MULTI-STEP PREFERENCE OPTIMIZATION VIA TWO-PLAYER MARKOV GAMES

Anonymous authors

004

010 011

012

013

014

015

016

017

018

019

021

025

026

Paper under double-blind review

ABSTRACT

Reinforcement Learning from Human Feedback (RLHF) has been highly successful in aligning large language models with human preferences. While prevalent methods like DPO have demonstrated strong performance, they frame interactions with the language model as a bandit problem, which limits their applicability in real-world scenarios where multi-turn conversations are common. Additionally, DPO relies on the Bradley-Terry model assumption, which does not adequately capture the non-transitive nature of human preferences. In this paper, we address these challenges by modeling the alignment problem as a two-player constant-sum Markov game, where each player seeks to maximize their winning rate against the other across all steps of the conversation. Our approach Multi-step Preference Optimization (MPO) is built upon the natural actor-critic framework (Peters & Schaal, 2008). We further develop OMPO based on the optimistic online gradient descent algorithm (Rakhlin & Sridharan, 2013; Joulani et al., 2017). Theoretically, we provide a rigorous analysis for both algorithms on convergence and show that OMPO requires $\mathcal{O}(\epsilon^{-1})$ policy updates to converge to an ϵ -approximate Nash equilibrium. We also validate the effectiveness of our method through experiments on the multi-turn conversations dataset in MT-bench-101.

028 1 INTRODUCTION 029

In recent years, the integration of large-language models (LLMs) (Brown et al., 2020; Achiam 031 et al., 2023; Team et al., 2023) into various applications has highlighted the need for advanced preference alignment methods (Ziegler et al., 2019; Stiennon et al., 2020; Bai et al., 2022; Ouyang et al., 2022; Rafailov et al., 2023). As models increasingly engage in complex decision making or 033 reasoning scenarios, e.g., GPT-40 and 01¹, the ability to align their outputs with user preferences has 034 received more attention. However, existing works on reinforcement learning from human feedback 035 (RLHF) focus mostly on one-step preference (Rafailov et al., 2023; Meng et al., 2024; Munos 036 et al., 2024; Azar et al., 2024; Wu et al., 2024; Zhang et al., 2024), which neglects indispensable 037 intermediate preferences within the answer and limits the model's alignment ability. For example, in multi-round conversations, alignment must occur at each turn to meet user needs. Similarly, in mathematical reasoning with chain-of-thought prompting, step-by-step validation is essential to 040 ensure accuracy in the final result. The reliance on final-output feedback in most existing RLHF 041 methods (Wang et al., 2023; Shani et al., 2024) neglects these intermediate steps, highlighting the 042 need for multi-step preference optimization to enhance alignment capabilities.

Meanwhile, earlier alignment methods e.g., DPO and its variants step-DPO (Lai et al., 2024; Lu et al., 2024), typically model the pairwise preference by the Bradley-Terry model (Bradley & Terry, 1952), which assigns a score for each answer based on its preference. This assumption of the model cannot capture the non-transitive preference, which is often observed in the averaged human preferences from the population (Tversky, 1969; Gardner, 1970). While a recent line of work has modeled the alignment process under the framework of general preference (Azar et al., 2024; Munos et al., 2024; Wu et al., 2024; Rosset et al., 2024), and thus bypasses the BT model assumption, the challenge of multi-step preference optimization remains underexplored.

⁰⁵¹ In this paper, we first address this gap by formulating multi-step general preference optimization within the framework of two-player Markov games (Shapley, 1953), where each player seeks to

¹https://openai.com/o1

maximize their winning rate against the other across all steps of the conversation. Next, we introduce Multi-step Preference Optimization (MPO) drawing on insights from the natural actor-critic
framework (Peters & Schaal, 2008). We further develop OMPO which leverages the optimistic online
gradient descent algorithm and benefits from improved theoretical guarantees (Rakhlin & Sridharan,
2013; Joulani et al., 2017). Theoretically, we provide rigorous analysis for both algorithms on the
convergence to Nash equilibrium. Empirically, we demonstrate the effectiveness of our approach
through experiments on multi-turn conversation datasets, such as MT-bench-101. We firmly believe
that our framework and approach can enhance the responsiveness of LLMs to user feedback.

062 063

Based on our discussions above, we summarize the contributions as follows:

- We formulate multi-step preference optimization as a two-player partially observable Markov game. Unlike Wang et al. (2023); Swamy et al. (2024); Shani et al. (2024) who focus on the preference feedback at the final state, we assume that the preference signal is received at each step. Such feedback allows the model to better identify which steps are correct or erroneous, potentially enhancing learning efficiency and accuracy.
- We propose Multi-step Preference Optimization (MPO) based on the natural actor-critic framework and Optimistic Multi-step Preference Optimization (OMPO), built upon the optimistic online gradient descent. Theoretically, we show that OMPO requires $O(\epsilon^{-1})$ policy updates to converge to an ϵ -approximate Nash equilibrium, compared to $O(\epsilon^{-2})$ by the algorithms provided in Wang et al. (2023); Swamy et al. (2024); Shani et al. (2024). Our result cannot be trivially extended by Alacaoglu et al. (2022) due to the partially observable nature of Markov game. Interestingly, we bypass this difficulty by deriving our OMPO that parameterizes the game over occupancy measures.
- We provide practical implementations of both MPO and OMPO for LLM alignment. Numerical results show that the proposed methods achieve considerable improvement on multi-turn conversation datasets, such as MT-bench-101, compared to the multi-step variant of DPO.

The remaining part of this paper is organized as follows: Sec. 2 provides a comprehensive review and discussion of related work. In Sec. 3, we introduce the problem setting for the investigated multistep RLHF. Sec. 4.1 and Sec. 4.2 introduce the proposed MPO and OMPO and provide a theoretical convergence analysis. Experimental results are present in Sec. 5. Conclusion, limitation, and future work are discussed in Sec. 6.

084 085

2 RELATED WORK

087 **RLHF under Bradley-Terry model.** Over the years, significant strides have been made towards 880 developing RLHF algorithms from various perspectives under the Bradley-Terry model Bradley & Terry (1952). Earlier RLHF pipelines usually included supervised fine-tuning, learning a reward 089 model, and reinforcement learning optimization with PPO (Ziegler et al., 2019; Stiennon et al., 2020; 090 Bai et al., 2022; Ouyang et al., 2022). Due to the instability and scaling issues of such a pipeline, 091 direct alignment methods such as DPO have been proposed to bypass the training of the reward 092 model (Rafailov et al., 2023). Several follow-up methods, such as generalized preference optimization (GPO, Tang et al. 2024), use offline preference data to directly optimize pairwise preferences 094 against a fixed opponent. A number of works have proposed reference-model-free method (Meng 095 et al., 2024; Hong et al., 2024). In Meng et al. (2024), the impact of sequence length is mitigated by 096 averaging the likelihood over the length of the sequence. In the multi-step scenario, several multi-097 step variants of DPO are introduced in the math reasoning task. Lu et al. (2024) initiate from an 098 intermediate step in a correct reasoning process and increase the temperature to produce a flawed reasoning path leading to an incorrect answer. Meanwhile, Lai et al. (2024) leverage GPT-4 to detect 099 the first incorrect step in a multi-step reasoning trajectory, then regenerate from that point to obtain 100 the correct path. Together, these serve as the pair of samples for DPO. 101

RLHF under general preferences. The reward model in the Bradley-Terry model inherently implies transitivity in preferences. However, human preferences, especially the resulting averaged human preferences from populations, are usually nontransitive (Tversky, 1969; Gardner, 1970). To this end, Azar et al. (2024) outline a general framework for RLHF starting from general preference optimization and shows that DPO is a special case with the assumption of Bradley-Terry model. They further proposed IPO without such an assumption. Subsequently, Munos et al. (2024) try to solve the alignment of non-transitive general preferences using two-player nash learning in a bandit

108 setting. In their work, preferences are regularized through KL divergence to a reference policy, and 109 they prove the convergence of the last iterative. In Swamy et al. (2024), multi-step alignment is 110 considered while preference signals are only applied at the final step. Swamy et al. (2024) do not 111 demonstrate the effectiveness of this framework in large language models. Wu et al. (2024) propose SPPO, studying bandit alignment under general preferences. They introduce a novel loss function 112 that increases the log-likelihood of the selected response while decreasing that of the rejected re-113 sponse, in contrast to DPO. Rosset et al. (2024) start with the nash learning framework and propose 114 Online DPO, which is an iterative version of DPO. Wang et al. (2023) provide theoretical analysis 115 on multi-step RLHF under general preference while practice application is not explored. In Wang 116 et al. (2023), the preference signal is given for the entire trajectory of an MDP while in this paper 117 it is step-wise. Shani et al. (2024) study multi-step alignment under general preferences. However, 118 unlike their approach where only preferences at the final states are considered, our work is built on a 119 two-player Markov game which assumes that human preference is received at each step rather than 120 only at the final step. Additionally, we leverage the optimistic online gradient descent to achieve 121 a better convergence rate than Wang et al. (2023); Shani et al. (2024), and utilize Monte Carlo es-122 timation with a small-scale pairwise reward model, avoiding the need for an additional function 123 approximator for the critic network.

124 Two-player Markov game & optimistic online gradient descent. Two-player Markov games 125 have been widely studied since the seminal work (Shapley, 1953). Particularly relevant to our work 126 is the research line on policy gradient algorithms for two-player Markov games such as Daskalakis 127 et al. (2020); Wei et al. (2021); Alacaoglu et al. (2022). Our OMPO is strictly related to the idea of 128 optimistic online gradient descent (Popov, 1980; Chiang et al., 2012; Rakhlin & Sridharan, 2013) 129 originally proposed in online learning to achieve small regret in case of slow varying loss sequences. Our update that uses only one projection per update was proposed in Joulani et al. (2017). The name 130 of our method is due to a similar algorithm introduced in the context of variational inequalities by 131 Malitsky & Tam (2020). 132

133 134

135 136

137

3 MULTI-STEP RLHF AS TWO-PLAYER MARKOV GAMES

3.1 NOTATION

138 We define the prompt to the language model as x and the answer from the language model as a. For 139 a multi-turn conversation with turn H, the prompts and the answers are denoted by x_h and $a_h, \forall h \in$ [H]. The concatenation of a prompt x and an answer a is denoted by [x, a] and can be generalized 140 to the concatenation of multiple prompts and answers, e.g., $[x_1, a_1, \ldots, x_H, a_H]$. For any two sen-141 tences, e.g., [x, a] and [x', a'], we define a preference oracle as $o([x, a] \succ [x', a']) \in \{0, 1\}$, which can 142 provide preference feedback with 0-1 scores, where 1 means the conversation [x, a] is preferred and 143 0 otherwise. We denote $\mathbb{P}([x, a] \succ [x', a']) = \mathbb{E}[o([x, a] \succ [x', a'])]$ as the probability that the con-144 versation [x, a] is preferred over [x', a']. Moreover, we have $\mathbb{P}([x, a] \succ [x', a']) = 1 - \mathbb{P}([x', a'] \vdash [x', a']) = 1 - \mathbb{P}([x', a']) = 1 -$ 145 [x, a]). An autoregressive language model is denoted by $\pi(a|x)$ which receives input x and gen-146 erates answer a. We denote the KL divergence of two probability distributions p and q by D(p||q). 147 The Bregman Divergences between two points are denoted by $\mathbb{D}(p||q)$. The sigmoid function is defined by $\sigma(z) := \frac{1}{1+e^{-z}}$. Detailed definitions for the notations are summarized in Appx. A. 148

149 150

151

3.2 PROBLEM FORMULATION OF MULTI-STEP RLHF

152 In this section, we introduce the problem setting for multi-step RLHF and we defer the preliminaries 153 on single-step RLHF to Appx. B. Specifically, we can cast the multi-step alignment process as a 154 finite-horizon Markov Decision Process (MDP). We define $s_h = [x_1, a_1, \dots, x_{h-1}, a_{h-1}, x_h]$ as the state at h > 1. We define the action a_h as the answer given s_h . Particularly, we have $s_1 = x_1$. 155 The prompt in the next state is sampled under the transition $x_{h+1} \sim f(\cdot | s_h, a_h)$, which is equivalent 156 to $s_{h+1} \sim f(\cdot|s_h, a_h)$. The equivalence comes from the fact $s_{h+1} = [s_h, a_h, x_{h+1}]$ by using the 157 concatenation operator between sentences. The terminal state is s_{H+1} . Our setting covers a number 158 of alignment problems, and we list some examples below. 159

Example 1 (Single-step alignment). In single-step alignment, a language model receives one prompt and outputs one answer. Our framework covers the single-step alignment by dissecting the answer into single tokens. Specifically, we set x_1 as the prompt, x_2, \ldots, x_{H+1} as empty sentences, and the answer a_h at each turn consists of only one token. Then the horizon H is the number of tokens in the answer. The transition between each state is deterministic.

Example 2 (Chain-of-thought reasoning alignment). In the chain-of-thought reasoning, the horizon H denotes the number of reasoning steps, where x_1 is the initial prompt and x_2, \ldots, x_{H+1} are empty. Each a_h corresponds to a reasoning step. The transition between each state is deterministic.

Example 3 (Mutli-turn conversation alignment). In multi-turn conversation, the horizon H denotes the total number of turns in the conversation. In the h-th turn, x_h is the prompt, and a_h is the answer. The prompt in the terminal state, x_{H+1} , is an empty sentence. The transition between each state can be deterministic or stochastic.

172 Next, we define the pair-wise reward function of two state-action pairs as the preference of two173 trajectories:

181 182 $r(s_h, a_h, s'_h, a'_h) = \mathbb{P}([s_h, a_h] \succ [s'_h, a'_h]).$

Upon this point, we can define the MDP as a tuple $\mathcal{M} = (\mathcal{S}, \mathcal{A}, f, r, \nu_1, H)$, where \mathcal{S} is the state space, \mathcal{A} is the action space, H is the horizon (total steps), the initial state distribution ν_1 is a distribution over the initial prompt x_1 . Note that in a two-player game environment, each state in \mathcal{S} is a pair of s_h and s'_h generated by two policies. Our goal is to identify the Nash equilibrium (or von Neumann winner) of the following two-player constant-sum Markov game:

$$(\pi^*, \pi^*) = \arg\max_{\pi} \min_{\pi'} \mathbb{E}_{s_1 \sim \nu_1, s_h, a_h, s'_h, a'_h} \Big[\sum_{h=1}^H r(s_h, a_h, s'_h, a'_h) \Big],$$
(Game)

where
$$s_1 = s_1' = x_1, a_h \sim \pi(\cdot|s_h), a_h' \sim \pi'(\cdot|s_h'), s_h \sim f(\cdot|s_{h-1}, a_{h-1}), s_h' \sim f(\cdot|s_{h-1}', a_{h-1}').$$

Here we make a few remarks on the benefit of incorporating human preferences at each step. More
 detail on the motivation can be found at Appx. G.

Remark 1. If two conversations of H turns, s_{H+1} and s'_{H+1} , are globally similar but differ in the early turns (e.g., s_2 are better than s'_2), more credit should be assigned to s_{H+1} , encouraging the model to align with it. This follows the principle that humans typically master simpler and earlier tasks before progressing to more complex ones.

Remark 2. From a practical standpoint, including per-step preference data generates a richer
 dataset for training, helping the model learn which reasoning steps are correct or wrong. This in cremental feedback can enhance overall performance by reinforcing the importance of foundational
 steps in reasoning.

Next, we present some additional notation. We define the *pair-wise* value function as follows

$$V_{h}^{\pi,\pi'}(s,s') = \mathbb{E}\Big[\sum_{\hat{h}=h}^{H} r(s_{\hat{h}}, a_{\hat{h}}, s'_{\hat{h}}, a'_{\hat{h}})|s_{h} = s, s'_{h} = s'\Big],$$

199

206 207 208

197

where $a_{\hat{h}} \sim \pi_{\hat{h}}(\cdot|s_{\hat{h}})$, $a'_{\hat{h}} \sim \pi'_{\hat{h}}(\cdot|s'_{\hat{h}})$, $s_{\hat{h}+1} \sim f(\cdot|s_{\hat{h}}, a_{\hat{h}})$, and $s'_{\hat{h}+1} \sim f(\cdot|s'_{\hat{h}}, a'_{\hat{h}})$. We will often denote $V_1^{\pi,\pi'}$ omitting the subscript, i.e., as $V^{\pi,\pi'}$. Moreover, notice that we consider potentially non stationary policies, i.e. they are indexed by h. We denote by π the non stationary policy and by π_h the distribution over actions at step h corresponding to the non stationary policy π .

205 We define the *pair-wise* Q-function as follows:

$$Q_{h}^{\pi,\pi'}(s,a,s',a') = r(s,a,s',a') + \mathbb{E}\Big[\sum_{\hat{h}=h+1}^{H} r(s_{\hat{h}},a_{\hat{h}},s'_{\hat{h}},a'_{\hat{h}})\Big],$$

 $\text{ where } s_{\hat{h}+1} \sim f(\cdot|s_{\hat{h}},a_{\hat{h}}) \text{ and } s_{\hat{h}+1}' \sim f(\cdot|s_{\hat{h}}',a_{\hat{h}}').$

Lemma 1. (*Adapted from Puterman (1994)*) The pair-wise value function and pair-wise Q-value function satisfy the following Bellman equation for all $h \in [H]$.

213
$$Q_{h}^{\pi,\pi'}(s,a,s',a') = r(s,a,s',a') + \mathbb{E}_{\hat{s} \sim f(\cdot|s,a),\bar{s} \sim f(\cdot|s',a')}[V_{h+1}^{\pi,\pi'}(\hat{s},\bar{s})].$$

214
215
$$V_h^{\pi,\pi'}(s,s') = \mathbb{E}_{a \sim \pi_h(\cdot|s), a' \sim \pi'_h(\cdot|s')} Q_h^{\pi,\pi'}(s,a,s',a').$$

By Lemma 1, we can rewrite Game as follows:

218 219

220

223

224

225 226

228 229

230

231 232

233 234 235

242 243

244

250 251

252 253

254

255

256

257

258

264

265

$$(\pi^*, \pi^*) = \arg\max_{\pi} \min_{\pi'} \mathbb{E}\Big[\sum_{h=1}^{H} r(s_h, a_h, s'_h, a'_h)\Big] = \arg\max_{\pi} \min_{\pi'} \mathbb{E}_{s_1 \sim \nu_1} V^{\pi, \pi'}(s_1, s_1) \,. \tag{1}$$

Given the above notation, we can formalize our objective. We look for a policy π satisfying the following definition of approximate equilibrium.

Definition 1 (ϵ **-approximate Nash equilibrium**). A policy π is said to be an approximate Nash equilibrium if it holds that

$$\langle \nu_1, V^{\pi,\pi} \rangle - \min_{\bar{\pi} \in \Pi} \langle \nu_1, V^{\pi,\bar{\pi}} \rangle \le \epsilon,$$

227 and

$$\max_{\bar{\pi}\in\Pi} \left\langle \nu_1, V^{\bar{\pi}, \pi} \right\rangle - \left\langle \nu_1, V^{\pi, \pi} \right\rangle \le \epsilon.$$

Definition 2 (Occupancy measures). Given the policy π , the occupancy measure of π , is defined at stage h as $d_h^{\pi}(s, a) = \Pr(s_h = s, a_h = a)$ where $s_1 = x_1 \sim \nu_1, a_h \sim \pi_h(\cdot|s_h), s_h \sim f(\cdot|s_{h-1}, a_{h-1})$. We also define $d_h^{\pi}(s, a)|s_1 = \Pr(s_h = s, a_h = a|s_1 = s_1)$. In addition, given the policies $\pi, \bar{\pi}$, the occupancy measure of $(\pi, \bar{\pi})$ at stage h is defined as $d_h^{\pi,\bar{\pi}}(s, a, s', a') = \Pr(s_h = s, a_h = a, s'_h = s', a'_h = a')$, where $s_1 = s'_1 = x_1 \sim \nu_1, a_h \sim \pi(\cdot|s_h), a'_h \sim \pi'(\cdot|s'_h), s_h \sim f(\cdot|s_{h-1}, a_{h-1})$.

Remark: The value function at the initial state can be represented as an inner product between the reward function and the occupancy measure, i.e., $V^{\pi,\bar{\pi}} = \sum_{h=1}^{H} \langle r, d_h^{\pi,\bar{\pi}} \rangle$. Given the structure of the game where the sequences of sentences and answers are generated independently by the two agents given the initial state s_1 , the occupancy measure at each step can be factorized as the product of the two agents occupancy measures given s_1 . In particular, we have $d_h^{\pi,\bar{\pi}}(s, a, s', a')|s_1 =$ $d_h^{\pi}(s, a)|s_1 \cdot d_h^{\pi}(s', a')|s_1$ for all h, s, a, s', a'.

4 Method

- We first develop our method Multi-Step Preference Optimization (MPO) based on the natural actorcritical framework (Peters & Schaal, 2008; Alacaoglu et al., 2022) in Sec. 4.1. Next, we introduce
 Optimistic Multi-Step Preference Optimization, dubbed OMPO, in Sec. 4.2. The framework is inspired by the idea of optimism used in online learning and in min-max optimization with improved theoretical guarantees (Popov, 1980; Chiang et al., 2012; Rakhlin & Sridharan, 2013).
 - 4.1 MPO WITH NATURAL ACTOR-CRITIC

This section presents our first method to find an approximate solution to Game. In order to find an ϵ -approximate Nash equilibrium, the MPO method builds upon the next lemma which decomposes the difference of two value functions to the Q function at each step. The lemma 2 is the extension of Kakade & Langford (2002) to the multi-agent setting where the dynamics are controlled independently by each player but the reward depends on the joint-state action tuple.

Lemma 2 (Value difference lemma (Adapted from Kakade & Langford (2002))). For a finite horizon MDP with initial distribution ν_1 it holds that:

$$\left\langle \nu_{1}, V^{\pi,\bar{\pi}} - V^{\pi',\bar{\pi}} \right\rangle = \mathbb{E}_{s_{1} \sim \nu_{1}} \sum_{h=1}^{H} \mathbb{E}_{s \sim d_{h}^{\pi}|s_{1}} \left[\left\langle \mathbb{E}_{s',a' \sim d_{h}^{\pi}|s_{1}} Q_{h}^{\pi',\bar{\pi}}(s,\cdot,s',a'), \pi_{h}(\cdot|s,s_{1}) - \pi_{h}'(\cdot|s,s_{1}) \right\rangle \right].$$

The proof can be found at Appx. D.2. In our setting, the initial state s_1 is a deterministic function of the state s so we can remove s_1 from the conditioning in the policy². To highlight this fact we

²⁶⁶ ²This is motivated by practical LLM training, where system prompts such as "user" and "assistant" are inserted before every x_h and a_h , respectively. As a result, one can infer a unique s_1 for every s. The conditioning of the policy on the initial state might appear unusual at the first glance but it is in fact common in the setting of Contextual MDPs (see for example Levy et al. (2023)). Indeed, the initial state s_1 could be interpreted as a context and we optimize over policies that depend on both the initial context and the current state.

270

271

272

273 274

275 276

277 278 279

281

284

285

287

289

290 291

292

293

295 296

297

298 299 300

301

302 303 304

306

307

308

310

311 312 313

315 316 Algorithm 1 MPO (Theory Version) input: reference policy π^1 , preference oracle \mathbb{P} , learning rate $\beta = \sqrt{\frac{\log \pi^{-1}}{TH^2}}$, total iteration Tfor t = 1, 2, ..., T do $\pi_h^{t+1}(a|s) \propto \pi_h^t(a|s) \exp \left[\beta \mathbb{E}_{s',a' \sim d_h^{\pi^t}|s_1(s)} Q_h^{\pi^t,\pi^t}(s, a, s', a')\right] \quad \forall h \in [H], \quad \forall s, a.$ end for output: $\bar{\pi}^T$ (such that $d_h^{\bar{\pi}^T} = \frac{1}{T} \sum_{t=1}^T d_h^{\pi^t}, \quad \forall h \in [H]$.). Algorithm 2 MPO (Practical version)

input: reference policy π^1 , preference oracle \mathbb{P} , learning rate β , number of generated samples K, horizon H, total iteration T. for t = 1, 2, ..., T do Generates response by sampling $s_1^1 \sim \nu_1$ and $a_h^1 \sim \pi^t(\cdot|s_h^1)$ for $h \in [H]$. Clear the dataset buffer \mathcal{D}_t . for h = 1, 2, ..., H do Set $s_h^K =, ..., = s_h^2 = s_h^1$. Generate K - 1 conversations by sampling $a_{\hat{h}}^{2:K} \sim \pi^t(\cdot|s_{\hat{h}}^{2:K})$ for $\hat{h} \in [h, H]$. Estimate $\mathbb{E}_{a_h^{k'}}Q^{\pi^t,\pi^t}(s_h^1, a_h^k, s_h^1, a_h^{k'}), \forall k, k' \in [K]$ via Eq. (5) with query to \mathbb{P} . Form the data pair $\{(s_h^1, a_h^k, \mathbb{E}_{a_h^{k'}}Q^{\pi^t,\pi^t}(s_h^1, a_h^k, s_h^1, a_h^{k'})\}_{k \in [K]}$, add to \mathcal{D}_t . end for Optimize π_{t+1} over \mathcal{D}_t according to $\pi^{t+1} \leftarrow \arg\min_{\pi} \mathbb{E}\left(\log\left(\frac{\pi(a_h^k|s_h^1)}{\pi^t(a_h^k|s_h^1)}\right) - \beta\left(\mathbb{E}_{a_h^{k'}}Q^{\pi^t,\pi^t}(s_h^1, a_h^k, s_h^1, a_h^{k'}) - \frac{H - h + 1}{2}\right)\right)^2$.

denote as $s_1(s)$ the only initial state that can lead to s. By setting $\pi' = \overline{\pi} = \pi^t$ in Lemma 2 and $\pi = \pi^*$ and summing from t = 1 to T we obtain:

$$\sum_{t=1}^{T} \left\langle \nu_{1}, V^{\pi^{\star}, \pi^{t}} - V^{\pi^{t}, \pi^{t}} \right\rangle = \mathbb{E}_{s_{1} \sim \nu_{1}} \sum_{h=1}^{H} \sum_{t=1}^{T} \mathbb{E}_{s \sim d_{h}^{\pi^{\star}} \mid s_{1}} \left[\left\langle \mathbb{E}_{s', a' \sim d_{h}^{\pi^{t}} \mid s_{1}} Q_{h}^{\pi^{t}, \pi^{t}}(s, \cdot, s', a'), \pi_{h}^{\star}(\cdot \mid s) - \pi_{h}^{t}(\cdot \mid s) \right\rangle \right].$$

Since the sum over t commutes with the expectation, we see that we can decompose the global regret $\sum_{t=1}^{T} \langle \nu_1, V^{\pi^*, \pi^t} - V^{\pi^t, \pi^t} \rangle$ into a weighted sum of local regrets at each stage $h \in [H]$, i.e., $\mathbb{E}_{s \sim d_h^{\pi^*} | s_1} \left[\sum_{t=1}^{T} \langle \mathbb{E}_{s', a' \sim d_h^{\pi^t} | s_1} Q_h^{\pi^t, \pi^t}(s, \cdot, s', a'), \pi_h^*(\cdot | s) - \pi_h^t(\cdot | s) \rangle \right]$. Therefore, we can control the global regret implementing at each state online mirror descent updates (Warmuth et al. 1997, Orabona 2023, Chapter 6, Cesa-Bianchi & Lugosi 2006), i.e., implementing the following update:

$$\pi_{h}^{t+1}(\cdot|s) = \arg\max_{\pi} \langle \pi(\cdot|s), \mathbb{E}_{s',a' \sim d_{h}^{\pi^{t}}|s_{1}(s)} Q_{h}^{\pi^{t},\pi^{t}}(s,\cdot,s',a') \rangle - \beta D(\pi(\cdot|s)||\pi_{h}^{t}(\cdot|s)),$$

314 where β is a learning rate. The solution has the following form:

$$\pi_h^{t+1}(a|s) \propto \pi_h^t(a|s) \exp\{\beta \mathbb{E}_{s',a' \sim d_h^{\pi^t}|s_1(s)} Q_h^{\pi^t,\pi^t}(s,a,s',a')\},\tag{2}$$

which corresponds to natural actor-critic (Peters & Schaal, 2008) that utilizes a softmax-based
method for updating policies. The number of policy updates needed by the ideal version of MPO
(see Alg. 1) can be bounded as follows and the proof can be found at Appx. D.3.

Theorem 4. Consider Algorithm 1 and assume that the reference policy is uniformly lower bounded by $\underline{\pi}$, then there exists a policy $\overline{\pi}^T$ such that $d_h^{\overline{\pi}^T} = \frac{1}{T} \sum_{t=1}^T d_h^{\pi^t}, \forall h \in [H]$, and it holds that for $T = \frac{16H^4 \log \pi^{-1}}{\epsilon^2}$ the policy pair $(\overline{\pi}^T, \overline{\pi}^T)$ is an ϵ -approximate Nash equilibrium. Therefore, Algorithm 1 outputs an ϵ -approximate Nash equilibrium after $\frac{16H^4 \log \pi^{-1}}{\epsilon^2}$ policy updates.

Algorithm 3 OMPO (Theory Version)

input: occupancy measure of reference policy π^1 denoted as d^1 , preference oracle \mathbb{P} (i.e. reward function r), learning rate β , Bregman divergence \mathbb{D} , iteration T for t = 1, 2, ..., T do

$$d_h^{t+1} = \operatorname*{arg\,max}_{d \in \mathcal{F}_{s_1}} \beta \left\langle d, 2\mathbb{E}_{s',a' \sim d_h^t} r(\cdot, \cdot, s', a') - \mathbb{E}_{s',a' \sim d_h^{t-1}} r(\cdot, \cdot, s', a') \right\rangle - \mathbb{D}(d, d_h^t) \quad \forall h \in [H] \ \forall s_1 \in \mathcal{F}_{s_1}$$

end for

 $\pi_h^{\text{out}}(a|s) = \frac{\bar{d}_h(s,a|s_1)}{\sum_a \bar{d}_h(s,a|s_1)} \text{ with } \bar{d}_h = T^{-1} \sum_{t=1}^T d_h^t \text{ for all } h \in [H] \text{ for the unique } s_1 \text{ from which}$ s is reachable. **Output :** π^{out}

 Remark 3. The above result generalizes the $\mathcal{O}(H^2\epsilon^{-2})$ bound on the policy updates proven in Swamy et al. (2024) in the setting of terminal-only reward. The additional H^2 factor in our theorem is due to considering rewards that are not terminal-only. In Theorem 5 we show that Algorithm 3 improves the number of policy updates needed to converge to an ϵ -approximate Nash equilibrium to $\mathcal{O}(H\epsilon^{-1}).$

Practical relaxations. For the above theorem, MPO requires the access of the Q function, which is unknown. Next, we are going to develop a practical algorithm to efficiently estimate the Q function and implement Eq. (2). Equivalently, Eq. (2) can be written as

$$\pi_h^{t+1}(a|s) = \frac{\pi_h^t(a|s) \exp\{\beta \mathbb{E}_{s',a' \sim d_h^{\pi^t}|s_1(s)} Q_h^{\pi^t,\pi^t}(s,a,s',a')\}}{Z_h^t(s)},$$
(3)

where $Z_h^t(s)$ is the partition function. Next, we express Eq. (3) as follows:

$$\log \frac{\pi_h^{t+1}(a|s)}{\pi_h^t(a|s)} = \beta \mathbb{E}_{s',a' \sim d_h^{\pi^t}|s_1(s)} Q_h^{\pi^t,\pi^t}(s,a,s',a') - \log Z_h^t(s) \,. \tag{4}$$

Next, we approximate Eq. (4) with an approximate solution of the following optimization program

$$\pi^{t+1} = \arg\min_{\pi} \sum_{h=1}^{H} \mathbb{E}_{(s_h, a_h) \sim d_h^{\pi^t} \mid s_1} \left[\log \frac{\pi(a_h \mid s_h)}{\pi_h^t(a_h \mid s_h)} - \left(\mathbb{E}_{s', a' \sim d_h^{\pi^t} \mid s_1} Q_h^{\pi^t, \pi^t}(s_h, a_h, s', a') - \log Z_h^t(s_h) \right) \right]^2$$

Unfortunately, solving the above minimization exactly is out of hope. The first difficulty is the efficient estimation of $\mathbb{E}_{s',a'\sim d_h^{\pi^t}|s_1}Q_h^{\pi^t,\pi^t}(s_h,a_h,s',a')$. In particular, since s' and s are sampled from the same distribution, we will sample a' from the state s_h and use the Monte Carlo estimator:

$$\mathbb{E}_{a' \sim \pi^t(\cdot|s_h)} Q_h^{\pi^t, \pi^t}(s_h, a_h, s_h, a') \approx \frac{1}{K} \sum_{k=1}^K \sum_{\hat{h}=h}^H \mathbb{P}([s_{\hat{h}, k}, a_{\hat{h}, k}], [s'_{\hat{h}, k}, a'_{\hat{h}, k}]),$$
(5)

where the sequences $\left\{ (s_{\hat{h},k}, a_{\hat{h},k}, s'_{\hat{h},k}, a'_{\hat{h},k}) \right\}_{\hat{h}=h}^{H}$ for $k \in [K]$ are generated by rollouts of the policies pair (π^t, π^t) . The second difficulty is $Z_h^t(s)$, which is difficult to compute for large action spaces. In all states s, we replace $\log Z_h^t(s)$ with $\beta \frac{H-h+1}{2}$.

Remark 4. The heuristics is motivated by the next observation. If the preference between a_h and a'_h in Eq. (5) results in a tie, then with such $\log Z_h^t(s)$, the solution of Eq. (5) is $\pi^{t+1} = \pi^t$, leaving the model unchanged.

In summary, we provide a practical version of MPO in Alg. 2. In practice, we used a stationary policy that we find to be sufficient to obtain convincing results.

4.2 Optimistic Mpo: Ompo

> In this section, we propose an alternative algorithm based on the optimistic gradient descent method 3 by reformulating the optimization problem over occupancy measures. Here, we show that opti-

³The same update we use can also be seen as the Forward-Reflected-Backward (FoRB) update proposed in Malitsky & Tam (2020) for variational inequalities. This point of view is taken by Alacaoglu et al. (2022) to solve zero-sum Markov game.

378 Algorithm 4 OMPO (Practical version) 379 **input**: reference policy π^1 , preference oracle \mathbb{P} , learning rate β , number of generated samples K, 380 horizon H, total iteration T, tunable bias term τ . for t = 1, 2, ..., T do 382 Generates response by sampling $s_1^1 \sim \nu_1$ and $a_h^1 \sim \pi^t(\cdot|s_h^1)$ for $h \in [H]$. Clear the dataset buffer \mathcal{D}_t . $\begin{array}{l} \mbox{for } h=1,2,\ldots,H\ \mbox{do}\\ \mbox{Set } s_h^K=,\ldots,=s_h^2=s_h^1. \end{array}$ 384 Generate K - 1 conversations by sampling $a_{\hat{h}}^{2:K} \sim \pi^t(\cdot | s_{\hat{h}}^{2:K})$ for $\hat{h} \in [h, H]$. 387 Estimate $\mathbb{E}_{a_h^{k'}}Q^{\pi^t,\pi^t}(s_h^1,a_h^k,s_h^1,a_h^{k'})\forall k,k'\in [K]$ via Eq. (5). 388 if t > 1 then 389 Estimate $\mathbb{E}_{a_{k'}}Q^{\pi^{t},\pi^{t-1}}(s_{h}^{1},a_{h}^{k},s_{h}^{1},a_{h}^{k'}) \quad \forall k,k' \in [K] \text{ via Eq. (5).}$ Add $\{(s_h^1, a_h^k, \mathbb{E}_{a_h^{k'}}Q^{\pi^t, \pi^t}(s_h^1, a_h^k, s_h^1, a_h^{k'}), \mathbb{E}_{a_h^{k'}}Q^{\pi^t, \pi^{t-1}}(s_h^1, a_h^k, s_h^1, a_h^{k'})\}_{k \in [K]}$ into \mathcal{D}_t . 391 else 392 Add $\{(s_h^1, a_h^k, \mathbb{E}_{a^{k'}}Q^{\pi^t, \pi^t}(s_h^1, a_h^k, s_h^1, a_h^{k'})\}$ into \mathcal{D}_t . 393 end if end for if t > 1 then 396 Optimize π_{t+1} over \mathcal{D}_t according to 397 $\pi^{t+1} \leftarrow \arg\min_{\pi} \mathbb{E}\bigg(\log\bigg(\frac{\pi(a_h^k|s_h^1)}{\pi^{t}(a_h^k|s_h^1)}\bigg) - \beta\bigg(2\mathbb{E}_{a_h^{k'}}Q^{\pi^t,\pi^t}(s_h^1,a_h^k,s_h^1,a_h^{k'}) - \mathbb{E}_{a_h^{k'}}Q^{\pi^t,\pi^{t-1}}(s_h^1,a_h^k,s_h^1,a_h^{k'}) - \tau\bigg)\bigg)^2.$ 399 400 else Optimize π_{t+1} over \mathcal{D}_t according to 401 402 $\pi^{t+1} \leftarrow \operatorname*{arg\,min}_{\pi} \mathbb{E}\bigg(\log\bigg(\frac{\pi(a_h^k|s_h^1)}{\pi^t(a^k|s_h^1)}\bigg) - \beta\bigg(\mathbb{E}_{a_h^{k'}}Q^{\pi^t,\pi^t}(s_h^1,a_h^k,s_h^1,a_h^{k'}) - \frac{H-h+1}{2}\bigg)\bigg)^2.$ 403 404 end if 405 end for 406 output: π^{T+1} 407 408 409 mistic online mirror descent with one projection (Joulani et al., 2017) with an appropriately chosen 410

lifted to the space of conditional occupancy measures. $(d^{\star}, d^{\star}) = \underset{d \in \tilde{\mathcal{F}}}{\operatorname{arg\,max\,min}} \mathbb{E}_{s_1 \sim \nu_1} \sum_{h=1}^{H} \sum_{\substack{a, a, a' \mid a'}} d_h(s, a \mid s_1) r(s, a, s', a') d'_h(s', a' \mid s_1),$

regularizer can be used to solve approximately the following program which corresponds to Game

414 415

429

411

412 413

where $\tilde{\mathcal{F}}$ is the product set of the Bellman flow constraints for a particular initial state, i.e. $\tilde{\mathcal{F}} = \times_{s_1 \in \text{supp}(\nu_1)} \mathcal{F}_{s_1}$. We also introduced the Bellman flow constraints for a specific initial state $\mathcal{F}_{s_1} = \left\{ d = (d_1, \dots, d_H) : \sum_a d_{h+1}(s, a) = \sum_{s', a'} f(s|s', a') d_h(s', a'), d_1(s) = \mathbb{1} \{s = s_1\} \right\}$. The policy pair (π^*, π^*) solution of Game can be retrieved from the occupancy measure pair (d^*, d^*) as $\pi^*(a|s) = \frac{d^*(s,a|s_1)}{\sum_a d^*(s,a|s_1)}$. Our idea is to apply the optimistic algorithm from Joulani et al. (2017) to the reformulation of Game over occupancy measures, we present the resulting algorithm, i.e., OMPO, in Alg. 3.

Remark 5. In a partially observable Markov game, lifting the problem to the occupancy measures turns out to be fundamentally important for enabling each agent to learn a policy conditioned only on their own state. This is different from the standard literature on Markov Games (Daskalakis et al., 2020; Wei et al., 2021; Alacaoglu et al., 2022), which assumes that both agents share a common state.

As the next theorem shows, in the ideal case where the updates can be computed exactly, Alg. 3 finds an ϵ -approximate Nash equilibrium using fewer updates compared to Alg. 1 and to (Swamy et al., 2024, Algorithm 1). The proof can be found at Appx. D.4. 432 433

434

435

455

456

457

458

459

460 461

468 469

478

479

Table 1: Evaluation results on MT-bench-101 dataset. Mistral-7B-Instruct is selected as the base model. We can observe that both of the proposed algorithms MPO and OMPO considerably outperform the baseline in terms of the score (the higher the better).

			Per	rceptivity					Adapt	ability			Intera	octivity
Model		Memory	Under	standing	Interf	erence	Reph	rasing	Refle	ection	Reas	oning	Quest	ioning
	Avg.	СМ	SI	AR	TS	CC	CR	FR	SC	SA	MR	GR	IC	PI
Base (Mistral-7B-Instruct)	6.223	7.202	7.141	7.477	7.839	8.294	6.526	6.480	4.123	4.836	4.455	5.061	5.818	5.641
DPO (iter=1)	6.361	7.889	6.483	7.699	8.149	8.973	7.098	7.423	3.448	6.123	3.421	4.492	5.639	5.858
DPO (iter=2)	6.327	7.611	6.206	8.106	8.052	9.111	6.670	7.153	3.494	5.884	3.360	4.691	5.837	6.078
DPO (iter=3)	5.391	6.019	4.521	6.890	6.631	8.177	5.437	5.723	3.448	5.295	3.142	4.015	5.256	5.529
SPPO (iter=1)	6.475	7.432	7.464	7.714	8.353	8.580	6.917	6.714	4.136	5.055	4.403	5.400	6.036	5.966
SPPO (iter=2)	6.541	7.516	7.496	7.808	8.313	8.731	7.077	6.867	4.136	5.281	4.488	5.477	6.098	5.751
SPPO (iter=3)	6.577	7.575	7.547	7.944	8.365	8.797	7.040	6.865	4.442	5.185	4.346	5.394	6.092	5.906
Step-DPO (iter=1)	6.433	7.463	7.054	7.790	8.157	8.593	6.827	6.748	4.234	4.849	4.236	5.519	5.982	6.171
Step-DPO (iter=2)	6.553	7.616	7.043	7.925	8.147	8.662	6.790	6.878	4.331	5.048	4.366	5.734	6.391	6.254
Step-DPO (iter=3)	6.442	7.665	7.023	7.767	8.016	8.589	6.723	6.581	4.305	5.014	4.153	5.453	6.202	6.257
MPO (iter=1)	6.630	7.624	7.846	8.085	8.398	8.947	7.105	7.286	4.208	4.993	4.377	5.264	6.179	5.873
MPO (iter=2)	6.735	7.838	7.723	8.196	8.590	9.027	7.347	7.209	4.240	5.137	4.469	5.531	6.181	6.061
MPO (iter=3)	6.733	7.868	7.686	8.289	8.510	9.078	7.330	7.529	4.461	4.829	4.225	5.366	6.198	6.155
OMPO(iter=2)	6.736	7.733	7.723	8.257	8.478	9.122	7.300	7.421	4.123	5.288	4.506	5.513	6.179	5.923
OMPO(iter=3)	6.776	7.649	7.792	8.281	8.578	9.136	7.424	7.635	4.377	5.308	4.312	5.455	6.187	5.954
		1												

Theorem 5 (Convergence of OMPO). Consider Algorithm 3 and let us assume that the occupancy measure of the reference policy is uniformly lower bounded by <u>d</u>. Moreover, let \mathbb{D} be $1/\lambda$ strongly convex, i.e. $\mathbb{D}(p||q) \geq \frac{\|p-q\|_1^2}{2\lambda}$. Then, by setting $T = \frac{10H\log d^{-1}}{\beta\epsilon}$ and $\beta \leq \frac{1}{\sqrt{2\lambda}}$, we ensure that $(\pi^{\text{out}}, \pi^{\text{out}})$, i.e. the output of Algorithm 3 is an ϵ -approximate Nash equilibrium. Therefore, we need at most $\frac{10H \log \underline{d}^{-1}}{\beta \epsilon}$ policy updates.

462 In addition, not only Swamy et al. (2024, Algorithm 1) but also OMPO can be implemented using 463 only one player since in a constant sum game, the max and min player produce the same iterates. The result is formalized as follows and the proof is deferred to Appx. D.5. 464

465 **Theorem 6.** Consider a constant sum two-player Markov games with reward such that 466 r(s, a, s', a') = 1 - r(s', a', s, a), then for each $s_1 \in \operatorname{supp}(\nu_1)$ the updates for d in Alg. 3 coincides with the updates for the min player that uses the updates 467

$$d_h^{t+1}(a|s) = \operatorname*{arg\,min}_{d \in \mathcal{F}_{s_1}} \beta \left\langle d, 2\mathbb{E}_{s',a' \sim d_h^t} r(s',a',\cdot,\cdot) - \mathbb{E}_{s',a' \sim d_h^{t-1}} r(s',a',\cdot,\cdot) \right\rangle + \mathbb{D}(d,d_h^t) + \mathbb{D}(d,$$

470 Furthermore, we can avoid the projection over the set \mathcal{F} implementing this update on the policy 471 space (see Appendix E). We achieve such results following the techniques developed in Bas-Serrano 472 et al. (2021); Viano et al. (2022).

473 For the first iteration, we initialize d_h^0 to be equal to d_h^1 for all h. That is, at the first iteration, we 474 use the same update rule as in MPO. After the first iteration, we apply similar techniques as in MPO 475 by estimating the Q function and we use a tunable parameter to approximate the $\log Z$ term. We 476 illustrate the practical algorithm in Alg. 4. 477

5 EXPERIMENTS

480 In this section, we test the proposed algorithms with multi-turn conversations in MT-bench-101 (Bai 481 et al., 2024). Additional experimental detail, ablation studies, and experiments on math reasoning 482 tasks are deferred to Appx. F. We choose Mistral-7B-Instruct-v0.2 as the base model (Jiang et al., 483 2023). We use a pre-trained PairRM ⁴ as the preference oracle. Specifically, given two conver-484 sations $[s_h, a_h]$ and $[s'_h, a'_h]$, PairRM will return a score that indicates the probability that $[s_h, a_h]$ 485

⁴https://huggingface.co/llm-blender/PairRM

Figure 1: (a): Result of OMPO on the MT-bench-101 dataset; (b) Winning rate against the base model with different approximations for the Q functions. When optimizing a_h at the h step, only considering the preference of s_h is sufficient compared to using s_h, \ldots, s_{H+1} .

is better than $[s'_h, a'_h]$, which can be used to considered as the preference oracle \mathbb{P} defined in the 504 previous section. We select iterative DPO (Dong et al., 2024), iterative SPPO (Wu et al., 2024), 505 and iterative Step-DPO as our baselines. For both iterative DPO and iterative SPPO, we sample 506 K = 5 complete conversations starting from s_1 , and estimate the winning rate $\mathbb{P}([s_{H+1}^k, a_{H+1}^k] \succ$ 507 $(s_{H+1}^{k'}, a_{H+1}^{k'}]) \forall k, k' \in [K]$. Then we select both the best and worst conversations according to 508 their winning rates against others, which is defined as $\frac{1}{K} \sum_{k'=1}^{K} \mathbb{P}([s_{H+1}^k, a_{H+1}^k] \succ [s_{H+1}^{k'}, a_{H+1}^{k'}])$ for the conversation $[s_{H+1}^k, a_{H+1}^k]$. Such a pair is used to train DPO while the winning rate is used to train SPPO. For both Step-DPO, MPO, and OMPO, we do the same strategy with starting at s_h . 509 510 511 In MPO, and OMPO, we estimate $Q(s_h, a_h, s_h, a'_h)$ by $\mathbb{P}([s_h, a_h], [s_h, a'_h])$ to enhance the efficiency. 512 For OMPO, the $Q^{\pi^t, \pi^{t-1}}$ term is estimated by calculating the winning rate between two answers (the 513 best and the worst) generated by the current policy π^t and the five answers previously generated by 514 π^{t-1} , the τ is selected as zero. Each method is trained with epochs number selected from $\{1, 2\}$, 515 learning rates from $\{5e-6, 5e-7\}$, and β values from $\{0.1, 0.01, 0.001\}$. The final model is chosen 516 based on the highest winning rate against the base model, as determined by the PairRM model. We 517 use full-parameter fine-tuning for all methods with bf16 precision. A batch size of 64 is used. The 518 maximum output length and maximum prompt length during training are both set as 2048. We use 519 AdamW optimizer (Loshchilov & Hutter, 2019) and cosine learning rate schedule (Loshchilov & 520 Hutter, 2017) with a warmup ratio of 0.1. Each round of dialogue is rated on a scale of 1 to 10 521 by GPT-40 mini, with the mean score reported for each dialogue. All methods are run for a total 522 of 3 iterations. The results are summarized in Tab. 1, showing significant improvements over the 523 baselines with the proposed MPO and OMPO approaches. In Fig. 1(a), we present the Radar chart on 524 different categories and we can see that the proposed OMPO leads to improvements generally along 525 the iterations. Fig. 1(b) shows that using the entire trajectory to estimate the Q function can lead to subtle improvement at the first two iterations while it finally achieves a similar winning rate when 526 compared to the one that only use one step. 527

528 529

499

500

501 502 503

6 CONCLUSION

530 531

This work presents a novel framework to enhance the preference alignment of large language models 532 in multi-step settings by casting the alignment process as a two-player Markov game. We introduce 533 novel algorithms based on natural actor-critic and optimistic online gradient descent, supported by 534 both theoretical analysis and empirical results. However, the limitations of this work include the finite-horizon assumption in our theoretical framework, which may not fully capture real-world 536 conversations or reasoning processes that often span with different steps instead of a fixed step 537 H. Additionally, our practical algorithm requires querying a preference oracle, which may limit its applicability in cases where such preference oracles are unavailable or when collecting human 538 feedback is costly. Future work should explore extending the theoretical framework to infinitehorizon settings and finding more scalable methods for gathering preference feedback.

540 ETHICS STATEMENT

541

542 Our work focuses on algorithmic innovations related to reinforcement learning with human feed-543 back. We do not create any new benchmarks for human preferences nor solicit human preferences 544 for this study. As such, we do not expect any potential violations of ethical standards, including 545 those concerning the use of human data. Our contributions are primarily methodological and theo-546 retical analysis of the convergence, and we have taken care to ensure that our work complies with 547 all relevant ethical guidelines.

548 549

550

556

558

REPRODUCIBILITY STATEMENT

In this work, we have provided the details on the experimental setup and the description of the dataset at Sec. 5 and Appx. F.1. The dataset and language models used in this work are publicly available. The source code of MPO and OMPO will be made public in the camera-ready version. Regarding the theoretical results, we have clearly mentioned all of the assumptions, and all the complete proofs can be found at Appx. D and Appx. E.

- References
- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
 report. *arXiv preprint arXiv:2303.08774*, 2023.
- Ahmet Alacaoglu, Luca Viano, Niao He, and Volkan Cevher. A natural actor-critic framework for zero-sum markov games. In *International Conference on Machine Learning*, pp. 307–366.
 PMLR, 2022.
- Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland, Michal Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning from human preferences. In *International Conference on Artificial Intelligence and Statistics*, pp. 4447–4455. PMLR, 2024.
- Ge Bai, Jie Liu, Xingyuan Bu, Yancheng He, Jiaheng Liu, Zhanhui Zhou, Zhuoran Lin, Wenbo Su, Tiezheng Ge, Bo Zheng, et al. Mt-bench-101: A fine-grained benchmark for evaluating large language models in multi-turn dialogues. *arXiv preprint arXiv:2402.14762*, 2024.
- 573
 574
 574
 575
 576
 576
 576
 576
 576
 577
 577
 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*, 2022.
- Joan Bas-Serrano, Sebastian Curi, Andreas Krause, and Gergely Neu. Logistic q-learning. In *Inter- national conference on artificial intelligence and statistics*, pp. 3610–3618. PMLR, 2021.
- Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.
- 586
 587
 588
 588
 588
 588
 589
 580
 580
 581
 582
 583
 584
 584
 585
 585
 586
 586
 587
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
 588
- Chao-Kai Chiang, Tianbao Yang, Chia-Jung Lee, Mehrdad Mahdavi, Chi-Jen Lu, Rong Jin, and
 Shenghuo Zhu. Online optimization with gradual variations. In Shie Mannor, Nathan Srebro, and
 Robert C. Williamson (eds.), *Proceedings of the 25th Annual Conference on Learning Theory*,
 volume 23 of *Proceedings of Machine Learning Research*, pp. 6.1–6.20, Edinburgh, Scotland,
 25–27 Jun 2012. PMLR. URL https://proceedings.mlr.press/v23/chiang12.

594 595 596	Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. <i>arXiv preprint arXiv:2110.14168</i> , 2021.
597 598 599 600	Constantinos Daskalakis, Dylan J Foster, and Noah Golowich. Independent policy gradient methods for competitive reinforcement learning. <i>Advances in neural information processing systems</i> , 33: 5527–5540, 2020.
601 602 603	Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf. <i>arXiv preprint arXiv:2405.07863</i> , 2024.
605 606	Roy Fox, Ari Pakman, and Naftali Tishby. Taming the noise in reinforcement learning via soft updates. <i>arXiv preprint arXiv:1512.08562</i> , 2015.
607 608 609	Yoav Freund and Robert E Schapire. Adaptive game playing using multiplicative weights. <i>Games and Economic Behavior</i> , 29(1-2):79–103, 1999.
610	Martin Gardner. Mathematical games. Scientific american, 222(6):132-140, 1970.
611 612 613 614	Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. <i>NeurIPS</i> , 2021.
615 616	Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without reference model. <i>arXiv preprint arXiv:2403.07691</i> , 2(4):5, 2024.
618 619 620	Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7b. <i>arXiv preprint arXiv:2310.06825</i> , 2023.
621 622 623 624 625	Pooria Joulani, András György, and Csaba Szepesvári. A modular analysis of adaptive (non-)convex optimization: Optimism, composite objectives, and variational bounds. In Steve Hanneke and Lev Reyzin (eds.), <i>Proceedings of the 28th International Conference on Algorithmic Learning Theory</i> , volume 76 of <i>Proceedings of Machine Learning Research</i> , pp. 681–720. PMLR, 15–17 Oct 2017. URL https://proceedings.mlr.press/v76/joulani17a.html.
626 627 628 629	Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In <i>Proceedings of the Nineteenth International Conference on Machine Learning</i> , pp. 267–274, 2002.
630 631 632	Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xiangru Peng, and Jiaya Jia. Step-dpo: Step- wise preference optimization for long-chain reasoning of llms. <i>arXiv preprint arXiv:2406.18629</i> , 2024.
633 634 635 636	Orin Levy, Alon Cohen, Asaf Cassel, and Yishay Mansour. Efficient rate optimal regret for adversarial contextual mdps using online function approximation. In <i>International Conference on Machine Learning</i> , pp. 19287–19314. PMLR, 2023.
637 638 639 640	Aiwei Liu, Haoping Bai, Zhiyun Lu, Yanchao Sun, Xiang Kong, Simon Wang, Jiulong Shan, Al- bin Madappally Jose, Xiaojiang Liu, Lijie Wen, et al. Tis-dpo: Token-level importance sampling for direct preference optimization with estimated weights. <i>arXiv preprint arXiv:2410.04350</i> , 2024a.
641 642 643 644 645	Haoxiong Liu, Yifan Zhang, Yifan Luo, and Andrew Chi-Chih Yao. Augmenting math word prob- lems via iterative question composing. In <i>ICLR 2024 Workshop on Navigating and Addressing</i> <i>Data Problems for Foundation Models</i> , 2024b. URL https://openreview.net/forum? id=0asPFqWyTA.
646 647	Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In <i>International Conference on Learning Representations</i> , 2017. URL https://openreview.net/forum?id=Skq89Scxx.

651

670

677

- Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on Learning Representations, 2019. URL https://openreview.net/forum?id= Bkg6RiCqY7.
- Zimu Lu, Aojun Zhou, Ke Wang, Houxing Ren, Weikang Shi, Junting Pan, and Mingjie Zhan. Step controlled dpo: Leveraging stepwise error for enhanced mathematical reasoning. *arXiv preprint arXiv:2407.00782*, 2024.
- Yura Malitsky and Matthew K Tam. A forward-backward splitting method for monotone inclusions without cocoercivity. *SIAM Journal on Optimization*, 30(2):1451–1472, 2020.
- Yu Meng, Mengzhou Xia, and Danqi Chen. Simple preference optimization with a reference-free reward. *arXiv preprint arXiv:2405.14734*, 2024.
- Rémi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland,
 Zhaohan Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mesnard, Andrea Michi, et al. Nash
 learning from human feedback. In *Forty-first International Conference on Machine Learning*,
 2024.
- Gergely Neu and Julia Olkhovskaya. Online learning in mdps with linear function approximation
 and bandit feedback. Advances in Neural Information Processing Systems, 34:10407–10417,
 2021.
- Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-regularized markov
 decision processes, 2017. URL https://arxiv.org/abs/1705.07798.
- Francesco Orabona. A modern introduction to online learning, 2023. URL https://arxiv.org/abs/1912.13213.
- Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-low instructions with human feedback. *Advances in neural information processing systems*, 35: 27730–27744, 2022.
- Jan Peters and Stefan Schaal. Natural actor-critic. *Neurocomputing*, 71(7-9):1180–1190, 2008.
- Leonid Denisovich Popov. A modification of the arrow-hurwitz method of search for saddle points.
 Mat. Zametki, 28(5):777–784, 1980.
- M. L. Puterman. *Markov Decision Processes: Discrete Stochastic Dynamic Programming*. John
 Wiley & Sons, Inc., USA, 1st edition, 1994.
- Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances in Neural Information Processing Systems*, 36, 2023.
- Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From \$r\$ to \$q^*\$: Your language model is secretly a q-function. In *First Conference on Language Modeling*, 2024. URL https://openreview.net/forum?id=kEVcNxtqXk.
- Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences. In *Conference on Learning Theory*, pp. 993–1019. PMLR, 2013.
- Corby Rosset, Ching-An Cheng, Arindam Mitra, Michael Santacroce, Ahmed Awadallah, and
 Tengyang Xie. Direct nash optimization: Teaching language models to self-improve with general
 preferences. *arXiv preprint arXiv:2404.03715*, 2024.
- Lior Shani, Aviv Rosenberg, Asaf Cassel, Oran Lang, Daniele Calandriello, Avital Zipori, Hila
 Noga, Orgad Keller, Bilal Piot, Idan Szpektor, et al. Multi-turn reinforcement learning from
 preference human feedback. *arXiv preprint arXiv:2405.14655*, 2024.
- 701 Lloyd S Shapley. Stochastic games. *Proceedings of the national academy of sciences*, 39(10): 1095–1100, 1953.

- 702 Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, 703 Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances 704 in Neural Information Processing Systems, 33:3008–3021, 2020. 705 Gokul Swamy, Christoph Dann, Rahul Kidambi, Steven Wu, and Alekh Agarwal. A minimaximalist 706 approach to reinforcement learning from human feedback. In Forty-first International Conference on Machine Learning, 2024. 708 709 Yunhao Tang, Zhaohan Daniel Guo, Zeyu Zheng, Daniele Calandriello, Rémi Munos, Mark Row-710 land, Pierre Harvey Richemond, Michal Valko, Bernardo Ávila Pires, and Bilal Piot. Gen-711 eralized preference optimization: A unified approach to offline alignment. arXiv preprint 712 arXiv:2402.05749, 2024. 713 Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, 714 Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly 715 capable multimodal models. arXiv preprint arXiv:2312.11805, 2023. 716 717 Amos Tversky. Intransitivity of preferences. Psychological review, 76(1):31, 1969. 718 Luca Viano, Angeliki Kamoutsi, Gergely Neu, Igor Krawczuk, and Volkan Cevher. Proximal point 719 imitation learning. Advances in Neural Information Processing Systems, 35:24309–24326, 2022. 720 721 Yuanhao Wang, Qinghua Liu, and Chi Jin. Is rlhf more difficult than standard rl? a theoretical 722 perspective. Advances in Neural Information Processing Systems, 2023. 723 Manfred K Warmuth, Arun K Jagota, et al. Continuous and discrete-time nonlinear gradient de-724 scent: Relative loss bounds and convergence. In Electronic proceedings of the 5th International 725 Symposium on Artificial Intelligence and Mathematics, volume 326. Citeseer, 1997. 726 727 Chen-Yu Wei, Chung-Wei Lee, Mengxiao Zhang, and Haipeng Luo. Last-iterate convergence of decentralized optimistic gradient descent/ascent in infinite-horizon competitive markov games. 728 In Conference on Learning Theory, pp. 4259–4299. PMLR, 2021. 729 730 Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yiming Yang, and Quanquan Gu. Self-play 731 preference optimization for language model alignment. arXiv preprint arXiv:2405.00675, 2024. 732 Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU, Zhengying Liu, Yu Zhang, James Kwok, Zhen-733 guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions 734 for large language models. In The Twelfth International Conference on Learning Representations, 735 2024. URL https://openreview.net/forum?id=N8N0hgNDRt. 736 737 Yongcheng Zeng, Guoqing Liu, Weiyu Ma, Ning Yang, Haifeng Zhang, and Jun Wang. Token-level 738 direct preference optimization. In Forty-first International Conference on Machine Learning, 739 2024. 740 Yuheng Zhang, Dian Yu, Baolin Peng, Linfeng Song, Ye Tian, Mingyue Huo, Nan Jiang, Haitao 741 Mi, and Dong Yu. Iterative nash policy optimization: Aligning llms with general preferences via 742 no-regret learning. arXiv preprint arXiv:2407.00617, 2024. 743 744 Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal 745 entropy. Carnegie Mellon University, 2010. 746 Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul 747 Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv 748 preprint arXiv:1909.08593, 2019. 749 750 751 752 753
- 754
- 755

CONTENTS OF THE APPENDIX

The Appendix is organized as follows:

- In Appx. A, we summarize the symbols and notation used in this paper.
- Preliminaries on single-step RLHF can be found in Appx. B.
- In Appx. D, we provide the proofs for the theoretical results.
- Appx. E shows the implementation of Algorithm 3 with updates over policies.
- Appx. F.1 provides an overview of the MT-bench 101 benchmark in the experiment.

SYMBOLS AND NOTATION А

We include the core symbols and notation in Tab. 2 to facilitate the understanding of our work.

Symbol	Dimension(s) & range	Definition
x_h	-	Prompt at step h
a_h	-	Answer (action) at step h
s_h	-	State at step h
$s_1(s_h)$	-	The only initial state that can lead to s_h
π		Language model (policy)
$ u_1 $		Initial distribution of state s_1
$d_h^{\pi}(s,a)$	[0, 1]	Occupancy measure of π at stage h
f		Transition function
$\Pr(s_h = s, a_h = a)$	[0, 1]	Joint probability of $s_h = a$ and $a_h = a$
0	$\{0,1\}$	Preference oracle
$\mathbb{P}([s,a],[s',a')]$	[0, 1]	Winning probability of $[s, a]$ against $[s', a')$
$D(p\ q)$		KL divergence of two probability distributions p and
$\mathbb{D}(p\ q)$		Bregman Divergences between two points q and
${\mathcal D}_t$		Dataset buffet at iteration t
$\Delta \chi$	$[0,1]^{ \mathcal{X} }$	Set of probability distributions over the set \mathcal{X}
\mathcal{O}, o, Ω and Θ	-	Standard Bachmann–Landau order notation

We additionally use a compact notation for representing the Bellman flow constraints. We denote by $E \in \mathbb{R}^{|\mathcal{S}| \times |\mathcal{A}| |\mathcal{S}|}$ the matrix such that (Ez)(s, a) = z(s) for all vectors $z \in \mathbb{R}^{|\mathcal{S}|}$. Additionally, we denote by F the matrix such that $(Fz)(s,a) = \sum_{s'} f(s'|s,a) z(s')$ for all vectors $z \in \mathbb{R}^{|S|}$.

В PRELIMINARY ON SINGLE-STEP RLHF

In this section, we review the earlier methods in single-step RLHF. Classical RLHF methods (Ziegler et al., 2019; Ouyang et al., 2022) assume that the preference oracle can be expressed by an underlying Bradley-Terry (BT) reward model (Bradley & Terry, 1952), i.e.,

$$\mathbb{P}([x_1, a_1] \succ [x_1, a_1']) = \sigma(r(x_1, a_1) - r(x_1, a_1'))$$

Thus, one can first learn a reward model and optimize the policy based on the following KLconstrained RL objective with PPO:

$$\pi^{\star} = \arg\max_{\pi} \mathbb{E}_{x_{1} \sim \nu_{1}, a_{1} \sim \pi(\cdot|x_{1})} (r(x_{1}, a_{1}) - \beta D(\pi(\cdot|x_{1})||\pi_{\mathrm{ref}}(\cdot|x_{1})))$$

where β is a parameter controlling the deviation from the reference model π_{ref} . Another line of work, e.g., DPO (Rafailov et al., 2023) avoids explicit reward modeling and optimizes the following objective over pair-wise preference data (x_1, a_1^w, a_1^l) .

$$\pi^{\star} = \arg\max_{\pi} \mathbb{E}_{(x_1, a_1^w, a_1^l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi(a_1^w | x_1)}{\pi_1(a_1^w | x_1)} - \beta \log \frac{\pi(a_1^l | x_1)}{\pi_1(a_1^l | x_1)} \right) \right].$$

More recently, several studies (Swamy et al., 2024; Munos et al., 2024; Wu et al., 2024; Zhang et al., 2024; Rosset et al., 2024) have circumvented the Bradley-Terry (BT) assumption by directly modeling the general oracle P, avoiding the reliance on the reward model which is transitive. Specifically, the goal is to identify the Nash equilibrium (or von Neumann winner) of the following two-player constant-sum game:

$$(\pi^*, \pi^*) = \arg\max_{\pi} \min_{\pi'} \mathbb{E}_{x_1 \sim \nu_1, a_1 \sim \pi(\cdot | x_1), a_1' \sim \pi'(\cdot | x_1)} \mathbb{P}([x_1, a_1] \succ [x_1, a_1'])$$

816 817

815

818 819

820 821

822

C ADDITIONAL DISCUSSION ON RELATED WORK

C.1 RELATED WORK ON TOKEN-LEVEL PREFERENCE OPTIMIZATION

A line of work formulates the alignment of contextual bandit problems in LLMs (Example.1) from 823 token-level MDPs perspective (Rafailov et al., 2024; Zeng et al., 2024; Liu et al., 2024a). In Rafailov 824 et al. (2024), by defining the reward at each token before the terminal token as the generation like-825 lihood and using the maximum entropy RL objective, the authors derive the original objective of 826 DPO from a new perspective that incorporates token-level rewards. Zeng et al. (2024) assume that 827 the reward for a response can be decomposed into token-level rewards at each token. Then they de-828 sign a token-level objective function based on Trust Region Policy Optimization, adding token-level 829 KL divergence constraints to the DPO objective in the final algorithm. More recently, Liu et al. 830 (2024a) study how the difference in average rewards between chosen and rejected responses affects 831 the optimization stability, designing a new algorithm where importance sampling weights are as-832 signed to each token-level reward. There are two main differences between the multi-step alignment 833 approach in our work and those in previous work. First, while Rafailov et al. (2024); Zeng et al. (2024); Liu et al. (2024a) develop alignment methods based on the Bradley-Terry model with tran-834 sitive rewards, our framework is motivated by a two-player game with relative rewards. Secondly, 835 although Rafailov et al. (2024); Zeng et al. (2024); Liu et al. (2024a) formulate the alignment pro-836 cess as an MDP, their final objective is tailored to a contextual bandit problem in LLMs. In contrast, 837 our objective is designed for a multi-step alignment problem, suited for multi-turn conversation or 838 chain-of-thought reasoning. 839

840 841

851

853

856 857

858 859

860 861

862 863

C.2 DISCUSSION ON THE DIFFERENCE FROM SPPO

842 Next, we elaborate on the difference with SPPO (Wu et al., 2024) below: Firstly, the theoretical 843 analysis of the proposed MPO differs from that of SPPO due to differences in the settings. SPPO 844 considers the contextual bandit problem and builds its analysis based on the game matrix from Fre-845 und & Schapire (1999). In our case, however, we frame the problem as a Markov game and employ 846 a distinct theoretical analysis apart from Freund & Schapire (1999). Specifically, in our proof, we (i) use the performance difference lemma to rewrite the global regret as weighted average of local 847 regrets and (ii) control the local regrets with multiplicative weights updates. Secondly, a new algo-848 rithm, OMPO, is developed in this work with a novel theoretical guarantee. In the case where the 849 horizon H = 1, the update of OMPO reduces to 850

$$\pi^{t+1}(a|s) \propto \pi^t(a|s) \exp\left[\beta(2\mathbb{P}(a \succ \pi^t(\cdot|s)) - \mathbb{P}(a \succ \pi^{t-1}(\cdot|s)))\right],$$

while the update of SPPO is

$$\pi^{t+1}(a|s) \propto \pi^t(a|s) \exp\left[\beta(\mathbb{P}(a \succ \pi^t(\cdot|s)))\right].$$

As a result, OMPO enables $\mathcal{O}(\epsilon^{-1})$ policy updates to converge to an ϵ -approximate Nash equilibrium instead of $\mathcal{O}(\epsilon^{-2})$, according to our theoretical analysis.

D PROOFS

D.1 PROOF OF LEMMA 1

Proof. By the definition of the state action value function for the policy pair (π, π') we have that

$$Q_h^{\pi,\pi'}(s,a,s',a') = r(s,a,s',a') + \mathbb{E}\Big[\sum_{h'=h+1}^H r(s_{h'},a_{h'},s'_{h'},a'_{h'})\Big]$$

Now, using tower property of the expectation we have that

 $Q_{h}^{\pi,\pi'}(s,a,s',a')$ $= r(s, a, s', a') + \mathbb{E}_{s'' \sim f(\cdot|s, a), \bar{s} \sim f(\cdot|s', a')} \Big[\mathbb{E} \Big[\sum_{h' = h+1}^{H} r(s_{h'}, a_{h'}, s'_{h'}, a'_{h'}) | s_{h+1} = s'', s'_{h+1} = \bar{s} \Big] \Big]$ $= r(s, a, s', a') + \mathbb{E}_{s'' \sim f(\cdot|s, a), \bar{s} \sim f(\cdot|s', a')} \Big[V^{\pi, \pi'}(s'', \bar{s}) \Big],$

where the last equality follows from the definition of the state value function.

D.2 PROOF OF LEMMA 2

Proof. Let us consider the Bellman equation in vectorial form for the policy pair $(\pi', \bar{\pi})$, that is

$$r_h + FV_{h+1}^{\pi',\bar{\pi}} = Q_h^{\pi',\bar{\pi}},$$

where F denoted the transition matrix induced by the transition function $f : S^2 \times A \to \Delta_{S \times S}$. Now, multiplying by the occupancy measure of the policy pair $(\pi, \bar{\pi})$ at stage h we obtain

$$\left\langle d_{h}^{\pi,\bar{\pi}},r_{h}\right\rangle + \left\langle d_{h}^{\pi,\bar{\pi}},FV_{h+1}^{\pi',\bar{\pi}}\right\rangle = \left\langle d_{h}^{\pi,\bar{\pi}},Q_{h}^{\pi',\bar{\pi}}\right\rangle.$$

At this point, using the Bellman flow constraints Puterman (1994), it holds that

$$F^T d_h^{\pi,\bar{\pi}} = E^T d_{h+1}^{\pi,\bar{\pi}},$$

where $E \in \mathbb{R}^{|\mathcal{S}|^2 |\mathcal{A}| \times |\mathcal{S}|^2}$ such that $(E^T V)(s, a) = V(s)$ for all $V \in \mathbb{R}^{|\mathcal{S}|^2}$. Plugging this equality in the Bellman equation above we obtain

$$\left\langle d_{h}^{\pi,\bar{\pi}},r_{h}\right\rangle + \left\langle d_{h+1}^{\pi,\bar{\pi}},EV_{h+1}^{\pi',\bar{\pi}}\right\rangle = \left\langle d_{h}^{\pi,\bar{\pi}},Q_{h}^{\pi',\bar{\pi}}\right\rangle.$$

Now, subtracting on both sides $\left\langle d_{h}^{\pi,\bar{\pi}}, EV_{h}^{\pi',\bar{\pi}} \right\rangle$ and rearranging, it holds that

$$\left\langle d_{h}^{\pi,\bar{\pi}},r_{h}\right\rangle + \left\langle d_{h+1}^{\pi,\bar{\pi}},EV_{h+1}^{\pi',\bar{\pi}}\right\rangle - \left\langle d_{h}^{\pi,\bar{\pi}},EV_{h}^{\pi',\bar{\pi}}\right\rangle = \left\langle d_{h}^{\pi,\bar{\pi}},Q_{h}^{\pi',\bar{\pi}}-EV_{h}^{\pi',\bar{\pi}}\right\rangle$$

After this, taking sum from h = 1 to H and recognizing that for all policy pairs (π, π') it holds that $V_{H+1}^{\pi,\pi'} = 0$, it holds that

$$\sum_{h=1}^{H} \left\langle d_{h}^{\pi,\bar{\pi}}, r_{h} \right\rangle - \left\langle d_{1}^{\pi,\bar{\pi}}, EV_{1}^{\pi',\bar{\pi}} \right\rangle = \sum_{h=1}^{H} \left\langle d_{h}^{\pi,\bar{\pi}}, Q_{h}^{\pi',\bar{\pi}} - EV_{h}^{\pi',\bar{\pi}} \right\rangle.$$

Then, notice that for all policies $\pi, \bar{\pi}$ it holds that $\sum_{h=1}^{H} \langle d_h^{\pi,\bar{\pi}}, r_h \rangle = \langle \nu_1, V^{\pi,\bar{\pi}} \rangle$. Plugging in these observations, we get

$$\left\langle \nu_{1}, V^{\pi, \bar{\pi}} - V^{\pi', \bar{\pi}} \right\rangle = \sum_{h=1}^{H} \left\langle d_{h}^{\pi, \bar{\pi}}, Q_{h}^{\pi', \bar{\pi}} - EV_{h}^{\pi', \bar{\pi}} \right\rangle.$$

Therefore, expanding the expectation, and noticing that $d_h^{\pi,\bar{\pi}}(s,a,s',a'|s_1)$ $d_h^{\pi}(s,a|s_1)d_h^{\bar{\pi}}(s',a'|s_1)$ for all h, s, a, s', a' and conditioning s_1 , we get that =

$$\left\langle \nu_1, V^{\pi, \bar{\pi}} - V^{\pi', \bar{\pi}} \right\rangle$$

$$= \mathbb{E}_{s_1 \sim \nu_1} \sum_{h=1}^n \mathbb{E}_{s \sim d_h^{\pi}|s_1} \left[\left\langle \mathbb{E}_{s',a' \sim d_h^{\pi}|s_1} Q_h^{\pi',\bar{\pi}}(s,\cdot,s',a'), \pi_h(\cdot|s,s_1) - \pi'_h(\cdot|s,s_1) \right\rangle \right].$$

918 D.3 PROOF OF THM. 4

Proof. We set $\bar{\pi}_h^T(a_h|s_h) = \frac{\sum_{t=1}^T d_h^{\pi^t}(s_h, a_h)}{\sum_{t=1}^T d_h^{\pi^t}(s_h)}$, where d(s) is the marginal distribution of d(s, a) on state s, and $\bar{\pi}^T = (\bar{\pi}_h^T)_{h=1}^H$. We shows that $d_h^{\bar{\pi}^T} = \frac{1}{T} \sum_{t=1}^T d_h^{\pi^t}$ by induction. h = 1 holds by definition. Assuming on step h, the equation holds, we have

$$d_{h+1}^{\bar{\pi}^{T}}(s_{h+1}, a_{h+1}) = d_{h+1}^{\bar{\pi}^{T}}(s_{h+1})\bar{\pi}_{h+1}^{T}(a_{h+1}|s_{h+1}) = \sum_{s_{h}, a_{h} \sim \bar{\pi}_{h}^{T}(\cdot|s_{h})} d_{h}^{\bar{\pi}^{T}}(s_{h}, a_{h})f(s_{h+1}|s_{h}, a_{h})\bar{\pi}_{h+1}^{T}(a_{h+1}|s_{h+1})$$

 $=\sum_{s_h,a_h\sim\bar{\pi}_h^T(\cdot|s_h)}\frac{1}{T}\sum_{t=1}^T d_h^{\pi^t}(s_h,a_h)f(s_{h+1}|s_h,a_h)\bar{\pi}_{h+1}^T(a_{h+1}|s_{h+1})$

 $= \frac{1}{T} \sum_{t=1}^{T} d_{h+1}^{\pi^{t}}(s_{h+1}) \bar{\pi}_{h+1}^{T}(a_{h+1}|s_{h+1})$

$$1 \frac{1}{t=1}$$

935
936
937
$$= \frac{1}{T} \sum_{t=1}^{T} d_{h+1}^{\pi^{t}}(s_{h+1}, a_{h+1}),$$

where the last equation holds by definition of $\bar{\pi}_{h+1}^T$. Therefore, h + 1 holds, and the $\bar{\pi}^T$ satisfy all equations for $h \in [H]$.

Using the value difference Lemma 2 we have that for any $\pi^{\star} \in \Pi$

$$\left\langle \nu_{1}, V^{\pi^{\star}, \pi^{t}} - V^{\pi^{t}, \pi^{t}} \right\rangle$$

$$= \mathbb{E}_{s_{1} \sim \nu_{1}} \sum_{h=1}^{H} \mathbb{E}_{s \sim d_{h}^{\pi^{\star}} | s_{1}} \left[\left\langle \mathbb{E}_{s', a' \sim d_{h}^{\pi^{t}} | s_{1}} Q_{h}^{\pi^{t}, \pi^{t}}(s, \cdot, s', a'), \pi_{h}^{\star}(\cdot | s) - \pi_{h}^{t}(\cdot | s) \right\rangle \right].$$

Therefore, summing over t from t = 1 to T we obtain

$$\sum_{t=1}^{T} \left\langle \nu_{1}, V^{\pi^{\star}, \pi^{t}} - V^{\pi^{t}, \pi^{t}} \right\rangle$$

= $\mathbb{E}_{s_{1} \sim \nu_{1}} \sum_{h=1}^{H} \mathbb{E}_{s \sim d_{h}^{\pi^{\star}} \mid s_{1}} \left[\sum_{t=1}^{T} \left\langle \mathbb{E}_{s', a' \sim d_{h}^{\pi^{t}} \mid s_{1}} Q_{h}^{\pi^{t}, \pi^{t}}(s, \cdot, s', a'), \pi_{h}^{\star}(\cdot \mid s) - \pi_{h}^{t}(\cdot \mid s) \right\rangle \right]$

Therefore, we need to control the local regrets at each state s with loss $\ell_h^t(s, s_1) := \mathbb{E}_{s',a'\sim d_h^{\pi^t}|s_1}Q_h^{\pi^t,\pi^t}(s,\cdot,s',a')$. To this end, we can invoke a standard convergence result for online mirror descent (Orabona, 2023, Theorem 6.10) we obtain that at each state we have

$$\sum_{t=1}^{T} \left\langle \ell_h^t(s, s_1), \pi^*(\cdot|s) - \pi^t(\cdot|s) \right\rangle \le \frac{D(\pi^*(\cdot|s), \pi^1(\cdot|s))}{\beta} + \beta \sum_{t=1}^{T} \|\ell_h^t(s, s_1)\|_{\infty}^2$$

Now, noticing that we have $\|\ell_h^t(s, s_1)\|_{\infty} \leq H$ it holds that

$$\sum_{t=1}^{T} \left\langle \ell_h^t(s), \pi_h^\star(\cdot|s) - \pi_h^t(\cdot|s) \right\rangle \le \frac{D(\pi_h^\star(\cdot|s), \pi_h^1(\cdot|s))}{\beta} + \beta T H^2.$$

Finally, using the assumption that $\pi^1(a|s) \ge \underline{\pi}$ for all $s, a \in S \times A$ it holds that $D(\pi^*(\cdot|s), \pi^1(\cdot|s)) \le \log \underline{\pi}^{-1}$. Therefore, choosing $\beta = \sqrt{\frac{\log \underline{\pi}^{-1}}{TH^2}}$ it holds that

970
971
$$\sum_{t=1}^{T} \left\langle \ell_h^t(s, s_1), \pi^*(\cdot|s) - \pi^t(\cdot|s) \right\rangle \le 2H\sqrt{T\log \pi^{-1}}.$$

972 Thus, we conclude that

$$\sum_{t=1}^{T} \left\langle \nu_1, V^{\pi^*, \pi^t} - V^{\pi^t, \pi^t} \right\rangle \le 2H^2 \sqrt{T \log \underline{\pi}^{-1}}.$$

977 By the antisimmetry of the game, the same proof steps

$$\sum_{t=1}^{T} \left\langle \nu_1, V^{\pi^t, \pi^t} - V^{\pi^t, \bar{\pi}^*} \right\rangle \le 2H^2 \sqrt{T \log \underline{\pi}^{-1}}.$$

Therefore, it holds that for all $\pi^*, \bar{\pi}^* \in \Pi$

$$\sum_{t=1}^{T} \left\langle \nu_1, V^{\pi^{\star}, \pi^{t}} - V^{\pi^{t}, \pi^{\star}} \right\rangle \le 4H^2 \sqrt{T \log \pi^{-1}}.$$

Then, define $\bar{\pi}^T$ the trajectory level mixture policy as in Swamy et al. (2024), i.e. such that $d_h^{\bar{\pi}^T} = \frac{1}{T} \sum_{t=1}^T d_h^{\pi^t}$ for all stages $h \in [H]$. This implies that $V^{\bar{\pi}^T, \pi^*} = \frac{1}{T} \sum_{t=1}^T V^{\pi^t, \pi^*}$, and $V^{\pi^*, \bar{\pi}^T} = \frac{1}{T} \sum_{t=1}^T V^{\pi^*, \pi_t}$.

Therefore, we have that

$$\left(\nu_{1}, V^{\pi^{\star}, \bar{\pi}^{T}} - V^{\bar{\pi}^{T}, \bar{\pi}^{\star}}\right) \leq 4H^{2}\sqrt{\frac{\log \underline{\pi}^{-1}}{T}}.$$

Finally, selecting $\pi^* = \left\langle \nu_1, \arg \max_{\pi \in \Pi} V^{\pi, \bar{\pi}^T} \right\rangle$ and $\bar{\pi}^* = \left\langle \nu_1, \arg \min_{\pi \in \Pi} V^{\bar{\pi}^T, \pi} \right\rangle$, we obtain that $\max_{\pi \in \Pi} \left\langle \nu_1, V^{\pi, \bar{\pi}^T} \right\rangle - \min_{\pi \in \Pi} \left\langle \nu_1, V^{\bar{\pi}^T, \pi} \right\rangle \le 4H^2 \sqrt{\frac{\log \pi^{-1}}{T}}.$

$$\max_{\pi \in \Pi} \left\langle \nu_1, V^{\pi, \tilde{\pi}^T} \right\rangle - \min_{\pi \in \Pi} \left\langle \nu_1, V^{\tilde{\pi}^T, \pi} \right\rangle \le 4H^2 \sqrt{\frac{\log \underline{\pi}}{T}},$$

This implies that

$$\left\langle \nu_1, V^{\bar{\pi}^T, \bar{\pi}^T} \right\rangle - \min_{\pi \in \Pi} \left\langle \nu_1, V^{\bar{\pi}^T, \pi} \right\rangle \le 4H^2 \sqrt{\frac{\log \underline{\pi}^{-1}}{T}},$$

1002 and

$$\max_{\pi \in \Pi} \left\langle \nu_1, V^{\pi, \overline{\pi}^T} \right\rangle - \left\langle \nu_1, V^{\overline{\pi}^T, \overline{\pi}^T} \right\rangle \le 4H^2 \sqrt{\frac{\log \underline{\pi}^{-1}}{T}},$$

1006 There

Therefore, setting $T = \frac{16H^4 \log \pi^{-1}}{\epsilon^2}$ we obtain an ϵ -approximate Nash equilibrium.

D.4 PROOF OF THEOREM 5

Proof. The optimization problem

$$\underset{d\in\tilde{\mathcal{F}}}{\arg\max\min} \min_{d'\in\tilde{\mathcal{F}}} \mathbb{E}_{s_1\sim\nu_1} \sum_{h=1}^{H} \sum_{s,a,s',a'} d_h(s,a|s_1) r(s,a,s',a') d'_h(s',a'|s_1)$$

1014 can be carried out individually over possible initial states. That is for each $s_1 \in \text{supp}(\nu_1)$ we aim at 1015 solving

$$\underset{d \in \mathcal{F}_{s_1}}{\operatorname{arg\,max}} \min_{d' \in \mathcal{F}_{s_1}} \sum_{h=1}^{H} \sum_{s, a, s', a'} d_h(s, a | s_1) r(s, a, s', a') d'_h(s', a' | s_1)$$

1019 To this end for any s_1 , we consider $\phi_h^t \in \mathcal{F}$ and $\psi_h^t \in \mathcal{F}$ which are generated by the following updates

$$\phi_h^{t+1} = \operatorname*{arg\,max}_{\phi \in \mathcal{F}_{s_1}} \beta \left\langle \phi, 2\mathbb{E}_{s',a' \sim \psi^t} r_h(\cdot, \cdot, s', a') - \mathbb{E}_{s',a' \sim \psi^{t-1}} r_h(\cdot, \cdot, s', a') \right\rangle - \mathbb{D}(\phi, \phi_h^t),$$

1023 and 1024

$$\psi_h^{t+1} = \underset{\psi \in \mathcal{F}_{s_1}}{\arg\min} \beta \left\langle \psi, 2\mathbb{E}_{s',a' \sim \phi^t} r_h(s',a',\cdot,\cdot) - \mathbb{E}_{s',a' \sim \phi^{t-1}} r_h(s',a',\cdot,\cdot) \right\rangle + \mathbb{D}(\psi,\psi_h^t),$$

In order to prove convergence to an ϵ -approximate Nash equilibrium, we need to control the quantity

$$\operatorname{Gap}_{s_1} = \frac{1}{T} \sum_{h=1}^{H} \sum_{t=1}^{T} \left\langle \theta_h^t, \phi_h^t - \phi_h^\star \right\rangle + \frac{1}{T} \sum_{h=1}^{H} \sum_{t=1}^{T} \left\langle \zeta_h^t, \psi_h^t - \psi_h^\star \right\rangle$$

1031 for $\theta_h^t(s, a) = \sum_{s', a'} \psi_h^t(s', a') r_h(s, a, s', a')$ and $\zeta_h^t(s', a') = -\sum_{s, a} \phi_h^t(s, a) r_h(s, a, s', a')$. At this point, we bound the local regret term with the OMPO update. We have that for any $\phi_h \in \mathcal{F}$

$$\beta \left\langle 2\theta_h^t - \theta_h^{t-1}, \phi_h - \phi_h^{t+1} \right\rangle = \beta \left\langle \theta_h^t - \theta_h^{t+1}, \phi_h - \phi_h^{t+1} \right\rangle \\ + \beta \left\langle \theta_h^t + \theta_h^{t+1} - \theta_h^{t-1}, \phi_h - \phi_h^{t+1} \right\rangle \\ = \beta \left\langle \theta_h^t - \theta_h^{t+1}, \phi_h - \phi_h^{t+1} \right\rangle$$

$$= \beta \left\langle \theta_{h}^{t} - \theta_{h}^{t} , \phi_{h} - \phi_{h}^{t} \right\rangle$$
$$+ \beta \left\langle \theta_{h}^{t} - \theta_{h}^{t-1}, \phi_{h} - \phi_{h}^{t} \right\rangle$$

1039
1040
1041

$$+\beta \left\langle \theta_{h}^{t} - \theta_{h}^{t-1}, \phi_{h}^{t} - \phi_{h}^{t+1} \right\rangle$$

$$+\beta \left\langle \theta_{h}^{t+1}, \phi_{h} - \phi_{h}^{t+1} \right\rangle.$$

1042 At this point, we work on the third summand above

$$\beta \left\langle \theta_{h}^{t} - \theta_{h}^{t-1}, \phi_{h}^{t} - \phi_{h}^{t+1} \right\rangle \leq \beta^{2} \lambda \|\theta_{h}^{t} - \theta_{h}^{t-1}\|_{\infty}^{2} + \frac{1}{4\lambda} \|\phi_{h}^{t} - \phi_{h}^{t+1}\|_{1}^{2}.$$

In addition, we have that $\|\theta_h^t - \theta_h^{t-1}\|_{\infty} \le \|\psi_h^t - \psi_h^{t-1}\|_1$ and we can apply the $1/\lambda$ strong convexity of \mathbb{D} , we obtain

$$\beta \left\langle \theta_{h}^{t} - \theta_{h}^{t-1}, \phi_{h}^{t} - \phi_{h}^{t+1} \right\rangle \leq \lambda \beta^{2} \|\psi_{h}^{t} - \psi_{h}^{t-1}\|_{1}^{2} + \frac{1}{2} \mathbb{D}(\phi_{h}^{t+1}, \phi_{h}^{t}).$$

1051 On the other hand, by the three point identity we have that for all $\phi \in \mathcal{F}$

$$\mathbb{D}(\phi_h, \phi_h^{t+1}) = \mathbb{D}(\phi_h, \phi_h^t) - \mathbb{D}(\phi_h^{t+1}, \phi_h^t) + \left\langle \nabla \mathbb{D}(\phi_h^{t+1}, \phi_h^t), \phi_h^{t+1} - \phi_h \right\rangle$$

1054 Then, using the property of the update rule, we obtain that 1055

$$\left\langle \nabla \mathbb{D}(\phi_h^{t+1}, \phi_h^t), \phi_h^{t+1} - \phi_h \right\rangle \le \beta \left\langle 2\theta_h^t - \theta_h^{t-1}, \phi_h - \phi_h^{t+1} \right\rangle.$$

Putting all the pieces together we have that

$$\mathbb{D}(\phi_h, \phi_h^{t+1}) \leq \mathbb{D}(\phi_h, \phi_h^t) - \mathbb{D}(\phi_h^{t+1}, \phi_h^t) + \beta \left\langle 2\theta_h^t - \theta_h^{t-1}, \phi_h - \phi_h^{t+1}(\cdot | s) \right\rangle$$

$$\leq \mathbb{D}(\phi_h, \phi_h^t) - \mathbb{D}(\phi_h^{t+1}, \phi_h^t)$$

$$+ \beta \left\langle \theta_h^t - \theta_h^{t+1}, \phi_h - \phi_h^{t+1} \right\rangle$$

$$+ \beta \left\langle \theta_h^t - \theta_h^{t-1}, \phi_h - \phi_h^t \right\rangle$$

$$+ \beta^2 \|\psi_h^t - \psi_h^{t-1}\|_1^2 + \frac{1}{2} \mathbb{D}(\phi_h^{t+1}, \phi_h^t)$$

$$+ \beta \left\langle \theta_h^{t+1}, \phi_h - \phi_h^{t+1} \right\rangle.$$

1068 Now, rearranging the terms we get

$$\beta \left\langle \theta_h^{t+1}, \phi_h - \phi_h^{t+1} \right\rangle \le \mathbb{D}(\phi_h, \phi_h^t) - \mathbb{D}(\phi_h, \phi_h^{t+1}) - \frac{1}{2} \mathbb{D}(\phi_h^{t+1}, \phi_h^t)$$

1071
1072
1073 +
$$\beta \left\langle \theta_h^t - \theta_h^{t+1}, \phi_h - \phi_h^{t+1} \right\rangle$$

+ $\beta \left\langle \theta_h^t - \theta_h^{t-1}, \phi_h - \phi_h^t \right\rangle$

Now, denoting $\Phi_{\phi}^{t} := \mathbb{D}(\phi_{h}, \phi_{h}^{t}) + \beta \left\langle \theta_{h}^{t} - \theta_{h}^{t-1}, \phi_{h} - \phi_{h}^{t} \right\rangle$ and summing over t we obtain

1078
1079
$$\beta \sum_{t=1}^{T} \left\langle \theta_h^t, \phi_h - \phi_h^t \right\rangle \le \sum_{t=1}^{T} \Phi_{\phi}^{t-1} - \Phi_{\phi}^t - \frac{1}{2} \sum_{t=1}^{T} \mathbb{D}(\phi_h^t, \phi_h^{t-1}) + \beta^2 \lambda \sum_{t=1}^{T} \|\psi_h^{t-1} - \psi_h^{t-2}\|_1^2.$$

 $+\beta^2 \lambda \|\psi_h^t - \psi_h^{t-1}\|_1^2.$

Similarly we get

$$\beta \sum_{t=1}^{T} \left\langle \zeta^{t}(s, \cdot), \psi_{h}^{t} - \psi_{h}^{t} \right\rangle \leq \sum_{t=1}^{T} \Phi_{\psi}^{t-1} - \Phi_{\psi}^{t} - \frac{1}{2} \sum_{t=1}^{T} \mathbb{D}(\psi_{h}^{t}, \psi_{h}^{t-1}) + \beta^{2} \lambda \sum_{t=1}^{T} \|\phi_{h}^{t-1} - \psi_{h}^{t-2}\|_{1}^{2}.$$

Now, using $1/\lambda$ strong convexity of \mathbb{D} and summing the two terms we have that

$$\beta T \operatorname{Gap}_{s_1,h} \le \Phi^0 - \Phi^{T-1} - \frac{1}{2} \sum_{t=1}^T (\mathbb{D}(\psi_h^t, \psi_h^{t-1}) + \mathbb{D}(\phi_h^t, \phi_h^{t-1})) + 2\beta^2 \lambda \sum_{t=1}^T (\mathbb{D}(\psi_h^{t-1}, \psi_h^{t-2}) + \mathbb{D}(\phi_h^{t-1}, \phi_h^{t-2})),$$

with $\Phi^t = \Phi^t_{\phi} + \Phi^t_{\psi}$. At this point, setting $\beta \leq \frac{1}{\sqrt{2\lambda}}$, we obtain a telescopic sum

$$\beta T \operatorname{Gap}_{s_1,h}$$

$$\leq \Phi^{0} - \Phi^{T-1} - \frac{1}{2} \sum_{t=1}^{T} (\mathbb{D}(\psi_{h}^{t}, \psi_{h}^{t-1}) + \mathbb{D}(\phi_{h}^{t}, \phi_{h}^{t-1}) - \mathbb{D}(\psi_{h}^{t-1}, \psi_{h}^{t-2}) - \mathbb{D}(\phi_{h}^{t-1}, \phi_{h}^{t-2}))$$

$$\leq \Phi^{0} - \Phi^{T-1} + \frac{1}{2} \left(\mathbb{D}(\psi_{h}^{1}, \psi_{h}^{0}) + \mathbb{D}(\phi_{h}^{1}, \phi_{h}^{0}) \right).$$

Now recalling that by assumption the occupancy measure of the reference policy is lower bounded, i.e. $d^{\pi^1} \ge \underline{d}$, we can upper bound $\Phi^0 - \Phi^T \le 2 \log \underline{d}^{-1} + 8\beta$ that allows to conclude that for all $n \in [N]$ and setting $\psi_h^0 = \psi_h^1$ and $\phi_h^1 = \phi_h^0$,

$$\operatorname{Gap}_{s_1,h} \le \frac{2\log \underline{d}^{-1} + 8\beta}{\beta T} \le \frac{10\log \underline{d}^{-1}}{\beta T}$$

Now, notice that Gap can be rewritten as

$$\begin{aligned} & \text{II06} \\ & \text{II07} \\ & \text{II08} \\ & = \frac{1}{T} \sum_{t=1}^{T} \sum_{h=1}^{H} \text{Gap}_{s_1,h} \\ & = \frac{1}{T} \sum_{t=1}^{T} \sum_{h=1}^{H} \sum_{s,a,s',a'} \psi_h^\star(s',a') r_h(s,a,s',a') \phi_h^t(s,a) \\ & - \frac{1}{T} \sum_{t=1}^{T} \sum_{h=1}^{H} \sum_{s,a,s',a'} \psi_h^\star(s',a') r_h(s,a,s',a') \phi_h^\star(s,a) \\ & = \sum_{h=1}^{H} \sum_{s,a,s',a'} \psi_h^\star(s',a') r_h(s,a,s',a') \frac{1}{T} \sum_{t=1}^{T} \phi_h^t(s,a) \\ & - \sum_{h=1}^{H} \sum_{s,a,s',a'} \psi_h^\star(s',a') r_h(s,a,s',a') \frac{1}{T} \sum_{t=1}^{T} \phi_h^t(s,a) \\ & - \sum_{h=1}^{H} \sum_{s,a,s',a'} \psi_h^\star(s',a') r_h(s,a,s',a') \phi_h(s,a) - \sum_{h=1}^{H} \sum_{s,a,s',a'} \psi_h(s',a') r_h(s,a,s',a') \phi_h^\star(s,a) . \end{aligned}$$

1124 At this point, let us define
$$\pi_{\phi}^{\text{out}}(a|s) = \frac{\overline{\phi}(s,a)}{\sum_{a} \overline{\phi}(s,a)}$$
 and $\pi_{\psi}^{\text{out}}(a|s) = \frac{\overline{\psi}(s,a)}{\sum_{a} \psi(s,a)}$. For such policies and by appropriate choice for ψ^* and ϕ^* it follows that

$$\operatorname{Gap}_{s_1} = \max_{\psi} V^{\pi_{\phi}^{\operatorname{out}},\psi}(s_1) - \min_{\phi} V^{\phi,\pi_{\psi}^{\operatorname{out}}}(s_1).$$

By the bound on Gap_{s_1} for each $s_1 \in \operatorname{supp}(\nu_1)$, it follows that

1130
1131

$$\left\langle \nu_1, \max_{\psi} V^{\pi_{\phi}^{\text{out}}, \psi} - \min_{\phi} V^{\phi, \pi_{\psi}^{\text{out}}} \right\rangle = \mathbb{E}_{s_1 \sim \nu_1} \operatorname{Gap}_{s_1} \leq \frac{10 H \log \underline{d}^{-1}}{\beta T},$$

therefore $T \geq \frac{10H \log \underline{d}^{-1}}{\beta \epsilon}$. The proof is concluded invoking Thm. 6 that ensures that the policies π_{ψ}^{out} and π_{ϕ}^{out} coincide.

¹¹³⁴ D.5 PROOF OF THEOREM 6

¹¹³⁶ *Proof.* Let us consider two players performing the following updates

$$\phi_h^{t+1} = \operatorname*{arg\,max}_{\phi \in \mathcal{F}_{s_1}} \beta \left\langle \phi, 2\mathbb{E}_{s',a' \sim \psi^t} r_h(\cdot, \cdot, s', a') - \mathbb{E}_{s',a' \sim \psi^{t-1}} r_h(\cdot, \cdot, s', a') \right\rangle - \mathbb{D}(\phi, \phi_h^t),$$

¹¹³⁹ and 1140

1137 1138

1141 1142

1153

1159 1160

1165

1166 1167

1168 1169 1170

1171

1176

1177

1178

1179 1180

$$\psi_h^{t+1} = \operatorname*{arg\,min}_{\psi \in \mathcal{F}_{s_1}} \beta \left\langle \psi, 2\mathbb{E}_{s',a' \sim \phi^t} r_h(s',a',\cdot,\cdot) - \mathbb{E}_{s',a' \sim \phi^{t-1}} r_h(s',a',\cdot,\cdot) \right\rangle + \mathbb{D}(\psi,\psi_h^t).$$

The goal is to proof that the iterates generated by the two updates are identical. We will prove this fact by induction. The base case holds by initialization which gives $\phi_h^0 = \psi_h^0$ for all $h \in [H]$. Then, let us assume by the induction step that $\psi_h^t = \phi_h^t$ for all $h \in [H]$, then

1146
$$\phi_h^{t+1}$$

1151 (Antisymmetric Reward) 1152

$$= \underset{\phi \in \mathcal{F}_{s_1}}{\arg \max \beta} \left\langle \phi, -2\mathbb{E}_{s',a' \sim \psi^t} r_h(s',a',\cdot,\cdot) + \mathbb{E}_{s',a' \sim \psi^{t-1}} r_h(s',a',\cdot,\cdot) \right\rangle - \mathbb{D}(\phi,\phi_h^t) + \beta$$

(Normalization of ϕ)

$$\underset{\phi \in \mathcal{F}_{s_1}}{\operatorname{arg\,max}} \beta \left\langle \phi, -2\mathbb{E}_{s',a' \sim \psi^t} r_h(s',a',\cdot,\cdot) + \mathbb{E}_{s',a' \sim \psi^{t-1}} r_h(s',a',\cdot,\cdot) \right\rangle - \mathbb{D}(\phi,\phi_h^t)$$

1158 (β does not depend on ϕ)

$$= \underset{\phi \in \mathcal{F}_{s_1}}{\arg \max} \beta \left\langle \phi, -2\mathbb{E}_{s',a' \sim \phi^t} r_h(s',a',\cdot,\cdot) + \mathbb{E}_{s',a' \sim \phi^{t-1}} r_h(s',a',\cdot,\cdot) \right\rangle - \mathbb{D}(\phi,\psi_h^t)$$

(Inductive Hypothesis)

$$= \underset{\psi \in \mathcal{F}_{s_1}}{\operatorname{arg\,min}} \beta \left\langle \psi, 2\mathbb{E}_{s',a' \sim \phi^t} r_h(s',a',\cdot,\cdot) - \mathbb{E}_{s',a' \sim \phi^{t-1}} r_h(s',a',\cdot,\cdot) \right\rangle + \mathbb{D}(\psi,\psi_h^t)$$

(Renaming the optimization variable and $\underset{x}{\arg \max} f(x) = \underset{x}{\arg \min} - f(x)$)

 $=\psi_h^{t+1}.$

E IMPLEMENTATION OF ALGORITHM 3 WITH UPDATES OVER POLICIES.

1172 In this section, we explain how the update in Algorithm 3 for different choices of \mathbb{D} . In both cases, 1173 we will derive an update that can be summarized by following template. Let us define $r_h^t(s, a) = \mathbb{E}_{s',a'\sim d_h^t} r(s, a, s', a')$ and $r_h^{t-1}(s, a) = \mathbb{E}_{s',a'\sim d_h^t} r(s, a, s', a')$

• Compute the Q_h^t function corresponding to the reward function $2r_h^t - r_h^{t-1}$ minimizing a loss function that depends on the choice of \mathbb{D} .

Update the policy as

$$\pi_h^{t+1}(a|s) \propto \pi_h^t(a|s) \exp\left(\beta Q_h^t(s,a)\right).$$

Finally, in Appx. E.3 we show that for \mathbb{D} being the conditional relative entropy and for β small enough the value function Q_h^t is well approximated by the standard Bellman equations.

Remark 6. Both choices of the Bregman divergence are 1 strongly convex so Thm. 5 applies with $\lambda = 1$.

1186 In the following we consider a generic reward function \tilde{r} . In our setting, we will apply the following 1187 results for $\tilde{r}_h = 2r_h^t - r_h^{t-1}$ in order to implement the updates of Alg. 3 for the different values of h and t.

E.1 $\mathbb D$ CHOSEN AS THE SUM OF CONDITIONAL AND RELATIVE ENTROPY

In this section, we explain how to implement the occupancy measure update in Algorithm 3 over policies. We use the machinery for single agent MDPs introduced in Bas-Serrano et al. (2021). In particular, we consider the Bregman divergence given by the sum of the relative en-tropy $D(d, d') = \sum_{s,a} d(s, a) \log\left(\frac{d(s,a)}{d'(s,a)}\right)$ and of the conditional relative entropy given, i.e. $H(d, d') = \sum_{s,a} d(s, a) \log\left(\frac{\pi_d(a|s)}{\pi_{d'}(a|s)}\right)$ with $\pi_d(a|s) = d(s, a) / \sum_a d(s, a)$. Under this choice for \mathbb{D} the unders of Algorithm 2 (solution) is the under of Algorithm 2 (solution) is a solution of the under solution. for \mathbb{D} , the update of Algorithm 3 for particular values of h, t, s_1 corresponds to the solution of the following optimization program

$$\begin{aligned} d_h^{t+1} &= \operatorname*{arg\,max}_{d \in \Delta^H} \sum_{h=1}^H \langle d_h, \tilde{r}_h \rangle - \frac{1}{\beta} D(d_h, d_h^t) - \frac{1}{\beta} H(d_h, d_h^t), \\ &\text{s.t.} \quad E^T d_h = F^T d_{h-1} \quad \forall h \in [H]. \end{aligned} \tag{Update I}$$

Theorem 7. The policy π_h^{t+1} with occupancy measure d_h^{t+1} defined in Eq. (Update I) can be com-puted as follows

$$\pi_h^{t+1}(a|s) \propto \pi_h^t(a|s) \exp\left(\beta Q_h^t(s,a)\right),$$

where Q_h^t is the minimizer of the following loss

$$\frac{1}{\beta} \sum_{h=1}^{H} \log \sum_{s,a} \mu_h^t(s,a) \exp\left(\beta (2\tilde{r}_h + PV_{h+1} - Q_h)(s,a)\right) + \langle \nu_1, V_1 \rangle,$$

while V_{h+1}^t is given by the following closed form.

$$V_{h+1}^t(s) = \frac{1}{\beta} \log \sum_{a} \pi_h^t(a|s) \exp(\beta Q_{h+1}^t(s,a)).$$

Proof. Let us introduce an auxiliary variable $\mu_h = d_h$ for all $h \in [H]$, then we can rewrite the optimization program as

Then, by Lagrangian duality we have that

$$\max_{d \in \Delta^H} \max_{\mu \in \Delta^H} \min_{Q, V} \sum_{h=1}^H \langle \mu_h, \tilde{r} \rangle - \frac{1}{\beta} D(\mu_h, \mu_h^t) - \frac{1}{\beta} H(d_h, d_h^t)$$

$$a \in \Delta^{-1} \mu \in \Delta^{-1} Q, \forall h=1$$

1228
1229
$$+ \left\langle -E^T d_h + F^T \mu_{h-1}, V_h \right\rangle + \left\langle Q_h, d_h - \mu_h \right\rangle$$

$$= \max_{d \in \Delta^H} \max_{\mu \in \Delta^H} \min_{Q, V} \sum_{h=1}^H \langle \mu_h, \tilde{r} + FV_{h+1} - Q_h \rangle + \langle d_h, Q_h - EV_h \rangle$$

1233
1234
$$-\frac{1}{\beta}D(\mu_h,\mu_h^t) - \frac{1}{\beta}H(d_h,d_h^t)$$

$$+ \langle \nu_1, V_1 \rangle = \mathcal{L}^{\star} \,.$$

Then, by Lagrangian duality, we have that the objective is unchanged by swapping the min and max

$$\mathcal{L}^{\star} = \min_{Q,V} \max_{d \in \Delta^{H}} \max_{\mu \in \Delta^{H}} \sum_{h=1}^{H} \langle \mu_{h}, \tilde{r}_{h} + FV_{h+1} - Q_{h} \rangle + \langle d_{h}, Q_{h} - EV_{h} \rangle$$

1240
1241
$$-\frac{1}{\beta}D(\mu_h,\mu_h^t) - \frac{1}{\beta}H(d_h,d_h^t) + \langle \nu_1, V_1 \rangle .$$

1242 The inner maximization is solved by the following values

1244
$$\mu_h^+(Q,V) \propto \mu_h^t \odot \exp\left(\beta(\tilde{r}_h + FV_{h+1} - Q_h)\right),$$

1245
$$\pi_h^+(Q,V;s) \propto \pi_h^t(\cdot|s) \odot \exp\left(\beta(Q_h(s,\cdot) - V_h(s))\right).$$

where \odot denotes the elementwise product between vectors. Then, replacing these values in the Lagrandian and parameterizing the functions V_h by the functions Q_h to ensure normalization of the policy, i.e. $V_h(s) = \frac{1}{\beta} \log \sum_a \pi_h^t(a|s) \exp(\beta Q_h(s, a))$ we have that

1250 1251

1252 1253

$$\mathcal{L}^{\star} = \min_{Q} \frac{1}{\beta} \sum_{h=1}^{H} \log \sum_{s,a} \mu_{h}^{t}(s,a) \exp\left(\beta (\tilde{r}_{h} + FV_{h+1} - Q_{h})(s,a)\right) + \langle \nu_{1}, V_{1} \rangle.$$

Therefore, denoting

$$Q_{h}^{t} = \arg\min_{Q} \frac{1}{\beta} \sum_{h=1}^{H} \log \sum_{s,a} \mu_{h}^{t}(s,a) \exp\left(\beta(\tilde{r}_{h} + FV_{h+1} - Q_{h})(s,a)\right) + \langle \nu_{1}, V_{1} \rangle,$$

and $V_h^t = \frac{1}{\beta} \log \sum_a \pi_h^t(a|s) \exp(\beta Q_h^t(s, a))$, we have that the policy $\pi_h^{t+1}(\cdot|s) = \pi_h^+(Q^t, V^t; s)$ has occupancy measure equal to d_h^{t+1} for all $h \in [H]$. This is because by the constraints of the problem we have that d_h^{t+1} satisfies the Bellman flow constraints and that the policy π_h^{t+1} satisfies $\pi_h^{t+1}(a|s) = d_h^t(s, a) / \sum_a d_h^t(s, a)$.

1263 E.2 \mathbb{D} chosen as conditional relative entropy Neu et al. (2017)

1265 In this section, we study the update considering \mathbb{D} chosen as sum of the conditional relative entropy 1266 over the stages h' s.t. $1 \le h' \le h$, i.e. we study the following update.⁵

$$d^{t+1} = \underset{d \in \Delta^{H}}{\operatorname{arg\,max}} \sum_{h=1}^{H} \left(\langle d_{h}, \tilde{r}_{h} \rangle - \frac{1}{\beta} \sum_{h'=1}^{h} H(d_{h'}, d_{h'}^{t}) \right),$$

s.t. $E^{T} d_{h} = F^{T} d_{h-1} \quad \forall h \in [H].$ (6)

Theorem 8. The policy π_h^{t+1} with occupancy measure d_h^{t+1} defined in Eq. (6) can be computed as follows

$$\pi_h^{t+1}(a|s) \propto \pi_h^t(a|s) \exp\left(\frac{\beta}{H-h+1}(Q_h^t(s,a))\right),$$

¹²⁷⁷ where Q_h^t and V_{h+1}^t satisfies the following recursion

$$Q_h^t = \tilde{r}_h + FV_{h+1}^t$$

1282

1278

1275 1276

$$V_{h+1}^t(s) = \frac{H-h+1}{\beta} \log \sum_{a} \pi_h^t(a|s) \exp\left(\frac{\beta}{H-h+1} Q_{h+1}^t(s,a)\right).$$

Remark 7. The above recurrencies are sometimes called soft Bellman equations Ziebart (2010);
 Fox et al. (2015).

1285 1286 *Proof.* Let us introduce an auxiliary variable $\mu_h = d_h$ for all $h \in [H]$, then we can rewrite the optimization program as

⁵The sum over previous stages is taken to ensure 1-strong convexity. Indeed, it holds that $\sum_{h'=1}^{h} H(d_{h'}, d'_{h'}) \ge D(d_h, d'_h) \ge \frac{1}{2} ||d_h - d'_h||_1^2.$ The first inequality is proven in (Neu & Olkhovskaya, 2021, Lemma 7).

¹²⁹⁶ Notice that importantly, we do not constraint the variable μ . Then, by Lagrangian duality we have that

1299 1300

1301

1304

1305

1309 1310 1311

$$\max_{d \in \Delta^H} \max_{\mu} \min_{Q,V} \sum_{h=1}^H \langle \mu_h, \tilde{r}_h \rangle - \frac{1}{\beta} \sum_{h'=1}^h H(d_{h'}, d_{h'}^t)$$

1302
$$+ \left\langle -E^T d_h + F^T \mu_{h-1}, V_h \right\rangle + \left\langle Q_h, d_h - \mu_h \right\rangle$$
1303
$$+ \left\langle -E^T d_h + F^T \mu_{h-1}, V_h \right\rangle + \left\langle Q_h, d_h - \mu_h \right\rangle$$

$$= \max_{d \in \Delta^{H}} \max_{\mu} \min_{Q, V} \sum_{h=1}^{H} \langle \mu_{h}, \tilde{r}_{h} + FV_{h+1} - Q_{h} \rangle + \langle d_{h}, Q_{h} - EV_{h} \rangle$$

1306
1307
1308
$$-\frac{1}{\beta} \sum_{h'=1}^{h} H(d_{h'}, d_{h'}^t) + \langle \nu_1, V_1 \rangle$$

$$= \min_{Q,V} \max_{d \in \Delta^H} \max_{\mu} \sum_{h=1}^{H} \langle \mu_h, \tilde{r}_h + FV_{h+1} - Q_h \rangle + \langle d_h, Q_h - EV_h \rangle$$

$$-\frac{H-h+1}{\beta}H(d_h,d_h^t)+\langle\nu_1,V_1\rangle=\tilde{\mathcal{L}}^\star,$$

1314

where the last equality holds by Lagrangian duality and by $\sum_{h=1}^{H} \sum_{h'=1}^{h} H(d_{h'}, d_{h'}^{t}) = \sum_{h=1}^{H} (H - h+1)H(d_{h'}, d_{h'}^{t})$. Now since μ is unconstrained we have that $\max_{\mu} \sum_{h=1}^{H} \langle \mu_{h}, \tilde{r}_{h} + FV_{h+1} - Q_{h} \rangle$ is equivalent to impose the constraint $\tilde{r}_{h} + FV_{h+1} = Q_{h}$ for all $h \in [H]$. Moreover, as in the proof of Thm. 7 the optimal d_{h} needs to satisfies that $\pi_{d_{h}}(a|s) = d_{h}(s,a)/\sum_{a} d_{h}(s,a)$ is equal to $\pi_{h}^{+}(Q,V;s) = \pi_{h}^{t}(\cdot|s) \odot \exp\left(\frac{\beta}{H-h+1}(Q_{h}(s,\cdot) - V_{h}(s))\right)$ for $V_{h}(s) = \frac{H-h+1}{\beta} \log \sum_{a} \pi_{h}^{t}(a|s) \exp\left(\frac{\beta}{H-h+1}Q_{h}(s,a)\right)$. Plugging in, these facts in the expression for $\tilde{\mathcal{L}}^{\star}$, we have that

$$\tilde{\mathcal{L}}^{\star} = \min_{Q} \langle \nu_1, V_1 \rangle$$
 s.t. $\tilde{r}_h + FV_{h+1} = Q_h \quad \forall h \in [H].$

1326 Since the above problem as only one feasible point, we have that the solution is 1327 the sequence Q_h^t satisfying the recursion $\tilde{r}_h + FV_{h+1}^t = Q_h^t$ with $V_h^t(s) = \frac{H-h+1}{\beta} \log \sum_a \pi_h^t(a|s) \exp(\frac{\beta}{H-h+1}Q_h^t(s,a))$.

1330 1331

1332

1324 1325

E.3 APPROXIMATING SOFT BELLMAN EQUATIONS BY STANDARD BELLMAN EQUATIONS.

1333 Unfortunately, implementing the update for the V value as in Theorem 7 is often numerically insta-1334 ble. In this section, we show a practical approximation which is easy to implement and shown to be 1335 accurate for β sufficiently small.

Theorem 9. Let us denote $\beta_h = \frac{\beta}{H-h+1}$ and let us assume that the values Q_h^t generated by the soft Bellman equations in Thm. 8 are uniformly upper bounded by Q_{max} , and let us choose $\beta_h \leq \frac{1}{Q_{\text{max}}}$ for all $h \in [H]$. Then, it holds that

1340 1341

$$\left\langle \pi_h^t(\cdot|s), Q_h^t(s, \cdot) \right\rangle \le \frac{1}{\beta_h} \log \sum_a \pi_h^t(a|s) \exp(\beta_h Q_h^t(s, a)) \le \left\langle \pi_h^t(\cdot|s), Q_h^t(s, \cdot) \right\rangle + \beta_h Q_{\max}^2 \cdot \frac{1}{\beta_h} \log \sum_a \pi_h^t(a|s) \exp(\beta_h Q_h^t(s, a)) \le \left\langle \pi_h^t(\cdot|s), Q_h^t(s, \cdot) \right\rangle + \beta_h Q_{\max}^2 \cdot \frac{1}{\beta_h} \log \sum_a \pi_h^t(a|s) \exp(\beta_h Q_h^t(s, a)) \le \left\langle \pi_h^t(\cdot|s), Q_h^t(s, \cdot) \right\rangle + \beta_h Q_{\max}^2 \cdot \frac{1}{\beta_h} \log \sum_a \pi_h^t(a|s) \exp(\beta_h Q_h^t(s, a)) \le \left\langle \pi_h^t(\cdot|s), Q_h^t(s, \cdot) \right\rangle + \beta_h Q_{\max}^2 \cdot \frac{1}{\beta_h} \log \sum_a \pi_h^t(a|s) \exp(\beta_h Q_h^t(s, a)) \le \left\langle \pi_h^t(\cdot|s), Q_h^t(s, \cdot) \right\rangle + \beta_h Q_{\max}^2 \cdot \frac{1}{\beta_h} \log \sum_a \pi_h^t(a|s) \exp(\beta_h Q_h^t(s, a)) \le \left\langle \pi_h^t(\cdot|s), Q_h^t(s, \cdot) \right\rangle + \beta_h Q_{\max}^2 \cdot \frac{1}{\beta_h} \log \sum_a \pi_h^t(a|s) \exp(\beta_h Q_h^t(s, a)) \le \left\langle \pi_h^t(\cdot|s), Q_h^t(s, \cdot) \right\rangle + \beta_h Q_{\max}^2 \cdot \frac{1}{\beta_h} \log \sum_a \pi_h^t(a|s) \exp(\beta_h Q_h^t(s, a)) \le \left\langle \pi_h^t(\cdot|s), Q_h^t(s, \cdot) \right\rangle + \beta_h Q_{\max}^2 \cdot \frac{1}{\beta_h} \log \sum_a \pi_h^t(a|s) \exp(\beta_h Q_h^t(s, a)) \le \left\langle \pi_h^t(\cdot|s), Q_h^t(s, \cdot) \right\rangle + \beta_h Q_{\max}^2 \cdot \frac{1}{\beta_h} \log \sum_a \pi_h^t(a|s) \exp(\beta_h Q_h^t(s, a)) \le \left\langle \pi_h^t(\cdot|s), Q_h^t(s, \cdot) \right\rangle + \beta_h Q_{\max}^2 \cdot \frac{1}{\beta_h} \log \sum_a \pi_h^t(a|s) \exp(\beta_h Q_h^t(s, a)) \le \left\langle \pi_h^t(\cdot|s), Q_h^t(s, \cdot) \right\rangle + \beta_h Q_{\max}^2 \cdot \frac{1}{\beta_h} \log \sum_a \pi_h^t(a|s) \exp(\beta_h Q_h^t(s, a)) \le \left\langle \pi_h^t(\cdot|s), Q_h^t(s, \cdot) \right\rangle + \beta_h Q_{\max}^t(s, \cdot) \exp(\beta_h Q_h^t(s, a)) \le \left\langle \pi_h^t(s, \cdot), Q_h^t(s, \cdot) \right\rangle + \beta_h Q_{\max}^t(s, \cdot) \exp(\beta_h Q_h^t(s, a)) \le \left\langle \pi_h^t(s, \cdot), Q_h^t(s, \cdot) \right\rangle + \beta_h Q_{\max}^t(s, \cdot) \exp(\beta_h Q_h^t(s, a))$$

1342 1343 1344

1346

1345 Proof.

$$\frac{1}{\beta_h} \log \sum_a \pi_h^t(a|s) \exp(\beta_h Q_h^t(s,a)) \ge \frac{1}{\beta_h} \sum_a \pi_h^t(a|s) \log \exp(\beta_h Q_h^t(s,a)) = \langle \pi_h^t(\cdot|s), Q_h^t(s,\cdot) \rangle,$$

where the above inequality holds for Jensen's. For the upper bound, we first use the inequality $e^x \le 1 + x + x^2$ for $x \le 1$ we have that

$$\begin{split} &\frac{1}{\beta_h}\log\sum_a \pi_h^t \exp(\beta_h Q_h^t(s,a))\\ &\leq \frac{1}{\beta_h}\log\sum_a \pi_h^t(1+\beta_h Q_h^t(s,a)+\beta_h^2 Q_{\max}^2) \quad (\text{Using } Q_h^t(s,a) \leq Q_{\max})\\ &= \frac{1}{\beta_h}\log(1+\beta_h\sum_a \pi_h^t(a|s)Q_h^t(s,a)+\beta_h^2 Q_{\max}^2)\\ &\leq \frac{1}{\beta_h}\left(\sum_a \pi_h^t(a|s)\beta_h Q_h^t(s,a)+\beta_h^2 Q_{\max}^2\right) \quad (\text{Using } \log(1+x) \leq x)\\ &\leq \left\langle \pi_h^t(\cdot|s), Q_h^t(s,\cdot) \right\rangle + \beta_h Q_{\max}^2. \end{split}$$

Remark 8. Given this result, in the implementation for deep RL experiment, i.e. Algorithm 4 we compute the standard Q value satisfying the standard Bellman equations (given in Lemma 1) rather than the soft Bellman equation in Thm. 7. In virtue of Thm. 9, the approximation is good for β reasonably small.

F ADDITIONAL EXPERIMENT

F.1 **EXPERIMENT IN MT-BENCH 101**

The tasks in MT-bench 101 include Context Memory (CM), Anaphora Resolution (AR), Separate Input (SI), Topic Shift (TS), Content Confusion (CC), Content Rephrasing (CR), Format Rephrasing (FR), Self-correction (SC), Self-affirmation (SA), Mathematical Reasoning (MR), General Reason-ing (GR), Instruction Clarification (IC), and Proactive Interaction (PI). We list the description of each task in Tab. 3. The default evaluation mode of MT-bench 101 is that the GPT model requires to access the conversation based on the given ground truth of previous steps, provided in MT-bench 101. However, in our problem setting, the answers among the conversation is also generated by the model. We use "gpt-4o-mini-2024-07-18" to evaluate the conversation. The maximum output length and maximum sequence length of gpt-40 are set as 4096. We use a batch size of 8 with a temperature of 0.8. We use the same prompt for gpt-40 as in Bai et al. (2024). Our experiment is conducted on 4 H200 GPUs. We use the PyTorch platform and the Transformer Reinforcement Learning (TRL) for finetuning.

Table 3: A detailed description of each task in MT-bench 101 (taken from Bai et al. (2024).)

Task	Abbr.	Description
Context Memory	СМ	Recall early dialogue details to address the user's current question.
Anaphora Resolution	AR	Identify pronoun referents throughout a multi-turn dialogue.
Separate Input	SI	The first turn outlines the task requirements and the following turns specify the task input.
Topic Shift	TS	Recognize and focus on the new topic when users unpredictably switch topics.
Content Confusion	CC	Avoid interference from similar-looking queries with distinct meanings in the dialogue's history.
Content Rephrasing	CR	Rephrase the content of the last response according to the user's newest requirement.
Format Rephrasing	FR	Rephrase the format of the last response according to the user's newest requirement.
Self-correction Self-affirmation	SC SA	Recorrect the last response according to the user feedback. Preserve the last response against inaccurate user feedback.
Mathematical Reasoning	MR	Collaboratively solve complex mathematical problems with users across dialogue turns.
General Reasoning	GR	Collaboratively solve complex general reasoning problems with users across dialogue turns.
Instruction Clarification Proactive Interaction	IC PI	Seek clarification by asking further questions on ambiguous user queries. Propose questions in reaction to user statements to spark their interest to continue the dialogue.

Next, we provide the comparison between the proposed MPO and IPO (Azar et al., 2024), which also uses the squared loss and bypasses the BT model assumption. We run both IPO and MPO for one iteration. The results in Tab. 4 show that MPO achieves a higher average score than IPO.

			Per	ceptivity					Adapt	ability			Intera	ctivit
Model		Memory	Under	standing	Interf	erence	Reph	rasing	Refle	ection	Reas	oning	Quest	ionin
	Avg.	СМ	SI	AR	TS	CC	CR	FR	SC	SA	MR	GR	IC	PI
Base (Mistral-7B-Instruct)	6.223	7.202	7.141	7.477	7.839	8.294	6.526	6.480	4.123	4.836	4.455	5.061	5.818	5.64
IPO	6.498	7.518	7.480	7.759	7.952	8.652	6.892	6.768	4.390	5.185	4.313	5.378	6.146	6.04
MPO	6.630	7.624	7.846	8.085	8.398	8.947	7.105	7.286	4.208	4.993	4.377	5.264	6.179	5.87

We now present an ablation study to evaluate the benefits of incorporating terminal rewards. Using MPO, we compare two approaches for optimizing a_h : one computes the preference signal based on the terminal state s_{H+1} , while the other uses the immediate next state s_h . The results within one iteration for the MT-Bench 101 dataset are shown in Tab. 5, and those for the GSM/Math experiments are provided in Tab. 6. Our findings reveal that using the terminal state s_{H+1} performs worse than using the immediate state s_h in MT-Bench 101. In contrast, the difference in performance is negligible in the GSM/Math tasks. The underlying reason is that in multi-turn conversational datasets, especially when adjacent questions are not closely related, relying on preferences derived from the terminal state can introduce noise. However, in math and reasoning tasks, the terminal state often captures the final answer, making it more critical. Moreover, using s_{H+1} for preference signals is significantly more computationally expensive than using s_h , due to the extended sequence length. Consequently, we conclude that adapting the choice of terminal preference or intermediate preference on the task's characteristics is crucial for balancing performance and efficiency.

F.2 TABULAR EXPERIMENT

Figure 2: Results in the tabular experiments. Curves are averages across 10 different randomly generated environments. The error bars report one standard deviation.

The setting of our large-scale experiments does not match the assumptions under which Thm. 5 is proven. In particular, in the large scale experiments the state action value functions can not be computed exactly. In this section, we consider a synthetic experiment in which the state action functions can be computed exactly for both OMPO and MPO. We generate 10 random gridworlds with a number of states and actions sample uniformly from the intervals [1, 100] and [2, 10]. We plot the exploitability computed as

$$\left\langle
u_1, \max_{\pi} V^{\pi, \pi^k} - V^{\pi^k \pi^k}
ight
angle$$

which is a standard metric to evaluate the distance from a Nash equilibrium. In particular, when (π^k, π^k) is a Nash equilibrium, the exploitability is 0. We can see that OMPO achieves very low exploitability after 100 updates while 2000 updates are needed by MPO. In this case, where the

Table 5:	Ablation or	ı terminal	reward in	n MT-BENCH	101 dataset.

				Per	ceptivity					Adapt	ability			Interactivit	
Model		Memory	Under	standing	Interf	erence	Reph	rasing	Refle	ection	Reas	oning	Quest	ioning	
		Avg.	СМ	SI	AR	TS	СС	CR	FR	SC	SA	MR	GR	IC	PI
	Base (Mistral-7B-Instruct)	6.223	7.202	7.141	7.477	7.839	8.294	6.526	6.480	4.123	4.836	4.455	5.061	5.818	5.641
	MPO (intermediate reward)	6.630	7.624	7.846	8.085	8.398	8.947	7.105	7.286	4.208	4.993	4.377	5.264	6.179	5.873
	MPO (terminal reward)	6.459	7.536	7.328	7.643	8.084	8.518	6.847	6.883	4.357	4.863	4.403	5.542	6.034	5.924

Table 6: Ablation on terminal reward in MATH and GSM8K dataset.

Method	GSM8K	Math
Base (Qwen2-7B-Instruct)	0.8559	0.5538
MPO (intermediate reward)	0.8734	0.5720
MPO (terminal reward)	0.8734	0.5734

Q functions can be computed exactly, we can appreciate the faster convergence rate of OMPO as described by Thm. 5.

F.3 EXPERIMENT ON MATH REASONING TASKS

As discussed in Appx. B, our framework can also cover the alignment of chain-of-thought reasoning. In this section, we validate the proposed methods on math reasoning tasks. We select two widely used datasets: MATH Hendrycks et al. (2021) and GSM8K Cobbe et al. (2021). We use Qwen2-7B-Instruct as the base model and follow the same evaluation procedure as in Lai et al. (2024). We adopt the dataset for alignment from Lai et al. (2024), which contains 10795 samples of aug-mented mathematical problems from MetaMath (Yu et al., 2024) and MMIQC (Liu et al., 2024b)⁶. For step-DPO, we use the checkpoint provided in Lai et al. (2024). For both MPO and OMPO, we perform full-parameter finetuning for 1 epoch with learning rate $5e^{-7}$ and β tuned in the range of $\{0.1, 0.01, 0.001\}$. For both MPO and OMPO, we select the Llama-3-based model as the preference oracle⁷ and set the log z are set as 0.5. The final state with the answer is important in this task so we only use the terminal reward (see Tab. 6 for comparison). We use AdamW optimizer (Loshchilov & Hutter, 2019) and cosine learning rate schedule (Loshchilov & Hutter, 2017) with a warmup ra-tio of 0.1. The experiment is conducted on 4 A100-SXM4-80GB GPUs. The result is provided in Tab. 7, showing that the proposed methods achieve performance comparable to step-DPO (Lai et al., 2024). Notably, MPO and OMPO do not require the ground truth label of the dataset during fine-tuning while Lai et al. (2024) requires it. Additionally, MPO and OMPO need only a Llama3-based pair-preference-model to compare two answers. Step-DPO requires GPT-4 to identify the incorrect reasoning step in an answer, which is a considerably more difficult task than comparison.

⁶https://huggingface.co/datasets/xinlai/Math-Step-DPO-10K

⁷https://huggingface.co/RLHFlow/pair-preference-model-LLaMA3-8B

Table 7: Performance of math reasoning on MATH and GSM8K dataset across various models.
MPO and OMPO achieve comparable performance comparable to step-DPO without requiring the ground truth label of the dataset during fine-tuning while Lai et al. (2024) requires. Additionally, MPO and OMPO only need access to an oracle Llama-3 to compare two answers whereas step-DPO Lai et al. (2024) requires GPT-4 to locate the identify the incorrect reasoning step in an answer, which is a considerably more difficult task than comparison.

Method	GSM8K	Math
Base (Qwen2-7B-Instruct)	0.8559	0.5538
Step-DPO (Lai et al., 2024)	0.8680	0.5836
MPO (iter=1)	0.8734	0.5734
MPO (iter=2)	0.8734	0.5786
OMPO (iter=2)	0.8779	0.5786

G MOTIVATION OF CONSIDERING INTERMEDIATE REWARD

In this section, we elaborate on the motivation for considering intermediate rewards at each turn instead of only terminal rewards.

1533 In multi-turn conversation tasks, such as MT-bench 101 (Bai et al., 2024), the user asks questions 1534 x_1, x_2, x_3 , and receives answers a_1, a_2, a_3 . When x_2 is not closely related to x_1 , aligning the first 1535 step using feedback among different a_1 is much more helpful than using the sequence $[a_1, x_2, a_2]$, 1536 where x_2, a_2 can be considered as noise.

In mathematical reasoning tasks, as mentioned in Lai et al. (2024), some cases yield correct fi-nal answers but contain errors in intermediate reasoning steps. Consequently, Lai et al. (2024) filter out such samples using GPT-4. For example, consider a case where the reasoning steps yield a correct final answer but include an error: $[a_1^{\text{correct}}, a_2^{\text{wrong}}, a_3^{\text{correct}}]$, where a_2^{wrong} is incorrect while all of the other steps and the final answer a_3^{correct} is correct. When there is another response, $[a_1^{\text{correct}}, a_2^{\text{correct}}, a_3^{\text{correct}}]$ with all correct steps, using only terminal signal for aligning step 2 might not guarantee that $a_2^{\text{correct}} \succ a_2^{\text{wrong}}$ because both of final answers are correct, especially when there is only an incorrect step among long reasoning steps. In contrast, an intermediate signal would clearly indicate $a_2^{\text{correct}} \succ a_2^{\text{wrong}}$, accurately reflecting the quality of the intermediate steps. In practice, if the final signal is important, e.g., in math reasoning task, then we can use only the terminal reward or the average of terminal reward and intermediate reward, otherwise one can just use the intermediate reward, which is cheaper to collect as compared to assigning reward until the terminal state.