge K, the meta-training set could be obtained from related
learning tasks where data is abundant and knowledge easy to obtain. For instance, in medicine, D
could correspond to a classification task of a rare disease and K describe the typical symptoms as
provided by a medical expert. The meta-training set could then consists of classification tasks for
more common diseases, where plenty of medical records exist and knowledge about them is easily
obtainable, e.g. from medical textbooks. Alternatively, viewing LLMs as databases of knowledge,
we can generate synthetic representations of knowledge with LLMs, mimicking the ones expected
to be seen at test time. We will employ this technique in Section 5.2.

Finite sample approximation. In practice, we model the ground-truth p(y|x,DC ,K) with
pθ(y|x,DC ,K), where the parameters θ are found by maximising the expected posterior as in equa-
tion (2), which is approximated based on a finite meta-training set {τj}j∈J . While the inequality in
equation (1) holds for the ground-truth marginals, it is no longer guaranteed to hold for pθ. When the
number of training tasks is too small in comparison to the complexity of knowledge representations,
empirical approximation of p(y|x,DC ,K) may fail and the resulting predictions could be worse than
those obtained with an uninformed meta-learner trained just on {(DC,j ,DT,j)}j∈J . We empirically
demonstrate this in Appendix A.8.1 and A.8.2. However, as we will illustrate in section 5, with the
size of the meta-training set being sufficiently large, predictions made with the informed posterior
pθ(y|x,DC ,K) should result in an improved performance over uninformed predictions, as expected.

Reduction to meta-learning. If for a given learning task knowledge is not available,
we should expect that the predictions made with an informed meta-learner trained on tasks
{(Kj ,DC,j ,DT,j)}j∈J are no-worse than those obtained with an equivalent, uninformed model
that has been trained just on {(DC,j ,DT,j)}j∈J .

generalisation & distribution shift. While generalisation to previously unseen, and semantically
novel knowledge representations is highly desirable, it remains a significant challenge, due to the is-
sue of distribution shift. If the underlying knowledge generation process p(K|f) remains unchanged
at test time, then knowledge representations that are semantically novel with respect to those ob-
served during training must necessarily correspond to novel data generating functions f that are
OOD in comparison to the training examples.

The next section introduces a practical instantiation of informed meta-learning. This is followed by
a set of illustrative experiments aimed at highlighting the above discussion.

4 INFORMED NEURAL PROCESSES

To illustrate the concepts discussed in the previous section, we introduce a specific example of an
informed meta-learner, Informed Neural Processes (INPs). The proposed class of methods builds
on Neural Processes (NPs)—a family of amortised meta-learners first introduced by Garnelo et al.
(2018a;b) and later extended with attention-based architectures (Kim et al., 2019; Nguyen & Grover,
2023). NPs reduce the computational cost of learning to a feed-forward operation, eliminating the
need for costly gradient-based optimisation. NPs also model a distribution of functions, given the
contextual inputs, rather than returning point predictions. This property of NPs is of particular inter-
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est to us, as, given the incompleteness of expert knowledge, a single knowledge representation may
correspond to multiple underlying functions; a faithful informed meta-learner should adequately
represent this form of uncertainty. We remind that the focus of this paper is not to demonstrate
state-of-the-art performance on an existing benchmark dataset, but rather to put forward the idea of
incorporating expert knowledge into ML predictions via informed meta-learning. Consequently, our
implementation remains simple and lightweight, and its details can be found in Appendix A.4.

The model. We extend the in-context inputs of conventional NPs with the representations of knowl-
edge pertaining to each learning task and model the predictive posterior as:

pθ(y | x,DC ,K) := pθ(y | x, rC , k) =
∫

pθd(y | x, z)qθe(z | rC , k)dz, θ = (θe, θd). (4)

In the above, pθd(y | x, z) and qθe(z | rC , k) model the conditional distributions p(y|x, f) and
p(f |DC ,K) through a latent variable z ∈ Rd. The variational distribution qθe(·|rC , k) depends
on both the contextual datapoints DC and expert knowledge K and is modelled with an encoder
network hθe consisting of two sub-networks: the data encoder hθe,D and knowledge encoder hθe,K .
Fusion of knowledge with data is realised with an aggregation operator a, so that hθe(DC ,K) =
a(rC , k), with k = hθe,K (K) and rC = hθe,D (DC). We let qθe(z|rC , k) = N (z;µz, σz) with
(µz, σz) = a(rC , k) and and we find that choosing a to be a simple sum of the two vectors works
well in practice. For regression tasks we model the outputs with a decoder network gθd so that
pθd(y | x, z) = N (y;µx, σx), where (µx, σx) = gθd(x, z). If either DC or K are not available, we
set their respective representations, rC or k, to a zero vector.

Training. INPs are trained in an episodic fashion over a distribution of learning tasks τj =
(Kj ,DC,j ,DT,j). Omitting the dependence on j, we denote by rC and rT the representations of
context and target data, respectively, and by k the knowledge embedding vector of a single task.
Parameters of the model are learned by maximising the expectation of ELBO over all training tasks:

log pθ(yT |xT , rC , k) ≥ Eqθe (z|rT ,k) [log pθd(yT | xT , z)]−DKL (qθe(z | rT , k) || qθe(z | rC , k)) .
During training, we randomly mask knowledge representations by setting k = 0. This allows for the
possibility of knowledge being missing at test time. Further details on the derivation and estimation
of the ELBO loss can be found in Appendix A.5.

5 EMPIRICAL STUDY

The experimental section is divided into two parts. First, we illustrate the benefits and challenges
associated with informed meta-learning on experiments with synthetic data, where knowledge repre-
sentations are well-structured and there exists an analytic, closed-form expression linking knowledge
with the true DGP. In the second part, we showcase possible applications on real-world data where
the underlying DGP is unknown and knowledge may be loosely formatted, particularly, represented
in natural language. Full experimental details are described in Appendix A.6.

5.1 PART I: ILLUSTRATIVE EXPERIMENTS

Based on the points made in section 3.2.2, we aim to explore the following questions:. Q1) Do
INPs successfully learn to integrate knowledge into their predictions, and, as a result, improve the
data efficiency of the learner? Q2) If knowledge is not available at test time, does the performance
of the INP model reduce to that of an equivalent NP model? Q3) Does the additional knowledge
about a learning task help in mitigating the negative affects of task distribution shift? If yes, can
the approach of conditional meta-learning enable generalisation to previously unseen and semanti-
cally novel knowledge representations? Q4) What are the qualitative differences in the impact of
knowledge vs. additional empirical data on our predictions?

5.1.1 Q1 & Q2: KNOWLEDGE AND DATA EFFICIENCY.

Setup. For each task, context, and target data points are sampled according to the following process.
A function f is sampled from the family of sinusoidal functions with a linear trend and bias, f(x) =
ax + sin(bx) + c, for some randomly sampled values of the parameters a, b, c. We introduce a
Gaussian observational noise, s.t. yi = f(xi) + ϵi, ϵi ∼ N (0, 0.2). The parameters a, b, c are
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randomly sampled according to: a ∼ U [−1, 1], b ∼ U [0, 6], c ∼ U [−1, 1]. We let K encode the
value of two, one or none (K = ∅) of the parameters a, b, or c. The number of context points n
ranges uniformly between 0 and 10; the number of targets is set to m = 100. This setup simulates a
scenario in which K contains partial, incomplete information about f . By training over a distribution
of tasks τ , we expect the model to learn how to put a strong prior on the function’s slope, level of
oscillations and bias.

0 5 10 15
Number of context datapoints

−300

−250

−200

−150

−100

−50

0

N
eg

at
iv

e
Lo

g-
lik

el
ih

oo
d

Task type:
K = ∅
K 6= ∅
Model:
NP
INP

(a) Avg. log-likelihood vs.
number of context points.

{a} {b} {c} {a, b} {a, c} {b, c}
Format of K

0

50

100

150

∆
AU

C
[%

]

(b) Relative improvement by
knowledge type.

Figure 4. .

Results. Fig. 4a shows the estimated log-likelihood on the test tasks
against the number of context data points for both the original NP
model and the INP. Results for INP are shown with knowledge pre-
sented at test time (K ≠ ∅) and when it is omitted (K = ∅). We
observe that informing the model significantly improves predictions.
As the number of context points decreases, the performance gap
between raw and informed predictions increases. Moreover, under
K = ∅, INPs performs on par with vanilla NPs. Thus, the ability to
condition the prior on expert knowledge is not at the cost of reduced
performance of purely data-driven predictions.

To summarise the impact of knowledge on the predictive perfor-
mance of INPs we compute the relative ∆AUC score defined as the
integral of the “∆-likelihood against n” (von Rueden et al., 2023),
with “∆-likelihood” is defined as: p(DT |DC ,K) - p(DT |DC). We
report relative values with respect to the AUC of the uninformed pre-
dictions. Fig. 4b shows the estimated ∆AUC depending on which of
the parameters a, b, or c have their values revealed at test time. Intu-
itively, exposing more information about f should provide the model
with stronger priors, simplifying the learning problem. As expected,
when |K| = 2 the performance gains are larger than when |K| = 1.

5.1.2 Q3: DISTRIBUTION SHIFT AND GENERALISATION OF KNOWLEDGE

0 5 10 15
Number of context datapoints

−300

−250

−200

−150

−100

−50

0

N
eg

at
iv

e
Lo

g-
lik

el
ih

oo
d

NP: K = ∅
INP: K 6= ∅

train
test

(a)

2

3

4

5

6

7

te
st

lo
g(

lo
ss

)

NP: K = ∅
INP: K 6= ∅

0 2 4 6
Value of b

0.0

0.2

0.4

%
of

tra
in

in
g

ta
sk

s

(b)

Figure 5: a) Average log-likelihood on training vs.
testing tasks. b) Top: Log(loss) on testing tasks. Bot-
tom: Frequency of tasks for a given value of b ob-
served during training. Results presented for zero-
shot tasks with DC = ∅. Bars represent 1 standard
deviation across the tasks within one bin of the b pa-
rameter values. Providing knowledge about the pa-
rameter b helps in generalisation to OOD tasks. INP
generalises to previously unobserved values of b.

Setup. Performance of meta-learners often drops
drastically in the presence of a distribution shift
between training and testing tasks Chen et al.
(2019). In this experiment, we simulate a dis-
tribution shift. Keeping everything else equal as
in the previous setup, for the training tasks, we
sample b ∼ N (2, 1), and for testing tasks we let
b ∼ N (3, 1). We let K encode the true value of b.

Results. Fig. 5a shows how the performance gap
between training and testing tasks is significantly
reduced upon informing the model about the true
value of b–the source of the distribution shift be-
tween training and testing tasks. From Fig. 5b,
we observe that as at test time, as we take the
value of the parameter b further out of the range
observed during training, the performance of the
uninformed model degrades, while the INP main-
tains its improved performance. Thus, in this in-
stance, INPs successfully generalise to previously
unseen knowledge representations.

5.1.3 Q4: QUALITATIVE IMPACT OF KNOWLEDGE AND UNCERTAINTY REDUCTION.

The first two columns of Fig. 6 show sample functions from the trained INP from experiment 5.1.1
given a single data point in DC , and given the knowledge representation (see Fig. A.1 in the ap-
pendix for more examples). We find that qualitatively, predictions obtained with the INP correctly
reflect the semantic meaning of knowledge representations, with the sampled functions approx-
imately representing the provided values of the parameters a, b, or c. As expected, knowledge
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provides information about the global behaviour of sampled functions while individual data points
anchor the predictions in the x-y plane.

NPs possess a key feature: the capability to sample from the solution space, instead of provid-
ing a single point estimate. This enables us to measure the decrease in model uncertainty when
incorporating expert knowledge. Our focus is primarily on measuring epistemic uncertainty—the
uncertainty stemming from a lack of knowledge about the true functional relationship, and not the
inherent randomness of the data-generating process.

x
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Figure 6: Sample functions from a trained INP and re-
duction in epistemic uncertainty.

To measure the impact of contextual inputs on
uncertainty reduction of the INP, we can esti-
mate the predictive uncertainty as the condi-
tional entropy, H[pθ(y | x, I)], at a fixed lo-
cation x ∈ X and I ∈ {DC ,K, (DC ,K)}. Pre-
dictive uncertainty is measured in the observa-
tion space and therefore amounts for the uncer-
tainty associated with observational noise. We
can, however, decompose it as a sum:

I(y, f | x, I)︸ ︷︷ ︸
epistemic

+Ef∼pθ(f |I)[H[pθ(y | x, f)]]︸ ︷︷ ︸
aleatoric

and approximate the predictive and aleatoric uncertainties with MC samples. The epistemic uncer-
tainty is then obtained as the difference of the two quantities (see appx. A.7 for more details). The
last column of Fig. 6 displays the reduction in uncertainty due to knowledge: I(y, f | x) − I(y, f |
x,K), and due to data: I(y, f | x) − I(y, f | x,DC), computed at all input locations x ∈ [−2, 2].
As observed from the sample functions, we find that knowledge of the value of the parameter b,
responsible for the oscillations, provides information about global characteristics of f , rather than
local, in contrast to the single contextual data point in DC . Future research could explore active-
learning strategies (Rainforth et al., 2023) with the task-specific knowledge queried on the basis of
the epistemic uncertainty (Kaddour et al., 2020; Astorga et al., 2024; Kobalczyk et al., 2025).

5.2 PART II: REAL DATA AND LOOSELY FORMATTED KNOWLEDGE

For illustrative purposes, representations of knowledge in the previous part were highly struc-
tured and with a well-defined relationship to the underlying DGP. Naturally, in such scenarios we
would resolve to direct knowledge integration methods e.g., a Bayesian regression model (c.f. Ap-
pendix A.8.4). However, the advantages of informed meta-learning become evident when: a) the
functions to be learned lack a known, closed-form expression; b) knowledge about the learning task
is loosely formatted, making manual integration of prior knowledge a significant challenge.

5.2.1 INFORMED WEATHER PREDICTIONS

Setup: We use the sub-hourly temperature dataset from the U.S. Climate Reference Network, rep-
resenting values of the air temperature measured at regular 5-minute intervals. For each task, target
observations are uniformly sampled from a 24h time range. Context data points are selected by sub-
sampling at most 10, chronologically first samples. This setup enables us to assess extrapolation.
We perform independent experiments with two formats of knowledge:

• A: For each task, knowledge K is a vector encoding two values: the minimum temperature and
the maximum temperature on the day.

• B: For each task, knowledge K is a synthetically generated “weather forecast” presented in natural
language. We generate these with GPT-4 OpenAI et al. (2023) prompted to write two sentences
mimicking a weather forecast, based on values from the ground truth temperature measurements.

Fig. 7a shows representative examples of the daily temperature paths from test tasks alongside purely
data-driven and informed predictions. NPs capture the general trend of the temperature rising during
the day, and then falling down towards the night, but unsurprisingly, fail to accurately extrapolate
beyond the observed regions. This is due to a high level of heterogeneity present in the collection of
meta-training tasks, which is reflected in the high variability of the sampled functions outside of the
observed data range. In terms of the informed predictions, we observe that the information contained
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(a) Sample predictions. NP: uninformed, INP (A): informed by
knowledge about the minimum and maximum temperature on
the day. INP (B): informed by knowledge about the tempera-
ture presented in a text format (see appx. A.6)

n INP A INP B

0 63.5 (1.8) 60.7 (3.0)
1 21.1 (1.4) 17.3 (1.3)
3 14.0 (1.1) 16.3 (1.3)
5 11.1 (1.0) 13.8 (1.2)

10 4.1 (0.5) 1.1 (0.3)
15 0.6 (0.3) 0.1 (0.2)

∆AUC 24.6 (1.1) 22.2 (1.0)

(b) Relative performance gap (%) be-
tween informed and uninformed predic-
tions. Bootstrap standard errors in brackets
based on 110 testing tasks.

Figure 7. .

in K enables guided extrapolation beyond the observed range of values and reduces the variance of
the sampled functions. Table 7b compares the performance gap between informed and uninformed
predictions. Notably, knowledge enables sensible, 0-shot predictions with an average improvement
in log-likelihood of 57.7% and 48.1% for setups A and B, respectively. We also note that the rep-
resentation of knowledge, as presented in setup A should, in the theoretically optimal case, impose
hard constraints on the maximum and minimum values of the function’s range. However, given
that INP is only a neural approximation of these constraints, the resulting curves may exceed the
specified range as opposed to strictly adhering to it; as it could be possible with a custom-designed
model that explicitly incorporates such constraints into its optimisation objective.

Take-away: In practical scenarios, predictive functions are difficult to model with closed-form
mathematical expressions, making the process of external knowledge integration a challenging task.
The benefit of neural, meta- approaches, is their functional flexibility. NPs learn non-trivial “kernels”
from the collection of training tasks directly. INPs take this a step further, enabling the incorporation
of non-trivially representable information about the underlying function into the model.

5.2.2 INFORMED IMAGE CLASSIFICATION

Setup: We apply INPs to few-shot classification on the CUB-200-2011 dataset Wah et al. (2011).
We use 100 bird categories for training, 50 for validation, and 50 for testing and follow the standard
N -way, k-shot classification setup. We adjust the INP architecture to suit the image classification
task, employing CLIP vision and text encoders Fu et al. (2022) (details in appx. A.6.3). We perform
independent experiments with three formats of knowledge:

• A: Knowledge represents features of a given bird class, e.g. wing span, feather color. Class-level
attributes are obtained by averaging the attribute vectors associated with each image from the
dataset. Class-level attribute vectors are stacked together to obtain N × 312 tensors.

• B: Knowledge represents class-level textual descriptions of the N classes obtained by averaging
sentence embedding of individual image captions belonging to the given class. We use human-
generated captions as collected in Reed et al. (2016) and embed them with CLIP. Per-class aver-
aged text embeddings are then stacked to form a N × 512 tensor.

• C: Here knowledge represents a set of N individual descriptions of each class. We generate these
with GPT-4 based on the captions from B (see appx. A.6.3 for examples).

Table 1 displays results for 5-way and 10-way classification. Across all settings, we observe higher
classification accuracy when additional knowledge is utilised. This trend holds for 1, 3, 5, and
10-shot tasks, with the performance gap widening as the number of shots decreases. Moreover, the
information about characteristic elements of each class contained in K proves sufficient for relatively
good zero-shot prediction performance. While the zero-shot performance for setup C is lower than
that of setups A or B, it is nevertheless significantly higher than the accuracy of random guessing.

Take-away: INPs align the representations of images and knowledge about class-specific features
to construct latent representations that contain the essential multi-modal information. This align-
ment facilitates robust generalisation to new, previously unseen classes, enabling both zero-shot
classification and improved few-shot classification accuracy.
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Table 1: Accuracy (%) on N -way, k-shot classification tasks for the CUB-200-2011 dataset. Num-
bers in brackets represent the bootstrap standard errors of the estimates based on 60 tasks per each
setting. Individual tasks are constructed with only previously unseen bird categories.

N = 5 N = 10

k NP INP (A) INP (B) INP (C) NP INP (A) INP (B) INP (C)

0 – 87.5 (0.7) 87.4 (0.5) 50.3 (0.6) – 81.1 (0.4) 78.5 (0.4) 33.7 (0.3)
1 82.2 (0.6) 88.1 (0.6) 89.1 (0.5) 85.1 (0.5) 73.3 (0.4) 82.2 (0.4) 81.9 (0.4) 77.0 (0.5)
3 87.0 (0.5) 88.4 (0.6) 89.3 (0.5) 88.3 (0.5) 79.8 (0.4) 82.7 (0.4) 82.7 (0.4) 81.8 (0.4)
5 88.1 (0.5) 88.5 (0.6) 89.6 (0.5) 88.9 (0.4) 81.5 (0.4) 82.8 (0.4) 82.8 (0.4) 83.0 (0.4)
10 88.5 (0.5) 88.5 (0.6) 89.6 (0.5) 89.0 (0.4) 82.6 (0.4) 82.7 (0.4) 83.0 (0.4) 84.1 (0.4)

6 RELATED WORK, LIMITATIONS, & IMPACT

Manual knowledge integration. Conventional approaches to knowledge integration rely on the ML
engineer translating the a priori known property of the underlying function, into an inductive bias
of the model. This has been successfully achieved by introducing specialised loss functions (Wu
et al., 2018; Karpatne et al., 2017), enforcing informative priors (Mariëlle Zondervan-Zwijnenburg
& Schoot, 2017; Constantinou et al., 2016), or designing new model architectures (Cohen & Welling,
2016; Butter et al., 2018). However, such manual approaches are limited by the extent to which
expert information can be explicitly encoded in the learning algorithm. Even seemingly straight-
forward tasks, such as enforcing monotonicity or other shape constraints often require significant
engineering effort (Riihimäki & Vehtari, 2010; Link et al., 2022). This restricts representations
of expert knowledge to formal mathematical expressions (Karpatne et al., 2017; Qian et al., 2021),
knowledge graphs (Choi et al., 2017; Zhang et al., 2019), or logical rules (Yang et al., 2023; Richard-
son & Domingos, 2006). In contrast, informed meta-learning offers a way to integrate knowledge
from any source, including natural language, allowing for a greater flexibility in the type of infor-
mation that can be transferred to the learner. On the other hand, this approach lacks the guaranteed
correctness that conventional methods enjoy. With model-based methods, properties like equivari-
ance or sparsity can be guaranteed by design. Informed meta-learning in its presented form can only
approximate the true meaning of knowledge and its performance is contingent on, i.a., the number
and coverage of the training tasks, lack of spurious correlations, and complexity of knowledge (see
Appendix A.8). Finally, model-based methods do not require access to additional learning tasks that
informed meta-learning assumes.

LLMs to automate knowledge integration. As LLMs continue to improve, they show potential
to act as out-of-the-box, in-context learners, capable of integrating expert knowledge into their pre-
dictions. Recent works by Requeima et al. (2024); Jin et al. (2024) explore strategies for eliciting
numerical predictions over time series data, given a set of training points and expert information pro-
vided as text within the LLM’s context window. Such purely LLM-based methods create an interface
for human users to incorporate expert insights through language, while also leveraging problem-
relevant knowledge embedded in the LLM. These approaches eliminate the need for training an
informed meta-learner from scratch. On the other hand, they introduce the risk of incorporating
unwanted biases and require transforming numerical datasets into tokens which may limit applica-
bility and performance (Gruver et al., 2023). Future research should explore the mutual benefits of
LLM-based learners and informed meta-learning—for instance, by fine-tuning an LLM on the meta-
training dataset, or presenting a sample of training tasks within the context window. Such strategies
should enable to extend informed learning with LLMs beyond the current focus on 1-dimensional
time-series data. LLMs may also serve as a useful tool for synthetic data generation, addressing the
limitation of informed meta-learning due to potential difficulties in obtaining the training examples.

An extended discussion of the related work can be found in Appendix A.3.

Impact. In this paper, we have proposed a new perspective on automated inductive bias specifica-
tion based on expert knowledge represented in human-interpretable formats. We note that our work
primarily focuses on putting forward the idea of informed meta-learning with the introduced class
of INPs serving mainly as an illustration. We hope that this paper inspires future research to ex-
plore new architectures improving learning efficiency and generalisation to novel representations of
knowledge as well as real-world applications across a range of domains where expert knowledge is
present (see A.2.3 for examples). The growing capabilities of LLMs present an exciting opportunity
for informed meta-learning, and we look forward to future developments in this area.
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A APPENDIX

Table A.1: Table of Contents

Appendix
section

Contents

A.1.1 Explaining the notation f ∼ p(f) and the data and knowledge generating
process

A.1.2 Proof of Theorem 1

A.1.3 Further theoretical results following Theorem 1

A.2.1 Extended discussion on assumptions D1-D3 regarding data vs. knowledge

A.2.2 A short discussion on the curation of meta-training datasets

A.2.3 Example applications of informed meta-learning

A.3 Extended related work section

A.4 Details of the INP architecture

A.5 Training details and derivation of the ELBO loss

A.6 Details of experiments presented in Section 5

A.7 Details on uncertainty quantification with INPs

A.8 Additional experiments: A.8.1: the impact of meta-training size on suc-
cessful knowledge integration; A.8.2 the impact of knowledge complexity
on successful knowledge integration; A.8.3: the impact of spurious corre-
lations of knowledge and data on correct “knowledge interpretation”; A.8.4
meta-learned vs. exact knowledge integration.

A.1 THEORY

A.1.1 FORMALISM

Let (Ω,ΣΩ, P ) be an abstract probability space and (Y,ΣY) the measurable space of outputs. We
define a stochastic process F as a collection of Y-valued random variables:

F := {F (x) : x ∈ X}.
A single realization of F ( · ;ω) : X → Y , is a function between the input space X and the output
space Y . We will denote with p = P ◦ F−1 the law of this stochastic process, so that for a subset
F ⊂ XY ,

p(F) = P ({ω ∈ Ω : F (· ;ω) ∈ F}),
Thus, the notation f ∼ p(f) corresponds to sampling a function F ( · ;ω) according to the law p.

The data-knowledge generating model. We assume the following data and knowledge DGP. First,
a sample, not directly observable function f : X → Y is sampled according to f ∼ p(f). Given
f , the pair of context and targets datasets is generated according to DC ,DT ∼ p(D|f) and the
corresponding knowledge representation is generated according by K ∼ p(K|f). Here p(D|f)
and p(K|f) are the data and knowledge generating distributions respectively. Note, this model
assumes that knowledge representations and empirical data are conditionally independent given a
single realization f .

The somewhat unconventional notation of conditioning on functions f , through p(D|f) and p(K|f)
serves to highlight the role of knowledge as expressing information about the true underlying func-
tional relationships between model inputs x ∈ X and its outputs y ∈ Y .

With a slight abuse of notation, we will denote by p(f,DC ,K) the joint distribution on functions,
datasets and knowledge representations. The assumption of conditional independence tells us that it
factorise s as p(f,DC ,K) = p(DC |f)p(K|f)p(f).
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A.1.2 PROOF OF THEOREM 1

Theorem 1. Suppose that the generating process of datasets and knowledge representations is such
that datasets D and knowledge representations K are conditionally independent given the underly-
ing f . Let p(y|x, I) be the marginal posterior distribution of y, given x and additional information
I , where I ∈ {DC , (DC ,K), f}. Then,

Ep(f,DC ,K) [KL (p(y|x, f)||p(y|x,DC ,K))] ≤ Ep(f,DC) [KL (p(y|x, f)||p(y|x,DC))] , (5)

Proof of Theorem 1 (informal). The proof is analogous to that presented by Ashman et al. (2024)
where K’s take a particular form of an additional sample of data generated according to the same
stochastic process as DC (see A.3, Meta-learning with meta-data for details).

We have that the LHS is equal to:

Ep(f,DC ,K) [KL (p(y|x, f)||p(y|x,DC ,K))]

= Ep(f,DC ,K)H [p(y|x, f)]− Ep(f,DC ,K)Ep(y|x,f) [log p(y|x,DC ,K)] (6)

And that the RHS is equal to:

Ep(f,DC) [KL (p(y|x, f)||p(y|x,DC))]

= Ep(f,DC)H [p(y|x, f)]− Ep(f,DC)Ep(y|x,f) [log p(y|x,DC)] (7)

We first consider the second term of (6).

− Ep(f,DC ,K)Ep(y|x,f) [log p(y|x,DC ,K)] =

= −Ep(f,DC ,K)Ep(y|x,f,DC ,K) [log p(y|x,DC ,K)] (by conditional independence)

= −Ep(DC ,K)p(f |DC ,K)Ep(y|x,f,DC ,K) [log p(y|x,DC ,K)]

= −Ep(DC ,K)Ep(y|DC ,K) [log p(y|x,DC ,K)] (by Foubini)

= Ep(DC ,K)H [p(y|x,DC ,K)]

≤ Ep(DC)H [p(y|x,DC)] (conditioning does not increase entropy)

The last expression is equal to the second term of (7):

− Ep(f,DC)Ep(y|x,f) [log p(y|x,DC)]

= −Ep(f,DC)Ep(y|x,f,DC) [log p(y|x,DC)] (by conditional independence)

= −Ep(DC)Ep(f |DC)Ep(y|x,f,DC) [log p(y|x,DC)]

= −Ep(DC)Ep(y|x,DC) [log p(y|x,DC)] (by Foubini)

= Ep(DC)H [p(y|x,DC)]

Finally, we notice that the first terms of (6) and (7) are equal:

Ep(f,DC ,K)H [p(y|x, f)] = Ep(f,DC)H [p(y|x, f)] ,
as the entropy term H [p(y|x, f)] does not depend on K. This concludes the proof.

A.1.3 A FURTHER THEORETICAL DISCUSSION

Strict inequality in Theorem 1. By examining the steps in the proof of Theorem 1, we note that
the inequality (5) can be made strict under the assumption of strictly positive mutual information
between target values y and knowledge K at the specified location x ∈ X , formalised as:

I(y;K|x) := H [p(y|x)]− Ep(K)H [p(y|x,K)] > 0 (8)

Note, we do not require that for any observed context dataset DC , H [p(y|x,DC)] −
Ep(K)H [p(y|x,K,DC)] > 0. We may imagine special cases in which given a context dataset DC ,
any additional knowledge about the underlying function would be redundant. For instance, in the
noiseless setup of section 5.1.1, with f(x) = ax+sin(bx)+ c, observing 3 distinct data points fully
determines the underlying values of the parameters a, b, and c; thus, any extra knowledge K would
be redundant in this case.
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Proposition 1. Under the assumption of (8),

Ep(DC ,K)H [p(y|x,DC ,K)] < Ep(DC)H [p(y|x,DC)] (9)

Proof. Note, we can decompose Ep(DC ,K)H [p(y|x,DC ,K)] as a sum of two terms:

Ep(DC ,K)H [p(y|x,DC ,K)] =

= Ep(DC ,K) [1{DC = ∅}H [p(y|x,DC ,K)] + 1{DC ̸= ∅}H [p(y|x,DC ,K)]]

For the first term, we have:

Ep(DC ,K) [1{DC = ∅}H [p(y|x,DC ,K)]]

= Ep(DC ,K) [1{DC = ∅}H [p(y|x,K)]] (p(y|x,∅,K) = p(y|x,K))

= Ep(f)Ep(DC |f)Ep(K|f) [1{DC = ∅}H [p(y|x,K)]] (by conditional independence)

= Ep(f)P(DC = ∅|f)Ep(K|f)H [p(y|x,K)]

= P(DC = ∅)Ep(K)H [p(y|x,K)] (∗)
< P(DC = ∅)H [p(y|x)] (by the assumption (8))
= Ep(DC) [1{DC = ∅}H [p(y|x)]]

The transition in (∗) follows since the data generating process is such that the event 1{DC = ∅}
is independent of the particular choice of the data generating function f (e.g., in our experiments,
the number of available data points for conditioning is sampled uniformly from a range of values
regardless of the underlying function).

For the second term, since conditioning does not increase entropy, for any fixed dataset DC we have:

Ep(K|DC)H [p(y|x,DC ,K)] ≤ H [p(y|x,DC)] .

Multiplying both sides by 1{DC ̸= ∅} and taking the expectation with respect to p(DC) yields:

Ep(DC ,K) [1{DC ̸= ∅}H [p(y|x,DC ,K)]] ≤ Ep(DC) [1{DC ̸= ∅}H [p(y|x,DC)]] .

Combining the two inequalities gives us:

Ep(DC ,K)H [p(y|x,DC ,K)] =

= Ep(DC ,K) [1{DC = ∅}H [p(y|x,DC ,K)]] + Ep(DC ,K) [1{DC ̸= ∅}H [p(y|x,DC ,K)]]

< Ep(DC) [1{DC = ∅}H [p(y|x)]] + Ep(DC) [1{DC ̸= ∅}H [p(y|x,DC)]]

= Ep(DC)H [p(y|x,DC)]

Corollary 1. Suppose that the generating process of datasets and knowledge representations is
such that datasets D and knowledge representations K are conditionally independent given the
underlying f . Let p(y|x, I) be the marginal posterior distribution of y, given x and additional
information I , where I ∈ {DC , (DC ,K), f}. Suppose that in addition, assumption (8) holds. Then,

Ep(f,DC ,K) [KL (p(y|x, f)||p(y|x,DC ,K))] < Ep(f,DC) [KL (p(y|x, f)||p(y|x,DC))] , (10)

Proof. It suffices to replace in the proof of Theorem 1 the inequality Ep(K|DC)H [p(y|x,DC ,K)] ≤
H [p(y|x,DC)] with the strict inequality from Proposition 1.

When can we expect assumption (8) to hold true? Given the above results, it is natural to consider
when can we expect I(y;K|x) > 0 to hold true. It may be in fact the case that K provides localised
information, e.g. K =“The values for x’s smaller than 0 should not exceed ...”. For this kind of
knowledge, if a given x does not fall into the region that K informs about (in the example, it is any
x ≥ 0), and without enforcing any further restrictions on the underlying process p(f), (8) is may not
hold. However, instead of considering the impact of K’s at a specified location x, it is reasonable
to assume that a weaker conditions holds, i.e. that the conditional mutual information between the
targets y and knowledge K is positive in expectation across the domain X :

Ep(x) [I(y;K|x)] > 0,
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in which case we obtain that:

Ep(x,f,DC ,K) [KL (p(y|x, f)||p(y|x,DC ,K))] < Ep(x,f,DC) [KL (p(y|x, f)||p(y|x,DC))] . (11)

We may also want to further break down the assumption of (8 with respect to the information gain
of K on the underlying y through f rather than directly. Due to the conditional independence of
observed values and knowledge given f , we have the following:

I(y;K|x) = I(K; y|x)
= H[p(K)]− Ep(y|x)H[p(K|x, y)]
= H[p(K)]− Ep(f)H [p(K|f)] + Ep(f)H [p(K|f)]− Ep(y|x)H[p(K|x, y)]
= H[p(K)]− Ep(f)H [p(K|f)] + Ep(f)H [p(K|f, x, y)]− Ep(y|x)H[p(K|x, y)] (†)

= H[p(K)]− Ep(f)H [p(K|f)]︸ ︷︷ ︸
=I(K;f)

−Ep(y|x)

H[p(K|x, y)]− Ep(f)H [p(K|f, x, y)]︸ ︷︷ ︸
=I(K;f |x,y)


= I(f ;K)− Ep(y|x) [I(f ;K|x, y)] ,

where we have used the conditional independence assumption in (†). Thus, I(y;K|x) > 0 if and
only if:

I(f ;K)− Ep(y|x) [I(f ;K|x, y)] > 0, (12)

where the above terms can be expressed as: I(f ;K) = H[p(f)] − Ep(K)H[p(f |K)] and
I(f ;K|x, y) = H[p(f |x, y)]− Ep(K)H[p(f |K, x, y)] . Therefore, for (12) to be true we require:

1. Non-zero dependency between f and K. We must necessarily have that I(f ;K) > 0,
which should trivially be true by the definition of knowledge as information about the
ground truth data generating process.

2. Sufficient informativeness of (x, y) about f . Note, Ep(y|x) [I(f ;K|x, y)] is always
smaller or equal to I(f ;K). The condition of Ep(y|x) [I(f ;K|x, y)] < I(f ;K|x), im-
plies that the observation noise of y’s should be low. High noise leads to higher
Ep(y|x) [I(f ;K|x, y)] bringing it closer to I(f ;K) and thus causing I(y;K|x) to go to zero.

More information leads to stronger priors. In the experiments, we have observed what is quite
intuitive, namely, that providing the model with more information in knowledge representations
results in stronger priors and thus improved predictions. To formalise this claim we can assume
two competing knowledge-generating distributions: p(K|f) and p̃(K|f), with their corresponding
joints: p(f,DC ,K) = p(f)p(DC |f)p(K|f) and p̃(f,DC ,K) = p(f)p(DC |f)p̃(K|f). In this case
we have that :

p̃(y|x) =
∫ ∫

p̃(y, f,K|x)dKdf =

∫ ∫
p(f)p(y|x, f)p̃(K|f)dKdf =

∫
p(f)p(y|x, d)df = p(y|x).

Then, saying that p(K|f) is (locally) more informative than p̃(K|f) can be formalised as:

H [p(y|x)]− Ep(K,DC)H [p(y|x,DC ,K)] > H [p(y|x)]− Ep̃(K,DC)H [p̃(y|x,DC ,K)] ⇔
Ep̃(K,DC)H [p̃(y|x,DC ,K)] > Ep(K,DC)H [p(y|x,DC ,K)] . (13)

Let,
ϵ(x) := Ep(f)p(DC |f)p(K|f) [KL (p(y|x, f)||p(y|x,DC ,K))]

and
ϵ̃(x) := Ep(f)p(DC |f)p̃(K|f) [KL (p(y|x, f)||p̃(y|x,DC ,K))] .

It is then straightforward to show that under the assumption of (13), ϵ(x) < ϵ̃(x), i.e. the posterior
predictive is closer to the ground-truth marginal p(y|x, f) for knowledge generated according to the
more informative distribution.
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A.2 EXTENDED REMARKS, LIMITATIONS & FUTURE WORK

A.2.1 KNOWLEDGE VS. DATA

We remind the reader that the primary objective of this paper is to consider a learning method
that allows domain experts to inject their prior knowledge of a given learning task in an intuitive and
flexible manner. In this regard, we elaborate on what distinguishes expert knowledge from empirical
(meta-) data.

In line with the goal of intuitive and flexible knowledge integration, D1) posits that the domain of
knowledge should be human-interpretable and, as such, distinct from the domain of empirical data.
Specifically, we argue that in many real-world applications, knowledge can be most naturally ex-
pressed in natural language, which allows for the articulation of task properties that may be difficult
to encode using strict mathematical equations, or additional data samples.

D2) asserts that, unlike empirical data, knowledge should consist only of true information. The
assumption of truthfulness in knowledge is a recurring theme throughout this paper and warrants
further clarification. Referring to our data and knowledge generation process, we assume the fol-
lowing: first, an underlying function f ∼ p(f) is sampled. This function f generates both the
observable dataset DC ∼ p(D|f) and the target dataset DT ∼ p(D|f), with p(D|f) introducing the
observational noise. An expert, with privileged insight into the data-generating process, provides
a description of the expected properties of f with K ∼ p(K|f). Variability in p(K|f) arises due
to two factors: 1) For a single function f , semantically equivalent representations may be used to
express the same properties–this is particularly relevant when K is represented in natural language;
2) Knowledge about a specific function f is typically partial–only a subset of the properties of the
underlying f may be reasonably expected to be known for a given task. The assumption of truth-
fulness also implies that, up to semantic equivalence, the process p(K|f) should not be subject to
distributional shifts, unlike p(D|f) or p(f) itself.

Lastly, D3) states that the relationship between the information contained in K and the underlying
DGP of a task is assumed to be understood a priori by the domain expert. This implies that the
process p(K|f) is, in itself, human-interpretable.

Assumptions D1) to D3) are in contrast with the use of additional data in hierarchical meta-learning
setups considered in prior works, where contextual data DC is supplemented by additional meta-
data about the task. For instance, (Iwata & Kumagai, 2022) condition the meta-learner on the fea-
ture names of the dataset DC . However, feature names alone do not convey meaningful, human-
interpretable information about the learning task that informs about the underlying relationship
between predictors and the target variable. While this relationship may be inferred during meta-
training, it would remain unknown to the human expert, violating D3). The relationships between
feature names and the underlying values of the variables is also likely to be subject to distribution
shifts, violating D2). As a result, even though conditioning on such additional data may lead to
improved predictive performance, it would not enable the intuitive steerability of inductive biases
during deployment.

A.2.2 COLLECTION OF THE META-TRAINING DATASET.

In practice, a typical setup may begin with one or a few contextual datasets, each paired with ex-
pert knowledge about the underlying functional relationships expressed in K. This raises a natural
question: how can additional learning tasks required for informed meta-learning be obtained?

First, we acknowledge that the requirement of the additional training tasks is may be a limitation
of informed meta-learning in comparison to model-based strategies. In particular, the number of
training tasks required for successful knowledge integration via informed meta-learning grows with
the complexity of the knowledge representations, as illustrated in the synthetic experiment in Ap-
pendix A.8.2. For the informed meta-learner to understand the underlying meaning of knowledge,
it must be exposed to a variety of datasets corresponding to semantically distinct representations of
knowledge. Without semantic variation, learning a generalisable mapping between the knowledge
space and the hypothesis space of a model becomes impossible.

Given that interviewing a human domain expert to express knowledge about a large number of
related learning tasks may be impractical, we propose that LLMs, viewed as repositories of human
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knowledge, can be utilised for smart synthetic data and knowledge generation. While the exact
methods for generating such data safely and reliably are beyond the scope of this paper, we suggest
this as an avenue for future work. Nonetheless, synthetic data generation or augmentation is a viable
and promising strategy, as suggested by experiments 5.2.1 and 5.2.2.

A.2.3 EXAMPLE APPLICATIONS OF INFORMED META-LEARNING

The aim of the experiments presented in section 5.1.3 is not only to validate the empirical effective-
ness of our approach but also to illustrate its potential in practical, knowledge-rich domains where
natural language insights may improve low-data learning. We can draw parallels between these
experiments and other domains. To inspire future directions of applied research we have provided
additional example applications of informed meta-learning in Table A.2.

Table A.2: Example applications of informed meta-learning.

Domain Task type Data Knowledge

Finance Economic / stock
market forecasting

GDP over time, or
daily stock prices

Descriptions of trends e.g. “The stock
prices for APPL are expected to con-
tinue the upward trend”.

Healthcare Disease
classification

Patient health
measurements

Expected relationships between symp-
toms and diseases e.g., “High blood
pressure is often linked to cardiovascu-
lar issues.”

Medical Imaging Disease detection
in X-rays

Images of lungs Relationships between abnormalities
and diseases e.g., “Presence of shadows
in upper lung areas may suggest tuber-
culosis.”

Energy Demand
forecasting

Hourly electricity
consumption data

Expectations based on events or trends
e.g., “Energy demand is expected to
spike in winter months due to heating
needs.”

Logistics Delivery time
estimation

Delivery routes,
traffic patterns

Expected effects of traffic and weather
e.g., “Deliveries are typically delayed
during peak hours in urban areas.”

Retail Demand prediction Sales data, time
series

Expected shopping behaviours e.g.,
“Sales tend to increase during holi-
day seasons, especially for electronic
goods.”

A.3 EXTENDED RELATED WORK

The main body of this paper discusses prior work that is related with respect to achieving the goal of
knowledge integration. Here we discuss related work from the perspective of the proposed method
of informed meta-learning and the concrete instantiation of INPs.

Conditional generative models. The goal of deep generative models (DGMs) is to learn a neural
approximation of the distribution of the data p(x) over a space X , most commonly the space of
images. Popular DGMs include, VAEs Kingma & Welling (2014), GANs Goodfellow et al. (2014),
and diffusion models Ho et al. (2020); Song & Ermon (2019). Their conditional versions, e.g.
CVAEs Sohn et al. (2015), CGANs Mirza & Osindero (2014), and conditional diffusion models Ho
& Salimans (2022); Ramesh et al. (2022) model the conditional distribution p(x | c), where c is
an additional conditioning variable, e.g. a class label or a text sequence. A similar analogy can be
drawn between NPs and INPs which, as meta-learners, bring the idea of (conditional) generative
modelling to the space of predictive functions f : X → Y . The goal of NPs is to model the prior
distribution over functions p(f); as well as the posterior predictive distribution p(f | DC). Similarly
to CVAEs and CGANs, INPs introduce an additional conditioning variable–the expert knowledge,
and model the conditional distribution p(f | K), guiding the prior over the space of functions,
such that the informed predictions, dictated by p(f | DC ,K) are concentrated around the region of
functions agreeing with both the observed dataset DC and the expert knowledge K.
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Multimodal deep learning. Mulitmodal deep learning refers to deep learning methods that can
process and relate information from multiple modalities simultaneously, such as image, audio, and
text. Our framework assumes that the datasets D and knowledge representations K may belong to
two different data modalities (e.g. D contains input-output pairs for 1-D regression and K contains
a natural language description of the expected shape of the regression curve). This places informed
meta-learning in the area of multimodal methods. What makes it distinct is that standard multimodal
strategies (e.g. Ngiam et al. (2011); Srivastava & Salakhutdinov (2012); Ding & Tao (2015); Shi
et al. (2021b;a)) consider finding a predictive function f , where X is a multimodal input space
X = X1× . . .×XM , with each Xj , j ∈ [M ] corresponding to a different data modality. In informed
meta-learning, the learned functions f are typically unimodal, but the learning algorithm to fit each
function is conditioned on the knowledge representation K, belonging to a different modality.

Zero and Few-shot learning. As presented in the experimental section, informed meta-learning en-
ables sensible zero-shot predictions guided by expert knowledge. For instance, in multi-class image
classification, K may contain a list of characteristic attributes of each class or class-wide descrip-
tions in natural language. Seemingly similar ideas of utilising side information about each class for
zero-shot learning have been explored in works of Al-Halah et al. (2016); Elhoseiny et al. (2017);
Paz-Argaman et al. (2020). In contrast to these methods, informed meta-learning does not focus on
zero-shot learning only, but on the process of integrating external knowledge (e.g. knowledge about
what are the characteristic features of each class) with observed few-shot or zero-shot (DC = ∅)
data sample. In the image classification domain, the idea of combining sample images with zero-
shot attribute information was considered by Tsai & Salakhutdinov (2017) in application to one-shot
learning, and extended by Schönfeld et al. (2019) to few-shot learning. None of these works, how-
ever, consider the meta-learning setup of N -way, k-shot classification and require that the class
attribute information is always present at training and test time, as it implicitly defines class labels.
In our setup, the role of class information contained in K lies in enhancing model performance by
emphasising which visual features are most distinctive for a given class, enabling zero-shot classifi-
cation as a by-product. Contrary to Schönfeld et al. (2019), the additional information contained in
K is not necessary for few-shot predictions on previously unseen classes.

Meta-learning with meta-data. Several studies considered applying meta-learning to hierarchical
datasets that include empirical data alongside corresponding metadata, such as feature names Iwata
& Kumagai (2022), task-specific parameters Kaddour et al. (2020), or labels Tseng et al. (2022).
In these works, metadata is used in conjunction with empirical data as additional inputs defining
task similarities. While these works share similarities in terms of the data structure and the resulting
method, their motivations and goals are distinct. For instance, Kaddour et al. (2020) extend active
learning principles to meta-learning, allowing the algorithm to select which task to learn next based
on the task metadata. Huang et al. (2022); Belbute-Peres et al. (2021); Kovacs et al. (2022), apply
meta-learning to solve differential equations given a specific parametrisation. Another stream of
work utilise s additional data to improve performance and generalisation of meta-learners: Iwata
& Kumagai (2022) leverage feature descriptions, and Tseng et al. (2022) use multi-class agricul-
tural labels. Denevi et al. (2020; 2022) study theoretically the conditions under which conditional
meta-learning is advantageous to non-conditional meta-learning in the specific case of gradient-
based meta-learning and with hypothesis space restricted to linear functions of the input. A recent
work by Ashman et al. (2024) conditions the learner on an additional set of datasets, which are
known a priori to have been generated by the same stochastic process as the context and target data.
This approach aligns with informed meta-learning–it leverages the known relationship between the
knowledge representation, e.g. a set of extra datasets, and the underlying DGP of DC . Our work
generalises to arbitrary representations of knowledge, moving beyond structured numerical forms,
with a particular focus on human-interpretable representations, such as natural language.
In contrast to the existing works, the motivation of this paper is not on designing a new meta-
learning method suitable for hierarchically structured learning tasks. Instead, we view meta-learning
as means to enable human experts inject their prior knowledge about a given learning problem into
the learning algorithm, in an intuitive and more flexible way than it is possible with conventional,
model-based methods. Further discussion on the differences between informed meta-learning and
meta-learning with hierarchically structured datasets are discussed in A.2.1.

A.4 INP MODEL ARCHITECTURE

The architecture of INPs consists of the following key components:
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• A data encoder, hθe,D : (X × Y)∗ → Rd that takes in pairs (xi, yi) and produces an
order-invariant representation r =

∑
i hθe,D (xi, yi).

• A knowledge encoder, hθe,K , a map from the knowledge representation space to the latent
space Rd that takes in the knowledge inputs K and extracts a latent knowledge vector
k = hθe,K (K).

• An aggregator, a, that combines the data representation, r, and the latent knowledge rep-
resentation, k, into one representation that parametrises the latent distribution qθe . We take
qθe(z | r, k) := N (z;µz, σz), where (µz, σz) = a(r, k).

• A conditional decoder, gθd , that takes in samples of the global latent variable z ∼
qθe(z | r, k) and the new target location x to output the predictions parametrised by
pθd(y | x, z) := N (y;µx, σx), with (µx, σx) = gθd(x, z).

In all experiments any MLP is implemented with the GELU non-linearity Hendrycks & Gimpel
(2016). Number and dimensions of hidden layers are reported individually for each experiment in
section A.6. We experiment with different forms of aggregation, a:

1. sum & MLP: a(r, k) = MLP(r + k),
2. concat & MLP: a(r, k) = MLP([r||k]),
3. MLP & FiLM: a(r, k) = FiLM(k) [MLP(r)]. We use the idea of modulation parameters

introduced by Perez et al. (2018). Here a is an MLP whose parameters are modulated with
a modulated with the outputs of hθe,K .

We find that in most cases, the first, least complex option performs the best.

A.5 INP TRAINING

INPs are trained in an episodic fashion over a distribution of learning tasks consisting of context and
target datasets, and associated knowledge representations. Denoting by rC and rT the context and
target data representations and by k the knowledge embedding vector of a single task, we derive the
evidence lower bound via:

pθ(yT | xT , rC , k) =

∫
pθd(yT |xT , z)qθe(z | rC , k)dz (14)

=

∫
pθd(yT | xT , z)

qθe(z | rC , k)
qθe(z | rT , k)

qθe(z | rT , k)dz (15)

= Eqθe (z|rT ,k)

[
pθd(yT | xT , z)

qθe(z | rC , k)
qθe(z | rT , k)

]
(16)

And therefore, by Jensen we obtain:

log pθ(yT | xT , rC , k) ≥ Eqθe (z|rT ,k) [log pθd(yT | xT , z)]−DKL (qθe(z | rT , k) || qθe(z | rC , k))
The parameters of the model are learned by maximising the above ELBO for randomly sampled
batches of tasks. During training, we use one sample of qθe(z | rT , k) to form a MC estimate of
the ELBO. For evaluation, we use 32 samples. Additionally, during training, we randomly mask
knowledge by setting k = 0, the frequency of masking is a hyperparameter of the model.

A.6 EXPERIMENTAL DETAILS

Throughout all experiments we use the Adam optimise r Kingma & Ba (2015). During training,
we use validation-based early stopping. All experiments were run on a machine with an AMD
Epyc Milan 7713 CPU, 120GB RAM, and using a single NVIDIA A6000 Ada Generation GPU
accelerator with 48GB VRAM.

A.6.1 1-D SINUSOIDAL REGRESSION (SECTION 5.1)

For each task, context and target data points are sampled according to the following process. A
function f is sampled from the family of sinusoidal functions with trend and bias, f(x) = ax +
sin(bx)+ c. We also introduce a Gaussian observational noise, s.t. yi = f(xi)+ ϵi, ϵi ∼ N (0, 0.2).
The parameters a, b, c are randomly sampled according to: a ∼ U [−1, 1], b ∼ U [0, 6], c ∼ U [−1, 1].
For each task, the context and target points are uniformly sampled from the range [−2, 2]. The
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Table A.3: Average negative log-likelihood for different knowledge types. Results averaged across
500 testing tasks with standard errors of the mean provided in the brackets.

K ∅ {a} {b} {c} {a, b} {b, c} {a, c}
n

0 292.7 (225.0) 196.2 (173.4) 80.9 (122.8) 222.1 (230.6) 43.1 (70.0) 49.3 (85.8) 106.8 (96.0)
1 218.1 (218.3) 165.9 (170.9) 47.8 (94.7) 192.6 (203.1) 30.3 (57.1) 40.6 (78.4) 145.1 (149.7)
3 97.4 (139.1) 75.3 (113.0) 10.8 (43.7) 88.7 (146.5) 3.1 (26.4) 8.9 (38.6) 64.8 (94.5)
5 47.0 (110.3) 34.6 (82.3) -1.6 (27.4) 45.8 (104.6) -3.4 (21.4) -1.5 (26.5) 31.7 (77.9)
10 8.5 (52.2) 7.2 (49.6) -9.1 (12.8) 7.9 (54.8) -9.3 (11.8) -9.1 (12.5) 4.5 (40.6)
15 2.2 (33.6) -0.0 (30.0) -9.0 (15.4) 1.5 (33.3) -9.9 (11.9) -9.3 (14.4) -0.3 (28.5)

number of context points n ranges uniformly between 0 and 10; the number of targets, m = 100.
We let K to encode the value of two, one, or none (K = ∅) of the parameters a, b, or c.

The data encoder, hθe,D , is implemented as a 3-layer MLP. The knowledge encoder, hθe,K , is imple-
mented with the DeepSet architecture Zaheer et al. (2017), made of two 2-layer MLPs. Each element
of the set is represented by a one-hot encoding of the parameter type with its value appended at the
end. The decoder is a 4-layer MLP. We set the hidden dimension, d = 128 and use the sum & MLP
method for the aggregator, a. We use a learning rate of 1e-3 and set the batch size to 64. During
training, knowledge is masked at rate 0.3.

In section 5.1 we use this setup to demonstrate and discuss the impact of expert knowledge on
enhanced data-efficiency, reduction in uncertainty, and robustness to distribution shifts. Fig. A.1
shows sample predictions under 0, 1, or 3 observed data points and different formats of knowledge
K. Table A.3 provides a detailed summary of the negative log-likelihood by knowledge type.

n
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Figure A.1: Sample predictions under varying formats of knowledge. Knowledge about the value
of the slope or frequency of oscillations provides global information about the overall shape of the
function. Observing additional data points anchors the curves in the xy-coordinate system. Based
on a qualitative investigation we conclude that the INP successfully learned how to integrate prior
knowledge with observed data points.

A.6.2 INFORMED WEATHER PREDICTIONS (SECTION 5.2.1)

We use the sub-hourly temperature dataset from the U.S. Climate Reference Network (USCRN)2.
The data contains values of the air temperature measured at regular 5-minute intervals. For each
task, the context and target datasets consist of measurements from one day. Training, validation, and
testing collections of tasks are created by randomly selecting 507, 108, and 110 days, respectively,
between the years 2021 and 2022 in Aleknagik, Alaska. For each task, the target dataset consists
of all 288 measurements in the 24h range. Context observations are sampled by first uniformly
sampling 10 data points and then selecting the chronologically first n observations where n ∼
U [0, 10]. We perform independent experiments with two formats of knowledge:

2https://www.ncei.noaa.gov/access/crn/qcdatasets.html
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A: For each task, knowledge K is a vector encoding two values: the minimum temperature and the
maximum temperature on the day. In this setup, the knowledge encoder, hθe,K , is a simple 2-layer
MLP .

B: For each task, knowledge K is a synthetically generated “weather forecast” presented in a natural
language format. For illustrative purposes, these weather descriptions were generated with GPT-4
OpenAI et al. (2023). In total, 726 descriptions, one per day were generated. The prompt used
contains instructions to generate 2 sentences mimicking a weather forecast, based on 48 values
sampled at 30-minute intervals from the ground truth temperature values. We use the following
prompt:

System: You are given a vector of values representing the temperature
for the next 24h at 30-minute intervals, starting at 12 am. Your
task is to present the weather forecast according to these values.
Keep it to max 2 sentences. Use descriptive words to refer to the
times of the day, e.g. morning, afternoon, evening.

User: <<Temperature values>>

There are two reasons for using LLM-generated weather forecast instead of real ones: 1) availability
of such data for research purposes not requiring web scraping; 2) the alignment of weather forecasts
with the observed values available as our task-specific data. Real weather forecasts may contain
a high degree of noise due to the predicted temperatures diverging from the recorded values. To
learn a faithful mapping between the knowledge space and the function space that aligns with our
human understanding, we require that information contained in the representations of knowledge
is in agreement with the underlying data generating process. To ensure that the output of GPT-
4 indeed aligns with the observed values, we have manually examined a random sample of the
generated weather forecasts and found them to be of high quality.

In this setup, the knowledge encoder hθe,K is implemented with a RoBERTa language model Liu
et al. (2020) with all weights frozen except for the layer norm weights, which are tuned during
the end-to-end training. The latent knowledge representation k is obtained as a pooled sentence
embedding. Here, we use the last hidden state of the CLS token.

For both setups A and B, the data encoder hθe,D is implemented as a 3-layer MLP and the de-
coder g as a 4-layer MLP. We used the MLP & FiLM aggregator a. We set the hidden dimension,
d = 128. We use a learning rate of 1e-3 and set the batch size to 64. The knowledge representation
is randomly masked at a rate 0.3 by setting k = 0. Vanilla NPs are known to underfit context obser-
vations and underestimate the variance, which became apparent with this more complex and noisy
dataset. To mitigate this issue, in this experiment, we have employed multi-head cross-attention
during the encoding of the data representation, r, as proposed by Kim et al. (2019). Precisely,
r =

∑n
i=1 Attihθe,D (xi, yi), where Att = MultiHead(Q,K, V ), with Q being a matrix of target

inputs, K a matrix of context inputs and V a matrix consisting of individual data representations
ri = hθe,D (xi, yi). We use 4 attention heads.

See the main body of the paper for a discussion of the results. Figure A.2, shows sample tasks and
their corresponding GPT-4 generated weather descriptions.

A.6.3 FEW-SHOT AND ZERO-SHOT IMAGE CLASSIFICATION WITH CUB-200-2011 (SECTION
5.2.2)

We apply our model to zero and few-shot classification using the CUB-200-2011 dataset Wah et al.
(2011). It contains 11,788 images of 200 subcategories belonging to birds. Following Akata et al.
(2015), we use 100 bird categories for training, 50 for validation, and 50 for testing. We generate
the labels for N -way classification tasks by choosing N random classes at each training step and
arbitrarily assigning the labels 0, . . . , N − 1 to each. For each task, the number of shots k, i.e. the
number of example images per class ranges uniformly between 0 and 10. The target set consists of
20 images per class. We perform independent experiments with three formats of knowledge:

A: Knowledge K represents attributes characteristic for a given class, e.g. wing span, feather color,
shape of the beak. This is obtained by a class-wide average of the binary attribute vectors from
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The night will start off cold with temperatures falling to -8.9°C 
by late morning, and then gradually rise to a high of 1.6°C in 
the late afternoon. Temperatures will start to drop again in the 
evening, reaching -3.1°C by midnight.

The night will start off chilly with temperatures around 0.5°C, 
but it will drop to -1.7°C by early morning. The day will 
gradually warm up, reaching a high of 5.1°C in the afternoon 
before cooling off to 1.0°C by midnight.

The night will be bitterly cold with temperatures around -18 
degrees, gradually increasing to -14 degrees by late afternoon. 
The temperature will slightly drop again to -15 degrees in the 
evening, warming up a bit to -14 degrees at midnight.
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The night will start off cold with temperatures falling to -16.8°C 
by dawn, and the day will continue to get colder, reaching a 
chilly -23.0°C by midnight. Afternoon temperatures will hover 
around -18.5°C, so bundle up if you're heading out.

Figure A.2: Sample predictions and the GPT-4 generated “weather forecasts” for setup B.

the original dataset associated with each image. Knowledge representations, K, are constructed by
stacking all N class attribute vectors into a N × 312 tensor. In this setup, the knowledge encoder,
hθe,K , is a simple 2-layer MLP.

B: Knowledge K represents the average per class, natural language descriptions of the N classes.
These are obtained by averaging sentence embedding of individual image captions belonging to the
given class. We use human-generated captions as collected in Reed et al. (2016) and encode them
using CLIP embeddings Fu et al. (2022). Averaged per class text embeddings are then stacked to
form a N × dmodel, where dmodel = 512. In this setup, the knowledge encoder, hθe,K is a 2-layer
MLP.

C: We use GPT-4 to generate individual descriptions of each class based on the human-generated
image captions. We present 5 randomly sampled image captions pertaining to one class and prompt
GPT-4 to generate short descriptions of features characteristic of the given bird breed. To generate
the class descriptions, we use the following prompt format:

System: You are given 5 descriptions of a bird breed. Based on this
information generate one comprehensive description of the bird
breed. Keep it short and informative.

User: <<List of 5 randomly sampled image captions>>

In this setup, the knowledge encoder, hθe,K is the CLIP text encoder. The embeddings of class
descriptions are obtained as the average of all outputs from the last layer of CLIP. After stacking
them together in a N × dmodel tensor, they are passed through a linear projection layer.

For all setups, A, B, and C, the data encoder, hθe,D is implemented with a frozen CLIP vision
model, followed by a linear projection layer. Following the approach of Garnelo et al. (2018a), we
only aggregate over inputs of the same class. The aggregated class-specific representations are then
concatenated to form the final representation of size N × d. We set d = 512. We use the sum & 2-
layer MLP aggregation a. We modify the decoder to return the logits of the categorical distribution.
For a N -way task with class labels c1, . . . , cN , we define p(y | x, z) as:

pθd(y = cj | x, z) =
exp(−wT

j x)∑
j′ exp(−wT

j′x)
, [w1, . . . , wN ] = gθd(z), z ∈ RN×d,

where x is a CLIP image embedding from the target set and gθd is a 2-layer MLP. In
our experiments, we use the Hugging Face implementation of the CLIP ViT-B/32 model
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(https://huggingface.co/openai/clip-vit-base-patch32). We use a learning rate or 1e-4, batch size
of 32 and knowledge is randomly masked at rate 0.5. For setups A and B, the INP model is trained
end-to-end. For setups C, the weights of the INP model from the trained weights of the already
trained, plain NP, and all model components, including the CLIP text encoder, are fine-tuned. As
opposed to setup B, in setup C fine-tuning of the CLIP text encoder was necessary to ensure align-
ment between the class-wide descriptions and image representations. Empirically, the two-stage
training resulted in improved convergence.

For the empirical results and short discussion, refer to the main body of the paper. In Table A.4 we
present sample human-generated captions (used in setup B) and their corresponding GPT-generated
class descriptions (used in setup C).

A.7 UNCERTAINTY QUANTIFICATION WITH INPS

One particularly appealing property of Neural Process, which motivated their choice for the basis of
our informed meta-learner, is the ability to sample from the posterior instead of returning a single
point estimate. This allows us to measure the reduction in model uncertainty given prior expert
knowledge and/or observed data. We are mostly interested in measuring the epistemic, rather than
aleatoric uncertainty.

Aleatoric uncertainty refers to the notion of randomness seen as the variability in the outcomes
which is due to inherently random, unpredictable effects. As opposed to this, epistemic uncertainty
refers to uncertainty caused by the lack of knowledge about the true relationship between model
inputs and outputs. By observing data, or by inserting prior knowledge into the model, the epistemic
uncertainty is reduced.

A natural choice for measuring the epistemic uncertainty would be the (conditional) entropy. By
comparing H[p(f)] with H[p(f | K)] or H[p(f | DC)] we can measure the impact of prior expert
knowledge or observed data on the reduction in the epistemic uncertainty for a single learning task
(for notational convenience, we omit the dependence of p on θ, making the expressions applicable
both to the ground truth DGP and the approximate pθ). However, in INPs, we only have access to
samples from the variational distribution and since the decoder is implemented as a neural network,
evaluating the distribution over functions f is not possible directly. Instead, we need to resolve to
measure the uncertainty in the observation space. Thus, we are interested in computing

H[p(y | x, I)], I ∈ {K,DC ,K ∪DC ,∅} (17)

at a particular location x ∈ X in our input space, which can be then, for instance, averaged across
uniformly distributed points in X . The quantity in (17) is known as the predictive uncertainty. To
approximate (17) for an input x, we rely on Monte-Carlo estimation by sampling S functions based
on our variational decoder.

H[p(y | x, I)] := −
∫

p(y | x, I) log p(y | x, I)dy

= −
∫ (∫

p(y | x, f)p(f | I)df
)
log

(∫
p(y | x, f)p(f | I)df

)
dy

≈ −
∫ (

1

S

S∑
s=1

p(y | x, f (s))

)
log

(
1

S

S∑
s=1

p(y | x, f (s))

)
dy (18)

For each sample f (s), p(y | x, f (s)) has a closed-form expression–in the case of regression it is
modelled with a normal distribution. Thus, (18) can be computed by numerically approximating the
integral in the last line. Note that, since predictive uncertainty is measured in the observation space,
it also encompasses the uncertainty associated with the observational noise. Depeweg et al. (2018)
suggest that (17) can be decomposed as:

H[p(y | x, I)] = I(y, f | x, I)︸ ︷︷ ︸
epistemic

+Ef∼p(f |I)[H[p(y | x, f)]]︸ ︷︷ ︸
aleatoric

(19)

The second part, Ef∼p(f |I)[H[p(y | x, f)]], is the average entropy when the predictive function
is known, thus can be interpreted as the aleatoric uncertainty. If we model p(y | x, f) with a
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Table A.4: Example images, image captions and GPT-generated class descriptions.

Sample Images Sample image captions GPT-generated class description

1. A large bird with a white belly, black
and white wings with a long beak.

2. This bird is white and grey in colour
with a curved beak, and black eye
rings.

3. A large bird with a white belly and face,
black back and wings, and peach bill.

4. Bird has gray body feathers, white
breast feather, and long beak

5. A medium sized bird with black wings,
and a bill that curves downwards

This bird breed is a medium to
large size, characterised by its
grey body feathers, contrasting
white belly and face, black back
and wings, distinctive black eye
rings, and a long, downward-
curving peach bill.

1. This big bird has a sharp beak and has
black covering its body.

2. An all black bird with a distinct thick,
rounded bill.

3. This entirely black bird has long and
wide rectrices relative to the size of its
body.

4. A black bird with a long tail and large
beak.

5. This black bird has sparse plumage and
a thick brown beak.

This bird breed is large and
entirely black with sparse
plumage, characterised by its
thick brown beak, long tail, and
wide rectrices relative to its
body size.

1. This goofy looking bird sports webbed
feet and a bright orange bill, with
piercing white eyes and a dull coat of
gray.

2. A black bird with a small, orange beak
and a inverted feather curl at the base
of the beak.

3. A black body, white eye with stripe next
to it, and an orange bill are on this bird.

4. This black bird has a orange bill with
hair coming out of it, small pupils, and
a white line across its face.

5. This bird has wings that are black and
has an orange bill

This bird breed is characterised
by its black body, webbed feet,
a bright orange bill with an in-
verted feather curl at the base,
piercing white eyes with a dis-
tinctive stripe, and a dull grey
coat.

1. This is a black bird with a white spotted
belly and a white eye.

2. This bird is black with white and has a
very short beak.

3. This bird has wings that are black and
white and has a small bill

4. This small bird is white with black
spots, a white neck, and black around
its eyes.

5. This is a short stocky bird with webbed
feet, it is mostly white with black wings
and black speckles throughout.

This bird breed features a black
body with a white and black
spotted underbelly, a white and
grey speckled chest, a black
crown, bright white eyes with
very small pupils, and a short,
pointed, black and orange bill.
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normal distribution, H[p(y | x, f)] has a closed-form expression, 1
2 log(σ(x)2πe), where σ2(x) is

the variance at location x.

The first part, I(y, f | x, I), representing the information gain can be interpreted as the epistemic
uncertainty of interest. This quantity can be computed as the difference of H[p(y | x, I)] and
Ef∼p(f |I)[H[p(y | x, f)]], where both quantities are easy to estimate, as discussed above.

A.8 ADDITIONAL EXPERIMENTS

A.8.1 MODEL PERFORMANCE VS. NUMBER OF TRAINING TASKS

Setup: We follow the same setup as in the illustrative experiment from section 5.1.1. We cre-
ate multiple training collection of tasks with a varying number of total training tasks, N train ∈
{25, 50, 75, 100, 200, 1000}, with the upper limit being the number of tasks used in the original
experiment. For each training collection of tasks, we train independent INP and NP models. The
INP models receive information about two, one or none of the parameters a, b or c via knowledge
representations, K. All models are validated and tested on the same collection of validation / testing
tasks.
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Figure A.3: Log likelihood of target data vs. number of context data points (higher is better).
Comparison across varying number of all training tasks, N train. Left - model performance on
training tasks, Right - model performance on test tasks.

Figure A.3 shows the performance of all models on training (left) and testing (right) tasks. We
observe that: 1) Both for the NP and INP models, as the number of training tasks decreases the
performance gap between training and testing tasks increases. We note that this performance gap
is already at a (subjectively) reasonable level with only as few as 75 training tasks. 2) For all
INP models trained with N train ≥ 50 tasks we the additional knowledge presented for each task
improves the performance over the plain, uninformed NP. When the number of training tasks is too
small, here N train = 25, we observe a “knowledge overfitting” effect. With insufficient number
of training tasks the INP is unable to appropriately capture the relationship between knowledge and
empirical data, and thus fails to generalise to new, previously unseen tasks and their corresponding,
also previously unseen, knowledge representations.

Take-away: We tested the robustness of the INP model to the reduction in the number of training
tasks. We showed that in the experimental setup of section 5.1.1, adding external knowledge con-
tinues to deliver noticeable performance gains over the uninformed NP when dropping from 1000
to as few as 50 training tasks. We also noted that with too few training tasks, the INP may fail to
generalise. To prevent this effect from occurring in real-world deployment, we advise testing the
model on held-out validation tasks and comparing its performance against an uninformed baseline,
monitoring the knowledge overfitting effect. We note that in real-world applications, more training
tasks can be obtained by (semi-)synthetic data generation, augmenting the size of the meta-training
set to improve model generalisation.
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A.8.2 MODEL PERFORMANCE AND KNOWLEDGE COMPLEXITY

Setup. To assess the impact of knowledge complexity on the efficacy of learning the relationship
between knowledge and the model hypothesis space, we again follow the same setup as in section
5.1.1. We create multiple training collection of tasks with a varying number of total training tasks,
N train ∈ {25, 50, 75, 100, 200, 1000}. All models are validated and tested on the same collection of
validation / testing tasks. For each setting of N train we train an uninformed NP and 3 independent
INP models with different knowledge representations used during training:

• Mabc is a model where for each task its corresponding knowledge encodes, at random, one
of the three parameters, a, b, or c;

• Mab is a model where for each task its corresponding knowledge encodes, at random, one
of the two parameters: a or b (the value of c is never revealed);

• Mb is a model where for each task its corresponding knowledge encodes the value of a
(the values of parameters a and c are never revealed).

Knowledge representations are constructed by one-hot encoding the type of the revealed parame-
ter with its value appended at the end. We note that for the INP models Mb, Mab, Mabc, the
complexity of knowledge representations gradually increases; the knowledge space is 1, 2 and 3 di-
mensional, respectively. We hypothesise that as the complexity of the knowledge space grows, more
training tasks are needed to effectively learn the mapping from knowledge representations to prior
distributions over functions. Given the same number of training tasks, the INP model Mab needs
to learn how to disentangle the information about the function’s oscillations (parameter b) from the
information about the function’s slope (parameter a). Model Mabc additionally needs to discover
the meaning of knowledge about the intercept (parameter c). Therefore, we expect that, given the
same number of context points and the same information contained in K, the relative performance
gains of the INP models Mb, Mab, Mabc over the uniformed NP model should decrease as the
complexity of knowledge space increases.
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Figure A.4: Log-Likelihood of target data vs. number of context data points (higher is better).
Comparison across a varying number of tasks used for training N train. Complexity of knowledge
space grows from left to right. All INP models are presented with the same knowledge about each
task–the value of the parameter b.

Figure A.4 shows the log-likelihood of the target data evaluated on 500 testing tasks. For every
INP model at test time we reveal the same information via knowledge representations—the value
of the parameter b. Firstly, we observe the same two effects as in experiment A.8.1. With more
training tasks, model performance improves. 2) An insufficient number of training tasks may lead
to the “knowledge overfitting” effect; here at N train = 25 the INP performs worse than the NP.
Secondly, we look at the performance gap between the INP and the NP (the gap between solid and
dashed lines). We observe that as the complexity of the knowledge space grows (left to right) the
performance gap between the INP and the NP decreases. This is summarised through the ∆AUC
metric, presented in the Table A.5. From Figure A.4 we can also conclude that the more complex
the the knowledge space is the more training tasks are needed to effectively train an INP model. For
instance, performance of the INP model Mb trained with N train = 75 tasks is comparable to the
performance of the INP Mabc trained with N train = 100 tasks.
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Table A.5: Average relative performance improvement (%) between informed and uninformed pre-
dictions. The performance gains become smaller as the complexity of the knowledge space grows
(top to bottom). N train is the number of training tasks used. INP performs better than the NP for
all settings of N train ≥ 50 indicating effective transfer between knowledge representations and
functional priors. INP overfits with not enough training tasks, here at N train = 25.

N train 1000 500 200 100 75 50 25
model

Mb 81.74 83.51 64.52 79.1 44.78 39.71 -8.52
Mab 65.3 67.45 43.46 54.66 22.41 6.67 -18.67
Mabc 71.76 57.51 2.02 26.46 9.48 8.05 -5.6

Take-away: The above experiment confirms our hypothesis about the complexity of the information
conveyed in knowledge representations and the hardness of learning the mapping between knowl-
edge representations and the model hypothesis space. As the complexity of knowledge increases,
more training tasks are needed to effectively learn the relationship between knowledge representa-
tions and the functional priors.

A.8.3 CORRELATION IN TRAINING DATA AND KNOWLEDGE DISENTANGLEMENT

Setup: For each task, context and target data points are sampled according to a similar process as in
the experiments from section 5.1.1. A function f is sampled from the family of sinusoidal functions
with a linear trend, f(x) = ax+sin(bx). As previously, we also introduce a Gaussian observational
noise, s.t. yi = f(xi) + ϵi, ϵi ∼ N (0, 0.2). In this experiment. we simulate a scenario in which the
training data exhibits a potentially spurious correlation. We sample the parameters a and b from a
multivariate Gaussian, [

a
b

]
∼ N

([
0
3

]
,

[
1 σ
σ 2

])
We create 6 training and validation collection of tasks, one for each value of the covariance between
a and b, σ ∈ {0.0, 0.3, 0.6, 0.9, 1.2, 1.4}. We then train 6 independent INP and NP models. For the
INP models we let K encode the value of one of the two parameters a or b. The number of context
points n ranges uniformly between 0 and 10; the number of targets is set to m = 100. The testing
collection of tasks is created by sampling functions where a and b are independent (i.e. σ = 0.0).
This setup aims to test the robustness of the INP model to spurious correlations in the training data.
We want to investigate whether the INP model is able disentangle the meanings of parameters a
and b. In this setup, p(K|f) remains the same at training at test time–it always provides partial
information about the value of one of the parameters. It is the underlying process p(f) that changes
between training and test time.

Results presented in table A.6 show that when the correlation between the parameter a and b in-
creases, the test-time performance of both the INP and NP models downgrades. This is due to the
train-test distribution shift. Moreover, when the correlation is moderate (ρ ≤ 0.64), the INP model
outperforms or mathces the performance of the NP. We note, however, that for ρ >= 0.42, the
zero-shot predictions (n = 0) are better for the uninformed model than the INP. This is also true for
all values of n at higher correlation levels (ρ ≥ 0.85). We hypothesize that this is because the INP
has overfitted to the correlation between the parameters a and b. In the training dataset, revealing
the information about the value of one parameter gives information about the value of the other,
unrevealed parameter. INP exploits this dependency.

Take-away: INPs learn the meaning of knowledge based on its relationship with the empirical data.
If this relationship changes at test time, good performance of the INP can no longer be guaranteed.
This characteristic may be especially dangerous when there are spurious correlations in the dataset.
The INP is prone to overfitting to these correlations, “misunderstanding” the true meaning of knowl-
edge, and thus failing to generalise to new knowledge representations and their corresponding tasks,
where the spurious correlations are no longer present.

A.8.4 META-LEARNED VS. EXACT KNOWLEDGE INTEGRATION
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Table A.6: Average log-likelihood on test tasks vs. correlation in training data (higher is better). ρ
- the correlation coefficient between random parameters a and b. n - number of context data points
per task. Model results for which the log likelihood is higher by a statistically significant margin
highlighted in bold. Values in brackets stand standard errors estimated with bootstrap.

ρ 0.00 0.21 0.42

model INP NP INP NP INP NP

n = 0 -139.1 (10.2) -209.2 (8.3) -174.4 (13.7) -196.5 (7.7) -266.1 (19.6) -221.7 (9.2)
n = 1 -99.0 (10.6) -102.1 (6.5) -73.1 (6.2) -120.4 (5.4) -95.0 (9.4) -108.6 (4.4)
n = 4 -16.9 (1.7) -30.9 (2.6) -34.8 (3.9) -41.0 (3.4) -29.2 (3.8) -38.2 (3.4)
n = 5 -12.1 (2.0) -11.9 (2.0) -15.7 (1.8) -17.8 (2.6) -12.4 (2.5) -21.7 (2.9)

n = 10 1.3 (1.1) 1.8 (1.4) -0.5 (1.2) 2.1 (0.9) 0.2 (0.9) -4.5 (2.0)
n = 15 3.5 (0.7) 5.4 (1.4) 0.8 (0.8) 2.6 (1.6) 3.1 (0.6) -2.2 (2.1)

ρ 0.64 0.85 0.99

model INP NP INP NP INP NP

n = 0 -356.4 (22.2) -214.0 (9.2) -795.6 (38.9) -321.8 (14.8) -1367.3 (63.6) -410.7 (15.2)
n = 1 -108.1 (7.1) -160.3 (7.4) -234.4 (9.3) -200.0 (9.9) -830.9 (40.9) -527.3 (19.2)
n = 3 -26.2 (2.2) -64.6 (4.4) -149.0 (6.6) -118.6 (6.3) -551.5 (32.5) -360.1 (10.6)
n = 5 -18.3 (2.0) -30.3 (3.0) -101.4 (4.9) -94.0 (5.1) -404.2 (13.2) -319.9 (9.0)

n = 10 -6.2 (1.2) -18.2 (2.6) -81.2 (4.4) -70.6 (4.5) -342.7 (11.1) -324.9 (9.3)
n = 15 -4.3 (1.2) -11.6 (2.3) -74.1 (4.3) -66.2 (4.3) -332.2 (11.1) -313.0 (8.9)
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Figure A.5: Knowledge integration
via the INP vs. exact inference with
Bayesian regression.

The primary advantage of informed meta-learning lies in its
universality and applicability to scenarios where model-based
approaches to knowledge integration are infeasible or require
significant human efforts. Unlike informed meta-learning,
model-based approaches require knowledge representations to
be easily translatable into explicit inductive biases, such as
functional representations, parameter priors, or regularisers for
the loss function. On the other hand, a model-based approach
may guarantee the correctness of knowledge integration by
design instead of relying on a neural approximation learned
based on a finite number of meta-training tasks. However,
the universality of informed meta-learning necessarily comes
with a trade-off in performance. In this section we investi-
gate the efficacy of the data-driven approach of informed meta-
learning to knowledge integration in comparison to a model-
based approach–fitting an explicit parametric model encoding
the available task-specific knowledge exactly.

Setup. We again follow the setup of section 5.1 with sinusoidal
functions. We compare the INP and NP models, against an exact Bayesian regression model with
observations modelled according to: p(y|x) = N (y;µ(x), σ2), where µ(x) = ax + sin(bx) + c
and we put priors on the parameters a, b, and c that correspond precisely to the ground-truth process
p(f) used in your setup, i.e. a ∼ U [−1, 1], b ∼ U [0, 6], c ∼ U [−1, 1]. We fix σ to its ground-truth
value of 0.2. For a given task with knowledge K about the value of one or two of the parameters a,
b, c, we fix the value of the respective parameters and only estimate the posteriors p(·|DC) for the
remaining, unknown quantities. Given the non-linear transformation of the parameter b through the
sine function, we find the posterior of the parameters a, b, c with MCMC estimation with the NUTS
algorithm. For each task, we run 4 chains with 1000 burn-in samples and 2000 samples used for
estimation.

Results. Figure A.5 compares the performance of predictions made based according to an exact
regression model and the meta-learned predictive posterior with INPs. We first note that already
for the the uninformed case, K = ∅, the INP performs worse than the Bayesian regression model,
specifically when more data becomes available. This is expected, as the regression model is ex-
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plicitly based on the ground-truth data generating process Meanwhile, the Neural Process only ap-
proximates this distribution over sample functions by learning on a finite collection of meta-training
tasks and is also known to underfit contextual observations. In terms of knowledge integration, we
observe that even thought the informed predictions of the INP significantly improve upon the non-
informed INP (which is effectively the plain NP), there is still a noticeable gap between the INP
and the theoretically achievable upper bound dictated by the informed Bayes regression. It is also
worth comparing the inference times of Bayes regression with MCMC estimation vs. that of the
(I)NPs. After training, predictions with (I)NPs simplify to a forward pass through the trained neural
network, which for a single task in this instance takes less than 0.004 seconds on a machine with the
AMD Epyc Milan 7713 CPU, 120GB RAM and the NVIDIA 48GB A6000 GPU. In comparison,
estimating the parameters of the regression model with MCMC took us on average 8.6s per task.
For reference, training an INP model in this instance takes around 20min.

Take-away. The major advantage of informed meta-learning is its applicability across diverse
knowledge and data formats, as illustrated with the real-world and natural language data experi-
ments of section 5.2. However, as demonstrated with the above experiment, this universality comes
with trade-offs in performance. When a model-based approach is available, it should be preferred,
as it may guarantee the correctness and exactness of knowledge integration by design instead of
relying on a neural approximation learned based on a finite number of meta-training tasks. The
appeal of informed meta-learning becomes evident when the underlying functional form of the data
generating processes is not known explicitly and the task-specific knowledge is difficult to represent
in a form of an exact mathematical equation or a constraint. In such cases, model-based approaches
to knowledge integration become challenging if not infeasible.
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