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Abstract

Existing watermarked generation algorithms001
employ token-level designs and therefore, are002
vulnerable to paraphrase attacks. To address003
this issue, we introduce watermarking on the004
semantic representation of sentences. We005
propose SEMSTAMP, a robust sentence-level006
semantic watermarking algorithm that uses007
locality-sensitive hashing (LSH) to partition008
the semantic space of sentences. The algorithm009
encodes and LSH-hashes a candidate sentence010
generated by a language model, and conducts011
rejection sampling until the sampled sentence012
falls in watermarked partitions in the seman-013
tic embedding space. To test the paraphras-014
tic robustness of watermarking algorithms, we015
propose a “bigram paraphrase” attack that pro-016
duces paraphrases with small bigram overlap017
with the original sentence. This attack is shown018
to be effective against existing token-level wa-019
termark algorithms, while posing only minor020
degradations to SEMSTAMP. Experimental re-021
sults show that our novel semantic watermark022
algorithm is not only more robust than the pre-023
vious state-of-the-art method on various para-024
phrasers and domains, but also better at pre-025
serving the quality of generation.026

1 Introduction027

This work focuses on algorithms for detecting028

machine-generated text via watermarked gener-029

ation—adding signatures during text generation030

which are algorithmically detectable, yet are imper-031

ceptible to human eye (Atallah et al., 2001). This032

problem is of extreme importance now that large033

language models (LLMs) such as GPT-4 (OpenAI,034

2023) generate realistic text, increasing risks of035

LLM misuse, such as generation of misinformation,036

impersonation, and copyright infringements (Wei-037

dinger et al., 2021; Ippolito et al., 2022; Pagnoni038

et al., 2022; House, 2023).039

The dominant body of recent works on water-040

marked generation operate by injecting token-level041

signatures during decoding time (Kuditipudi et al., 042

2023; Yoo et al., 2023; Wang et al., 2023; Christ 043

et al., 2023; Fu et al., 2023, i.a.). As a representa- 044

tive example, Kirchenbauer et al. (2023a) propose 045

a watermarked generation algorithm that injects 046

watermark signals that are extracted based on the 047

previously generated tokens. Despite its efficiency, 048

follow-up work has shown that corrupting the gen- 049

erated text, especially paraphrasing, could weaken 050

its robustness (Krishna et al., 2023; Sadasivan et al., 051

2023; Kirchenbauer et al., 2023b). 052

We propose SEMSTAMP, a semantic watermark 053

algorithm that is robust to sentence-level para- 054

phrase attacks (§2.2). Depicted in Figure 1, our 055

core intuition is that while paraphrasing alters the 056

surface-form tokens, the sentence-level semantics 057

are unchanged. Thus, instead of partitioning the 058

vocabulary, our watermark operates on the seman- 059

tic space of sentence embeddings, partitioned by 060

locality-sensitive hashing (LSH; Indyk and Mot- 061

wani, 1998; Charikar, 2002). We develop two key 062

components—a sentence encoder trained with con- 063

trastive learning (CL; Wieting et al., 2022) and a 064

margin-based constraint—to enhance paraphrastic 065

robustness. 066

To stress-test the robustness of watermarking al- 067

gorithms, we develop a novel attack method that 068

minimizes bigram overlap during paraphrasing, 069

and name it the bigram paraphrase attack (§2.3). 070

Experimental results (§3) demonstrate that our pro- 071

posed semantic watermark remains effective while 072

token-level watermarks suffer significantly from 073

the bigram attack. 074

We summarize our main contributions as follows. 075

First, we propose a sentence-level semantic water- 076

mark for LLMs and show that it is robust to para- 077

phrasing and more quality-preserving than a token- 078

level watermark algorithm. Second, we develop a 079

novel attack method for watermarking algorithms, 080

namely the bigram paraphrase attack, which can 081

effectively weaken token-level watermarking but 082
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 ① Watermarked Generation

Today the company announced quarterly results for
the period ending October 31, 2017. The company
also provided an update on its ongoing Phase 3
clinical trial of the Phase 2/3 B-cellderived T
cell engager program. These results are included
in a newly released Current Report on Form 8-K
for the period ending September 30, 2017. You can
read the full report at www.curis.com.

No Watermark

SEMSTAMP

Today the company announced results for the third
quarter of 2017. The company's board of directors
also declared a quarterly cash dividend of $0.23
per share. The dividend is payable to shareholders
of record on November 14, 2017. Shareholders are
invited to attend the company's annual meeting to
propose and discuss a proposal to adopt a new long-
term stockholder's plan. The meeting will be held
on December 7, 2017.

human written
z-test

machine written
z-test

② Paraphrase Attack

Watermark remains
valid after paraphrase

③ Watermark detecton

Adversary paraphrases the generated text

Figure 1: An overview of the proposed SEMSTAMP algorithm. Left: During generation, the watermark is injected
by mapping candidate sentences into embeddings through a robust sentence encoder, dividing the semantic space
through locality-sensitive hashing, and rejection sampling from the LM to generate sentences with valid region
embeddings. Right: Detection is determined by the number of valid sentences in a candidate generation.

only poses minor degradations to our semantic wa-083

termark. Third, we fine-tune a paraphrase-robust084

sentence encoder with a contrastive learning objec-085

tive and develop a rejection margin constraint to086

enhance the paraphrastic robustness of our seman-087

tic watermark algorithm.1088

2 Approach089

2.1 Preliminaries090

Text Generation from Autoregressive LMs An091

autoregressive LM, denoted by PLM, models the092

conditional distribution of the next token over the093

vocabulary V . Given a token history w1:t =094

w1, . . . , wt where each token wi ∈ V , the next to-095

ken is generated by sampling wt+1 ∼ PLM(·|w1:t).096

We introduce a sentence-level notation: s(t+1) ∼097

PLM(·|s(1) . . . s(t)) refers to the sampling of the098

next sentence given sentence history s(1) . . . s(t).099

Detecting Machine-Generated Text through Wa-100

termarking The goal of watermarked generation101

(Kuditipudi et al., 2023; Zhao et al., 2023, i.a.) is to102

facilitate the detection of machine-generated text.103

A watermarked generation algorithm adds a sta-104

tistical signal during the decoding stage of LLMs.105

The watermarked text is then provided to the user.106

At the detection stage, a piece of text is classified107

as machine-generated if the watermark is detected.108

Because malicious users could postprocess LLM-109

generated texts before detection, it is crucial that110

the watermark remains detectable under various111

text perturbations attacks, including text insertion,112

substitution, deletion, and paraphrasing.113

Token-Level Watermarking and its Susceptibil-114

ity to Paraphrase Attacks Kirchenbauer et al.115

(2023a) propose a watermark that is injected at the116

token level. At each time step of the generation, the117

1Our code, model, and data will be released publicly.

vocabulary V is pseudorandomly partitioned into a 118

“green list” and a “red list”. The random seed for 119

partition is computed by a hash of the previously 120

generated token. A globally fixed bias parameter 121

δ > 0 is added to the logit of each green list token 122

so that the LLM is induced to generate more green 123

list tokens. The watermark is detected by conduct- 124

ing one proportion z-test (detailed in §B) on the 125

number of green list tokens in the generated text. 126

Because of the token-level nature of the water- 127

mark algorithm, perturbing a token wt in a gener- 128

ated sequence w1:T through paraphrasing would 129

change the green list for token wt+1. As a result, a 130

green token wt+1 might be considered red, which 131

undermines the detectability of the watermark (Kr- 132

ishna et al., 2023). Moreover, because the water- 133

mark changes logits directly, it can degrade the 134

quality of generated text (Fu et al., 2023). 135

Locality-Sensitive Hashing We will use LSH 136

(Indyk and Motwani, 1998) to partition the se- 137

mantic embedding space. It hashes similar inputs 138

into similar signatures, thereby reducing the di- 139

mensionality and providing a similarity measure 140

for a high-dimensional input space Rh. Given an 141

LSH dimension d, we adopt the cosine-preserving 142

method from Charikar (2002) which produces a 143

d-bit binary signature through random hyperplane 144

projections, and each hyperplane is represented 145

by a random normal vector n(i) drawn from the 146

h-dimensional Gaussian distribution.2 The LSH 147

signature for an embedding vector v ∈ Rh is 148

then determined by the sign of the dot product be- 149

tween the candidate vector and the normal vectors: 150

LSHi : Rh 7→ {0, 1} which gives the i-th digit sig- 151

nature, is defined by LSHi(v) = 1
(
n(i) · v > 0

)
3, 152

2Normal vector n(i) ∈ Rh represents the hyperplane that
is orthogonal to n(i) and passes through the origin.

3
1(·) is the indicator function.
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Algorithm 1 SEMSTAMP text generation algorithm

Input: language model PLM, prompt s(0), number of sentences to generate T .
Params: sentence embedding model Membd with embedding dimension h, maxout number Nmax, margin m > 0, valid region
ratio γ ∈ (0, 1), LSH dimension d, a large prime number p.
Output: generated sequence s(1) . . . s(T ).

procedure SEMSTAMP

init LSH(·), randomly initialize d vectors n(1) . . . n(d) ∈ Rh, to create 2d semantic subspaces.
for t = 1, 2, . . . , T do

1. Compute the LSH signature of the previously generated sentence, SIG(s(t−1)), and use [SIG(s(t−1))]10 · p as
the seed to randomly divide the space of signatures {0, 1}d into a “valid region set” G(t) of size γ · 2d and a
“blocked region set” R(t) of size (1− γ) · 2d.

2. repeat Sample a new sentence from LM,
until the signature of the new sentence is in the “valid region set”, SIG(s(t)) ∈ G(t) and the margin requirement

MARGIN(s(t),m) is satisfied.
or has repeated Nmax times

3. Append the selected sentence s(t) to context.
end for
return s(1) . . . s(T )

end procedure

Algorithm 2 SEMSTAMP subroutines
function SIG(s)

v ←Membd(s) // obtain embeddings of sentence s
c← LSH(v) // obtain signature c of the embedding
return c

end function

function MARGIN(s,m)
v ←Membd(s) // obtain embeddings of sentence s

x← mini=1,...,d{| cos(v, n(i))|} // compute the mini-
mum distance between v and all LSH normal vectors n(i).

return True If x ≥ m Else False
end function

and LSH(v) = [LSH1(v)|| . . . ||LSHd(v)] is the153

concatenation of all d digits.154

2.2 SEMSTAMP: A Semantic Watermark with155

Paraphrastic Robustness156

We begin with a high-level overview of the SEM-157

STAMP (Alg. 1). Our approach is motivated by the158

intuition that paraphrasing alters the surface-form159

tokens but preserves sentence-level semantics. We160

apply the watermark at the sentence-level semantic161

space (instead of the token-level vocabulary) to pre-162

serve the watermark under token changes. To do163

so, we use a semantic sentence encoder Membd that164

produces vectors in Rh. In practice, we fine-tune an165

off-the-shelf encoder with a contrastive objective166

(Wieting et al., 2022) for paraphrastic robustness.167

During the initialization of SEMSTAMP water-168

marked generation, we partition the space of sen-169

tence embeddings (produced by Membd) with the170

LSH introduced in §2.1. Concretely, we initialize171

the LSH : Rh 7→ {0, 1}d function by sampling nor-172

mal vectors n(1) . . . n(d) to represent d hyperplanes, 173

and treat the space of LSH signatures {0, 1}d as a 174

natural partitioning of Rh into 2d regions. 175

At each generation step, given a sentence history 176

s(0) . . . s(t−1), we first produce the LSH signature 177

of the previously generated sentence SIG(s(t−1)), 178

where SIG(·) encodes and LSH-hashes the sen- 179

tence, as defined in Alg. 2. Next, we pseudoran- 180

domly divide the LSH partitions into a set of “valid” 181

regions G(t) and a set of “blocked” regions R(t), 182

where the masking is seeded by SIG(s(t−1)).4 To 183

produce the watermarked next sentence, we sample 184

with rejection a new sentence s(t) from the LM 185

until its embedding lies in the “valid” region in the 186

semantic space.5 187

To detect the SEMSTAMP watermark, we con- 188

duct a one-proportion z-test on the number of valid- 189

region sentences in the generated text. Since this 190

detection is similar to Kirchenbauer et al. (2023a), 191

we defer the details to §B. 192

Because a proper paraphrase should retain the 193

meaning of the original sentence, we hypothesize 194

that the LSH signature is likely to remain the same 195

after paraphrasing (Figure 4 provides empirical re- 196

sults). Therefore, the valid region partition for 197

the next sentence would not change, ensuring the 198

watermark is still detectable after the paraphrase 199

attack. Below we explain each core component of 200

4Kirchenbauer et al. (2023a) use “green/red” for vocabu-
lary split. Instead, we adopt “valid/blocked” as the terminol-
ogy for semantic region partition to be more accessible.

5We set a maxout number Nmax so that if there is still no
valid sentence after sampling Nmax times, we choose the last
sample as the next sentence.
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SEMSTAMP in detail.201

Paraphrase-Robust Sentence Encoder A re-202

quirement for SEMSTAMP is a semantic encoder203

to map sentences into semantic embeddings. Our204

encoder is built upon Sentence-BERT (SBERT;205

Reimers and Gurevych, 2019), a fine-tuned siamese206

network trained to produce sentence embeddings207

whose cosine similarity mirror the semantic simi-208

larity of the STS benchmark (Cer et al., 2017).209

To enhance the encoder’s robustness to para-210

phrase, we further fine-tune the SBERT model us-211

ing contrastive learning (Wieting et al., 2022). For212

each sentence si in a corpus, we first produce its213

paraphrase ti using an off-the-shelf paraphrasing214

model, Pegasus (Zhang et al., 2020).6 Next, we215

sample a random sentence t′i from the corpus that216

is not a paraphrase of si to serve as the negative217

example. The objective promotes the original sen-218

tence to be more similar to the paraphrase than the219

negative example by a margin of δ > 0:220

min
θ

∑
i

max
{
δ − fθ(si, ti) + fθ(si, t

′
i), 0

}
, (1)221

where fθ is the cosine similarity between the em-222

bedded sentences, fθ(s, t) = cos
(
Mθ(s),Mθ(t)

)
,223

and Mθ is the encoder model with parameter θ.224

Semantic Space Partitioning through LSH225

During the initialization of watermarked gener-226

ation, normal vectors n(1) . . . n(d) are randomly227

drawn from the h-dimensional Gaussian distribu-228

tion to represent d LSH hyperplanes in the seman-229

tic space Rh. The hyperplanes are fixed during230

generation and detection to serve as the basis for231

partitioning. As introduced in §2.1, this induces a232

d-bit binary signature LSH(v) for a vector v ∈ Rh.233

Consequently, we use each of the 2d signatures234

c ∈ {0, 1}d to represent a region in the semantic235

space consisting of points with signature c.236

During the generation of a new sentence s(t),237

we apply a watermarking “mask” on the semantic238

space by pseudorandomly partitioning the space239

of signatures {0, 1}d into a valid region set G(t) of240

size γ · 2d and a blocked region set R(t) of size241

(1− γ) · 2d, where γ ∈ (0, 1) determines the ratio242

of valid regions. The masking is seeded by the243

LSH signature of the last sentence s(t−1) and thus244

varies for each time-step t. Specifically, we convert245

the binary signature SIG(s(t−1)) to decimal and246

use [SIG(s(t−1))]10 × p to seed the randomization.247

Here p is a large prime number and [.]10 an operator248

6Link to Pegasus paraphraser.
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Figure 2: An illustration for margin-based rejection.
Sentence embeddings at LSH hyperplane boundaries
are rejected (highlighted in red).

that casts binary numbers to decimal numbers. The 249

condition for rejection sampling is that the LSH 250

signature of the new sentence must fall into one of 251

the valid regions, i.e., LSH(Membd(s
(t)) ∈ G(t). 252

Margin-Based Constraint for Robustness For 253

the SEMSTAMP algorithm to be robust, the LSH 254

signature of the sentences should remain the same 255

under paraphrase attack. Empirically, we found 256

the robustness from contrastive learning (Eq. 1) 257

is not strong enough to preserve consistent LSH 258

signature under paraphrasing. Therefore, we add 259

an additional rejection sampling requirement that 260

the sampled sentence s(t) must have the absolute 261

value of cosine similarity with each normal vector 262

n(i) larger than a margin m > 0: 263

min
i=1,...,d

| cos(n(i), vt)| > m, (2) 264

where vt = Membd(s
(t)) is the embedding of the 265

candidate next sentence.7 266

Visually, this is akin to rejecting sentences whose 267

embeddings lie near the boundaries of an LSH hy- 268

perplane. We illustrate this in Figure 2. In our 269

experiments (§3), we show that this margin-based 270

rejection requirement can effectively increase the 271

LSH signature robustness under paraphrasing. 272

2.3 The Bigram Paraphrase Attack 273

We develop a strong “bigram” paraphrase attack 274

with the following intuition. Because existing 275

token-level watermark algorithms hash the last gen- 276

erated token to determine the watermarking signa- 277

ture (Kirchenbauer et al., 2023a), any choice of 278

token at position t would affect the watermark of 279

7We discuss additional details on the condition for consis-
tent LSH signature in §E.

4

https://huggingface.co/tuner007/pegasus_paraphrase


position t + 1. Therefore, we hypothesize that280

token-level watermarks might be especially sensi-281

tive to bigram (two adjacent tokens) perturbation.282

Motivated by this intuition, we propose and ex-283

plore the bigram paraphrase attack, a simple yet284

effective variant of the basic sentence-level para-285

phrase attack. Specifically, given a neural para-286

phrase model, we first decode a large number of287

top-raking sequences s′1 . . . s
′
k with beam search,288

obtaining k paraphrase candidates. Next, we select289

the candidate that has the smallest bigram overlap290

with the original sentence. Moreover, to preserve291

the paraphrasing quality, we constrain the para-292

phrase attack with BERTScore (Zhang et al., 2019)293

between paraphrases and original sentences:294

s′ = argmin
x∈{s′1,...,s′k}

B(x, s),295

subject to S(s′1, s)− S(x, s) ≤ ∆ · S(s′1, s),296

where s denotes the original sentence, B(x, s)297

is a simple counting of overlapped bigrams be-298

tween sequences x and s, S(x, s) denotes the299

BERTScore between sequence x and s, and ∆ is300

the BERTScore threshold ratio. See Figure 5 for301

an example in action.302

3 Experiments303

3.1 Experimental Setup304

Datasets We conduct experiments to validate the305

detection robustness and quality of SEMSTAMP306

on the RealNews subset of the C4 dataset (Raffel307

et al., 2020) and on the BookSum (Kryściński et al.,308

2021). We further analyze the detection results and309

generation quality on 1000 random samples.310

Metrics We use binary classification metrics: (1)311

area under the receiver operating characteristic312

curve (AUC), and (2) the true positive rate when the313

false positive rate is 1% or 5% (TP@1%, TP@5%),314

i.e., the percentage of machine-generated text (the315

“positive” class in the classification setting) that316

is correctly detected when 1% and 5% of human317

texts (the “negative” class) are misclassified as318

machine-generated texts. A piece of text is classi-319

fied as machine-generated when its z-score exceeds320

a threshold chosen based on a given false positive321

rate, which we explain in detail in §B. Differing322

from KGW algorithm (Kirchenbauer et al., 2023a),323

our algorithm treat sentences as the unit during324

z-score computation.325

To evaluate generation quality, we measure the326

perplexity (PPL) with OPT-2.7B (Zhang et al.,327

2022). Generation diversity is measured with tri- 328

gram text entropy (Zhang et al., 2018) (Ent-3), i.e., 329

the entropy of the trigram frequency distribution 330

of the generated text. We also evaluate generations 331

with Sem-Ent (Han et al., 2022), an automatic met- 332

ric for semantic diversity. Following the setup in 333

Han et al. (2022), we use the last hidden states 334

of OPT-2.7B models on generations as their se- 335

mantic representation and perform k-means clus- 336

tering. Sem-Ent is the entropy of semantic cluster 337

assignments of test generations. We evaluate the 338

quality of paraphrases using BERTScore (Zhang 339

et al., 2019) between original generations and their 340

paraphrases. 341

Training, Generation, and Baselines For con- 342

trastive learning of SBERT, we paraphrase 8k para- 343

graphs of the RealNews dataset (Raffel et al., 2020) 344

using the Pegasus paraphraser (Zhang et al., 2020) 345

through beam search with 25 beams. We then fine- 346

tune an SBERT model8 with an embedding dimen- 347

sion h = 768 on this subset for 3 epochs with a 348

learning rate of 4×10−5, using contrastive learning 349

objective (Eq. 1). We set the contrastive learning 350

margin δ = 0.8 which is tuned from the dev set. 351

For watermarked generation, we use OPT-1.3B 352

(Zhang et al., 2022) as our base model and conduct 353

sampling at a temperature of 0.7 following Kirchen- 354

bauer et al. (2023a) with a repetition penalty of 355

1.05. Setting 32 as the prompt length, we let 200 be 356

our default generation length but also experiment 357

on various different lengths (Fig. 3). To generate 358

from SEMSTAMP, we sample at a LSH dimension 359

d = 3 with valid region ratio γ = 0.25 and rejec- 360

tion margin m = 0.02. See §3.2 for the impact on 361

hyperparameter choices. 362

We choose the popular watermarking algorithm 363

Kirchenbauer et al. (KGW; 2023a) as our main 364

baseline. In the paraphrase attack phase, we para- 365

phrase generations by SEMSTAMP and KGW and 366

compare their post-hoc detection rates after attacks. 367

We also experiment with a distortion-free water- 368

mark by Kuditipudi et al. (KTH; 2023), but pre- 369

liminary results show that KTH performs poorly 370

compared to both KGW and SEMSTAMP against 371

our paraphrase attacks for the AUC metric. We 372

include the detection results with KTH in §D. 373

Paraphrase Attack For paraphrase attack exper- 374

iments, watermarked generations are paraphrased 375

sentence-by-sentence with the Pegasus paraphraser 376

(Zhang et al., 2020), the Parrot paraphrase used in 377

8sentence-transformers/all-mpnet-base-v1
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RealNews BookSum

Paraphraser Algorithm AUC ↑ TP@1% ↑ TP@5% ↑ AUC ↑ TP@1% ↑ TP@5% ↑

KGW 99.6 98.4 98.9 99.9 100.0 99.6No Paraphrase
SSTAMP 99.2 93.9 97.1 99.9 100.0 99.2

KGW 95.9 82.1 91.0 97.3 89.7 95.3Pegasus
SSTAMP 97.8 (+1.9) 83.7 (+1.6) 92.0 (+1.0) 99.2 (+1.9) 90.1 (+0.4) 96.8 (+1.5)

KGW 92.1 42.7 72.9 96.5 56.6 85.3Pegasus-bigram
SSTAMP 96.5 (+4.4) 76.7 (+34.0) 86.8 (+13.9) 98.9 (+2.4) 86.0 (+29.4) 94.6 (+9.3)

KGW 88.5 31.5 55.4 94.6 42.0 75.8Parrot
SSTAMP 93.3 (+4.8) 56.2 (+24.7) 75.5 (+20.1) 97.5 (+2.9) 70.3 (+28.3) 88.5 (+12.7)

KGW 83.0 15.0 39.9 93.1 37.4 71.2Parrot-bigram
SSTAMP 93.1 (+10.1) 54.4 (+39.4) 74.0 (+34.1) 97.5 (+4.4) 71.4 (+34.0) 89.4 (+18.2)

KGW 82.8 17.4 46.7 87.6 17.2 52.1GPT3.5
SSTAMP 83.3 (+0.5) 33.9 (+16.5) 52.9 (+6.2) 91.8 (+4.2) 55.0 (+37.8) 70.8 (+18.7)

KGW 75.1 5.9 26.3 77.1 4.4 27.1GPT3.5-bigram
SSTAMP 82.2 (+7.1) 31.3 (+25.4) 48.7 (+22.4) 90.5 (+13.4) 47.4 (+43.0) 63.6 (+36.5)

Table 1: Detection results under different paraphraser settings. All numbers are in percentages. ↑ indicates higher
values are preferred. The numbers in parenthesis show the changes over our baseline. SEMSTAMP is more robust
than KGW on multiple paraphrasers, datasets, and both the regular and bigram paraphrase attacks.

PPL↓ Ent-3↑ Sem-Ent↑

No watermark 10.02 12.17 5.53
KGW 12.17 12.10 5.47

SEMSTAMP 10.20 12.16 5.51

Table 2: Quality evaluation results. ↑ and ↓ indicate the
direction of preference (higher and lower). SEMSTAMP
preserves the quality of generated text.

Sadasivan et al. (2023), and GPT-3.5-Turbo (Ope-378

nAI, 2022). We use beam search with 25 beams for379

both Pegasus and Parrot. For GPT-3.5-Turbo, we380

provide the sentences before the current sentence381

as the context and prompt the model to paraphrase382

via the OpenAI API.9 A detailed description of383

prompts is included in §E.384

To implement the bigram paraphrase attack, we385

prompt the GPT-3.5-Turbo to return 10 paraphrases386

of the same sentence. For the Pegasus and Parrot387

paraphrasers, we select the candidate sentence with388

the least bigram overlap among the 25 beams from389

beam-search, subject to a BERTScore constraint390

of dropping no more than 10% of the score from391

the first beam. For GPT-3.5-Turbo, the paraphrase392

sample with the highest BERTScore is treated as393

the first beam.394

3.2 Results395

Detection Table 1 shows detection results under396

different paraphrasers and the bigram attack at gen-397

9https://platform.openai.com/playground/
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Figure 3: Detection results (AUC) under different gener-
ation lengths. SEMSTAMP is more robust than KGW
across length 100-400 tokens.

eration length 200. SEMSTAMP is more robust to 398

paraphrase attacks than KGW across the Pega- 399

sus, Parrot, and GPT-3.5-Turbo paraphrasers, 400

as measured by AUC, TP@1%, and TP@5%. 401

Although we only fine-tune the SBERT model on 402

data from the Pegasus paraphraser, SEMSTAMP 403

algorithm generalizes its robustness to different 404

paraphrasers (Parrot, GPT-3.5-Turbo) and works 405

on texts from different domains. 406

The bigram paraphrase attack effectively 407

weakens the token-level KGW algorithm while 408
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SEMSTAMP is relatively unaffected. Pegasus bi-409

gram attack can lower KGW’s AUC by 7.9% and410

TP@5% by 27.1% on RealNews, whereas SEM-411

STAMP only decreases by 3.5% and 13.2%. Fur-412

thermore, the BERTScore for bigram paraphrase413

does not change drastically compared to the regu-414

lar paraphrases (Table 4 in §D), showing that the415

bigram paraphrase attack still preserves paraphrase416

quality due to the BERTScore constraints we add.417

Kirchenbauer et al. (2023b) propose several alter-418

native hashing schemes to the KGW algorithm. We419

conduct paraphrase attack experiments on a recom-420

mended scheme named SelfHash, and do not find421

visible improvements to KGW, thus omitting the422

results for brevity.423

Quality Table 2 compares quality metrics of non-424

watermarked generations with KGW and SEM-425

STAMP generations. While KGW notably de-426

grades perplexity due to the token-level noise427

added to logits, the perplexity of SEMSTAMP428

generation is on par with the base model with-429

out watermarking. This confirms our hypothesis430

that the sentence-level nature of SEMSTAMP is less431

disruptive of token selections and preserves the432

generation quality. Figure 5 and 6 provide qual-433

itative examples of SEMSTAMP generations and434

the bigram paraphrase attack. Compared to non-435

watermarked generation, the sentences are equally436

coherent and contextually sensible. SEMSTAMP437

also preserves token and semantic diversity of438

generation compared to non-watermarked gen-439

eration and KGW generation, as measured by440

the Ent-3 and Sem-Ent metrics, respectively.441

Generation Length Figure 3 highlights that442

SEMSTAMP is robust to both regular and bi-443

gram paraphrase attacks across different generation444

lengths as measured by the number of tokens. SEM-445

STAMP has consistently higher AUC than KGW446

(Kirchenbauer et al., 2023a).447

Analysis Figure 4 shows that increasing margin448

size m will increase the consistency of LSH sig-449

natures (LSH consistency), the ratio of sentences450

that remain in the same valid region after being451

paraphrased. A higher rejection margin will ensure452

the sampled generations are further away from the453

region boundary, thus less likely to shift to a dif-454

ferent region after paraphrasing. However, a larger455

margin will result in a slower generation speed, and456

we find m = 0.02 works well empirically.457

We also compare the LSH consistency before458

and after fine-tuning SBERT with contrastive learn-459
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Figure 4: Rejection margin and contrastive fine-tuning
effectively improve LSH Consistency.

ing in Figure 4. Fine-tuning the encoder on 460

Pegasus-paraphrased data improves the LSH con- 461

sistency across different margins. 462

Applying the masking of semantic space parti- 463

tions and the rejection margin, SEMSTAMP makes 464

a trade-off between watermark detection accuracy 465

and generation speed. For our current hyperparam- 466

eter setting, 13.8 sentences are needed on average 467

to sample one valid sentence. As we explain in the 468

Limitations and Discussion section, this limitation 469

can be mitigated if we conduct batched sampling 470

of next sentences. 471

4 Related Work 472

Machine-generated text detection, aiming at distin- 473

guishing LLM-generated texts from human-written 474

ones, can be categorized into proactive and post- 475

hoc methods. Our focus, watermarked generation, 476

belongs to the first category. 477

Watermarked Generation Early approaches to 478

watermarking include text-meaning representation 479

tree for information hiding (Atallah et al., 2002), 480

and a watermarking scheme for machine transla- 481

tion using an output selector that considers hash- 482

ing operation (Venugopal et al., 2011). Water- 483

marked language generation, specifically pertinent 484

to LLMs, is a renewed trend of proactive machine- 485

generated text detection. The scheme works by 486

adding signatures imperceptible to humans during 487

decoding time to enable stable detection at a later 488

time. Kirchenbauer et al. (2023a) propose a wa- 489

termarking algorithm by adding token-level bias 490

(reviewed in §2). Kuditipudi et al. (2023) proposes 491

a distortion-free watermark that preserves the orig- 492

inal distribution of LM during watermarking. Yoo 493

et al. (2023) embeds multi-bit information into wa- 494
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Prompt: Aylesbury’s new deputy area commander has been getting stuck in to his new role and says he’s determined
to make himself ‘approachable’.
Non-Watermarked Generation: Chief inspector Neil Kentish joined Thames Valley Police less than a week ago as
deputy chief Constable. He’s already got his work cut out as the force tries to tackle crime in the post Brexit age. Here
he shares his top tips for doing your job well. 1. Look the part – be respectful, look presentable, dress appropriately
and be on time. Keep an eye out for the telly chaps who may be trying to use you for your money – you should never
let this happen.

SEMSTAMP: Chief inspector Neil Kentish joined Thames Valley Police less than a month ago and has been thrust into
the hot seat of the Aylesbury District Commander team. He was chosen from a wide range of candidates put forward by
Deputy Chief Constable Peter Borsack, who said, “I am delighted to have appointed Neil as deputy chief officer of
police in Aylesbury District. He is a real character and I believe he will be a great addition to the team."
Pegasus Paraphrase: Neil Kentish was the chief inspector of Thames Valley Police. "I was thrust into the hot seat
of the district commander team a month ago." He was chosen from a wide range of candidates put forward by Peter
Borsack who said: "I am delighted to have appointed Neil as deputy chief officer of police in Aylesbury District. I think
he will be a great addition to the team."
Pegasus Bigram Paraphrase: Neil Kentish was the chief inspector of Thames Valley Police. He was put into the hot
seat of the district commander team a month ago. Neil was chosen from a wide range of candidates put forward by
Peter Borsack, who said he was delighted to have appointed Neil as deputy chief officer of police. "I think he will be a
good addition to the team. He will bring a good level of leadership and management skills to the community."

Figure 5: Generation Examples. Paraphrase examples are based on SEMSTAMP generations. Additional examples
are presented in Figure 6 in the Appendix. SEMSTAMP generations are equally coherent and contextually
sensible compared to non-watermarked generations.

termark and enhances performance against corrup-495

tion through a robust infilling model. They inject496

the watermark via word replacement after initial497

generation, which is incorporated into one-stage498

watermarked generation by Wang et al. (2023).499

Christ et al. (2023) propose a watermarking scheme500

that is computationally undetectable without the se-501

cret key in theory.502

Importantly, these existing works employ a503

token-level design and focus on span-level corrup-504

tion such as editing and cropping, which renders505

the watermarks susceptible to paraphrase attacks.506

More related to our focus on paraphrase at-507

tack, Krishna et al. (2023) propose a retrieval-508

based method that requires saving all previously-509

generated sequences, and Kirchenbauer et al.510

(2023b) empirically shows that Kirchenbauer et al.511

(2023a) is more robust under longer generation512

length. Contemporary to our work, Zhao et al.513

(2023) improves robustness via a cryptographic-514

free watermark without hashing previous tokens,515

which is more robust to editing and paraphrasing at-516

tacks. To the best of our knowledge, our work is the517

first sentence-level semantic watermark algorithm518

targeted against paraphrase attacks.519

Post-Hoc Detection of Machine-Generated Text520

In post-hoc methods, applying binary classifica-521

tion models is the most straightforward approach522

(Zellers et al., 2019; Jawahar et al., 2020; Liu et al.,523

2022; Mireshghallah et al., 2023; Pu et al., 2023).524

These methods are applicable to black-box gen-525

erators but need sufficiently large corpus for fine-526

tuning. Another type of post-hoc detection is based 527

on statistical patterns within generation, includ- 528

ing token likelihood (Gehrmann et al., 2019), rank 529

(Solaiman et al., 2019), entropy (Ippolito et al., 530

2020), and likelihood gap at perturbation (Mitchell 531

et al., 2023; Su et al., 2023). These methods have 532

better interpretability but are reliable only with 533

white-box access to generators. Sadasivan et al. 534

(2023) question the theoretical reliability of detec- 535

tion while Chakraborty et al. (2023) support detec- 536

tion is achievable. 537

We defer further related works on LSH, water- 538

marking for copyright, and contrastive learning to 539

§A due to space reasons. 540

5 Conclusion 541

We introduce SEMSTAMP, a novel sentence-level 542

semantic watermark for LLMs. The watermark 543

is injected by mapping candidate sentences into 544

embeddings with a paraphrase-robust encoder, par- 545

titioning the semantic space through LSH, and re- 546

jection sampling to generation sentences with valid 547

region embeddings. Empirical results show that 548

SEMSTAMP is not only robust to paraphrase attacks 549

but also more quality-preserving than a token-level 550

baseline watermark algorithm. We also propose a 551

bigram paraphrase attack which effectively weak- 552

ens the token-level watermark while only causing 553

minor performance deterioration to SEMSTAMP. 554

We hope SEMSTAMP can serve as an effective 555

tool for regulating the proliferation of machine- 556

generated texts. 557
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Limitations and Discussion558

Robustness to Stronger Attacks Since SEM-559

STAMP operates on the sentence level, it is not560

robust against attacks on the inter-sentence level.561

For example, a recently proposed paraphraser Dip-562

per (Krishna et al., 2023) includes sentence reorder-563

ing. Our algorithm is also less effective when the564

machine text is embedded in a relatively large por-565

tion of human text. We leave the exploration of566

stronger attacks to future work.567

Semantic Constraint from LSH While the LSH568

partitioning divides the full semantic space into569

sub-regions, enforcing the “valid region” require-570

ment during generation may potentially reduce the571

generation flexibility. Interestingly, we use a small572

LSH dimension (d = 3) and we do not observe573

a visible quality degradation. A potential expla-574

nation is that with a smaller LSH dimension, the575

valid partition also becomes larger, which does not576

impose a strong semantic constraint and provides577

enough diversity for generations, as we found in578

our experiments (§3.2).579

Speed Due to the nature of rejection sampling,580

text generation with SEMSTAMP is slower than581

non-watermarked generation by a factor of 13.8582

with LSH dimension d = 3 and margin m = 0.02583

(§3.2), and by a factor of 5.26 when d = 3 and584

m = 0 (Table 3). However, since candidate sen-585

tences for rejection sampling have the same LM586

context, it is possible to conduct batch sampling587

of candidate next sentences, which speeds up wa-588

termarked generation while increasing the memory589

overhead. We see the additional computation cost590

for SEMSTAMP as a cost for robustness: adding the591

watermark on the semantic space trades-off speed592

for better detection accuracy under paraphrase at-593

tacks. Further, a potential mitigation is through594

sampling candidate sentences with multiple devices595

at the same time.596

Reverse Engineering Since our sentence en-597

coder and LSH hyperplanes are not public, it is598

not straightforward for a curious attacker to reverse599

engineer the configurations and we leave it for fu-600

ture work to explore. The difficulty of reverse en-601

gineering can also be increased by using a larger602

LSH dimension, while the watermark could be less603

robust to paraphrase attack.604

Bigram Paraphrase Attack Control We control605

the “intensity” degree of bigram paraphrase attack606

by constraining the paraphrase candidate selection607

with a BERTScore constraint. Removing the con- 608

straint will more forcefully lower AUROC at the 609

expense of paraphrase quality. 610

Ethical Impacts 611

As language models become increasingly capable 612

of generating realistic texts, the risk of misusing 613

language model generations, such as spreading mis- 614

information, practicing plagiarism, and violating 615

copyrights, has become imminent. Furthermore, on 616

a fundamental level, the inability to distinguish hu- 617

mans from machines poses threats to establishing 618

the basic level of mutual understanding and trust 619

that bonds society. Robust detection of machine- 620

generated text is crucial for preventing the misuse 621

of large language models by properly attributing 622

the source of online texts. Although current LLMs 623

are often exposed to users as API endpoints, ma- 624

licious users can still postprocess and paraphrase 625

the API-generated response to escape the injected 626

watermark. This motivates us to study watermark 627

robustness against paraphrasing in this work. We 628

hope that the proposed SEMSTAMP algorithm can 629

mitigate the risk of LLM misuse by providing a 630

reliable method to counter paraphrasing attacks on 631

watermarked generations. 632

References 633

Mikhail J. Atallah, Victor Raskin, Michael Crogan, 634
Christian Hempelmann, Florian Kerschbaum, Dina 635
Mohamed, and Sanket Naik. 2001. Natural lan- 636
guage watermarking: Design, analysis, and a proof- 637
of-concept implementation. In Information Hiding, 638
pages 185–200, Berlin, Heidelberg. Springer Berlin 639
Heidelberg. 640

Mikhail J. Atallah, Victor Raskin, Christian F. Hempel- 641
mann, Mercan Karahan, Radu Sion, Umut Topkara, 642
and Katrina E. Triezenberg. 2002. Natural language 643
watermarking and tamperproofing. In International 644
Workshop on Information Hiding, pages 196–212. 645

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez- 646
Gazpio, and Lucia Specia. 2017. SemEval-2017 647
task 1: Semantic textual similarity multilingual and 648
crosslingual focused evaluation. In Proceedings 649
of the 11th International Workshop on Semantic 650
Evaluation (SemEval-2017), pages 1–14, Vancouver, 651
Canada. Association for Computational Linguistics. 652

Souradip Chakraborty, Amrit Singh Bedi, Sicheng Zhu, 653
Bang An, Dinesh Manocha, and Furong Huang. 2023. 654
On the possibilities of ai-generated text detection. 655
arXiv preprint arXiv:2304.04736. 656

Moses S Charikar. 2002. Similarity estimation tech- 657
niques from rounding algorithms. In Proceedings of 658

9

https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001


the thiry-fourth annual ACM symposium on Theory659
of computing, pages 380–388.660

Seungtaek Choi, Myeongho Jeong, Hojae Han, and Se-661
ung won Hwang. 2022. C2l: Causally contrastive662
learning for robust text classification. In AAAI Con-663
ference on Artificial Intelligence.664

Miranda Christ, Sam Gunn, and Or Zamir. 2023. Un-665
detectable watermarks for language models. ArXiv,666
abs/2306.09194.667

Hongchao Fang, Sicheng Wang, Meng Zhou, Jiayuan668
Ding, and Pengtao Xie. 2020. Cert: Contrastive669
self-supervised learning for language understanding.670
ArXiv, abs/2005.12766.671

Yu Fu, Deyi Xiong, and Yue Dong. 2023. Watermarking672
conditional text generation for ai detection: Unveiling673
challenges and a semantic-aware watermark remedy.674
ArXiv, abs/2307.13808.675

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.676
Simcse: Simple contrastive learning of sentence em-677
beddings. arXiv preprint arXiv:2104.08821.678

Sebastian Gehrmann, Hendrik Strobelt, and Alexan-679
der M Rush. 2019. Gltr: Statistical detection680
and visualization of generated text. arXiv preprint681
arXiv:1906.04043.682

Chenxi Gu, Chengsong Huang, Xiaoqing Zheng, Kai-683
Wei Chang, and Cho-Jui Hsieh. 2022. Watermark-684
ing pre-trained language models with backdooring.685
arXiv preprint arXiv:2210.07543.686

Kelvin Guu, Tatsunori B. Hashimoto, Yonatan Oren,687
and Percy Liang. 2018. Generating sentences by688
editing prototypes. Transactions of the Association689
for Computational Linguistics, 6:437–450.690

R. Hadsell, S. Chopra, and Y. LeCun. 2006. Dimension-691
ality reduction by learning an invariant mapping. In692
2006 IEEE Computer Society Conference on Com-693
puter Vision and Pattern Recognition (CVPR’06),694
volume 2, pages 1735–1742.695

Seungju Han, Beomsu Kim, and Buru Chang. 2022.696
Measuring and improving semantic diversity of dia-697
logue generation. In Findings of the Association for698
Computational Linguistics: EMNLP 2022.699

The White House. 2023. FACT SHEET: Biden-700
Harris Administration Secures Voluntary Commit-701
ments from Leading Artificial Intelligence Compa-702
nies to Manage the Risks Posed by AI.703

Piotr Indyk and Rajeev Motwani. 1998. Approximate704
nearest neighbors: Towards removing the curse of di-705
mensionality. In Proceedings of the Thirtieth Annual706
ACM Symposium on Theory of Computing, STOC707
’98, page 604–613, New York, NY, USA. Associa-708
tion for Computing Machinery.709

Daphne Ippolito, Daniel Duckworth, Chris Callison- 710
Burch, and Douglas Eck. 2020. Automatic detec- 711
tion of generated text is easiest when humans are 712
fooled. In Proceedings of the 58th Annual Meeting of 713
the Association for Computational Linguistics, pages 714
1808–1822, Online. Association for Computational 715
Linguistics. 716

Daphne Ippolito, Florian Tramèr, Milad Nasr, Chiyuan 717
Zhang, Matthew Jagielski, Katherine Lee, Christo- 718
pher A Choquette-Choo, and Nicholas Carlini. 2022. 719
Preventing verbatim memorization in language mod- 720
els gives a false sense of privacy. arXiv preprint 721
arXiv:2210.17546. 722

Ganesh Jawahar, Muhammad Abdul-Mageed, and Laks 723
Lakshmanan, V.S. 2020. Automatic detection of ma- 724
chine generated text: A critical survey. In Proceed- 725
ings of the 28th International Conference on Com- 726
putational Linguistics, pages 2296–2309, Barcelona, 727
Spain (Online). International Committee on Compu- 728
tational Linguistics. 729

Taeuk Kim, Kang Min Yoo, and Sang goo Lee. 2021. 730
Self-guided contrastive learning for bert sentence 731
representations. ArXiv, abs/2106.07345. 732

John Kirchenbauer, Jonas Geiping, Yuxin Wen, 733
Jonathan Katz, Ian Miers, and Tom Goldstein. 2023a. 734
A watermark for large language models. arXiv 735
preprint arXiv:2301.10226. 736

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli 737
Shu, Khalid Saifullah, Kezhi Kong, Kasun Fernando, 738
Aniruddha Saha, Micah Goldblum, and Tom Gold- 739
stein. 2023b. On the reliability of watermarks for 740
large language models. 741

Tassilo Klein and Moin Nabi. 2020. Contrastive self- 742
supervised learning for commonsense reasoning. 743
ArXiv, abs/2005.00669. 744

Kalpesh Krishna, Yixiao Song, Marzena Karpinska, 745
John Wieting, and Mohit Iyyer. 2023. Paraphras- 746
ing evades detectors of ai-generated text, but re- 747
trieval is an effective defense. arXiv preprint 748
arXiv:2303.13408. 749
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Supplemental Materials905

A Additional Related Works906

Locality-Sensitive Hashing in NLP The appli-907

cation of locality-sensitive hashing (Indyk and Mot-908

wani, 1998; Charikar, 2002) in NLP dates back to909

Ravichandran et al. (2005), where LSH is used910

for high-speed noun clustering. Van Durme and911

Lall (2010) show that the LSH method of Charikar912

(2002) can enable fast approximated online com-913

putation of cosine similarity. Guu et al. (2018) use914

LSH to efficiently compute lexically similar sen-915

tences in a prototype-then-edit sentence generation916

model. Closely related to our work, Weir et al.917

(2020) generate semantically diverse sentences by918

conditioning a sequence-to-sequence model on the919

LSH signature of sentence embeddings.920

Watermarked Natural Language Data for Copy-921

right Watermarked generation can be further ap-922

plied for data copyright protection. Gu et al. (2022)923

embed backdoor trigger words as black-box water-924

marks into LLMs. Liu et al. (2023) propose a novel925

watermark via backdoor-based membership infer-926

ence, where backdoor watermarked texts poison927

unauthorized training models. Yao et al. (2023) fo-928

cus on protecting the copyright of prompts through929

inserting the secret key into the prompt optimiza-930

tion stage. These works mainly apply watermark931

techniques for data copyright protections , whereas932

our work focuses on exploring the robustness of933

watermark against paraphrasing.934

Contrastive Learning in NLP Contrastive learn-935

ing (Hadsell et al., 2006) aims at improving the936

distinguishability of representation by pulling over937

positive pairs and pushing off negative pairs. In938

the NLP domain, contrastive learning can be ap-939

plied to sentence embedding (Logeswaran and Lee,940

2018), and further used in downstream tasks like941

natural language inference (Li et al., 2022), under-942

standing (Fang et al., 2020), reasoning (Klein and943

Nabi, 2020), classification (Choi et al., 2022) etc.944

Logeswaran and Lee (2018) apply unsupervised945

contrastive learning between current sentence can-946

didates and context sentences to effectively learn947

sentence representation. Gao et al. (2021) further948

apply supervised contrastive learning in sentence949

embedding by using annotated pairs from natural950

language inference. Kim et al. (2021) propose a951

self-guided contrastive learning between embed-952

dings from a fixed model and a fine-tuned model.953

B Watermark Detection 954

Kirchenbauer et al. (2023a) proposes using a one- 955

proportion z-test on the number of green list tokens 956

to detect watermarks, assuming the following null 957

hypothesis: 958

H0 : The text is not generated (or written) 959

knowing a watermarking green list rule. 960

The null hypothesis is rejected when the z-score 961

computed based on the number of green tokens in 962

a piece of text T exceeds a given threshold M : 963

zKGW =
NG − γNT√
γ(1− γ)NT

, (3) 964

where NG denotes the number of green tokens, NT 965

refers to the total number of tokens contained in 966

the given piece of text T , and γ is a chosen ratio of 967

green tokens. During detection time, the number of 968

green tokens in each piece of text will be counted. 969

According to Eq. 3, a higher ratio of detected green 970

tokens means a higher z-score, determining with 971

more confidence that the text is machine-generated. 972

We adapt this one proportion z-test to SEM- 973

STAMP, modifying the null hypothesis and using 974

sentence as our basic unit: 975

H0 : 976

The text is not generated (or written) knowing 977

a rule of valid and blocked partitions in the 978

semantic space. 979

980

zSEMSTAMP =
SV − γST√
γ(1− γ)ST

, (4) 981

where SV refers to the number of valid sentences, 982

γ is the ratio of valid sentences out of the total 983

number of sentences ST in a piece of text T . 984

During detection time, we first break a piece 985

of texts into individual sentences and detect 986

the number of valid sentences SV to calculate 987

zSEMSTAMP. We detect a machine-generated text 988

when zSEMSTAMP > Mr, where Mr is located ac- 989

cording to a given false positive rate r: We define 990

machine-generated as the positive class in classical 991

classification setting and non-machine-generated 992

as the negative class. We iterate through a range of 993

possible m ∈ [0, 4.0] until there is a Mr = m such 994

that r percentage of human (negative-class) texts is 995

misclassified as machine-generated. For example, 996

we let r = 0.05 for the TP@5% metric in Table 1. 997
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Prompt: NEW DELHI: Over fifteen years after the Concorde — the world’s first and only supersonic aircraft to be
used commercially — retired, US aerospace major Boeing has announced it is working on its successor.
Non-Watermarked Generation: The first commercial supersonic jet was developed in the late 1960s by British
Aerospace. However, the technology was never adopted by the industry. Boeing aims to change that. It has set up a
team of engineers who will work on developing the next Supersonic Jet.
Baseline Watermark: The company has called it the X-35. But it’s not yet clear when it might begin taking orders for
production. The project is named after Jason Xtra, who first proposed it in 1997 – after the US Air Force expressed
interest in it. However, Boeing hasn’t announced any orders for the X-35 yet.

SEMSTAMP: The company said it was committed to developing the space elevator and had launched a
concept for a space elevator in 2003. Boeing’s chief financial officer, Robert Lach Jr, said the company would spend
about $2 billion over the next five years on what is called the Space Elevator Initiative. Boeing estimated that an
elevator would cost between $8 billion and $10 billion to build, depending on the design.

Pegasus Paraphrase: The company launched a concept for a space elevator in 2003 and said it was com-
mitted to developing the space elevator. Boeing will spend $2 billion over the next five years on the Space Elevator
Initiative, according to Robert Lach Jr., the company’s chief financial officer. Depending on the design, an elevator
could cost between $8 billion and $10 billion.
Pegasus Bigram Paraphrase: In 2003 the company launched a concept for a space elevator. The company will spend
$2 billion over the next five years on the Space Elevator Initiative. Depending on the design, an elevator could cost as
much as $10 billion.

Figure 6: Additional Generation Examples. Non-Watermarked refers to the original model without adding
any watermark. Baseline Watermark refers to (Kirchenbauer et al., 2023a). Paraphrase examples are based on
SEMSTAMP generations.

LSH Dim (d) Average # of Sentences Sampled ↓ LSH Consistency ↑

3 5.26 .720
4 4.53 .666
8 4.26 .508

16 4.14 .335

Table 3: Effects of Increasing LSH Dimensions at mar-
gin m = 0.0. The sampling rate is the average num-
ber of sentences sampled to produce one valid (water-
marked) sentence.

C Effect of LSH dimension d998

In Table 3, we discover that fewer LSH dimensions999

will make a sentence more likely to stay in the same1000

region after being paraphrased. We define LSH1001

Consistency as the ratio of paraphrased sentences1002

that have the same LSH signature as the original1003

sentence over the total number of paraphrased sen-1004

tences. A higher consistency ratio indicates better1005

robustness.1006

Geometrically, when the LSH dimension is1007

lower, there are fewer partitioned semantic regions,1008

each having a larger space. A paraphrase will have1009

a similar representation with its source sentence in1010

the semantic space, which will be more likely to1011

remain in the same semantic region if each region1012

is larger.1013

On the other hand, lowering the number of LSH1014

dimensions will also slightly increase the average1015

number of sentences sampled to produce one valid1016

sentence (Average Number of Sentences Sampled).1017

We ultimately decide on a minor sacrifice in speed1018

for the gain of accuracy and choose d = 3. We 1019

choose γ = 0.25 following Kirchenbauer et al. 1020

(2023a), where the authors show that larger green- 1021

list ratios will lower the z-score. 1022

D Additional Experimental Results 1023

We include additional experimental results on para- 1024

phrase quality, i.e., the BERTScore between orig- 1025

inal and paraphrased generations under different 1026

settings, in Table 4. 1027

We provide paraphrased detection results of the 1028

KTH algorithm Kuditipudi et al. (2023) in Table 5. 1029

We find that the KTH watermark performs poorly 1030

against KGW and SEMSTAMP. 1031

Computing Infrastruture and Budget We run 1032

sampling and paraphrase attack jobs on 8 A40 1033

GPUs, taking up a total of around 100 GPU hours. 1034

E Additional Details 1035

Condition for consistent LSH signature For ro- 1036

bustness, the SEMSTAMP algorithm would need 1037

the LSH signature of the paraphrased sentence to 1038

be unchanged from the signature of the original 1039

sentence. This requires that for each LSH digit 1040

i, the sign of the dot product between the embed- 1041

ded sentence and the normal vector n(i) should not 1042

change before and after paraphrasing: 1043

1
(
n(i) · vorig > 0

)
= 1

(
n(i) · vpara > 0

)
,

∀i ∈ {1 . . . d},
(5) 1044
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RealNews BookSum

Algorithm↓ Paraphraser→ Pegasus Parrot GPT3.5 Pegasus Parrot GPT3.5

KGW 71.0 / 66.6 57.1 / 58.4 54.8 / 53.3 71.8 / 69.3 62.0 / 61.8 60.3 / 56.7
SSTAMP 72.2 / 69.7 57.2 / 57.4 55.1 / 53.8 72.7 / 70.2 62.9 / 62.4 61.8 / 58.4

Table 4: BERTScore between original and paraphrased generations under different settings. All numbers are in
percentages. The first number in each entry is under vanilla paraphrase attack while the second number is under the
bigram paraphrase attack. Bigram paraphrase attack poses only minor degradation on semantic similarity
with original sentence compared to vanilla paraphrase attack.

BookSum

Algorithm AUC ↑ TP@1% ↑ TP@5% ↑

KGW 95.9 82.1 91.0
KTH 51.7 5.0 5.8

SEMSTAMP 97.8 83.7 92.0

Table 5: Paraphrased detection results on the BookSum
dataset. The paraphraser used is Pegasus. We find that
the KTH watermark performs poorly against KGW and
SEMSTAMP.

where vorig = Membd(s
(t)) and vpara =1045

Membd(G(s(t))) are the embeddings for the orig-1046

inal and paraphrased sentences, respectively, and1047

G is the paraphraser.1048

Cosine Similarity In §2.2, we slightly abuse the1049

notation and use cos(x,y) to denote the cosine1050

similarity between two vectors x and y. That is,1051

cos(x,y) =
x · y
|x||y|

. (6)1052

Sentence Delimitation During generation time,1053

a full candidate next sentence is considered gen-1054

erated if the language model has generated a new1055

delimiter punctuation, i.e., a comma, period, ques-1056

tion mark, or exclamation mark.1057

Data Preprocessing We separate the data points,1058

which are paragraphs of news (RealNews) and1059

book summaries (BookSum), into sentences us-1060

ing nltk.sent_tokenize. Additionally, we add a1061

period mark to every sentence that does not end in1062

a comma, period, question mark, or exclamation1063

mark.1064

Prompt for GPT-3.5-Turbo Paraphrase To use1065

GPT-3.5-Turbo as a paraphraser, we provide the1066

following prompt:1067

Previous context: {context} \n1068

Current sentence to paraphrase: {sent}1069

We define sent to be the target sentence to be1070

paraphrased, and context as the list of sentences1071

before the target sentence.1072

For the bigram paraphrase attack, we provide the 1073

following prompt: 1074

Previous context: {context} \n 1075

Paraphrase in {num-beams} different ways 1076

and return a numbered list : {sent} 1077

where num-beams specifies the number of can- 1078

didate sentences. A higher num-beams will 1079

strengthen the bigram paraphrase attack but also at 1080

the cost of more computational resources. 1081
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