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ABSTRACT

In order to satisfy safety conditions, an agent may be constrained from acting freely.
A safe controller can be designed a priori if an environment is well understood,
but not when learning is employed. In particular, reinforcement learned (RL)
controllers require exploration, which can be hazardous in safety critical situations.
We study the benefits of giving structure to the constraints of a constrained Markov
decision process by specifying them in formal languages as a step towards using
safety methods from software engineering and controller synthesis. We instantiate
these constraints as finite automata to efficiently recognise constraint violations.
Constraint states are then used to augment the underlying MDP state and to learn a
dense cost function, easing the problem of quickly learning joint MDP/constraint
dynamics. We empirically evaluate the effect of these methods on training a variety
of RL algorithms over several constraints specified in Safety Gym, MuJoCo, and
Atari environments.

1 INTRODUCTION

The ability to impose safety constraints on an agent is key to the deployment of reinforcement
learning (RL) systems in real-world environments (Amodei et al.,2016). Controllers that are derived
mathematically typically rely on a full a priori analysis of agent behavior remaining within a pre-
defined envelope of safety in order to guarantee safe operation (Aréchiga & Krogh, |2014). This
approach restricts controllers to pre-defined, analytical operational limits, but allows for verification
of safety properties (Huth & Kwiatkowska,|1997) and satisfaction of software contracts (Helm et al.|
1990), which enables their use as a component in larger systems. By contrast, RL controllers are
free to learn control trajectories that better suit their tasks and goals; however, understanding and
verifying their safety properties is challenging. A particular hazard of learning an RL controller is the
requirement of exploration in an unknown environment. It is desirable not only to obey constraints in
the final policy, but also throughout the exploration and learning process (Ray et al.,|2019).

The goal of safe operation as an optimization objective is formalized by the constrained Markov
decision process (CMDP) (Altman, 1999), which adds to a Markov decision process (MDP) a cost
signal similar to the reward signal, and poses a constrained optimization problem in which discounted
reward is maximized while the total cost must remain below a pre-specified limit per constraint. We
use this framework and propose specifying CMDP constraints in formal languages to add useful
structure based on expert knowledge, e.g., building sensitivity to proximity into constraints on object
collision or converting a non-Markovian constraint into a Markovian one (De Giacomo et al., 2020).

A significant advantage of specifying constraints with formal languages is that they already form a
well-developed basis for components of safety-critical systems (Huth & Kwiatkowska,|1997; |Clarke
et al.,|2001; Kwiatkowska et al.,|2002; Baier et al.,|2003) and safety properties specified in formal
languages can be verified a priori (Kupferman et al.| 2000; Bouajjani et al., [1997). Moreover, the
recognition problem for many classes of formal languages imposes modest computational require-
ments, making them suitable for efficient runtime verification (Chen & Rosu, 2007). This allows for
low-overhead incorporation of potentially complex constraints into RL training and deployment.

We propose (1) a method for posing formal language constraints defined over MDP trajectories as
CMDP cost functions; (2) augmenting MDP state with constraint automaton state to more explicitly
encourage learning of joint MDP/constraint dynamics; (3) a method for learning a dense cost function
given a sparse cost function from joint MDP/constraint dynamics; and (4) a method based on
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Figure 1: (a) Illustration of the formal language constraint framework operating through time. State
is carried forward through time by both the MDP and the recognizer, D¢. (b) No-1D-dithering
constraint employed in the Atari and MuJoCo domains: .* (£7)2|(r £)? (note, all unrepresented
transitions return to qg).

constraint structure to dynamically modify the set of available actions to guarantee the prevention
of constraint violations. We validate our methods over a variety of RL algorithms with standard
constraints in Safety Gym and hand-built constraints in MuJoCo and Atari environments.

The remainder of this work is organized as follows. Section [2 presents related work in CMDPs,
using expert advice in RL and safety, as well as formal languages in similar settings. Section [3|
describes our definition of a formal language-based cost function, as well as how it’s employed in
state augmentation, cost shaping, and action shaping. Section 4] details our experimental setup and
results and finally, discussion of limitations and future work are located in Section

2 RELATED WORK

Safety and CMDP Framework The CMDP framework doesn’t prescribe the exact form of con-
straints or how to satisfy the constrained optimization problem. |(Chow et al.|(20177) propose conditional
value-at-risk of accumulated cost and chance constraints as the values to be constrained and use a
Lagrangian formulation to derive a Bellman optimality condition. [Dalal et al./ (2018)) use a different
constraint for each MDP state and a safety layer that analytically solves a linearized action correction
formulation per state. Similarly, Pham et al.|(2018)) introduce a layer that corrects the output of a
policy to respect constraints on the dynamic of a robotic arm.

Teacher Advice A subset of work in safe exploration uses expert advice with potential-based
reward shaping mechanisms (Ng et al.;|1999). Wiewiora et al.|(2003)) introduce a general method for
incorporating arbitrary advice into the reward structure. |Saunders et al.|(2017) use a human in the
loop to learn an effective RL agent while minimizing cost accumulated over training. (Camacho et al.
(2017aib) use DFAs with static reward shaping attached to states to express non-Markovian rewards.
We generalise this work with a learned shaping function in the case of dense soft constraints, and by
generalising from reward shaping to other CMDP learning mechanisms. Similar to teacher advice is
shielding (Jansen et al., 2018} |Alshiekh et al.,|2018), in which an agent’s actions are filtered through a
shield that blocks actions that would introduce an unsafe state (similar to hard constraints;[section 3),
but typically requires MDP states to be enumerable and few enough that a shield can be constructed
efficiently.

Formal Languages Formal languages and automata have been used before in RL for task specifi-
cation or as task abstractions (options) in hierarchical reinforcement learning (Icarte et al., 2018b;
Lietal., 2017; Wen et al.,[2017; [Mousavi et al.| 2014). In some cases, these automata were derived
from Linear Temporal Logic (LTL) formulae, in others LTL or other formal language formulae have
been directly used to specify tasks (Icarte et al., 2018a). [Littman et al. (2017) defines a modified
LTL designed for use in reinforcement learning. In robotics, LTL is used for task learning (L1 et al.
2017), sometimes in conjunction with teacher demonstrations (Li et al.,|[2018). [Zhu et al. (2019)
and [Fulton & Platzer (2019) both study the use of formal languages for safe RL, though each makes
assumptions about a prior knowledge of the environment dynamics. Hasanbeig et al.|(2018) and
Hasanbeig et al.|(2020) learn a product MDP with a safety constraint specified in a formal language,
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but require knowledge of MDP structure and don’t scale to large MDPs. |[Hahn et al.|(2019) uses an
omega-regular language to specify an objective and constructs a product MDP to ensure the objective
is reached almost surely, but requires large reward shaping which prevents learning when used for a
constraint rather than objective.

3 FORMAL LANGUAGE CONSTRAINED MDPS

The constrained Markov decision process (CMDP) (Altman| [1999) extends the Markov decision
process (Sutton & Barto| [2018)) to incorporate constraints. The difference is an additional set of cost
functions ¢; : S X A x S — R and set of cost limits d; € R. Then, the constrained optimization
problem is arg max_ J,(m) s.t. Je,(7) < d;,i = 1,..., k where J,(m) is a return-based objective,
e.g., finite horizon discounted return defined J,.(7) = Err[>,c, 7'r¢] and Je, is a cost-based
constraint function defined similarly, replacing r; with ¢; ;.

We propose formal language constrained MDPs (FLCMDPs) as a subset of CMDPs in which each
constraint C; C (S x A x S)* is defined by a set of prohibited trajectories. (Subscript 7 is suppressed
from this point without loss of generality). Because C' is defined by a formal language, it can be
recognized efficiently by an automaton, which we use to construct the cost function. We define three
functions for interacting with the constraint automaton: a translation function T : (Sx Ax S) — Yo
that converts MDP transitions into a symbol in the recognizer’s input language, a recognizer function
D¢ : Q. x X — Q¢ that steps the recognizer automaton using its current state and the input symbol
and returns its next state, and finally a cost assignment G¢ : Q¢ — R that assigns a real-valued
cost to each recognizer state. The composition of these three functions forms a CMDP cost function
defined c = Gog o Do oTe : (S x A x S) x Q. — R, which requires constraint state ). to be
tracked along with the MDP state, S. The interaction of these functions with the underlying MDP
framework is illustrated in Figure 1(a), where the constraint uses the MDP state and action at time
t to calculate the cost signal at time ¢ and, if action shaping is being employed as discussed below,
influence the action at time ¢ + 1. We note that this construction does not require knowledge of the
MDP transition probabilities and further, its complexity is independent of the size of the MDP, which
allows it to scale to large, challenging environments.

Translation Function 7~ The translation function accepts as input the MDP state and action at
each time step, and outputs a token in the discrete, finite language of the associated recognizer. This
allows the recognizer automaton to be defined in a small, discrete language, rather than over unwieldy
and potentially non-discrete MDP transitions. Further, freedom in choice of input language allows
for flexible design of the constraint automaton to encode the desired inductive bias, and thus more
meaningful structured states.

Recognizer Function D~ Each constraint is instantiated with a finite automaton recognizer that
decides whether a trajectory is in the constraint set. The only necessary assumption about the
recognizer is that it defines some meaningful state that may be used for learning the constraint
dynamics. Our implementation uses a deterministic finite automaton (DFA) as the recognizer for
each constraint, defined as (Q, X, §, qo, F'), where @ is the set of the DFA’s states, X is the alphabet
over which the constraint is defined, § : @ x 3 — @ is the transition function, gy € @ is the start
state, and F' C @ is the set of accepting states that represent constraint violations. The DFA is set to
its initial state at the start of each episode and is advanced at each time step with the token output
by the translation layer. Although our experiments use DFAs as a relatively simple recognizer, the
framework can be easily modified to work with automata that encode richer formal languages like
pushdown automata or hybrid automata.

Constraint State Augmentation In order to more efficiently learn constraint dynamics, the MDP
state s; is augmented with a one-hot representation of the recognizer state ¢;. To preserve the Markov
property of the underlying MDP, state augmentation should contain sufficient information about the
recognizer state and, if it is stateful, the translation function. To enhance performance, the one-hot
state is embedded to [log,(|@|)] dimensions before being input into any network and the embedding
is learned with gradients backpropagated through the full network.
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Cost Assignment Function The cost assignment function G assigns a real-valued cost to each
state of the recognizer. This cost can be used in optimization to enforce the constraint with a
Lagrangian-derived objective penalty, or via reward shaping, which updates the reward function to
r¢ — Acg, where A is a scaling coeffficient.

Cost assignments are frequently sparse, where G is only non-zero at accepting states that recognize
a constraint violation. This poses a learning problem for optimization-based methods that use
reward shaping or an objective penalty to solve the CMDP. A goal of constrained RL is to minimize
accumulated constraint violations over training but, to ensure that the frequency of violations is small,
the optimization penalty can be large relative to the reward signal. This can lead to a situation in
which an unnecessarily conservative policy is adopted early in training, slowing exploration. We
next propose a method for learning a dense cost function that takes advantage of the structure of the
constraint automaton to more quickly learn constraint dynamics and avoid unnecessarily conservative
behavior.

Learned Dense Cost The goal of learning a dense cost is not to change the optimality or near-
optimality of a policy with respect to the constrained learning problem. Thus, we use the form of
potential-based shaping: F'(s;—1, at, s¢) = 7P(s¢) — P(s¢—1), where P is a potential function (see
Ng et al. (1999) for details). This is added as a shaping term to the sparse cost to get the dense cost
Go(qi—1,qt) = Go(q) + B(v®(qt) — ®(gi—1)) , where (3 scales the added dense cost relative to
the sparse cost, and @ is a function of the recognizer state rather than the MDP state, which requires
s¢—2 and a;_o as additional inputs to calculate ¢;—;. Generally, if the value of ® increases as the
automaton state is nearer to a violation, then the added shaping terms add cost for moving nearer to a
constraint violation and refund cost for backing away from a potential violation.

In our experiments, the potential ™ (g¢;) is defined using ¢, (g ), which is a random variable defined
as the number of steps between visiting recognizer state g; and an accepting recognizer state. This
variable’s distribution is based on 7 and the MDP’s transition function. Its value is small if a violation
is expected to occur soon after reaching ¢, and vice-versa. We then define the potential function

baseline

as O™ (q;) = (%)(E“ o]/ ), which ensures that its value is always in [0,1] and rises
exponentially as the expected time to a violation becomes smaller. If the expected time to next
violation is much larger than the provided baseline, tzase””e, then the potential value becomes small,
as shaping is unnecessary in safe states. The expected value of T, (g;) over trajectories may be
calculated as a Monte Carlo estimate from rollouts by counting the number of steps between each
visit to g; and the next constraint violation. Each T, is tracked with an exponential moving average
and is updated between episodes to ensure that it’s stationary in each rollout. We set t225¢!i7¢ to be
the ratio of estimated or exact length of an episode and the constraint limit d;, but find empirically
that the the method is resilient to the exact choice.

Hard Constraints and Action Shaping When safety constraints are strict, i.e., when the limit
on the number of constraint violations d is zero, the set of available actions is reduced to ensure
a violation cannot occur. If a constraint isn’t fully state-dependent (i.e., there is always an action
choice that avoids violation), then action shaping can guarantee that a constraint is never violated.
Otherwise, knowledge of which actions lead to future violating trajectories requires knowledge of the
underlying MDP dynamics, which is possible by learning a model that converts state constraints into
state-conditional action constraints as in|Dalal et al. (2018).

Our implementation of hard constraints initially allows the agent to freely choose its action, but
before finalizing that choice, simulates stepping the DFA with the resulting token from the translation
function and, if that lookahead step would move it into a violating state, it switches to the next best
choice until a non-violating action is found. For the constraints in our experiments, it is always
possible to choose a non-violating action. A known safe fallback policy can be employed in the case
when an episode cannot be terminated. Action shaping can be applied during training or deployment,
as opposed to reward shaping, which is only applied during training. We experiment with applying
action shaping only during training, only during evaluation, or in both training and evaluation.
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4 EXPERIMENTAL EVALUATION

4.1 CONSTRAINTS

We evaluated FLCMDPs on four families of constraints, which we define with regular expressions.
The cost function defined by each constraint is binary, unless we use dense cost shaping.

No-dithering: A no-dithering constraint prohibits movements in small, tight patterns that cover very
small areas. In one dimension, we define dithering as actions are taken to move left, right, left, and
right in order or the opposite, i.e., .* (£7)2|(r £). The automaton encoding this constraint is depicted
in Figure[I(b). In environments with two-dimensional action spaces, such as Atari Seaquest, we
generalize this to vertical and diagonal moves and constrains actions that take the agent back to where
it started in at most four step In MuJoCo, constraints are applied per joint and the translation
function maps negative and positive-valued actions to ‘¢’ and ‘r’, respectively.

No-overactuating: A no-overactuating constraint prohibits repeated movements in the same direction
over a long period of time. In Atari environments, this forbids moving in the same direction four
times in a row, i.e., .* (¢* Ur%). In two dimensions, this is extended to include moving vertically:
S (L*U R*UU*U D*). Each of the left (L), right (R), up (U) and down (D) tokens is produced by
the translation function from the primary direction it’s named after or diagonal moves that contain
the primary direction, e.g., L = ¢ U {+u U ¢+d, where “/+u” is the atomic left-up diagonal action. In
MulJoCo environments, overactuation is modelled as occurring when the sum of the magnitudes of
joint actuations exceeds a threshold. This requires the translation function to discretize the magnitude
in order for a DFA to calculate an approximate sum. The MDP state-based version is “dynamic
actuation”, which sets the threshold dynamically based on a discretized distance from the goal.

Proximity: The proximity constraint, used in Safety Gym, encodes the distance to a collision with
any of the variety of hazards found in its environments. The translation function uses the max value
over all the hazard lidars, which have higher value as a hazard comes closer, and discretizes it into
one of ten values. The constraint is defined as being violated if the agent contacts the hazard, which is
identical to the constraint defined in the Safety Gym environments and described in|Ray et al. (2019).

Domain-specific: In addition to the previously described simple constraints, we define hand-built
constraints for the Breakout and Space Invaders Atari environments. These constraints are designed to
mimic specific human strategies in each environment for avoiding taking actions that end the episode.
In Atari Breakout, we define the “paddle-ball” constraint, which limits the allowed horizontal distance
between the ball and the center of the paddle. In Atari Space Invaders, we define the “danger zone’
constraint, which puts a floor on the the allowed distance between the player’s ship and the bullets
fired by enemies. We provide more details of each constraint in Appendix

s

4.2 ENVIRONMENTS

In Safety Gym, the Spinning Up implementation of PPO with Lagrangian optimization penalization
was employed, with hyperparameters as chosen identically to|Ray et al.|(2019). We modified each
network to concatenate the constraint state augmentation with the input and used d = 25 for the
expected cost limit. All safety requirements are accounted for in a single constraint and we report the
constraint violations as accounted for in the Safety Gym environments rather than as reported by the
finite automaton (though these are identical when not using cost shaping). Each environment, which
is randomly re-arranged each episode, is made up of a pairing of a robot and a task. The robots are
Point, which turns and moves, and Car, which is wheeled with differential drive control. The tasks are
Goal, which requires moving into a goal area, Button, which requires pressing a series of buttons, and
Push, which requires moving a box into a goal area. More details can be found in[Ray et al.|(2019).

In Atari environments (Bellemare et al., |2013), we modified the DQN implemented in OpenAl
Baselines (Dhariwal et al., [2017) by appending the state augmentation to the output of its final
convolutional layer. Reward shaping was used for soft constraint enforcement with the penalty fixed
at one of {0, —0.001, —0.0025, —0.005, —0.01}, and each agent was trained for 10M steps before
collecting data from an evaluation phase of 100K steps for 15 or more train/eval seed pairs for each
hyperparameter combination. For MuJoCo environments (Brockman et al., 2016), we trained the

'The regex describing this constraint is included in Appendix@
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Table 1: Metrics averaged over the last 25 episodes of training in Safety Gym environments with PPO-
Lagrangian methods, normalized relative to unconstrained PPO metrics. Cost rate is the accumulated
cost regret over the entirety of training.

FLCMDP State Augmented Baseline

Environment Return Violation CostRate Return Violation Cost Rate
Point-Goall 0.750 0.427 0.281 0.918 0.925 0.503
Point-Goal2 0.195 0.083 0.078 0.021 0.062 0.155
Point-Buttonl  0.252 0.129 0.128 0.343 0.296 0.218
Point-Button2  0.251 0.130 0.141 0.166 0.255 0.118
Point-Push1 0.549 0.042 0.061 0.692 0.496 0.543
Point-Push2 0.938 0.173 0.148 0.670 0.295 0.258
Car-Goall 0.825 0.295 0.284 0.803 0.475 0.445
Car-Goal2 0.005 0.011 0.079 0.021 0.046 0.108
Car-Button1 0.022 0.083 0.071 0.018 0.039 0.118
Car-Button2 0.031 0.147 0.076 0.009 0.009 0.078
Car-Pushl 0.737 0.032 0.069 0.882 0.387 0.420
Car-Push2 0.256 0.086 0.124 0.025 0.115 0.202

PointGoall Performance-Conformance Curve CarGoal2 Performance-Conformance Curve

Normalized Episodic Return

00 02 o8 10

04 06
Normalized Episodic Cost

DoggoButton1 Performance-Conformance Curve

04 06 07 08
Normalized Episodic Cost Normalized Episodic Cost

Figure 2: Performance/conformance curves in selected Safety Gym environments with Pareto frontiers
plotted per reward shaping method. We observe that using state augmentation (green) consistently
outperforms the baseline (blue) at all levels of reward shaping, which are anti-correlated with episodic
cost and episodic return. The use of cost shaping (purple) produces gains in return at a given amount
of cost only at small reward shaping values correlating to high return and cost. Consequently, the
combination of state augmentation and cost shaping inherits this behavior of being more effectiveness
when cost/return are higher. The full set of plots is included in Appendix

Baselines PPO agent (Schulman et al., [2017) with dense constraints and the state augmentation
concatenated to the input MDP observation. Reward shaping similar to Atari was employed for
constraint enforcement. Atari and MuJoCo environments do not have constraints built in, so we
report the number of constraint violations per episode from the custom constraints and minimize
them without a specific goal value.

4.3 RESULTS

We experiment with our methods to evaluate the usefulness of formal language constraints in
optimizing three objectives. In the final policy output by the training process, it is desirable to
simultaneously maximize return per episode and minimize constraint violations per episode, or
keep them below the specified limit. The third objective is to minimize accumulated cost regret
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Table 2: Atari reward shaping with state augmentation, choosing hyperparameters that minimize
constraint violations per episode. “Dense” refers to whether the dense cost term was used and “reward
shaping” refers to the fixed reward shaping coefficient A.

FLCMDP State Augmented Baseline
Reward Mean Mean Mean Mean Mean Mean
Environment  Constraint Dense Shaping Episode Reward Step Reward  Viols/100 steps  Episode Reward Step Reward Viols/100 steps
actuation False —0.001 297.12 + 8.07 0.15 + 0.0039  0.45 + 0.00067 272.19 +43.12 0.14 £ 0.01 13.59 £ 0.025
Breakout dithering False —0.001 263.57 = 11.14  0.15£0.0068 0.0008 + 8.4e-06  272.19 + 43.12 0.14 +0.01 0.12 + 0.001
paddle ball ~ True —0.0025 31479 £15.09  0.17 £ 0.0056  6.15 = 0.0031 272.19 +43.12 0.14 £ 0.01 13.40 £ 0.022
Seaquest actuation False —0.01  1858.65+478.56 0.76 +0.18 271 £0.0066  2250.13 + 647.92  0.96 + 0.21 9.74 £ 0.017
4 dithering False —0.01 1608.66 + 41.25 0.75 £0.013 0.081 £ 0.001 2250.13 + 647.92  0.96 + 0.21 1.61 £ 0.007
actuation False —0.01 598.78 + 39.98 0.63 + 0.033 5.39 +0.017 604.86 + 44.86 0.62 +0.04 10.88 £ 0.011
Spacelnvaders ~ dangerzone True —0.005 629.32 + 28.72 0.65 + 0.017 0.00 + 0.00 604.86 + 44.86 0.62 + 0.04 0.00 £ 0.00
dithering True —-0.01 595.25 +20.25 0.63 + 0.021 0.00 + 0.00 604.86 + 44.86 0.62+0.04  0.53 £ 0.0064

Table 3: Atari reward shaping with state augmentation, choosing hyperparameters that maximize
cumulative reward per episode. “Dense” refers to whether the dense cost term was used and “reward
shaping” refers to the fixed reward shaping coefficient \.

FLCMDP State Augmented Baseline
Reward Mean Mean Mean Mean Mean Mean
Environment Constraint Dense Shaping Episode Reward Step Reward Viols/100 Steps Episode Reward Step Reward Viols/100 Steps
actuation False —0.001 297.12 £ 8.07 0.15 £ 0.0039  0.45 + 0.00067  272.19 +43.12 0.14 £ 0.01 13.59 £ 0.025
Breakout dithering True —0.005 302.24 + 43.81 0.14 £ 0.02 0.11 £ 0.001 272.19 £43.12 0.14 £ 0.01 0.12 £ 0.001
paddle ball ~ True —0.0025 314.79 + 15.09 0.17 + 0.0056  6.15 + 0.0031 272.19 £43.12 0.14 £ 0.01 13.40 £ 0.022
Seaquest actuation True —0.0025  2339.54 +442.02  0.93 +0.11 443 £0.016  2250.13 + 647.92  0.96 + 0.21 9.74 £ 0.017
q dithering False —0.001 1997.91 + 539.75 0.86 +0.23 1.58 £ 0.011 2250.13 + 647.92  0.96 + 0.21 1.61 £ 0.007

actuation False —0.005 646.99 + 50.55 0.64 + 0.04 29 + 0.0053 604.86 + 44.86 0.62 + 0.04 10.88 + 0.011
Spacelnvaders ~ dangerzone False —0.001 687.37 + 16.75 0.63 + 0.01 0.00 + 0.00 604.86 + 44.86 0.62 + 0.04 0.00 + 0.00
dithering False —0.001 640.35 + 25.94 0.67 + 0.09 0.17 £ 0.00027 604.86 + 44.86 0.62 + 0.04 0.53 & 0.0064

over the course of training. To examine the proposed methods, we investigate two questions. First,
what effect do the proposed methods have on accumulated regret? In Section we compare the
proposed methods against a baseline when combined with PPO using a Lagrangian approach in Safety
Gym (Ray et al.,2019). Second, how should hyperparameters be chosen to minimize or maximize
each objective respectively? In Section[4.3.2] we examine which hyperparameter choices worked well
in various Atari and MuJoCo environments using reward shaping. Finally, in Section[#.3.3/we see
what effect enforcing zero constraint violations with action shaping has on Atari environments.

4.3.1 LAGRANGIAN RESULTS AND ACCUMULATED COST

Table [T compares PPO with Lagrangian constraint enforcement with and without constraint state
augmentation. The clearest trend is in the reduction of the cost rate, which measures accumulated cost
regret, often by between almost one half and an order of magnitude. This results from the inclusion of
the helpful inductive bias provided by the constraint structure. This result is not surprising, but does
quantify the magnitude of the benefit that a low-overhead method like formal language constraints can
have. Qualitatively, we noted that the earliest steps of training had decreased performance generally as
the embedding of the constraint state was being learned, but quickly surpassed baseline performance
once the updates of the embedded representation became small.

Ray et al.| (2019) says that algorithm A; dominates A, when they are evaluated under the same
conditions, the cost and return of A; are at least as good as that of As, and at least one of cost and
return is strictly better for A;. By this definition, the state augmented approach strictly dominates the
baseline in 6 of 12 environments, while coming close in most of the rest. Specifically, we also note
that state augmentation allowed a significant step to be taken in closing the gap between unconstrained
PPO return and PPO-Lagrangian in the Point-Goal2 and Car-Push2 environments, with increases of
roughly an order of magnitude in each.

4.3.2 REWARD SHAPING RESULTS AND SENSITIVITY TO REWARD SHAPING

The most basic function of the proposed framework is to reduce constraint violations. Figure [2
shows performance/conformance curves in Safety Gym where reward shaping was varied in
{0,—0.025, —0.005, —0.1, —1}. The curves show a meaningful trade-off between the objectives
episodic return and cost, which is improved by the use of proposed methods. Table[2 presents the
mean and standard deviation of violations per 100 evaluation steps, episode length, and episode
reward for reward shaping-enforced constraints with the choice of hyperparameters that produced
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Table 4: Mean per-episode MuJoCo rewards and violations with soft dense constraints and constraint
state augmentation. Top row displays the reward shaping coefficient \.

Baseline Reward Shaping Value
Environment Constraint 5 i - — —

rewards violations rewards violations rewards violations rewards violations rewards violations rewards violations

3 80.57+5.74 +45178 730641337 252410 £436.68 (2311125 149521 £165.21 4327+1021 639.00+30.38 16.73=6.70
0.59 +0.04 +0.98 0.02+0.03 5.28+£0.22 0.00 +0.00 8364040  0.00£0.00 ~13.44+0.61  0.00+0.00
0.00 + 0.00 +1.02 000+ 0.00 553+ 1.32 0.00 +0.00 4754088  0.00+000 ~11.40+0.61  0.00+0.00

Half cheetah dithering 15553022742 828420620 145868 &
ctuation s iogq  061£006
cwaion 09 E094 9901 .00

Reacher

a
dynam

Table 5: Atari results with hard constraints, choosing hyperparameters which maximize reward when
applying action shaping in training and evaluation, only in training, or only in evaluation.

Training and Evaluation Training Only Evaluation Only
Mean Mean Mean Mean Mean Mean
Environment Constraint Episode Reward Viols/100 Steps  Episode Reward  Viols/100 Steps  Episode Reward  Viols/100 Steps
actuation 302.00 £ 20.75 0.0+ 0.0 320.31 + 6.09 0.092 £ 0.00026  314.91 + 13.80 0.0+ 0.0
Breakout dithering 295.31 + 29.07 0.0 £0.0 276.72 £ 1550  0.0073 £3.1e-05  275.25 + 12.67 0.0£0.0
paddle ball 218.14 +22.85 0.0 £0.0 281.77 + 11.03 0.11 £ 0.00029 229.00 + 11.65 0.0 £0.0

actuation 1926.97 + 430.24 0.04+0.0 1899.78 £ 502.27 8.30 £0.043 1895.77 & 366.79 0.0+ 0.0

Seaquest dithering ~ 2284.78 + 15.45 0.0 +0.0 2256.06 +30.53  0.01 £28e-05  2267.53 +23.94 0.0+0.0
actuation 586.66 -+ 58.69 0.0+ 0.0 58279 £5147  1462+0012  583.13 + 60.60 0.0 +0.0
Spacelnvaders ~ dangerzone  613.61 & 24.05 0.0+ 0.0 733.52 + 16.95 0.0+ 0.0 613.82 +27.52 0.0+ 0.0
dithering 627.40 -+ 31.43 0.0+ 0.0 62433 +£2527  0.008+3e05 62659 +31.04 0.0+ 0.0

the minimum violations for each environment/constraint pair in evaluation. We note that the highest
value of reward shaping available is generally the best choice for minimizing constraint violations,
which were often reduced by an order of magnitude or more from the baseline. Minimizing constraint
violations has a small deleterious effect on mean episode reward, but because mean reward per step
didn’t decrease, episodes were shorter as a result of constraint enforcement.

In addition to minimizing constraint violations, we found that the application of soft constraints can
also increase reward per episode. Table [3 presents results for soft constraints with the choice of
hyperparameters that produced the maximum reward in each environment/constraint pair. In this case,
lower reward shaping values perform best. The hyperparameter values that minimized constraint
violations with the Breakout actuation and paddle ball constraints also maximized reward, implying
that the objectives were correlated under those constraints. Table [ presents results for soft constraints
with constraint state augmentation in three MuJoCo environments. We find, similar to Atari, that
there is one value of reward shaping that is most effective in each environment/constraint pair and
that reward degrades smoothly as is shifted from the optimal value.

4.3.3 HARD ACTION SHAPING RESULTS

Table[5 presents results for hard constraints with the hyperparameters that produced the maximum
return for each environment/constraint pair. Results for cases where hard action shaping was only
applied during training or only applied during evaluation are presented as well. There is a slight trend
indicating that using action shaping at train time in addition to evaluation increases performance. For
those constraints that are qualitatively observed to constrain adaptive behavior, performance rises
when using hard shaping only in training, at the cost of allowing constraint violations.

5 DISCUSSION

The ability to specify MDP constraints in formal languages opens the possibility for using model
checking (Kupferman et al.,|[2000; Bouajjani et al.||1997), agnostic to the choice of learning algorithm,
to verify properties of a safety constraint. Formal language constraints might be learned from
exploration, given a pre-specified safety objective, and, because of their explicitness, used without
complication for downstream applications or verification. This makes formal language constraints
particularly useful in multi-component, contract-based software systems (Meyer, [1992), where one
or more components is learned using the MDP formalism.

Experiments with more complex constraints are necessary to explore yet unaddressed challenges, the
primary challenge being that the constraints used with action shaping in this work ensured the allowed
set of actions was never empty. If this is not the case, lookahead might be required to guarantee zero
constraint violations. Further, the tested hard constraints were only used with DQN, which provides a
ranked choice over discrete actions. Future work might investigate how to choose optimal actions
which are not the first choice in the absence of ranked choice.
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