
Under review as a conference paper at ICLR 2023

SUBSTRUCTURED GRAPH CONVOLUTION FOR NON-
OVERLAPPING GRAPH DECOMPOSITION

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph convolutional networks have been widely used to solve the graph problems
such as node classification, link prediction, and recommender systems. It is well
known that large graphs require large amount of memory and time to train graph
convolutional networks. To deal with large graphs, many methods are being done,
such as graph sampling or decomposition. In particular, graph decomposition has
the advantage of parallel computation, but information loss occurs in the interface
part. In this paper, we propose a novel substructured graph convolution that rein-
forces the interface part lost by graph decomposition. Numerical results indicate
that the proposed method is robust in the number of subgraphs compared to other
methods.

1 INTRODUCTION

Graph convolutional networks (GCNs) (Kipf & Welling, 2017) are widely used in node classifi-
cation (Xiao et al., 2022), link prediction (Zhang & Chen, 2018), and recommender systems (Wu
et al., 2022). For a given graph, GCN constructs a renormalized graph Laplacian using the graph’s
adjacency matrix and uses it for layer propagation. Therefore, as the dimension of the adjacency
matrix of the graph increases, more memory and time are required to train the network.

There are two main types of research to solve the memory problem. The first is graph sampling
methods (Hamilton et al., 2017; Chen et al., 2018; Ye et al., 2019; Zeng et al., 2020). These methods
basically create a subgraph at every iteration using an appropriate sampling algorithm like Deep-
Walk (Perozzi et al., 2014). The network is trained using this subgraph. GraphSAGE (Hamilton
et al., 2017) used the edge information corresponding to a fixed-size neighborhood of uniformly
sampled nodes. FastGCN (Chen et al., 2018) proposed the importance sampling and showed faster
learning speed compared to GraphSAGE. VR-GCN (Ye et al., 2019) used the variance reduction
technique to reduce the number of sampling nodes. GraphSAINT (Zeng et al., 2020) improved per-
formance by using graph sampling instead of node sampling or edge sampling. Because the graph
sampling method uses subgraphs to reduce memory usage, it is important to determine the number
of samples. The higher the number of samples, the higher the performance is expected, but the
slower the training speed and the memory is consumed.

On the one hand, there is another approach to decompose the graph (Chiang et al., 2019). The biggest
advantage of the decomposition methods is that, unlike the sampling methods, it can be performed
in advance before network training. A lot of research has been done on how to decompose the
graph (Karypis & Kumar, 1998; Avery, 2011; Gonzalez et al., 2012). Among them, METIS (Karypis
& Kumar, 1998), which can quickly decompose a graph using a multi-level structure, is widely used.
In view of linear algebra, METIS derives a block diagonal matrix by performing a non-overlapping
decomposition on the adjacency matrix of a given graph. ClusterGCN (Chiang et al., 2019) trains
the network with a mini-batch gradient descent algorithm by performing block sampling on the
block diagonal matrix generated by METIS. That is, this method trains the network by alternating
block submatrices through random sampling. On the other hand, there is another way to train the
network at once with the gradient descent algorithm by computing the block diagonal matrix for
each block in parallel. A big difference from the alternating method is that it does not require
inner iteration because it trains the network using all subgraphs at once and then merges them.
However, non-overlapping decomposition drops blocks in off-diagonal part and does not supplement
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information about this part. Therefore, as the number of blocks increases, the amount of information
lost increases, which also affects training of the network.

In the field of numerical analysis, there are substructuring methods (Bramble et al., 1986; Farhat &
Roux, 1991) that additionally use information on the interface part in the domain that has undergone
non-overlapping decomposition. Assuming that the interface part is sparse when appropriate non-
overlapping decomposition is performed, the added computation and communication costs are very
small. Therefore, although the interface part requires sequential computation, it does not become a
bottleneck in the overall parallel structure.

Motivated by the substructuring method, we modify the graph convolution with the block diagonal
adjacency matrix generated by non-overlapping decomposition. That is, a substructure using the
interface adjacency matrix is added to the graph convolution. We call a graph convolution with this
added substructure a substructured graph convolution. A simple linear algebra calculation shows
that the sum of the outputs of the aggregate using the block diagonal adjacency matrix and the in-
terface adjacency matrix is different from the output of the aggregate using the original adjacency
matrix. Therefore, to compensate for this difference, a weighted sum is performed by calculating
coefficients by referring to the attention module that shows good performance in natural language
processing (Vaswani et al., 2017) and image classification (Hu et al., 2018). From the numerical re-
sults, it can be confirmed that the proposed graph convolution adequately complements the interface
part.

The rest of this paper is organized as follows. In Section 2, we introduce an abstract non-overlapping
graph decomposition framework and two methods for training a given network with decomposed
graphs. We present the substructured graph convolution in Section 3. Improved node classification
accuracy or F1-score of the proposed graph convolution applied to GCN, GCNII, GAT, and SGC
using various datasets is presented in Section 4. We conclude this paper with remarks in Section 5.

2 NON-OVERLAPPING GRAPH DECOMPOSITION

In this section, we briefly introduce an algebraic framework of non-overlapping graph decomposi-
tion. We then describe two methods for training the graph convolutional networks using the decom-
posed graphs.

2.1 ALGEBRAIC FRAMEWORK

Let A ∈ Rn×n be an adjacency matrix of a given graph consisting of n nodes. Without loss
of generality, let the graph be uniformly decomposed so that each subgraph has n/N nodes for a
positive integer N . Let Rk : Rn → Rn/N be the restriction operator onto k-th subgraph.

We construct a non-overlapping decomposition of given adjacency matrix A under the node decom-
position setting. A subgraph adjacency matrix Ak ∈ Rn/N×n/N is defined by

Ak = RkART
k , k = 1, · · · , N. (2.1)

The non-overlapping decomposition Ã of A with subgraph adjacency matrices (2.1) is given by

Ã =

N∑
k=1

RT
kAkRk. (2.2)

Then Ã becomes the adjacency matrix of the graph consisting of subgraphs having A1, · · · ,AN

as adjacency matrices. We define this graph as a non-overlapping graph decomposition for a given
graph.

For the block matrix representation

A = [Aij ]1≤i,j≤N =


A11 A12 . . . A1N

A22 A22 . . . A2N

...
...

. . .
...

AN1 AN2 . . . ANN

 , (2.3)
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Figure 1: Schematic description of the alternating method and the additive method after non-
overlapping graph decomposition. Note that we assume the case of N = 2 for simplicity.

the corresponding block matrix representation of the non-overlapping decomposition Ã is written
as

Ã = diag
(
[Aii]

N
i=1

)
=


A11 0 . . . 0
0 A22 . . . 0
...

...
. . .

...
0 0 . . . ANN

 , (2.4)

where Aij ∈ Rn/N×n/N is defined by Aij = RiART
j . That is, Ã is the block-diagonal part of A.

Comparing (2.3) and (2.4), it can be seen that the number of off-diagonal parts lost in A increases
as N increases. That is, it is clear that as N increases, the degree to which Ã approximates A
decreases significantly; see Toselli & Widlund (2005).

2.2 TRAINING WITH NON-OVERLAPPING GRAPH DECOMPOSITION

Now, we introduce two methods for training a network with a graph generated by the non-
overlapping graph decomposition. One is an alternating method known as ClusterGCN (Chiang
et al., 2019) and the other is an additive method similar to Data Parallelism (Gonzalez et al., 2012).

First, we explain the basic training method of graph convolutional networks. Let G = (V ,A)
be a graph consisting of node vector V = (v1, · · · , vn) with an adjacency matrix A ∈ Rn×n.
Each node vi has an F -dimensional feature vector xi ∈ RF and belongs to one of the C classes,
which is labeled with a C-dimensional one-hot vector yi. The entire node feature X ∈ Rn×F has
{x1, · · · ,xn} as row vectors. Similarly, the entire node label Y ∈ Rn×C has {y1, · · · ,yn} as row
vectors.

For convenience, it is assumed that the network fΘ consists of one graph convolution layer with
trainable parameter Θ and the softmax function. Let W ∈ RF×C and b ∈ RC be the weight and
bias of the layer and Θ = {W , b}. Then the forward propagation of fΘ is written as

fΘ(x,A) = softmax(SXW + b),

where S = (I + D)−
1
2 (I + A)(I + D)−

1
2 is a renormalized graph Laplacian (Kipf & Welling,

2017). Here D is a degree matrix of given A and I is an identity matrix. Let L be a loss function
that trains the network fΘ. Then, for each epoch, the network is trained by gradient descent method

Θj+1 = Θj − η∇ΘjL(fΘj (X,A),Y ).
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Now, we introduce the alternating method first. Using (2.1) and (2.2), each subgraph Gk, feature
matrix Xk and label matrix Yk are defined as

Gk = {Vk,Ak}, Vk = RkV , Xk = RkX, Yk = RkY .

Then, for each epoch, the network is trained by mini-batch gradient descent method described in
Algorithm 1.

Algorithm 1: The alternating method with learning rate η

for k = 1, · · · , N do
Θj+1 = Θj − η∇ΘjL(fΘj (Xk,Ak),Yk)

end

Next, we introduce the additive method. The additive method computes the total output of layer
gathering the outputs derived from each subgraph in parallel. After that, the network is trained using
the gradient descent method. For each epoch, Algorithm 2 shows the update process of additive
method.

Algorithm 2: The additive method with learning rate η

for k = 1, · · · , N in parallel do
Ỹk = fΘj (Xk,Ak)

end
Ỹ =

∑N
k=1 R

T
k Ỹk

Θj+1 = Θj − η∇ΘjL(Ỹ ,Y )

Figure 1 illustrates a schematic description of the additive method and the alternating method in the
case of N = 2.

3 SUBSTRUCTURED GRAPH CONVOLUTION

As mentioned in Section 2, the non-overlapping graph decomposition has a disadvantage in that
the loss of off-diagonal information of the adjacency matrix increases as N increases. Therefore, it
can be expected that the performance of graph convolutional networks using graph decomposition
depends heavily on the number of subgraphs N . The same phenomenon can be observed in both
the alternating method and the additive method, and the experiment for this will be discussed in
Section 4.

3.1 ALGEBRAIC FRAMEWORK

In numerical analysis, there is a substructuring method that increases performance by using the in-
terface part without disturbing the parallel structure; see, e.g., Toselli & Widlund (2005); Dolean
et al. (2015). Let the non-overlapping decomposition Ã defined in Section 2 be the interior adja-
cency matrix. We consider an interface adjacency matrix Â = A − Ã. Then, we propose a novel
graph convolution called substructured graph convolution, which improves performance by adding
interface parts like the substructuring method, while maintaining parallel structure. We now define
the renormalized graph Laplacian S̃ and Ŝ for Ã and Â, respectively, as

S̃ = (I + D̃)−
1
2 (I + Ã)(I + D̃)−

1
2 ,

Ŝ = (I + D̂)−
1
2 (I + Â)(I + D̂)−

1
2 ,

where D̃ and D̂ are the degree matrices of Ã and Â, respectively. Note that S ̸= S̃ + Ŝ. In other
words, simply adding the outputs of graph convolution using S̃ and Ŝ is different from the output
of graph convolution using S, the renormalized Laplacian matrix for A. Therefore, we consider a
weighted sum of S̃ and Ŝ rather than simple addition to get a better approximation to S.
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Figure 2: Graphical description of the proposed substructured graph convolution after non-
overlapping graph decomposition. Note that we assume the case of N = 2 for simplicity.

Table 1: The number of edge-cut according to the number of subgraphs N with random, ordered,
and METIS decomposition applied to Cora. The random decomposition method uses the randperm
function in PyTorch, and the ordered decomposition method divides the node indices in order of
Cora. Note that the total number of edges in the Cora is 5429.

N Random Ordered METIS

2 2613 2603 186
4 3907 3682 351
8 4580 4340 537
16 4898 4649 714
32 5082 4817 1018
64 5187 4941 1313

With appropriate coefficient vectors α̃ and α̂, we consider the forward propagation of substructured
graph convolution fΘ as

fΘ(X, Ã, Â) = σ({diag(α̃)S̃ + diag(α̂)Ŝ}XW + b),

where Θ = {W , b} is a parameter of the layer and σ is a nonlinear activation function.

For parallel computation of the substructured graph convolution, information compression is re-
quired to minimize communication between the interior part S̃ and the interface part Ŝ in designing
α̃ and α̂. Motivated by the attention module, which is the core of the SE block used in CNN (Hu
et al., 2018), and the transformer structure mainly used in NLP (Vaswani et al., 2017), we consider
the coefficients α̃ and α̂ such as

[α̃, α̂] = softmax

([
1

F

F∑
i=1

(S̃X)i,
1

F

F∑
i=1

(ŜX)i

])
,

where (·)i denotes the i-th column. Note that F is the feature dimension of X . This operation
compresses the information of the intermediate features generated by S̃ and Ŝ, and then obtains the
softmax value with minimal communication and computation cost. The process of computing the
coefficients α̃ and α̂ is a structure that needs sequential computation, but it does not need additional
parameters and uses the minimum cost to solve the bottleneck in the overall parallel structure. A
brief graphical description of the substructured graph convolution for the case of N = 2 is shown in
Figure 2.

3.2 IMPLEMENTATION ISSUES

In this section, we discuss several issues on efficient implementation of the proposed substructured
graph convolution. The first is the selection of an algorithm that performs the non-overlapping de-
composition to a given graph. It is natural that the density of the interface adjacency matrix increases
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Table 2: Details of used datasets. Cora, CiteSeer, and PubMed datasets have a single class label, but
the PPI dataset can have multiple class labels.

Dataset Nodes Edges Features Classes Train / Validation / Test

Cora 2708 5429 1433 7 140 / 500 / 1000
CiteSeer 3327 4732 3703 6 120 / 500 / 1000
PubMed 19717 44338 500 3 60 / 500 / 1000

PPI 56944 818716 50 121 44906 / 6514 / 5524

according to the shape of the graph if it is simply randomly cut or divided in order. This makes, the
interior adjacency matrix becomes sparser, which degrades the performance of the existing graph
convolution. Note that as the interface adjacency matrix is sparse, the amount of sequential com-
putation decreases, so that the proposed graph convolution can be computed more efficiently. For
this reason, we need a non-overlapping graph decomposition algorithm that minimizes edge-cuts.
METIS (Karypis & Kumar, 1998) is one of the good algorithms, that uses a multi-level structure to
quickly perform the decomposition and minimize edge-cuts. Table 1 shows the number of edge-cuts
according to each decomposition method applied to Cora (McCallum et al., 2000). METIS shows
far fewer edge-cuts than simple random and ordered decomposition methods. Therefore, we use
METIS for non-overlapping graph decomposition in the sequel.

Next, we discuss why the renormalized graph Laplacian S̃ and Ŝ are used. Since A = Ã+ Â, the
renormalized graph Laplacian S can be decomposed as

S = (I +D)−
1
2 (I + Ã)(I +D)−

1
2 + (I +D)−

1
2 Â(I +D)−

1
2 . (3.1)

Therefore, when the decomposition (3.1) is performed, the computation of (I+D)−
1
2 is required for

the computation of the interface part. This reduces the computational efficiency of the interface part
that requires sequential computation and may cause a bottleneck in the interior part where parallel
computation is possible. On the other hand, using Ŝ, sequential computation for the interface part
can be efficiently performed.

Lastly, we note that the proposed substructured graph convolution was made by referring to the
renormalized graph Laplacian of GCN, but it is also applicable to GCNII (Chen et al., 2020),
GAT (Veličković et al., 2018), and SGC (Wu et al., 2019). The key idea is to construct the interface
adjacency matrix, process the aggregate, and then determine each coefficient via the attention mod-
ule. Then, substructured graph convolution is performed using the renormalized graph Laplacian
corresponding to the aggregate part of a given network instead of the whole renormalized graph
Laplacian.

4 APPLICATIONS

In this section, we present numerical results of the proposed graph convolution embedded into sev-
eral existing GCNs: GCN, GCNII, GAT, and SGC. We evaluate the performance of transductive
learning and inductive learning, which are mainly used as benchmarks in graph node classification
problems.

For the transductive learning task, standard citation network benchmark datasets Cora (McCallum
et al., 2000), CiteSeer (Giles et al., 1998), and PubMed (Yang et al., 2016) were used. In these
datasets, a node and an edge mean a document and a citation, respectively. For the transductive
environment, only 20 training nodes were used per class, and 500 and 1, 000 nodes were used for
validation and test, respectively. For the inductive learning task, we used a protein-protein interac-
tion (PPI) dataset (Hamilton et al., 2017) consisting of graphs of different human tissues. The dataset
has 20 training graphs and 2 validation and test graphs each. Also, the graph of the PPI dataset can
have multiple class labels. Details of the number of nodes, edges, features, and classes in the dataset
are given in Table 2.
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Table 3: The accuracy of GCN, GCNII, GAT, and SGC on Cora, CiteSeer, and PubMed datasets.
Network Cora CiteSeer PubMed

GCN 82.40 71.60 78.90
GCNII 83.40 73.40 78.40
GAT 81.90 71.30 78.80
SGC 79.80 72.00 76.90

All networks were implemented in Python with PyTorch (Paszke et al., 2019) and PyG (Fey &
Lenssen, 2019), and all computations were performed on a cluster equipped with Intel Xeon Gold
6240R (2.4GHz, 48C) CPUs, NVIDIA 3090 GPUs, and operating system CentOS 7.8.

4.1 TRANSDUCTIVE LEARNING

Transductive learning is a type of semi-supervised learning, i.e., given the nodes and edges of the
graph, the network is trained using the labeled nodes, and then the unlabeled nodes are labeled. In
particular, the transductive learning uses the same graph for training and testing. Thus, the transduc-
tive task shows how much the adjacency matrix of a given graph affects the labeling performance of
the network.

4.1.1 NETWORK AND HYPERPARAMETER SETUP

GCN is a two-layer model which has 16 channels for the Cora and CiteSeer datasets and 64 chan-
nels for the PubMed dataset. GCNII is a model using 64 layers with 64 channels for the Cora and
CiteSeer datasets and 16 layers with 256 channels for the PubMed dataset. Note that the hyperpa-
rameters α and λ for GCNII are 0.1 and 0.5, respectively. GAT is a model using two layers with
8 headers each with 8 channels. The last layer of GAT averages the outputs of the headers and all
other layers concatenate the outputs. Finally, SGC performs feature propagation twice. Note that
GAT uses ELU (Clevert et al., 2015) and other networks use ReLU as the activation function.

All neural networks were trained for 200 epochs using Adam optimizer (Kingma & Ba, 2014). The
learning rate, weight decay, and dropout (Srivastava et al., 2014) were determined to give the best
performance through grid search at [0.001, 0.005, 0.01], [0, 0.0001, 0.0005], and [0, 0.4, 0.6, 0.8],
respectively.

4.1.2 EXPERIMENT RESULTS

First, to verify the performance of each convolution, we provide Table 3, which shows the accuracy
of given networks trained using the standard graph convolution for standard citation network bench-
mark datasets. Next, we compare the performance of the proposed substructured graph convolution
with the additive method and the alternating method. Table 4 shows numerical results of all of the
previously mentioned methods applied to GCN, GCNII, GAT, and SGC with Cora, CiteSeer, and
PubMed datasets. First of all, as N increases, the overall accuracy decreases regardless of the net-
work and dataset. In particular, in the cases of N = 32 and 64, it can be seen that the accuracy of the
additive and alternating methods is much lowered because the edge-cuts of the given graph are very
large. On the other hand, the substructured graph convolution shows that the decrease in accuracy is
small as N increases compared to the additive and alternating methods. Moreover, in certain cases,
substructured graph convolution shows better performance than standard graph convolution. This
shows that adding the information of the interface part is properly reflected in the network and helps
to improve accuracy.

4.2 INDUCTIVE LEARNING

The inductive learning task is a supervised learning. The biggest difference from the transductive
learning is that the graphs for testing are different from the training graphs. If the adjacency matrix
of the training graph is block diagonal, the trained network learns the block diagonal shape, so it is
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Table 4: The accuracy of GCN, GCNII, GAT, and SGC equipped with additive (AD), alternat-
ing (AL), and substructuring (SS) for the Cora, CiteSeer, and PubMed datasets, where N denotes
the number of subgraphs.

Network Type N Cora CiteSeer PubMed

GCN
AD 2 80.60 71.00 79.00
AL 2 80.00 71.40 79.10
SS 2 80.30 72.50 78.30

GCNII
AD 2 82.30 70.30 78.40
AL 2 82.10 70.20 77.10
SS 2 83.60 72.20 79.30

GAT
AD 2 81.30 70.90 78.40
AL 2 80.70 70.10 78.10
SS 2 81.50 69.30 78.30

SGC
AD 2 78.80 71.70 76.30
AL 2 74.30 71.30 75.20
SS 2 79.30 72.00 77.20

Network Type N Cora CiteSeer PubMed

GCN
AD 4 79.90 71.40 78.90
AL 4 78.10 71.50 79.10
SS 4 78.90 72.20 78.30

GCNII
AD 4 81.00 72.80 77.00
AL 4 80.90 70.60 78.20
SS 4 82.60 74.00 79.30

GAT
AD 4 79.50 69.90 78.50
AL 4 80.20 70.60 78.10
SS 4 81.60 70.70 78.70

SGC
AD 4 78.90 70.40 77.20
AL 4 73.60 61.70 75.50
SS 4 79.70 71.90 77.60

Network Type N Cora CiteSeer PubMed

GCN
AD 8 79.20 71.60 77.70
AL 8 80.30 71.90 78.20
SS 8 79.90 72.00 78.00

GCNII
AD 8 82.60 73.20 76.30
AL 8 83.20 69.00 78.00
SS 8 82.20 73.90 81.00

GAT
AD 8 80.80 69.00 76.70
AL 8 82.00 68.30 78.10
SS 8 81.90 70.60 78.30

SGC
AD 8 79.30 71.30 76.50
AL 8 66.80 23.70 75.40
SS 8 79.10 72.20 78.70

Network Type N Cora CiteSeer PubMed

GCN
AD 16 80.10 71.10 77.40
AL 16 81.40 72.10 77.30
SS 16 80.20 72.20 79.00

GCNII
AD 16 80.40 72.70 75.20
AL 16 81.60 70.00 77.20
SS 16 84.60 72.70 80.90

GAT
AD 16 80.40 70.70 77.50
AL 16 78.90 70.80 76.80
SS 16 81.10 70.90 80.00

SGC
AD 16 77.80 71.90 75.90
AL 16 74.10 37.90 67.60
SS 16 79.50 72.80 78.70

Network Type N Cora CiteSeer PubMed

GCN
AD 32 79.10 70.10 78.40
AL 32 78.10 71.50 78.60
SS 32 80.20 72.80 78.60

GCNII
AD 32 81.60 73.00 74.80
AL 32 81.50 58.40 76.70
SS 32 83.50 73.00 80.20

GAT
AD 32 77.70 69.90 77.80
AL 32 79.70 68.80 78.90
SS 32 82.20 70.00 79.10

SGC
AD 32 77.60 71.50 76.20
AL 32 72.90 47.60 75.60
SS 32 79.70 72.50 78.40

Network Type N Cora CiteSeer PubMed

GCN
AD 64 78.40 67.50 78.10
AL 64 76.10 70.50 76.80
SS 64 81.20 72.00 78.60

GCNII
AD 64 79.30 71.00 76.00
AL 64 78.30 45.30 77.60
SS 64 83.80 75.30 81.10

GAT
AD 64 77.10 69.20 77.20
AL 64 76.30 69.90 77.30
SS 64 83.00 70.60 79.10

SGC
AD 64 77.40 70.50 76.00
AL 64 61.40 65.00 71.90
SS 64 80.40 72.10 78.80

difficult to expect labeling performance for a general graph. Thus, the inductive learning task shows
the effect of reflecting the interface information on the generalizability of the network.

4.2.1 NETWORK AND HYPERPARAMETER SETUP

GCN is a three-layer model which has 1,024-channel layers with skip-connections (He et al., 2016).
GCNII is a model using 9 layers with 2,048 channels. Note that the hyperparameters α and λ
for GCNII are set to 0.5 and 1.0, respectively. GAT is a model using three layers with 4 headers
each with 256 channels. Also, the skip-connection is used in GAT. Finally, SGC performs feature
propagation three times. GCN and GAT used ELU as the activation function, and the rest used
ReLU. The optimizer and hyper parameters for training were set in the same way as in Section 4.1.
In addition, the network was trained using a total of 20 PPI training graphs, one at a time, and the
sequence of training graphs is shuffled every epoch.

4.2.2 EXPERIMENT RESULTS

Similar to the transductive learning task, we compare the proposed substructured graph convolu-
tion with the additive and alternating methods. Note that F1-scores for the PPI datasets of GCN,
GCNII, GAT, and SGC trained using the standard graph convolution are 99.06, 89.79, 99.33, and
76.10, respectively. The numerical results in Table 5 confirm that the proposed substructured graph
convolution performs better than other methods even on inductive learning tasks. In particular, the
other two methods show that the F1-score drops sharply as N increases, whereas the substructured
graph convolution shows little change in the F1-score. In other words, it can be seen that the form
of the adjacency matrix of the graph used for training is important for the generalizability of the
network. The adjacency matrix used in the additive method and the alternating method is in the
form of a block diagonal excluding the interface part, and it can be seen that the interface adjacency
matrix plays a large role in the generalizability of the network. In addition, it can be confirmed that
the proposed substructured graph convolution improves the performance of the network by using the
interface adjacency matrix appropriately in the inductive learning task as in the transductive learning
task.

5 CONCLUSION

In this paper, we proposed a novel substructured graph convolution that is suitable for parallel com-
putation and robust with respect to large numbers of subgraphs. Since the additional structure re-
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Table 5: F1-scores of GCN, GCNII, GAT, and SGC equipped with additive (AD), alternating (AL),
and substructuring (SS) for the PPI dataset, where N is the number of subgraphs.

Network Type N PPI

GCN
AD 2 97.97
AL 2 98.17
SS 2 95.68

GCNII
AD 2 87.78
AL 2 88.20
SS 2 87.29

GAT
AD 2 98.20
AL 2 98.42
SS 2 98.29

SGC
AD 2 75.29
AL 2 75.79
SS 2 75.05

Network Type N PPI

GCN
AD 4 94.34
AL 4 95.10
SS 4 96.52

GCNII
AD 4 85.00
AL 4 84.89
SS 4 88.55

GAT
AD 4 93.48
AL 4 94.31
SS 4 98.66

SGC
AD 4 75.00
AL 4 75.07
SS 4 75.25

Network Type N PPI

GCN
AD 8 91.70
AL 8 92.49
SS 8 96.87

GCNII
AD 8 91.70
AL 8 92.49
SS 8 88.76

GAT
AD 8 90.39
AL 8 91.13
SS 8 98.52

SGC
AD 8 74.83
AL 8 74.90
SS 8 75.26

Network Type N PPI

GCN
AD 16 88.39
AL 16 89.68
SS 16 96.61

GCNII
AD 16 82.18
AL 16 79.78
SS 16 88.30

GAT
AD 16 86.72
AL 16 75.88
SS 16 98.38

SGC
AD 16 74.72
AL 16 74.83
SS 16 75.27

Network Type N PPI

GCN
AD 32 85.96
AL 32 78.82
SS 32 96.18

GCNII
AD 32 81.56
AL 32 78.13
SS 32 88.16

GAT
AD 32 83.55
AL 32 72.73
SS 32 98.41

SGC
AD 32 74.65
AL 32 74.71
SS 32 75.20

Network Type N PPI

GCN
AD 64 84.24
AL 64 73.88
SS 64 95.58

GCNII
AD 64 80.84
AL 64 76.43
SS 64 85.33

GAT
AD 64 81.62
AL 64 73.24
SS 64 98.49

SGC
AD 64 74.60
AL 64 74.68
SS 64 75.10

quires little computation and has no parameters, the proposed graph convolution does not cause
a large bottleneck in parallel computation. We have experimentally shown that this novel graph
convolution can train networks more effectively than additive and alternating methods. It also out-
performed the standard graph convolution in certain cases. We expect that the proposed graph
convolution can be efficiently utilized to train large graph datasets through multiple GPUs.
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