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ABSTRACT

Reinforcement Learning from Human Feedback (RLHF) has been highly success-
ful in aligning large language models with human preferences. While prevalent
methods like DPO have demonstrated strong performance, they frame interactions
with the language model as a bandit problem, which limits their applicability in
real-world scenarios where multi-turn conversations are common. Additionally,
DPO relies on the Bradley-Terry model assumption, which does not adequately
capture the non-transitive nature of human preferences. In this paper, we address
these challenges by modeling the alignment problem as a two-player constant-sum
Markov game, where each player seeks to maximize their winning rate against the
other across all steps of the conversation. Our approach Multi-step Preference Op-
timization (MPO) is built upon the natural actor-critic framework (Peters & Schaal,
2008). We further develop OMPO based on the optimistic online gradient descent
algorithm (Rakhlin & Sridharan, 2013; Joulani et al., 2017). Theoretically, we
provide a rigorous analysis for both algorithms on convergence and show that
OMPO requiresO(ϵ−1) policy updates to converge to an ϵ-approximate Nash equi-
librium. We also validate the effectiveness of our method through experiments on
the multi-turn conversations dataset in MT-bench-101.

1 INTRODUCTION

In recent years, the integration of large-language models (LLMs) (Brown et al., 2020; Achiam
et al., 2023; Team et al., 2023) into various applications has highlighted the need for advanced
preference alignment methods (Ziegler et al., 2019; Stiennon et al., 2020; Bai et al., 2022; Ouyang
et al., 2022; Rafailov et al., 2023). As models increasingly engage in complex decision making or
reasoning scenarios, e.g., GPT-4o and o11, the ability to align their outputs with user preferences has
received more attention. However, existing works on reinforcement learning from human feedback
(RLHF) focus mostly on one-step preference (Rafailov et al., 2023; Meng et al., 2024; Munos
et al., 2024; Azar et al., 2024; Wu et al., 2024; Zhang et al., 2024), which neglects indispensable
intermediate preferences within the answer and limits the model’s alignment ability. For example,
in multi-round conversations, alignment must occur at each turn to meet user needs. Similarly, in
mathematical reasoning with chain-of-thought prompting, step-by-step validation is essential to
ensure accuracy in the final result. The reliance on final-output feedback in most existing RLHF
methods (Wang et al., 2023; Shani et al., 2024) neglects these intermediate steps, highlighting the
need for multi-step preference optimization to enhance alignment capabilities.

Meanwhile, earlier alignment methods e.g., DPO and its variants step-DPO (Lai et al., 2024; Lu
et al., 2024), typically model the pairwise preference by the Bradley-Terry model (Bradley & Terry,
1952), which assigns a score for each answer based on its preference. This assumption of the
model cannot capture the non-transitive preference, which is often observed in the averaged human
preferences from the population (Tversky, 1969; Gardner, 1970). While a recent line of work has
modeled the alignment process under the framework of general preference (Azar et al., 2024; Munos
et al., 2024; Wu et al., 2024; Rosset et al., 2024), and thus bypasses the BT model assumption, the
challenge of multi-step preference optimization remains underexplored.

In this paper, we first address this gap by formulating multi-step general preference optimization
within the framework of two-player Markov games (Shapley, 1953), where each player seeks to

1https://openai.com/o1
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maximize their winning rate against the other across all steps of the conversation. Next, we in-
troduce Multi-step Preference Optimization (MPO) drawing on insights from the natural actor-critic
framework (Peters & Schaal, 2008). We further develop OMPO which leverages the optimistic online
gradient descent algorithm and benefits from improved theoretical guarantees (Rakhlin & Sridharan,
2013; Joulani et al., 2017). Theoretically, we provide rigorous analysis for both algorithms on the
convergence to Nash equilibrium. Empirically, we demonstrate the effectiveness of our approach
through experiments on multi-turn conversation datasets, such as MT-bench-101. We firmly believe
that our framework and approach can enhance the responsiveness of LLMs to user feedback.

Based on our discussions above, we summarize the contributions as follows:

• We formulate multi-step preference optimization as a two-player partially observable Markov
game. Unlike Wang et al. (2023); Swamy et al. (2024); Shani et al. (2024) who focus on the
preference feedback at the final state, we assume that the preference signal is received at each
step. Such feedback allows the model to better identify which steps are correct or erroneous,
potentially enhancing learning efficiency and accuracy.

• We propose Multi-step Preference Optimization (MPO) based on the natural actor-critic frame-
work and Optimistic Multi-step Preference Optimization (OMPO), built upon the optimistic online
gradient descent. Theoretically, we show that OMPO requires O(ϵ−1) policy updates to converge
to an ϵ-approximate Nash equilibrium, compared to O(ϵ−2) by the algorithms provided in Wang
et al. (2023); Swamy et al. (2024); Shani et al. (2024). Our result cannot be trivially extended
by Alacaoglu et al. (2022) due to the partially observable nature of Markov game. Interestingly, we
bypass this difficulty by deriving our OMPO that parameterizes the game over occupancy measures.

• We provide practical implementations of both MPO and OMPO for LLM alignment. Numeri-
cal results show that the proposed methods achieve considerable improvement on multi-turn
conversation datasets, such as MT-bench-101, compared to the multi-step variant of DPO.

The remaining part of this paper is organized as follows: Sec. 2 provides a comprehensive review
and discussion of related work. In Sec. 3, we introduce the problem setting for the investigated multi-
step RLHF. Sec. 4.1 and Sec. 4.2 introduce the proposed MPO and OMPO and provide a theoretical
convergence analysis. Experimental results are present in Sec. 5. Conclusion, limitation, and future
work are discussed in Sec. 6.

2 RELATED WORK

RLHF under Bradley-Terry model. Over the years, significant strides have been made towards
developing RLHF algorithms from various perspectives under the Bradley-Terry model Bradley
& Terry (1952). Earlier RLHF pipelines usually included supervised fine-tuning, learning a reward
model, and reinforcement learning optimization with PPO (Ziegler et al., 2019; Stiennon et al., 2020;
Bai et al., 2022; Ouyang et al., 2022). Due to the instability and scaling issues of such a pipeline,
direct alignment methods such as DPO have been proposed to bypass the training of the reward
model (Rafailov et al., 2023). Several follow-up methods, such as generalized preference optimiza-
tion (GPO, Tang et al. 2024), use offline preference data to directly optimize pairwise preferences
against a fixed opponent. A number of works have proposed reference-model-free method (Meng
et al., 2024; Hong et al., 2024). In Meng et al. (2024), the impact of sequence length is mitigated by
averaging the likelihood over the length of the sequence. In the multi-step scenario, several multi-
step variants of DPO are introduced in the math reasoning task. Lu et al. (2024) initiate from an
intermediate step in a correct reasoning process and increase the temperature to produce a flawed
reasoning path leading to an incorrect answer. Meanwhile, Lai et al. (2024) leverage GPT-4 to detect
the first incorrect step in a multi-step reasoning trajectory, then regenerate from that point to obtain
the correct path. Together, these serve as the pair of samples for DPO.

RLHF under general preferences. The reward model in the Bradley-Terry model inherently im-
plies transitivity in preferences. However, human preferences, especially the resulting averaged
human preferences from populations, are usually nontransitive (Tversky, 1969; Gardner, 1970). To
this end, Azar et al. (2024) outline a general framework for RLHF starting from general preference
optimization and shows that DPO is a special case with the assumption of Bradley-Terry model.
They further proposed IPO without such an assumption. Subsequently, Munos et al. (2024) try to
solve the alignment of non-transitive general preferences using two-player nash learning in a bandit
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setting. In their work, preferences are regularized through KL divergence to a reference policy, and
they prove the convergence of the last iterative. In Swamy et al. (2024), multi-step alignment is
considered while preference signals are only applied at the final step. Swamy et al. (2024) do not
demonstrate the effectiveness of this framework in large language models. Wu et al. (2024) propose
SPPO, studying bandit alignment under general preferences. They introduce a novel loss function
that increases the log-likelihood of the selected response while decreasing that of the rejected re-
sponse, in contrast to DPO. Rosset et al. (2024) start with the nash learning framework and propose
Online DPO, which is an iterative version of DPO. Wang et al. (2023) provide theoretical analysis
on multi-step RLHF under general preference while practice application is not explored. In Wang
et al. (2023), the preference signal is given for the entire trajectory of an MDP while in this paper
it is step-wise. Shani et al. (2024) study multi-step alignment under general preferences. However,
unlike their approach where only preferences at the final states are considered, our work is built on a
two-player Markov game which assumes that human preference is received at each step rather than
only at the final step. Additionally, we leverage the optimistic online gradient descent to achieve
a better convergence rate than Wang et al. (2023); Shani et al. (2024), and utilize Monte Carlo es-
timation with a small-scale pairwise reward model, avoiding the need for an additional function
approximator for the critic network.

Two-player Markov game & optimistic online gradient descent. Two-player Markov games
have been widely studied since the seminal work (Shapley, 1953). Particularly relevant to our work
is the research line on policy gradient algorithms for two-player Markov games such as Daskalakis
et al. (2020); Wei et al. (2021); Alacaoglu et al. (2022). Our OMPO is strictly related to the idea of
optimistic online gradient descent (Popov, 1980; Chiang et al., 2012; Rakhlin & Sridharan, 2013)
originally proposed in online learning to achieve small regret in case of slow varying loss sequences.
Our update that uses only one projection per update was proposed in Joulani et al. (2017). The name
of our method is due to a similar algorithm introduced in the context of variational inequalities by
Malitsky & Tam (2020).

3 MULTI-STEP RLHF AS TWO-PLAYER MARKOV GAMES

3.1 NOTATION

We define the prompt to the language model as x and the answer from the language model as a. For
a multi-turn conversation with turn H , the prompts and the answers are denoted by xh and ah,∀h ∈
[H]. The concatenation of a prompt x and an answer a is denoted by [x, a] and can be generalized
to the concatenation of multiple prompts and answers, e.g., [x1, a1, . . . , xH , aH ]. For any two sen-
tences, e.g., [x, a] and [x′, a′], we define a preference oracle as o([x, a]≻[x′, a′]) ∈ {0, 1}, which can
provide preference feedback with 0-1 scores, where 1 means the conversation [x, a] is preferred and
0 otherwise. We denote P([x, a] ≻ [x′, a′]) = E[o([x, a] ≻ [x′, a′])] as the probability that the con-
versation [x, a] is preferred over [x′, a′]. Moreover, we have P([x, a] ≻ [x′, a′]) = 1− P([x′, a′] ≻
[x, a]). An autoregressive language model is denoted by π(a|x) which receives input x and gen-
erates answer a. We denote the KL divergence of two probability distributions p and q by D(p∥q).
The Bregman Divergences between two points are denoted by D(p∥q). The sigmoid function is
defined by σ(z) := 1

1+e−z . Detailed definitions for the notations are summarized in Appx. A.

3.2 PROBLEM FORMULATION OF MULTI-STEP RLHF

In this section, we introduce the problem setting for multi-step RLHF and we defer the preliminaries
on single-step RLHF to Appx. B. Specifically, we can cast the multi-step alignment process as a
finite-horizon Markov Decision Process (MDP). We define sh = [x1, a1, . . . , xh−1, ah−1, xh] as
the state at h > 1. We define the action ah as the answer given sh. Particularly, we have s1 = x1.
The prompt in the next state is sampled under the transition xh+1 ∼ f(·|sh, ah), which is equivalent
to sh+1 ∼ f(·|sh, ah). The equivalence comes from the fact sh+1 = [sh, ah, xh+1] by using the
concatenation operator between sentences. The terminal state is sH+1. Our setting covers a number
of alignment problems, and we list some examples below.

Example 1 (Single-step alignment). In single-step alignment, a language model receives one
prompt and outputs one answer. Our framework covers the single-step alignment by dissecting the
answer into single tokens. Specifically, we set x1 as the prompt, x2, . . . , xH+1 as empty sentences,
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and the answer ah at each turn consists of only one token. Then the horizon H is the number of
tokens in the answer. The transition between each state is deterministic.
Example 2 (Chain-of-thought reasoning alignment). In the chain-of-thought reasoning, the horizon
H denotes the number of reasoning steps, where x1 is the initial prompt and x2, . . . , xH+1 are
empty. Each ah corresponds to a reasoning step. The transition between each state is deterministic.
Example 3 (Mutli-turn conversation alignment). In multi-turn conversation, the horizon H denotes
the total number of turns in the conversation. In the h-th turn, xh is the prompt, and ah is the answer.
The prompt in the terminal state, xH+1, is an empty sentence. The transition between each state can
be deterministic or stochastic.

Next, we define the pair-wise reward function of two state-action pairs as the preference of two
trajectories:

r(sh, ah, s
′
h, a

′
h) = P([sh, ah] ≻ [s′h, a

′
h]) .

Upon this point, we can define the MDP as a tupleM = (S,A, f, r, ν1, H), where S is the state
space, A is the action space, H is the horizon (total steps), the initial state distribution ν1 is a
distribution over the initial prompt x1. Note that in a two-player game environment, each state in S
is a pair of sh and s′h generated by two policies. Our goal is to identify the Nash equilibrium (or von
Neumann winner) of the following two-player constant-sum Markov game:

(π∗, π∗) = argmax
π

min
π′

Es1∼ν1,sh,ah,s′h,a′h
[ H∑
h=1

r(sh, ah, s
′
h, a

′
h)
]
, (Game)

where s1 = s′1 = x1, ah ∼ π(·|sh), a′h ∼ π′(·|s′h), sh ∼ f(·|sh−1, ah−1), s′h ∼ f(·|s′h−1, a
′
h−1).

Here we make a few remarks on the benefit of incorporating human preferences at each step. More
detail on the motivation can be found at Appx. G.
Remark 1. If two conversations of H turns, sH+1 and s′H+1, are globally similar but differ in the
early turns (e.g., s2 are better than s′2), more credit should be assigned to sH+1, encouraging the
model to align with it. This follows the principle that humans typically master simpler and earlier
tasks before progressing to more complex ones.
Remark 2. From a practical standpoint, including per-step preference data generates a richer
dataset for training, helping the model learn which reasoning steps are correct or wrong. This in-
cremental feedback can enhance overall performance by reinforcing the importance of foundational
steps in reasoning.

Next, we present some additional notation. We define the pair-wise value function as follows

V π,π
′

h (s, s′) = E
[ H∑
ĥ=h

r(sĥ, aĥ, s
′
ĥ
, a′
ĥ
)|sh = s, s′h = s′

]
,

where aĥ ∼ πĥ(·|sĥ), a
′
ĥ
∼ π′

ĥ
(·|s′

ĥ
), sĥ+1 ∼ f(·|sĥ, aĥ), and s′

ĥ+1
∼ f(·|s′

ĥ
, a′
ĥ
). We will often

denote V π,π
′

1 omitting the subscript, i.e., as V π,π
′
. Moreover, notice that we consider potentially

non stationary policies, i.e. they are indexed by h. We denote by π the non stationary policy and by
πh the distribution over actions at step h corresponding to the non stationary policy π.

We define the pair-wise Q-function as follows:

Qπ,π
′

h (s, a, s′, a′) = r(s, a, s′, a′) + E
[ H∑
ĥ=h+1

r(sĥ, aĥ, s
′
ĥ
, a′
ĥ
)
]
,

where sĥ+1 ∼ f(·|sĥ, aĥ) and s′
ĥ+1
∼ f(·|s′

ĥ
, a′
ĥ
).

Lemma 1. (Adapted from Puterman (1994)) The pair-wise value function and pair-wise Q-value
function satisfy the following Bellman equation for all h ∈ [H].

Qπ,π
′

h (s, a, s′, a′) = r(s, a, s′, a′) + Eŝ∼f(·|s,a),s̄∼f(·|s′,a′)[V π,π
′

h+1 (ŝ, s̄)] .

V π,π
′

h (s, s′) = Ea∼πh(·|s),a′∼π′
h(·|s′)Q

π,π′

h (s, a, s′, a′).

4
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By Lemma 1, we can rewrite Game as follows:

(π∗, π∗) = argmax
π

min
π′

E
[ H∑
h=1

r(sh, ah, s
′
h, a

′
h)
]
= argmax

π
min
π′

Es1∼ν1V π,π
′
(s1, s1) . (1)

Given the above notation, we can formalize our objective. We look for a policy π satisfying the
following definition of approximate equilibrium.

Definition 1 (ϵ-approximate Nash equilibrium). A policy π is said to be an approximate Nash
equilibrium if it holds that

⟨ν1, V π,π⟩ −min
π̄∈Π

〈
ν1, V

π,π̄
〉
≤ ϵ,

and
max
π̄∈Π

〈
ν1, V

π̄,π
〉
− ⟨ν1, V π,π⟩ ≤ ϵ.

Definition 2 (Occupancy measures). Given the policy π, the occupancy measure of π, is defined
at stage h as dπh(s, a) = Pr(sh = s, ah = a) where s1 = x1 ∼ ν1, ah ∼ πh(·|sh), sh ∼
f(·|sh−1, ah−1). We also define dπh(s, a)|s1 = Pr(sh = s, ah = a|s1 = s1) . In addition,
given the policies π, π̄, the occupancy measure of (π, π̄) at stage h is defined as dπ,π̄h (s, a, s′, a′) =
Pr(sh = s, ah = a, s′h = s′, a′h = a′), where s1 = s′1 = x1 ∼ ν1, ah ∼ π(·|sh), a′h ∼ π′(·|s′h),
sh ∼ f(·|sh−1, ah−1), and s′h ∼ f(·|s′h−1, a

′
h−1).

Remark: The value function at the initial state can be represented as an inner product between
the reward function and the occupancy measure, i.e., V π,π̄ =

∑H
h=1

〈
r, dπ,π̄h

〉
. Given the structure

of the game where the sequences of sentences and answers are generated independently by the
two agents given the initial state s1, the occupancy measure at each step can be factorized as the
product of the two agents occupancy measures given s1. In particular, we have dπ,π̄h (s, a, s′, a′)|s1 =
dπh(s, a)|s1 · dπ̄h(s′, a′)|s1 for all h, s, a, s′, a′.

4 METHOD

We first develop our method Multi-Step Preference Optimization (MPO) based on the natural actor-
critical framework (Peters & Schaal, 2008; Alacaoglu et al., 2022) in Sec. 4.1. Next, we introduce
Optimistic Multi-Step Preference Optimization, dubbed OMPO, in Sec. 4.2. The framework is in-
spired by the idea of optimism used in online learning and in min-max optimization with improved
theoretical guarantees (Popov, 1980; Chiang et al., 2012; Rakhlin & Sridharan, 2013).

4.1 MPO WITH NATURAL ACTOR-CRITIC

This section presents our first method to find an approximate solution to Game. In order to find an
ϵ-approximate Nash equilibrium, the MPO method builds upon the next lemma which decomposes
the difference of two value functions to the Q function at each step. The lemma 2 is the exten-
sion of Kakade & Langford (2002) to the multi-agent setting where the dynamics are controlled
independently by each player but the reward depends on the joint-state action tuple.

Lemma 2 (Value difference lemma (Adapted from Kakade & Langford (2002))). For a finite hori-
zon MDP with initial distribution ν1 it holds that:〈

ν1, V
π,π̄ − V π

′,π̄
〉
= Es1∼ν1

H∑
h=1

Es∼dπh|s1
[〈

Es′,a′∼dπ̄h|s1Q
π′,π̄
h (s, ·, s′, a′), πh(·|s, s1)− π′

h(·|s, s1)
〉]
.

The proof can be found at Appx. D.2. In our setting, the initial state s1 is a deterministic function
of the state s so we can remove s1 from the conditioning in the policy2. To highlight this fact we

2This is motivated by practical LLM training, where system prompts such as “user” and “assistant” are in-
serted before every xh and ah, respectively. As a result, one can infer a unique s1 for every s. The conditioning
of the policy on the initial state might appear unusual at the first glance but it is in fact common in the setting
of Contextual MDPs (see for example Levy et al. (2023)). Indeed, the initial state s1 could be interpreted as a
context and we optimize over policies that depend on both the initial context and the current state.
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Algorithm 1 MPO (Theory Version)

input: reference policy π1, preference oracle P, learning rate β =
√

log π−1

TH2 , total iteration T
for t = 1, 2, . . . , T do

πt+1
h (a|s) ∝ πth(a|s) exp

[
βE

s′,a′∼dπth |s1(s)Q
πt,πt

h (s, a, s′, a′)
]
∀h ∈ [H], ∀s, a.

end for
output: π̄T ( such that dπ̄

T

h = 1
T

∑T
t=1 d

πt

h , ∀h ∈ [H]. ).

Algorithm 2 MPO (Practical version)
input: reference policy π1, preference oracle P, learning rate β, number of generated samples K,
horizon H , total iteration T .
for t = 1, 2, . . . , T do

Generates response by sampling s11 ∼ ν1 and a1h ∼ πt(·|s1h) for h ∈ [H].
Clear the dataset buffer Dt.
for h = 1, 2, . . . ,H do

Set sKh =, . . . ,= s2h = s1h.
Generate K − 1 conversations by sampling a2:K

ĥ
∼ πt(·|s2:K

ĥ
) for ĥ ∈ [h,H].

Estimate Eak′h Q
πt,πt(s1h, a

k
h, s

1
h, a

k′

h ),∀k, k′ ∈ [K] via Eq. (5) with query to P.

Form the data pair {(s1h, akh,Eak′h Q
πt,πt(s1h, a

k
h, s

1
h, a

k′

h )}k∈[K] , add to Dt .
end for
Optimize πt+1 over Dt according to

πt+1 ← argmin
π

E
(
log

(
π(akh|s1h)
πt(akh|s1h)

)
− β

(
Eak′h Q

πt,πt(s1h, a
k
h, s

1
h, a

k′

h )− H − h+ 1

2

))2

.

end for
output: πT+1

denote as s1(s) the only initial state that can lead to s. By setting π′ = π = πt in Lemma 2 and
π = π⋆ and summing from t = 1 to T we obtain:

T∑
t=1

〈
ν1, V

π⋆,πt − V π
t,πt
〉
= Es1∼ν1

H∑
h=1

T∑
t=1

Es∼dπ⋆h |s1

[〈
E
s′,a′∼dπth |s1Q

πt,πt

h (s, ·, s′, a′), π⋆h(·|s)− πth(·|s)
〉]

.

Since the sum over t commutes with the expectation, we see that we can decompose the global
regret

∑T
t=1

〈
ν1, V

π⋆,πt − V πt,πt
〉

into a weighted sum of local regrets at each stage h ∈ [H], i.e.,

Es∼dπ⋆h |s1

[∑T
t=1

〈
E
s′,a′∼dπth |s1Q

πt,πt

h (s, ·, s′, a′), π⋆h(·|s)− πth(·|s)
〉]

. Therefore, we can control
the global regret implementing at each state online mirror descent updates (Warmuth et al. 1997,
Orabona 2023, Chapter 6, Cesa-Bianchi & Lugosi 2006), i.e., implementing the following update:

πt+1
h (·|s) = argmax

π
⟨π(·|s),E

s′,a′∼dπth |s1(s)Q
πt,πt

h (s, ·, s′, a′)⟩ − βD(π(·|s)||πth(·|s)) ,

where β is a learning rate. The solution has the following form:

πt+1
h (a|s) ∝ πth(a|s) exp{βEs′,a′∼dπth |s1(s)Q

πt,πt

h (s, a, s′, a′)}, (2)

which corresponds to natural actor-critic (Peters & Schaal, 2008) that utilizes a softmax-based
method for updating policies. The number of policy updates needed by the ideal version of MPO
(see Alg. 1) can be bounded as follows and the proof can be found at Appx. D.3.
Theorem 4. Consider Algorithm 1 and assume that the reference policy is uniformly lower bounded
by π, then there exists a policy π̄T such that dπ̄

T

h = 1
T

∑T
t=1 d

πt

h ,∀h ∈ [H], and it holds that

for T = 16H4 log π−1

ϵ2 the policy pair (π̄T , π̄T ) is an ϵ-approximate Nash equilibrium. Therefore,

Algorithm 1 outputs an ϵ-approximate Nash equilibrium after 16H4 log π−1

ϵ2 policy updates.
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Algorithm 3 OMPO (Theory Version)
input: occupancy measure of reference policy π1 denoted as d1, preference oracle P (i.e. reward
function r), learning rate β, Bregman divergence D, iteration T
for t = 1, 2, . . . , T do

dt+1
h = argmax

d∈Fs1
β
〈
d, 2Es′,a′∼dthr(·, ·, s

′, a′)− Es′,a′∼dt−1
h
r(·, ·, s′, a′)

〉
− D(d, dth) ∀h ∈ [H] ∀s1.

end for
πout
h (a|s) = d̄h(s,a|s1)∑

a d̄h(s,a|s1)
with d̄h = T−1

∑T
t=1 d

t
h for all h ∈ [H] for the unique s1 from which

s is reachable.
Output : πout

Remark 3. The above result generalizes the O(H2ϵ−2) bound on the policy updates proven in
Swamy et al. (2024) in the setting of terminal-only reward. The additional H2 factor in our theorem
is due to considering rewards that are not terminal-only. In Theorem 5 we show that Algorithm 3
improves the number of policy updates needed to converge to an ϵ-approximate Nash equilibrium to
O(Hϵ−1).

Practical relaxations. For the above theorem, MPO requires the access of the Q function, which is
unknown. Next, we are going to develop a practical algorithm to efficiently estimate the Q function
and implement Eq. (2). Equivalently, Eq. (2) can be written as

πt+1
h (a|s) =

πth(a|s) exp{βEs′,a′∼dπth |s1(s)Q
πt,πt

h (s, a, s′, a′)}
Zth(s)

, (3)

where Zth(s) is the partition function. Next, we express Eq. (3) as follows:

log
πt+1
h (a|s)
πth(a|s)

= βE
s′,a′∼dπth |s1(s)Q

πt,πt

h (s, a, s′, a′)− logZth(s) . (4)

Next, we approximate Eq. (4) with an approximate solution of the following optimization program

πt+1 = argmin
π

H∑
h=1

E s1∼ν1
(sh,ah)∼dπ

t

h |s1

[
log

π(ah|sh)
πth(ah|sh)

− (E
s′,a′∼dπth |s1Q

πt,πt

h (sh, ah, s
′, a′)− logZth(sh))

]2
.

Unfortunately, solving the above minimization exactly is out of hope. The first difficulty is the
efficient estimation of E

s′,a′∼dπth |s1Q
πt,πt

h (sh, ah, s
′, a′). In particular, since s′ and s are sampled

from the same distribution, we will sample a′ from the state sh and use the Monte Carlo estimator:

Ea′∼πt(·|sh)Q
πt,πt

h (sh, ah, sh, a
′) ≈ 1

K

K∑
k=1

H∑
ĥ=h

P([sĥ,k, aĥ,k], [s
′
ĥ,k
, a′
ĥ,k

]) , (5)

where the sequences
{
(sĥ,k, aĥ,k, s

′
ĥ,k
, a′
ĥ,k

)
}H
ĥ=h

for k ∈ [K] are generated by rollouts of the

policies pair (πt, πt). The second difficulty is Zth(s), which is difficult to compute for large action
spaces. In all states s, we replace logZth(s) with βH−h+1

2 .
Remark 4. The heuristics is motivated by the next observation. If the preference between ah and
a′h in Eq. (5) results in a tie, then with such logZth(s), the solution of Eq. (5) is πt+1 = πt, leaving
the model unchanged.

In summary, we provide a practical version of MPO in Alg. 2. In practice, we used a stationary policy
that we find to be sufficient to obtain convincing results.

4.2 OPTIMISTIC MPO: OMPO

In this section, we propose an alternative algorithm based on the optimistic gradient descent method
3 by reformulating the optimization problem over occupancy measures. Here, we show that opti-

3The same update we use can also be seen as the Forward-Reflected-Backward (FoRB) update proposed
in Malitsky & Tam (2020) for variational inequalities. This point of view is taken by Alacaoglu et al. (2022) to
solve zero-sum Markov game.
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Algorithm 4 OMPO (Practical version)
input: reference policy π1, preference oracle P, learning rate β, number of generated samples K,
horizon H , total iteration T , tunable bias term τ .
for t = 1, 2, . . . , T do

Generates response by sampling s11 ∼ ν1 and a1h ∼ πt(·|s1h) for h ∈ [H].
Clear the dataset buffer Dt.
for h = 1, 2, . . . ,H do

Set sKh =, . . . ,= s2h = s1h.
Generate K − 1 conversations by sampling a2:K

ĥ
∼ πt(·|s2:K

ĥ
) for ĥ ∈ [h,H].

Estimate Eak′h Q
πt,πt(s1h, a

k
h, s

1
h, a

k′

h )∀k, k′ ∈ [K] via Eq. (5).
if t > 1 then

Estimate Eak′h Q
πt,πt−1

(s1h, a
k
h, s

1
h, a

k′

h ) ∀k, k′ ∈ [K] via Eq. (5).
Add {(s1h, akh,Eak′h Q

πt,πt(s1h, a
k
h, s

1
h, a

k′

h ),Eak′h Q
πt,πt−1

(s1h, a
k
h, s

1
h, a

k′

h )}k∈[K] into Dt.
else

Add {(s1h, akh,Eak′h Q
πt,πt(s1h, a

k
h, s

1
h, a

k′

h )} into Dt.
end if

end for
if t > 1 then

Optimize πt+1 over Dt according to

πt+1 ← argmin
π

E
(
log

(
π(akh|s1h)
πt(akh|s1h)

)
− β

(
2Eak′h Q

πt,πt(s1h, a
k
h, s

1
h, a

k′

h )− Eak′h Q
πt,πt−1

(s1h, a
k
h, s

1
h, a

k′

h )− τ
))2

.

else
Optimize πt+1 over Dt according to

πt+1 ← argmin
π

E
(
log

(
π(akh|s1h)
πt(akh|s1h)

)
− β

(
Eak′h Q

πt,πt(s1h, a
k
h, s

1
h, a

k′

h )− H − h+ 1

2

))2

.

end if
end for
output: πT+1

mistic online mirror descent with one projection (Joulani et al., 2017) with an appropriately chosen
regularizer can be used to solve approximately the following program which corresponds to Game
lifted to the space of conditional occupancy measures.

(d⋆, d⋆) = argmax
d∈F̃

min
d′∈F̃

Es1∼ν1
H∑
h=1

∑
s,a,s′,a′

dh(s, a|s1)r(s, a, s′, a′)d′h(s′, a′|s1) ,

where F̃ is the product set of the Bellman flow constraints for a particular initial state, i.e.
F̃ = ×s1∈supp(ν1)Fs1 . We also introduced the Bellman flow constraints for a specific initial state

Fs1 =
{
d = (d1, . . . , dH) :

∑
a dh+1(s, a) =

∑
s′,a′ f(s|s′, a′)dh(s′, a′), d1(s) = 1 {s = s1}

}
.

The policy pair (π⋆, π⋆) solution of Game can be retrieved from the occupancy measure pair (d⋆, d⋆)
as π⋆(a|s) = d⋆(s,a|s1)∑

a d
⋆(s,a|s1) . Our idea is to apply the optimistic algorithm from Joulani et al. (2017)

to the reformulation of Game over occupancy measures, we present the resulting algorithm, i.e.,
OMPO, in Alg. 3.
Remark 5. In a partially observable Markov game, lifting the problem to the occupancy measures
turns out to be fundamentally important for enabling each agent to learn a policy conditioned only
on their own state. This is different from the standard literature on Markov Games (Daskalakis
et al., 2020; Wei et al., 2021; Alacaoglu et al., 2022), which assumes that both agents share a
common state.

As the next theorem shows, in the ideal case where the updates can be computed exactly, Alg. 3
finds an ϵ-approximate Nash equilibrium using fewer updates compared to Alg. 1 and to (Swamy
et al., 2024, Algorithm 1). The proof can be found at Appx. D.4.
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Table 1: Evaluation results on MT-bench-101 dataset. Mistral-7B-Instruct is selected as the base
model. We can observe that both of the proposed algorithms MPO and OMPO considerably outper-
form the baseline in terms of the score (the higher the better).

Model
Perceptivity Adaptability Interactivity

Memory Understanding Interference Rephrasing Reflection Reasoning Questioning

Avg. CM SI AR TS CC CR FR SC SA MR GR IC PI

Base (Mistral-7B-Instruct) 6.223 7.202 7.141 7.477 7.839 8.294 6.526 6.480 4.123 4.836 4.455 5.061 5.818 5.641

DPO (iter=1) 6.361 7.889 6.483 7.699 8.149 8.973 7.098 7.423 3.448 6.123 3.421 4.492 5.639 5.858

DPO (iter=2) 6.327 7.611 6.206 8.106 8.052 9.111 6.670 7.153 3.494 5.884 3.360 4.691 5.837 6.078

DPO (iter=3) 5.391 6.019 4.521 6.890 6.631 8.177 5.437 5.723 3.448 5.295 3.142 4.015 5.256 5.529

SPPO (iter=1) 6.475 7.432 7.464 7.714 8.353 8.580 6.917 6.714 4.136 5.055 4.403 5.400 6.036 5.966

SPPO (iter=2) 6.541 7.516 7.496 7.808 8.313 8.731 7.077 6.867 4.136 5.281 4.488 5.477 6.098 5.751

SPPO (iter=3) 6.577 7.575 7.547 7.944 8.365 8.797 7.040 6.865 4.442 5.185 4.346 5.394 6.092 5.906

Step-DPO (iter=1) 6.433 7.463 7.054 7.790 8.157 8.593 6.827 6.748 4.234 4.849 4.236 5.519 5.982 6.171

Step-DPO (iter=2) 6.553 7.616 7.043 7.925 8.147 8.662 6.790 6.878 4.331 5.048 4.366 5.734 6.391 6.254

Step-DPO (iter=3) 6.442 7.665 7.023 7.767 8.016 8.589 6.723 6.581 4.305 5.014 4.153 5.453 6.202 6.257

MPO (iter=1) 6.630 7.624 7.846 8.085 8.398 8.947 7.105 7.286 4.208 4.993 4.377 5.264 6.179 5.873

MPO (iter=2) 6.735 7.838 7.723 8.196 8.590 9.027 7.347 7.209 4.240 5.137 4.469 5.531 6.181 6.061

MPO (iter=3) 6.733 7.868 7.686 8.289 8.510 9.078 7.330 7.529 4.461 4.829 4.225 5.366 6.198 6.155

OMPO(iter=2) 6.736 7.733 7.723 8.257 8.478 9.122 7.300 7.421 4.123 5.288 4.506 5.513 6.179 5.923

OMPO(iter=3) 6.776 7.649 7.792 8.281 8.578 9.136 7.424 7.635 4.377 5.308 4.312 5.455 6.187 5.954

Theorem 5 (Convergence of OMPO). Consider Algorithm 3 and let us assume that the occupancy
measure of the reference policy is uniformly lower bounded by d. Moreover, let D be 1/λ strongly

convex, i.e. D(p||q) ≥ ∥p−q∥2
1

2λ . Then, by setting T = 10H log d−1

βϵ and β ≤ 1√
2λ

, we ensure that
(πout, πout), i.e. the output of Algorithm 3 is an ϵ-approximate Nash equilibrium. Therefore, we
need at most 10H log d−1

βϵ policy updates.

In addition, not only Swamy et al. (2024, Algorithm 1) but also OMPO can be implemented using
only one player since in a constant sum game, the max and min player produce the same iterates.
The result is formalized as follows and the proof is deferred to Appx. D.5.
Theorem 6. Consider a constant sum two-player Markov games with reward such that
r(s, a, s′, a′) = 1 − r(s′, a′, s, a), then for each s1 ∈ supp(ν1) the updates for d in Alg. 3 co-
incides with the updates for the min player that uses the updates

dt+1
h (a|s) = argmin

d∈Fs1
β
〈
d, 2Es′,a′∼dthr(s

′, a′, ·, ·)− Es′,a′∼dt−1
h
r(s′, a′, ·, ·)

〉
+ D(d, dth) .

Furthermore, we can avoid the projection over the set F implementing this update on the policy
space (see Appendix E). We achieve such results following the techniques developed in Bas-Serrano
et al. (2021); Viano et al. (2022).

For the first iteration, we initialize d0h to be equal to d1h for all h. That is, at the first iteration, we
use the same update rule as in MPO. After the first iteration, we apply similar techniques as in MPO
by estimating the Q function and we use a tunable parameter to approximate the logZ term. We
illustrate the practical algorithm in Alg. 4.

5 EXPERIMENTS

In this section, we test the proposed algorithms with multi-turn conversations in MT-bench-101 (Bai
et al., 2024). Additional experimental detail, ablation studies, and experiments on math reasoning
tasks are deferred to Appx. F. We choose Mistral-7B-Instruct-v0.2 as the base model (Jiang et al.,
2023). We use a pre-trained PairRM 4 as the preference oracle. Specifically, given two conver-
sations [sh, ah] and [s′h, a

′
h], PairRM will return a score that indicates the probability that [sh, ah]

4https://huggingface.co/llm-blender/PairRM
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Figure 1: (a): Result of OMPO on the MT-bench-101 dataset; (b) Winning rate against the base
model with different approximations for the Q functions. When optimizing ah at the h step, only
considering the preference of sh is sufficient compared to using sh, . . . , sH+1.

is better than [s′h, a
′
h], which can be used to considered as the preference oracle P defined in the

previous section. We select iterative DPO (Dong et al., 2024), iterative SPPO (Wu et al., 2024),
and iterative Step-DPO as our baselines. For both iterative DPO and iterative SPPO, we sample
K = 5 complete conversations starting from s1, and estimate the winning rate P([skH+1, a

k
H+1] ≻

(sk
′

H+1, a
k′

H+1])∀k, k′ ∈ [K]. Then we select both the best and worst conversations according to
their winning rates against others, which is defined as 1

K

∑K
k′=1 P([skH+1, a

k
H+1] ≻ [sk

′

H+1, a
k′

H+1])

for the conversation [skH+1, a
k
H+1]. Such a pair is used to train DPO while the winning rate is used

to train SPPO. For both Step-DPO, MPO, and OMPO, we do the same strategy with starting at sh.
In MPO, and OMPO, we estimate Q(sh, ah, sh, a

′
h) by P([sh, ah], [sh, a′h]) to enhance the efficiency.

For OMPO, the Qπ
t,πt−1

term is estimated by calculating the winning rate between two answers (the
best and the worst) generated by the current policy πt and the five answers previously generated by
πt−1, the τ is selected as zero. Each method is trained with epochs number selected from {1, 2},
learning rates from {5e-6, 5e-7}, and β values from {0.1, 0.01, 0.001}. The final model is chosen
based on the highest winning rate against the base model, as determined by the PairRM model. We
use full-parameter fine-tuning for all methods with bf16 precision. A batch size of 64 is used. The
maximum output length and maximum prompt length during training are both set as 2048. We use
AdamW optimizer (Loshchilov & Hutter, 2019) and cosine learning rate schedule (Loshchilov &
Hutter, 2017) with a warmup ratio of 0.1. Each round of dialogue is rated on a scale of 1 to 10
by GPT-4o mini, with the mean score reported for each dialogue. All methods are run for a total
of 3 iterations. The results are summarized in Tab. 1, showing significant improvements over the
baselines with the proposed MPO and OMPO approaches. In Fig. 1(a), we present the Radar chart on
different categories and we can see that the proposed OMPO leads to improvements generally along
the iterations. Fig. 1(b) shows that using the entire trajectory to estimate the Q function can lead to
subtle improvement at the first two iterations while it finally achieves a similar winning rate when
compared to the one that only use one step.

6 CONCLUSION

This work presents a novel framework to enhance the preference alignment of large language models
in multi-step settings by casting the alignment process as a two-player Markov game. We introduce
novel algorithms based on natural actor-critic and optimistic online gradient descent, supported by
both theoretical analysis and empirical results. However, the limitations of this work include the
finite-horizon assumption in our theoretical framework, which may not fully capture real-world
conversations or reasoning processes that often span with different steps instead of a fixed step
H . Additionally, our practical algorithm requires querying a preference oracle, which may limit
its applicability in cases where such preference oracles are unavailable or when collecting human
feedback is costly. Future work should explore extending the theoretical framework to infinite-
horizon settings and finding more scalable methods for gathering preference feedback.
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ETHICS STATEMENT

Our work focuses on algorithmic innovations related to reinforcement learning with human feed-
back. We do not create any new benchmarks for human preferences nor solicit human preferences
for this study. As such, we do not expect any potential violations of ethical standards, including
those concerning the use of human data. Our contributions are primarily methodological and theo-
retical analysis of the convergence, and we have taken care to ensure that our work complies with
all relevant ethical guidelines.

REPRODUCIBILITY STATEMENT

In this work, we have provided the details on the experimental setup and the description of the dataset
at Sec. 5 and Appx. F.1. The dataset and language models used in this work are publicly available.
The source code of MPO and OMPO will be made public in the camera-ready version. Regarding the
theoretical results, we have clearly mentioned all of the assumptions, and all the complete proofs
can be found at Appx. D and Appx. E.
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Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

Chao-Kai Chiang, Tianbao Yang, Chia-Jung Lee, Mehrdad Mahdavi, Chi-Jen Lu, Rong Jin, and
Shenghuo Zhu. Online optimization with gradual variations. In Shie Mannor, Nathan Srebro, and
Robert C. Williamson (eds.), Proceedings of the 25th Annual Conference on Learning Theory,
volume 23 of Proceedings of Machine Learning Research, pp. 6.1–6.20, Edinburgh, Scotland,
25–27 Jun 2012. PMLR. URL https://proceedings.mlr.press/v23/chiang12.
html.

11

https://proceedings.mlr.press/v23/chiang12.html
https://proceedings.mlr.press/v23/chiang12.html


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Constantinos Daskalakis, Dylan J Foster, and Noah Golowich. Independent policy gradient methods
for competitive reinforcement learning. Advances in neural information processing systems, 33:
5527–5540, 2020.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf.
arXiv preprint arXiv:2405.07863, 2024.

Roy Fox, Ari Pakman, and Naftali Tishby. Taming the noise in reinforcement learning via soft
updates. arXiv preprint arXiv:1512.08562, 2015.

Yoav Freund and Robert E Schapire. Adaptive game playing using multiplicative weights. Games
and Economic Behavior, 29(1-2):79–103, 1999.

Martin Gardner. Mathematical games. Scientific american, 222(6):132–140, 1970.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without
reference model. arXiv preprint arXiv:2403.07691, 2(4):5, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Pooria Joulani, András György, and Csaba Szepesvári. A modular analysis of adaptive (non-)convex
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CONTENTS OF THE APPENDIX

The Appendix is organized as follows:

• In Appx. A, we summarize the symbols and notation used in this paper.
• Preliminaries on single-step RLHF can be found in Appx. B.
• In Appx. D, we provide the proofs for the theoretical results.
• Appx. E shows the implementation of Algorithm 3 with updates over policies.
• Appx. F.1 provides an overview of the MT-bench 101 benchmark in the experiment.

A SYMBOLS AND NOTATION

We include the core symbols and notation in Tab. 2 to facilitate the understanding of our work.

Table 2: Core symbols and notations used in this paper.
Symbol Dimension(s) & range Definition

xh - Prompt at step h
ah - Answer (action) at step h
sh - State at step h

s1(sh) - The only initial state that can lead to sh
π Language model (policy)
ν1 Initial distribution of state s1

dπh(s, a) [0, 1] Occupancy measure of π at stage h
f Transition function

Pr(sh = s, ah = a) [0, 1] Joint probability of sh = a and ah = a
o {0, 1} Preference oracle

P([s, a], [s′, a′)] [0, 1] Winning probability of [s, a] against [s′, a′)]
D(p∥q) KL divergence of two probability distributions p and q
D(p∥q) Bregman Divergences between two points q and p.
Dt Dataset buffet at iteration t
∆X [0, 1]|X| Set of probability distributions over the set X

O, o, Ω and Θ - Standard Bachmann–Landau order notation

We additionally use a compact notation for representing the Bellman flow constraints. We denote
by E ∈ R|S|×|A||S| the matrix such that (Ez)(s, a) = z(s) for all vectors z ∈ R|S|. Additionally,
we denote by F the matrix such that (Fz)(s, a) =

∑
s′ f(s

′|s, a)z(s′) for all vectors z ∈ R|S|.

B PRELIMINARY ON SINGLE-STEP RLHF

In this section, we review the earlier methods in single-step RLHF. Classical RLHF methods (Ziegler
et al., 2019; Ouyang et al., 2022) assume that the preference oracle can be expressed by an underly-
ing Bradley-Terry (BT) reward model (Bradley & Terry, 1952), i.e.,

P([x1, a1] ≻ [x1, a
′
1]) = σ(r(x1, a1)− r(x1, a′1)) .

Thus, one can first learn a reward model and optimize the policy based on the following KL-
constrained RL objective with PPO:

π⋆ = argmax
π

Ex1∼ν1,a1∼π(·|x1)(r(x1, a1)− βD(π(·|x1)||πref(·|x1))) ,

where β is a parameter controlling the deviation from the reference model πref . Another line of
work, e.g., DPO (Rafailov et al., 2023) avoids explicit reward modeling and optimizes the following
objective over pair-wise preference data (x1, a

w
1 , a

l
1).

π⋆ = argmax
π

E(x1,aw1 ,a
l
1)∼D

[
log σ

(
β log

π(aw1 |x1)
π1(aw1 |x1)

− β log π(al1|x1)
π1(al1|x1)

)]
.
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More recently, several studies (Swamy et al., 2024; Munos et al., 2024; Wu et al., 2024; Zhang et al.,
2024; Rosset et al., 2024) have circumvented the Bradley-Terry (BT) assumption by directly model-
ing the general oracle P, avoiding the reliance on the reward model which is transitive. Specifically,
the goal is to identify the Nash equilibrium (or von Neumann winner) of the following two-player
constant-sum game:

(π∗, π∗) = argmax
π

min
π′

Ex1∼ν1,a1∼π(·|x1),a′1∼π′(·|x1)P([x1, a1] ≻ [x1, a
′
1]) .

C ADDITIONAL DISCUSSION ON RELATED WORK

C.1 RELATED WORK ON TOKEN-LEVEL PREFERENCE OPTIMIZATION

A line of work formulates the alignment of contextual bandit problems in LLMs (Example.1) from
token-level MDPs perspective (Rafailov et al., 2024; Zeng et al., 2024; Liu et al., 2024a). In Rafailov
et al. (2024), by defining the reward at each token before the terminal token as the generation like-
lihood and using the maximum entropy RL objective, the authors derive the original objective of
DPO from a new perspective that incorporates token-level rewards. Zeng et al. (2024) assume that
the reward for a response can be decomposed into token-level rewards at each token. Then they de-
sign a token-level objective function based on Trust Region Policy Optimization, adding token-level
KL divergence constraints to the DPO objective in the final algorithm. More recently, Liu et al.
(2024a) study how the difference in average rewards between chosen and rejected responses affects
the optimization stability, designing a new algorithm where importance sampling weights are as-
signed to each token-level reward. There are two main differences between the multi-step alignment
approach in our work and those in previous work. First, while Rafailov et al. (2024); Zeng et al.
(2024); Liu et al. (2024a) develop alignment methods based on the Bradley-Terry model with tran-
sitive rewards, our framework is motivated by a two-player game with relative rewards. Secondly,
although Rafailov et al. (2024); Zeng et al. (2024); Liu et al. (2024a) formulate the alignment pro-
cess as an MDP, their final objective is tailored to a contextual bandit problem in LLMs. In contrast,
our objective is designed for a multi-step alignment problem, suited for multi-turn conversation or
chain-of-thought reasoning.

C.2 DISCUSSION ON THE DIFFERENCE FROM SPPO

Next, we elaborate on the difference with SPPO (Wu et al., 2024) below: Firstly, the theoretical
analysis of the proposed MPO differs from that of SPPO due to differences in the settings. SPPO
considers the contextual bandit problem and builds its analysis based on the game matrix from Fre-
und & Schapire (1999). In our case, however, we frame the problem as a Markov game and employ
a distinct theoretical analysis apart from Freund & Schapire (1999). Specifically, in our proof, we
(i) use the performance difference lemma to rewrite the global regret as weighted average of local
regrets and (ii) control the local regrets with multiplicative weights updates. Secondly, a new algo-
rithm, OMPO, is developed in this work with a novel theoretical guarantee. In the case where the
horizon H = 1, the update of OMPO reduces to

πt+1(a|s) ∝ πt(a|s) exp [β(2P(a ≻ πt(·|s))− P(a ≻ πt−1(·|s)))],
while the update of SPPO is

πt+1(a|s) ∝ πt(a|s) exp [β(P(a ≻ πt(·|s)))].
As a result, OMPO enables O(ϵ−1) policy updates to converge to an ϵ-approximate Nash equilib-
rium instead of O(ϵ−2), according to our theoretical analysis.

D PROOFS

D.1 PROOF OF LEMMA 1

Proof. By the definition of the state action value function for the policy pair (π, π′) we have that

Qπ,π
′

h (s, a, s′, a′) = r(s, a, s′, a′) + E
[ H∑
h′=h+1

r(sh′ , ah′ , s′h′ , a′h′)
]
.
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Now, using tower property of the expectation we have that

Qπ,π
′

h (s, a, s′, a′)

= r(s, a, s′, a′) + Es′′∼f(·|s,a),s̄∼f(·|s′,a′)
[
E
[ H∑
h′=h+1

r(sh′ , ah′ , s′h′ , a′h′)|sh+1 = s′′, s′h+1 = s̄
]]

= r(s, a, s′, a′) + Es′′∼f(·|s,a),s̄∼f(·|s′,a′)
[
V π,π

′
(s′′, s̄)

]
,

where the last equality follows from the definition of the state value function.

D.2 PROOF OF LEMMA 2

Proof. Let us consider the Bellman equation in vectorial form for the policy pair (π′, π̄), that is

rh + FV π
′,π̄

h+1 = Qπ
′,π̄
h ,

where F denoted the transition matrix induced by the transition function f : S2 × A → ∆S×S .
Now, multiplying by the occupancy measure of the policy pair (π, π̄) at stage h we obtain〈

dπ,π̄h , rh
〉
+
〈
dπ,π̄h , FV π

′,π̄
h+1

〉
=
〈
dπ,π̄h , Qπ

′,π̄
h

〉
.

At this point, using the Bellman flow constraints Puterman (1994), it holds that

FT dπ,π̄h = ET dπ,π̄h+1,

where E ∈ R|S|2|A|×|S|2 such that (ETV )(s, a) = V (s) for all V ∈ R|S|2 . Plugging this equality
in the Bellman equation above we obtain〈

dπ,π̄h , rh
〉
+
〈
dπ,π̄h+1, EV

π′,π̄
h+1

〉
=
〈
dπ,π̄h , Qπ

′,π̄
h

〉
.

Now, subtracting on both sides
〈
dπ,π̄h , EV π

′,π̄
h

〉
and rearranging, it holds that

〈
dπ,π̄h , rh

〉
+
〈
dπ,π̄h+1, EV

π′,π̄
h+1

〉
−
〈
dπ,π̄h , EV π

′,π̄
h

〉
=
〈
dπ,π̄h , Qπ

′,π̄
h − EV π

′,π̄
h

〉
.

After this, taking sum from h = 1 to H and recognizing that for all policy pairs (π, π′) it holds that
V π,π

′

H+1 = 0, it holds that

H∑
h=1

〈
dπ,π̄h , rh

〉
−
〈
dπ,π̄1 , EV π

′,π̄
1

〉
=

H∑
h=1

〈
dπ,π̄h , Qπ

′,π̄
h − EV π

′,π̄
h

〉
.

Then, notice that for all policies π, π̄ it holds that
∑H
h=1

〈
dπ,π̄h , rh

〉
= ⟨ν1, V π,π̄⟩. Plugging in these

observations, we get 〈
ν1, V

π,π̄ − V π
′,π̄
〉
=

H∑
h=1

〈
dπ,π̄h , Qπ

′,π̄
h − EV π

′,π̄
h

〉
.

Therefore, expanding the expectation, and noticing that dπ,π̄h (s, a, s′, a′|s1) =
dπh(s, a|s1)dπ̄h(s′, a′|s1) for all h, s, a, s′, a′ and conditioning s1, we get that〈

ν1, V
π,π̄ − V π

′,π̄
〉

= Es1∼ν1
H∑
h=1

Es∼dπh|s1
[〈

Es′,a′∼dπ̄h|s1Q
π′,π̄
h (s, ·, s′, a′), πh(·|s, s1)− π′

h(·|s, s1)
〉]
.
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D.3 PROOF OF THM. 4

Proof. We set π̄Th (ah|sh) =
∑T
t=1 d

πt

h (sh,ah)∑T
t=1 d

πt

h (sh)
, where d(s) is the marginal distribution of d(s, a) on

state s, and π̄T = (π̄Th )
H
h=1. We shows that dπ̄

T

h = 1
T

∑T
t=1 d

πt

h by induction. h = 1 holds by
definition. Assuming on step h, the equation holds, we have

dπ̄
T

h+1(sh+1, ah+1) = dπ̄
T

h+1(sh+1)π̄
T
h+1(ah+1|sh+1)

=
∑

sh,ah∼π̄Th (·|sh)

dπ̄
T

h (sh, ah)f(sh+1|sh, ah)π̄Th+1(ah+1|sh+1)

=
∑

sh,ah∼π̄Th (·|sh)

1

T

T∑
t=1

dπ
t

h (sh, ah)f(sh+1|sh, ah)π̄Th+1(ah+1|sh+1)

=
1

T

T∑
t=1

dπ
t

h+1(sh+1)π̄
T
h+1(ah+1|sh+1)

=
1

T

T∑
t=1

dπ
t

h+1(sh+1, ah+1),

where the last equation holds by definition of π̄Th+1. Therefore, h + 1 holds, and the π̄T satisfy all
equations for h ∈ [H].

Using the value difference Lemma 2 we have that for any π⋆ ∈ Π〈
ν1, V

π⋆,πt − V π
t,πt
〉

= Es1∼ν1
H∑
h=1

Es∼dπ⋆h |s1

[〈
E
s′,a′∼dπth |s1Q

πt,πt

h (s, ·, s′, a′), π⋆h(·|s)− πth(·|s)
〉]
.

Therefore, summing over t from t = 1 to T we obtain

T∑
t=1

〈
ν1, V

π⋆,πt − V π
t,πt
〉

= Es1∼ν1
H∑
h=1

Es∼dπ⋆h |s1

[
T∑
t=1

〈
E
s′,a′∼dπth |s1Q

πt,πt

h (s, ·, s′, a′), π⋆h(·|s)− πth(·|s)
〉]

.

Therefore, we need to control the local regrets at each state s with loss ℓth(s, s1) :=

E
s′,a′∼dπth |s1Q

πt,πt

h (s, ·, s′, a′). To this end, we can invoke a standard convergence result for on-
line mirror descent (Orabona, 2023, Theorem 6.10) we obtain that at each state we have

T∑
t=1

〈
ℓth(s, s1), π

⋆(·|s)− πt(·|s)
〉
≤ D(π⋆(·|s), π1(·|s))

β
+ β

T∑
t=1

∥ℓth(s, s1)∥
2
∞.

Now, noticing that we have ∥ℓth(s, s1)∥∞ ≤ H it holds that

T∑
t=1

〈
ℓth(s), π

⋆
h(·|s)− πth(·|s)

〉
≤ D(π⋆h(·|s), π1

h(·|s))
β

+ βTH2.

Finally, using the assumption that π1(a|s) ≥ π for all s, a ∈ S × A it holds that

D(π⋆(·|s), π1(·|s)) ≤ log π−1. Therefore, choosing β =
√

log π−1

TH2 it holds that

T∑
t=1

〈
ℓth(s, s1), π

⋆(·|s)− πt(·|s)
〉
≤ 2H

√
T log π−1.
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Thus, we conclude that
T∑
t=1

〈
ν1, V

π⋆,πt − V π
t,πt
〉
≤ 2H2

√
T log π−1.

By the antisimmetry of the game, the same proof steps
T∑
t=1

〈
ν1, V

πt,πt − V π
t,π̄⋆
〉
≤ 2H2

√
T log π−1.

Therefore, it holds that for all π⋆, π̄⋆ ∈ Π

T∑
t=1

〈
ν1, V

π⋆,πt − V π
t,π⋆
〉
≤ 4H2

√
T log π−1.

Then, define π̄T the trajectory level mixture policy as in Swamy et al. (2024), i.e. such that dπ̄
T

h =
1
T

∑T
t=1 d

πt

h for all stages h ∈ [H]. This implies that V π̄
T ,π⋆ = 1

T

∑T
t=1 V

πt,π⋆ , and V π
⋆,π̄T =

1
T

∑T
t=1 V

π⋆,πt .

Therefore, we have that 〈
ν1, V

π⋆,π̄T − V π̄
T ,π̄⋆

〉
≤ 4H2

√
log π−1

T
.

Finally, selecting π⋆ =
〈
ν1, argmaxπ∈Π V

π,π̄T
〉

and π̄⋆ =
〈
ν1, argminπ∈Π V

π̄T ,π
〉

, we obtain
that

max
π∈Π

〈
ν1, V

π,π̄T
〉
−min
π∈Π

〈
ν1, V

π̄T ,π
〉
≤ 4H2

√
log π−1

T
.

This implies that 〈
ν1, V

π̄T ,π̄T
〉
−min
π∈Π

〈
ν1, V

π̄T ,π
〉
≤ 4H2

√
log π−1

T
,

and

max
π∈Π

〈
ν1, V

π,π̄T
〉
−
〈
ν1, V

π̄T ,π̄T
〉
≤ 4H2

√
log π−1

T
,

Therefore, setting T = 16H4 log π−1

ϵ2 we obtain an ϵ-approximate Nash equilibrium.

D.4 PROOF OF THEOREM 5

Proof. The optimization problem

argmax
d∈F̃

min
d′∈F̃

Es1∼ν1
H∑
h=1

∑
s,a,s′,a′

dh(s, a|s1)r(s, a, s′, a′)d′h(s′, a′|s1)

can be carried out individually over possible initial states. That is for each s1 ∈ supp(ν1) we aim at
solving

argmax
d∈Fs1

min
d′∈Fs1

H∑
h=1

∑
s,a,s′,a′

dh(s, a|s1)r(s, a, s′, a′)d′h(s′, a′|s1)

To this end for any s1, we consider ϕth ∈ F and ψth ∈ F which are generated by the following
updates

ϕt+1
h = argmax

ϕ∈Fs1
β
〈
ϕ, 2Es′,a′∼ψtrh(·, ·, s′, a′)− Es′,a′∼ψt−1rh(·, ·, s′, a′)

〉
− D(ϕ, ϕth),

and

ψt+1
h = argmin

ψ∈Fs1
β
〈
ψ, 2Es′,a′∼ϕtrh(s′, a′, ·, ·)− Es′,a′∼ϕt−1rh(s

′, a′, ·, ·)
〉
+ D(ψ,ψth),
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In order to prove convergence to an ϵ-approximate Nash equilibrium, we need to control the quantity

Gaps1 =
1

T

H∑
h=1

T∑
t=1

〈
θth, ϕ

t
h − ϕ⋆h

〉
+

1

T

H∑
h=1

T∑
t=1

〈
ζth, ψ

t
h − ψ⋆h

〉
,

for θth(s, a) =
∑
s′,a′ ψ

t
h(s

′, a′)rh(s, a, s
′, a′) and ζth(s

′, a′) = −
∑
s,a ϕ

t
h(s, a)rh(s, a, s

′, a′). At
this point, we bound the local regret term with the OMPO update. We have that for any ϕh ∈ F

β
〈
2θth − θt−1

h , ϕh − ϕt+1
h

〉
= β

〈
θth − θt+1

h , ϕh − ϕt+1
h

〉
+ β

〈
θth + θt+1

h − θt−1
h , ϕh − ϕt+1

h

〉
= β

〈
θth − θt+1

h , ϕh − ϕt+1
h

〉
+ β

〈
θth − θt−1

h , ϕh − ϕth
〉

+ β
〈
θth − θt−1

h , ϕth − ϕt+1
h

〉
+ β

〈
θt+1
h , ϕh − ϕt+1

h

〉
.

At this point, we work on the third summand above

β
〈
θth − θt−1

h , ϕth − ϕt+1
h

〉
≤ β2λ∥θth − θt−1

h ∥2∞ +
1

4λ
∥ϕth − ϕt+1

h ∥
2
1.

In addition, we have that∥θth − θ
t−1
h ∥∞ ≤ ∥ψth − ψ

t−1
h ∥1 and we can apply the 1/λ strong convexity

of D, we obtain

β
〈
θth − θt−1

h , ϕth − ϕt+1
h

〉
≤ λβ2∥ψth − ψt−1

h ∥21 +
1

2
D(ϕt+1

h , ϕth).

On the other hand, by the three point identity we have that for all ϕ ∈ F

D(ϕh, ϕt+1
h ) = D(ϕh, ϕth)− D(ϕt+1

h , ϕth) +
〈
∇D(ϕt+1

h , ϕth), ϕ
t+1
h − ϕh

〉
Then, using the property of the update rule, we obtain that〈

∇D(ϕt+1
h , ϕth), ϕ

t+1
h − ϕh

〉
≤ β

〈
2θth − θt−1

h , ϕh − ϕt+1
h

〉
.

Putting all the pieces together we have that

D(ϕh, ϕt+1
h ) ≤ D(ϕh, ϕth)− D(ϕt+1

h , ϕth) + β
〈
2θth − θt−1

h , ϕh − ϕt+1
h (·|s)

〉
≤ D(ϕh, ϕth)− D(ϕt+1

h , ϕth)

+ β
〈
θth − θt+1

h , ϕh − ϕt+1
h

〉
+ β

〈
θth − θt−1

h , ϕh − ϕth
〉

+ β2∥ψth − ψt−1
h ∥21 +

1

2
D(ϕt+1

h , ϕth)

+ β
〈
θt+1
h , ϕh − ϕt+1

h

〉
.

Now, rearranging the terms we get

β
〈
θt+1
h , ϕh − ϕt+1

h

〉
≤ D(ϕh, ϕth)− D(ϕh, ϕt+1

h )− 1

2
D(ϕt+1

h , ϕth)

+ β
〈
θth − θt+1

h , ϕh − ϕt+1
h

〉
+ β

〈
θth − θt−1

h , ϕh − ϕth
〉

+ β2λ∥ψth − ψt−1
h ∥21.

Now, denoting Φtϕ := D(ϕh, ϕth) + β
〈
θth − θ

t−1
h , ϕh − ϕth

〉
and summing over t we obtain

β

T∑
t=1

〈
θth, ϕh − ϕth

〉
≤

T∑
t=1

Φt−1
ϕ − Φtϕ −

1

2

T∑
t=1

D(ϕth, ϕ
t−1
h ) + β2λ

T∑
t=1

∥ψt−1
h − ψt−2

h ∥21.
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Similarly we get

β

T∑
t=1

〈
ζt(s, ·), ψth − ψth

〉
≤

T∑
t=1

Φt−1
ψ − Φtψ −

1

2

T∑
t=1

D(ψth, ψ
t−1
h ) + β2λ

T∑
t=1

∥ϕt−1
h − ψt−2

h ∥21.

Now, using 1/λ strong convexity of D and summing the two terms we have that

βTGaps1,h ≤ Φ0 − ΦT−1 − 1

2

T∑
t=1

(D(ψth, ψ
t−1
h ) + D(ϕth, ϕ

t−1
h ))

+ 2β2λ

T∑
t=1

(D(ψt−1
h , ψt−2

h ) + D(ϕt−1
h , ϕt−2

h )),

with Φt = Φtϕ +Φtψ . At this point, setting β ≤ 1√
2λ

, we obtain a telescopic sum

βTGaps1,h

≤ Φ0 − ΦT−1 − 1

2

T∑
t=1

(D(ψth, ψ
t−1
h ) + D(ϕth, ϕ

t−1
h )− D(ψt−1

h , ψt−2
h )− D(ϕt−1

h , ϕt−2
h ))

≤ Φ0 − ΦT−1 +
1

2

(
D(ψ1

h, ψ
0
h) + D(ϕ1h, ϕ0h)

)
.

Now recalling that by assumption the occupancy measure of the reference policy is lower bounded,
i.e. dπ

1 ≥ d, we can upper bound Φ0 − ΦT ≤ 2 log d−1 + 8β that allows to conclude that for all
n ∈ [N ] and setting ψ0

h = ψ1
h and ϕ1h = ϕ0h,

Gaps1,h ≤
2 log d−1 + 8β

βT
≤ 10 log d−1

βT
.

Now, notice that Gap can be rewritten as

Gaps1 =

H∑
h=1

Gaps1,h

=
1

T

T∑
t=1

H∑
h=1

∑
s,a,s′,a′

ψ⋆h(s
′, a′)rh(s, a, s

′, a′)ϕth(s, a)

− 1

T

T∑
t=1

H∑
h=1

∑
s,a,s′,a′

ψth(s
′, a′)rh(s, a, s

′, a′)ϕ⋆h(s, a)

=

H∑
h=1

∑
s,a,s′,a′

ψ⋆h(s
′, a′)rh(s, a, s

′, a′)
1

T

T∑
t=1

ϕth(s, a)

−
H∑
h=1

∑
s,a,s′,a′

1

T

T∑
t=1

ψth(s
′, a′)rh(s, a, s

′, a′)ϕ⋆h(s, a)

=

H∑
h=1

∑
s,a,s′,a′

ψ⋆h(s
′, a′)rh(s, a, s

′, a′)ϕ̄h(s, a)−
H∑
h=1

∑
s,a,s′,a′

ψ̄h(s
′, a′)rh(s, a, s

′, a′)ϕ⋆h(s, a) .

At this point, let us define πout
ϕ (a|s) = ϕ̄(s,a)∑

a ϕ̄(s,a)
and πout

ψ (a|s) = ψ̄(s,a)∑
a ψ̄(s,a)

. For such policies and
by appropriate choice for ψ⋆ and ϕ⋆ it follows that

Gaps1 = max
ψ

V π
out
ϕ ,ψ(s1)−min

ϕ
V ϕ,π

out
ψ (s1).

By the bound on Gaps1 for each s1 ∈ supp(ν1), it follows that〈
ν1,max

ψ
V π

out
ϕ ,ψ −min

ϕ
V ϕ,π

out
ψ

〉
= Es1∼ν1Gaps1 ≤

10H log d−1

βT
,

therefore T ≥ 10H log d−1

βϵ . The proof is concluded invoking Thm. 6 that ensures that the policies
πout
ψ and πout

ϕ coincide.
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D.5 PROOF OF THEOREM 6

Proof. Let us consider two players performing the following updates

ϕt+1
h = argmax

ϕ∈Fs1
β
〈
ϕ, 2Es′,a′∼ψtrh(·, ·, s′, a′)− Es′,a′∼ψt−1rh(·, ·, s′, a′)

〉
− D(ϕ, ϕth),

and

ψt+1
h = argmin

ψ∈Fs1
β
〈
ψ, 2Es′,a′∼ϕtrh(s′, a′, ·, ·)− Es′,a′∼ϕt−1rh(s

′, a′, ·, ·)
〉
+ D(ψ,ψth).

The goal is to proof that the iterates generated by the two updates are identical. We will prove this
fact by induction. The base case holds by initialization which gives ϕ0h = ψ0

h for all h ∈ [H]. Then,
let us assume by the induction step that ψth = ϕth for all h ∈ [H], then

ϕt+1
h

= argmax
ϕ∈Fs1

β
〈
ϕ, 2Es′,a′∼ψtrh(·, ·, s′, a′)− Es′,a′∼ψt−1rh(·, ·, s′, a′)

〉
− D(ϕ, ϕth)

= argmax
ϕ∈Fs1

β
〈
ϕ,−2Es′,a′∼ψtrh(s′, a′, ·, ·) + Es′,a′∼ψt−1rh(s

′, a′, ·, ·)
〉
− D(ϕ, ϕth) + β ⟨ϕ,1⟩

(Antisymmetric Reward)

= argmax
ϕ∈Fs1

β
〈
ϕ,−2Es′,a′∼ψtrh(s′, a′, ·, ·) + Es′,a′∼ψt−1rh(s

′, a′, ·, ·)
〉
− D(ϕ, ϕth) + β

(Normalization of ϕ)

= argmax
ϕ∈Fs1

β
〈
ϕ,−2Es′,a′∼ψtrh(s′, a′, ·, ·) + Es′,a′∼ψt−1rh(s

′, a′, ·, ·)
〉
− D(ϕ, ϕth)

(β does not depend on ϕ)

= argmax
ϕ∈Fs1

β
〈
ϕ,−2Es′,a′∼ϕtrh(s′, a′, ·, ·) + Es′,a′∼ϕt−1rh(s

′, a′, ·, ·)
〉
− D(ϕ, ψth)

(Inductive Hypothesis)

= argmin
ψ∈Fs1

β
〈
ψ, 2Es′,a′∼ϕtrh(s′, a′, ·, ·)− Es′,a′∼ϕt−1rh(s

′, a′, ·, ·)
〉
+ D(ψ,ψth)

(Renaming the optimization variable and argmax
x

f(x) = argmin
x

−f(x))

= ψt+1
h .

E IMPLEMENTATION OF ALGORITHM 3 WITH UPDATES OVER POLICIES.

In this section, we explain how the update in Algorithm 3 for different choices of D. In both cases,
we will derive an update that can be summarized by following template. Let us define rth(s, a) =

Es′,a′∼dthr(s, a, s
′, a′) and rt−1

h (s, a) = Es′,a′∼dt−1
h
r(s, a, s′, a′)

• Compute the Qth function corresponding to the reward function 2rth − r
t−1
h minimizing a

loss function that depends on the choice of D.
• Update the policy as

πt+1
h (a|s) ∝ πth(a|s) exp

(
βQth(s, a)

)
.

Finally, in Appx. E.3 we show that for D being the conditional relative entropy and for β small
enough the value function Qth is well approximated by the standard Bellman equations.
Remark 6. Both choices of the Bregman divergence are 1 strongly convex so Thm. 5 applies with
λ = 1.

In the following we consider a generic reward function r̃. In our setting, we will apply the following
results for r̃h = 2rth − r

t−1
h in order to implement the updates of Alg. 3 for the different values of h

and t.
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E.1 D CHOSEN AS THE SUM OF CONDITIONAL AND RELATIVE ENTROPY

In this section, we explain how to implement the occupancy measure update in Algorithm 3
over policies. We use the machinery for single agent MDPs introduced in Bas-Serrano et al.
(2021). In particular, we consider the Bregman divergence given by the sum of the relative en-
tropy D(d, d′) =

∑
s,a d(s, a) log

(
d(s,a)
d′(s,a)

)
and of the conditional relative entropy given, i.e.

H(d, d′) =
∑
s,a d(s, a) log

(
πd(a|s)
πd′ (a|s)

)
with πd(a|s) = d(s, a)/

∑
a d(s, a). Under this choice

for D, the update of Algorithm 3 for particular values of h, t, s1 corresponds to the solution of the
following optimization program

dt+1
h = argmax

d∈∆H

H∑
h=1

⟨dh, r̃h⟩ −
1

β
D(dh, d

t
h)−

1

β
H(dh, d

t
h),

s.t. ET dh = FT dh−1 ∀h ∈ [H]. (Update I)

Theorem 7. The policy πt+1
h with occupancy measure dt+1

h defined in Eq. (Update I) can be com-
puted as follows

πt+1
h (a|s) ∝ πth(a|s) exp

(
βQth(s, a)

)
,

where Qth is the minimizer of the following loss

1

β

H∑
h=1

log
∑
s,a

µth(s, a) exp (β(2r̃h + PVh+1 −Qh)(s, a)) + ⟨ν1, V1⟩ ,

while V th+1 is given by the following closed form.

V th+1(s) =
1

β
log
∑
a

πth(a|s) exp(βQth+1(s, a)).

Proof. Let us introduce an auxiliary variable µh = dh for all h ∈ [H], then we can rewrite the
optimization program as

argmax
d∈∆H

max
µ∈∆H

H∑
h=1

⟨µh, r̃h⟩ −
1

β
D(µh, µ

t
h)−

1

β
H(dh, d

t
h),

s.t. ET dh = FTµh−1 ∀h ∈ [H],

s.t. µh = dh ∀h ∈ [H].

Then, by Lagrangian duality we have that

max
d∈∆H

max
µ∈∆H

min
Q,V

H∑
h=1

⟨µh, r̃⟩ −
1

β
D(µh, µ

t
h)−

1

β
H(dh, d

t
h)

+
〈
−ET dh + FTµh−1, Vh

〉
+ ⟨Qh, dh − µh⟩

= max
d∈∆H

max
µ∈∆H

min
Q,V

H∑
h=1

⟨µh, r̃ + FVh+1 −Qh⟩+ ⟨dh, Qh − EVh⟩

− 1

β
D(µh, µ

t
h)−

1

β
H(dh, d

t
h)

+ ⟨ν1, V1⟩ = L⋆ .
Then, by Lagrangian duality, we have that the objective is unchanged by swapping the min and max

L⋆ = min
Q,V

max
d∈∆H

max
µ∈∆H

H∑
h=1

⟨µh, r̃h + FVh+1 −Qh⟩+ ⟨dh, Qh − EVh⟩

− 1

β
D(µh, µ

t
h)−

1

β
H(dh, d

t
h) + ⟨ν1, V1⟩ .
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The inner maximization is solved by the following values

µ+
h (Q,V ) ∝ µth ⊙ exp (β(r̃h + FVh+1 −Qh)) ,

π+
h (Q,V ; s) ∝ πth(·|s)⊙ exp (β(Qh(s, ·)− Vh(s))) ,

where ⊙ denotes the elementwise product between vectors. Then, replacing these values in the
Lagrandian and parameterizing the functions Vh by the functions Qh to ensure normalization of the
policy, i.e. Vh(s) = 1

β log
∑
a π

t
h(a|s) exp(βQh(s, a)) we have that

L⋆ = min
Q

1

β

H∑
h=1

log
∑
s,a

µth(s, a) exp (β(r̃h + FVh+1 −Qh)(s, a)) + ⟨ν1, V1⟩ .

Therefore, denoting

Qth = argmin
Q

1

β

H∑
h=1

log
∑
s,a

µth(s, a) exp (β(r̃h + FVh+1 −Qh)(s, a)) + ⟨ν1, V1⟩ ,

and V th = 1
β log

∑
a π

t
h(a|s) exp(βQth(s, a)), we have that the policy πt+1

h (·|s) = π+
h (Q

t, V t; s)

has occupancy measure equal to dt+1
h for all h ∈ [H]. This is because by the constraints of the

problem we have that dt+1
h satisfies the Bellman flow constraints and that the policy πt+1

h satisfies
πt+1
h (a|s) = dth(s, a)/

∑
a d

t
h(s, a).

E.2 D CHOSEN AS CONDITIONAL RELATIVE ENTROPY NEU ET AL. (2017)

In this section, we study the update considering D chosen as sum of the conditional relative entropy
over the stages h′ s.t. 1 ≤ h′ ≤ h, i.e. we study the following update.5

dt+1 = argmax
d∈∆H

H∑
h=1

(
⟨dh, r̃h⟩ −

1

β

h∑
h′=1

H(dh′ , dth′)

)
,

s.t. ET dh = FT dh−1 ∀h ∈ [H]. (6)

Theorem 8. The policy πt+1
h with occupancy measure dt+1

h defined in Eq. (6) can be computed as
follows

πt+1
h (a|s) ∝ πth(a|s) exp

(
β

H − h+ 1
(Qth(s, a))

)
,

where Qth and V th+1 satisfies the following recursion

Qth = r̃h + FV th+1

V th+1(s) =
H − h+ 1

β
log
∑
a

πth(a|s) exp
(

β

H − h+ 1
Qth+1(s, a)

)
.

Remark 7. The above recurrencies are sometimes called soft Bellman equations Ziebart (2010);
Fox et al. (2015).

Proof. Let us introduce an auxiliary variable µh = dh for all h ∈ [H], then we can rewrite the
optimization program as

argmax
d∈∆H

max
µ

H∑
h=1

(
⟨µh, r̃h⟩ −

1

β

h∑
h′=1

H(dh′ , dth′)

)
s.t. ET dh = FTµh−1 ∀h ∈ [H]

s.t. µh = dh ∀h ∈ [H].

5The sum over previous stages is taken to ensure 1-strong convexity. Indeed, it holds that∑h
h′=1 H(dh′ , d′h′) ≥ D(dh, d

′
h) ≥ 1

2
∥dh − d′h∥21. The first inequality is proven in (Neu & Olkhovskaya,

2021, Lemma 7).
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Notice that importantly, we do not constraint the variable µ. Then, by Lagrangian duality we have
that

max
d∈∆H

max
µ

min
Q,V

H∑
h=1

⟨µh, r̃h⟩ −
1

β

h∑
h′=1

H(dh′ , dth′)

+
〈
−ET dh + FTµh−1, Vh

〉
+ ⟨Qh, dh − µh⟩

= max
d∈∆H

max
µ

min
Q,V

H∑
h=1

⟨µh, r̃h + FVh+1 −Qh⟩+ ⟨dh, Qh − EVh⟩

− 1

β

h∑
h′=1

H(dh′ , dth′) + ⟨ν1, V1⟩

= min
Q,V

max
d∈∆H

max
µ

H∑
h=1

⟨µh, r̃h + FVh+1 −Qh⟩+ ⟨dh, Qh − EVh⟩

− H − h+ 1

β
H(dh, d

t
h) + ⟨ν1, V1⟩ = L̃⋆,

where the last equality holds by Lagrangian duality and by
∑H
h=1

∑h
h′=1H(dh′ , dth′) =

∑H
h=1(H−

h+1)H(dh′ , dth′). Now since µ is unconstrained we have that maxµ
∑H
h=1 ⟨µh, r̃h + FVh+1 −Qh⟩

is equivalent to impose the constraint r̃h + FVh+1 = Qh for all h ∈ [H]. More-
over, as in the proof of Thm. 7 the optimal dh needs to satisfies that πdh(a|s) =

dh(s, a)/
∑
a dh(s, a) is equal to π+

h (Q,V ; s) = πth(·|s) ⊙ exp
(

β
H−h+1 (Qh(s, ·)− Vh(s))

)
for

Vh(s) = H−h+1
β log

∑
a π

t
h(a|s) exp(

β
H−h+1Qh(s, a)). Plugging in, these facts in the expression

for L̃⋆, we have that

L̃⋆ = min
Q
⟨ν1, V1⟩ s.t. r̃h + FVh+1 = Qh ∀h ∈ [H].

Since the above problem as only one feasible point, we have that the solution is
the sequence Qth satisfying the recursion r̃h + FV th+1 = Qth with V th(s) =
H−h+1

β log
∑
a π

t
h(a|s) exp(

β
H−h+1Q

t
h(s, a)).

E.3 APPROXIMATING SOFT BELLMAN EQUATIONS BY STANDARD BELLMAN EQUATIONS.

Unfortunately, implementing the update for the V value as in Theorem 7 is often numerically insta-
ble. In this section, we show a practical approximation which is easy to implement and shown to be
accurate for β sufficiently small.

Theorem 9. Let us denote βh = β
H−h+1 and let us assume that the values Qth generated by the soft

Bellman equations in Thm. 8 are uniformly upper bounded by Qmax, and let us choose βh ≤ 1
Qmax

for all h ∈ [H]. Then, it holds that

〈
πth(·|s), Qth(s, ·)

〉
≤ 1

βh
log
∑
a

πth(a|s) exp(βhQth(s, a)) ≤
〈
πth(·|s), Qth(s, ·)

〉
+ βhQ

2
max .

Proof.

1

βh
log
∑
a

πth(a|s) exp(βhQth(s, a)) ≥
1

βh

∑
a

πth(a|s) log exp(βhQth(s, a))

=
〈
πth(·|s), Qth(s, ·)

〉
,
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where the above inequality holds for Jensen’s. For the upper bound, we first use the inequality
ex ≤ 1 + x+ x2 for x ≤ 1 we have that

1

βh
log
∑
a

πth exp(βhQ
t
h(s, a))

≤ 1

βh
log
∑
a

πth(1 + βhQ
t
h(s, a) + β2

hQ
2
max) (Using Qth(s, a) ≤ Qmax)

=
1

βh
log(1 + βh

∑
a

πth(a|s)Qth(s, a) + β2
hQ

2
max)

≤ 1

βh

(∑
a

πth(a|s)βhQth(s, a) + β2
hQ

2
max

)
(Using log(1 + x) ≤ x)

≤
〈
πth(·|s), Qth(s, ·)

〉
+ βhQ

2
max.

Remark 8. Given this result, in the implementation for deep RL experiment, i.e. Algorithm 4 we
compute the standard Q value satisfying the standard Bellman equations (given in Lemma 1) rather
than the soft Bellman equation in Thm. 7. In virtue of Thm. 9, the approximation is good for β
reasonably small.

F ADDITIONAL EXPERIMENT

F.1 EXPERIMENT IN MT-BENCH 101

The tasks in MT-bench 101 include Context Memory (CM), Anaphora Resolution (AR), Separate
Input (SI), Topic Shift (TS), Content Confusion (CC), Content Rephrasing (CR), Format Rephrasing
(FR), Self-correction (SC), Self-affirmation (SA), Mathematical Reasoning (MR), General Reason-
ing (GR), Instruction Clarification (IC), and Proactive Interaction (PI). We list the description of
each task in Tab. 3. The default evaluation mode of MT-bench 101 is that the GPT model requires
to access the conversation based on the given ground truth of previous steps, provided in MT-bench
101. However, in our problem setting, the answers among the conversation is also generated by
the model. We use “gpt-4o-mini-2024-07-18” to evaluate the conversation. The maximum output
length and maximum sequence length of gpt-4o are set as 4096. We use a batch size of 8 with a
temperature of 0.8. We use the same prompt for gpt-4o as in Bai et al. (2024). Our experiment
is conducted on 4 H200 GPUs. We use the PyTorch platform and the Transformer Reinforcement
Learning (TRL) for finetuning.

Table 3: A detailed description of each task in MT-bench 101 (taken from Bai et al. (2024).)

Task Abbr. Description
Context Memory CM Recall early dialogue details to address the user’s current question.

Anaphora Resolution AR Identify pronoun referents throughout a multi-turn dialogue.
Separate Input SI The first turn outlines the task requirements and the following turns specify the task input.

Topic Shift TS Recognize and focus on the new topic when users unpredictably switch topics.
Content Confusion CC Avoid interference from similar-looking queries with distinct meanings in the dialogue’s history.

Content Rephrasing CR Rephrase the content of the last response according to the user’s newest requirement.
Format Rephrasing FR Rephrase the format of the last response according to the user’s newest requirement.

Self-correction SC Recorrect the last response according to the user feedback.
Self-affirmation SA Preserve the last response against inaccurate user feedback.

Mathematical Reasoning MR Collaboratively solve complex mathematical problems with users across dialogue turns.
General Reasoning GR Collaboratively solve complex general reasoning problems with users across dialogue turns.

Instruction Clarification IC Seek clarification by asking further questions on ambiguous user queries.
Proactive Interaction PI Propose questions in reaction to user statements to spark their interest to continue the dialogue.
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Next, we provide the comparison between the proposed MPO and IPO (Azar et al., 2024), which also
uses the squared loss and bypasses the BT model assumption. We run both IPO and MPO for one
iteration. The results in Tab. 4 show that MPO achieves a higher average score than IPO.

Table 4: Comparison between MPO and IPO in MT-BENCH 101 dataset.

Model
Perceptivity Adaptability Interactivity

Memory Understanding Interference Rephrasing Reflection Reasoning Questioning

Avg. CM SI AR TS CC CR FR SC SA MR GR IC PI

Base (Mistral-7B-Instruct) 6.223 7.202 7.141 7.477 7.839 8.294 6.526 6.480 4.123 4.836 4.455 5.061 5.818 5.641

IPO 6.498 7.518 7.480 7.759 7.952 8.652 6.892 6.768 4.390 5.185 4.313 5.378 6.146 6.044

MPO 6.630 7.624 7.846 8.085 8.398 8.947 7.105 7.286 4.208 4.993 4.377 5.264 6.179 5.873

We now present an ablation study to evaluate the benefits of incorporating terminal rewards. Using
MPO, we compare two approaches for optimizing ah: one computes the preference signal based on
the terminal state sH+1, while the other uses the immediate next state sh. The results within one
iteration for the MT-Bench 101 dataset are shown in Tab. 5, and those for the GSM/Math experiments
are provided in Tab. 6. Our findings reveal that using the terminal state sH+1 performs worse
than using the immediate state sh in MT-Bench 101. In contrast, the difference in performance
is negligible in the GSM/Math tasks. The underlying reason is that in multi-turn conversational
datasets, especially when adjacent questions are not closely related, relying on preferences derived
from the terminal state can introduce noise. However, in math and reasoning tasks, the terminal
state often captures the final answer, making it more critical. Moreover, using sH+1 for preference
signals is significantly more computationally expensive than using sh, due to the extended sequence
length. Consequently, we conclude that adapting the choice of terminal preference or intermediate
preference on the task’s characteristics is crucial for balancing performance and efficiency.

F.2 TABULAR EXPERIMENT
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Figure 2: Results in the tabular experiments. Curves are averages across 10 different randomly
generated environments. The error bars report one standard deviation.

The setting of our large-scale experiments does not match the assumptions under which Thm. 5
is proven. In particular, in the large scale experiments the state action value functions can not be
computed exactly. In this section, we consider a synthetic experiment in which the state action
functions can be computed exactly for both OMPO and MPO. We generate 10 random gridworlds
with a number of states and actions sample uniformly from the intervals [1, 100] and [2, 10]. We plot
the exploitability computed as 〈

ν1,max
π

V π,π
k

− V π
kπk
〉

which is a standard metric to evaluate the distance from a Nash equilibrium. In particular, when
(πk, πk) is a Nash equilibrium, the exploitability is 0. We can see that OMPO achieves very low
exploitability after 100 updates while 2000 updates are needed by MPO. In this case, where the
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Table 5: Ablation on terminal reward in MT-BENCH 101 dataset.

Model
Perceptivity Adaptability Interactivity

Memory Understanding Interference Rephrasing Reflection Reasoning Questioning

Avg. CM SI AR TS CC CR FR SC SA MR GR IC PI

Base (Mistral-7B-Instruct) 6.223 7.202 7.141 7.477 7.839 8.294 6.526 6.480 4.123 4.836 4.455 5.061 5.818 5.641

MPO (intermediate reward) 6.630 7.624 7.846 8.085 8.398 8.947 7.105 7.286 4.208 4.993 4.377 5.264 6.179 5.873

MPO (terminal reward) 6.459 7.536 7.328 7.643 8.084 8.518 6.847 6.883 4.357 4.863 4.403 5.542 6.034 5.924

Table 6: Ablation on terminal reward in MATH and GSM8K dataset.
Method GSM8K Math

Base (Qwen2-7B-Instruct) 0.8559 0.5538
MPO (intermediate reward) 0.8734 0.5720
MPO (terminal reward) 0.8734 0.5734

Q functions can be computed exactly, we can appreciate the faster convergence rate of OMPO as
described by Thm. 5.

F.3 EXPERIMENT ON MATH REASONING TASKS

As discussed in Appx. B, our framework can also cover the alignment of chain-of-thought reasoning.
In this section, we validate the proposed methods on math reasoning tasks. We select two widely
used datasets: MATH Hendrycks et al. (2021) and GSM8K Cobbe et al. (2021). We use Qwen2-
7B-Instruct as the base model and follow the same evaluation procedure as in Lai et al. (2024).
We adopt the dataset for alignment from Lai et al. (2024), which contains 10795 samples of aug-
mented mathematical problems from MetaMath (Yu et al., 2024) and MMIQC (Liu et al., 2024b)6.
For step-DPO, we use the checkpoint provided in Lai et al. (2024). For both MPO and OMPO, we
perform full-parameter finetuning for 1 epoch with learning rate 5e−7 and β tuned in the range of
{0.1, 0.01, 0.001}. For both MPO and OMPO, we select the Llama-3-based model as the preference
oracle7 and set the log z are set as 0.5. The final state with the answer is important in this task so we
only use the terminal reward (see Tab. 6 for comparison). We use AdamW optimizer (Loshchilov
& Hutter, 2019) and cosine learning rate schedule (Loshchilov & Hutter, 2017) with a warmup ra-
tio of 0.1. The experiment is conducted on 4 A100-SXM4-80GB GPUs. The result is provided in
Tab. 7, showing that the proposed methods achieve performance comparable to step-DPO (Lai et al.,
2024). Notably, MPO and OMPO do not require the ground truth label of the dataset during fine-
tuning while Lai et al. (2024) requires it. Additionally, MPO and OMPO need only a Llama3-based
pair-preference-model to compare two answers. Step-DPO requires GPT-4 to identify the incorrect
reasoning step in an answer, which is a considerably more difficult task than comparison.

6https://huggingface.co/datasets/xinlai/Math-Step-DPO-10K
7https://huggingface.co/RLHFlow/pair-preference-model-LLaMA3-8B
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Table 7: Performance of math reasoning on MATH and GSM8K dataset across various models.
MPO and OMPO achieve comparable performance comparable to step-DPO without requiring the
ground truth label of the dataset during fine-tuning while Lai et al. (2024) requires. Additionally,
MPO and OMPO only need access to an oracle Llama-3 to compare two answers whereas step-DPO
Lai et al. (2024) requires GPT-4 to locate the identify the incorrect reasoning step in an answer,
which is a considerably more difficult task than comparison.

Method GSM8K Math

Base (Qwen2-7B-Instruct) 0.8559 0.5538
Step-DPO (Lai et al., 2024) 0.8680 0.5836

MPO (iter=1) 0.8734 0.5734
MPO (iter=2) 0.8734 0.5786
OMPO (iter=2) 0.8779 0.5786

G MOTIVATION OF CONSIDERING INTERMEDIATE REWARD

In this section, we elaborate on the motivation for considering intermediate rewards at each turn
instead of only terminal rewards.

In multi-turn conversation tasks, such as MT-bench 101 (Bai et al., 2024), the user asks questions
x1, x2, x3, and receives answers a1, a2, a3. When x2 is not closely related to x1, aligning the first
step using feedback among different a1 is much more helpful than using the sequence [a1, x2, a2],
where x2, a2 can be considered as noise.

In mathematical reasoning tasks, as mentioned in Lai et al. (2024), some cases yield correct fi-
nal answers but contain errors in intermediate reasoning steps. Consequently, Lai et al. (2024)
filter out such samples using GPT-4. For example, consider a case where the reasoning steps
yield a correct final answer but include an error: [acorrect

1 , awrong
2 , acorrect

3 ], where awrong
2 is incorrect

while all of the other steps and the final answer acorrect
3 is correct. When there is another response,

[acorrect
1 , acorrect

2 , acorrect
3 ] with all correct steps, using only terminal signal for aligning step 2 might not

guarantee that acorrect
2 ≻ awrong

2 because both of final answers are correct, especially when there is
only an incorrect step among long reasoning steps. In contrast, an intermediate signal would clearly
indicate acorrect

2 ≻ awrong
2 , accurately reflecting the quality of the intermediate steps. In practice, if the

final signal is important, e.g., in math reasoning task, then we can use only the terminal reward or
the average of terminal reward and intermediate reward, otherwise one can just use the intermediate
reward, which is cheaper to collect as compared to assigning reward until the terminal state.
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