Can We Catch the Elephant? A Survey of the Automatic Hallucination
Evaluation on Natural Language Generation

Anonymous ACL submission

Abstract

Hallucination in Natural Language Genera-
tion (NLG) presents a significant challenge, of-
ten underestimated despite recent advances in
model fluency and grammatical correctness. As
text generation systems evolve, hallucination
evaluation has become increasingly critical, yet
current methodologies remain complex and var-
ied, lacking clear organization. In this paper,
we conduct a comprehensive survey on Au-
tomatic Hallucination Evaluation (AHE) tech-
niques. We systematically categorize existing
approaches based on the proposed evaluation
pipeline: datasets and benchmarks, evidence
collection, and comparison mechanisms. Our
work aims to clarify these diverse approaches,
highlighting limitations and suggesting avenues
for future research to improve the reliability
and safety of NLG models.

1 Introduction

Hallucination in Natural Language Generation
(NLG) typically refers to situations where the gen-
erated text is inconsistent with or unsupported by
the source input or external knowledge. Like an
elephant in the room, this problem has existed since
the beginning of NLG but often ignored in the
early stage. As text generation models continue
to evolve, technologies like Large Language Mod-
els (LLMs) have achieved grammatical correctness
and fluency nearly indistinguishable from human
writing. Consequently, hallucination has gradually
surfaced and attracted increased attention. The au-
tomatic evaluation of hallucinations is important as
it effectively drives the advancement of LLMs to be
more reliable and safe. In this paper, we conduct a
comprehensive survey on the process of Automatic
Hallucination Evaluation (AHE) methods, which
gives the current advancements made in catching
hallucinations and shows future directions.

The concept of hallucination originally referred
to grammatically correct but semantically inac-

curate content based on source input (Lee et al.,
2018). This was commonly observed in tasks like
Summarization and Neural Machine Translation
(NMT), where the source information is usually
well-defined. The breakthrough came with the ad-
vent of LLMs like ChatGPT (OpenAl, 2022). Many
NLG tasks can be effectively performed by prompt-
ing LLMs with designed instructions (Ouyang
et al., 2022). However, their responses occasion-
ally contain hallucinations that are unfaithful or
factually incorrect, posing significant challenges
for accurate evaluation.

Faithfulness and factuality are two concepts that
are closely related when describing hallucinations
and can be prone to confusion in some circum-
stances. In this paper, we add prefixes to both
of them for better understanding by introducing
Source Faithfulness (SF) and World Factuality
(WF). SF measures the degree to which the gen-
erated output accurately reflects and is consistent
with the source input. SF has a limited scope, as
there are specific sources that can be used to sub-
stantiate and verify the generated text. WEF, on the
other hand, assesses whether the generated output
aligns with general world knowledge and facts. WF
is a more expansive and challenging problem as it
goes beyond the specific source and considers the
broader context of common sense and established
knowledge, which is more difficult to collect and
encode comprehensively. Recent studies have rec-
ognized the critical importance of addressing and
measuring the SF and WF of generated text.

Assessing from SF or WF aspects means the
evaluators refer to different source information,
which is closely tied to specific tasks. For ex-
ample, in NMT, generated translations detached
from the source text are considered unfaithful (Dale
et al., 2023a). In summarization, summaries usu-
ally should be faithful to the source document,
but some also argue that certain hallucinations
can align with external facts (Dong et al., 2022;
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Figure 1: Automatic Hallucination Evaluation (AHE) methods typically follow a pipeline that includes dataset
construction, evidence collection, and comparison between the generated output and reference evidence, resulting in

a final score that reflects the level of hallucination.

Cao et al., 2022). In tasks involving LLMs, hal-
lucinations exhibit greater diversity, occasionally
encompassing both SF and WF issues simultane-
ously. Apart from these, LLMs face unique dif-
ficulties, such as updating world information and
handling false-premise questions (Vu et al., 2023;
Kasai et al., 2024).

Previous works have some introductions on
methods for LLM hallucination evaluation (Huang
et al., 2023; Zhang et al., 2023c; Ji et al., 2023;
Huang et al., 2021), but they have neither catego-
rized the existing benchmarks nor systematically
summarized the processes of the evaluators, nor
have they conducted a comparative analysis of the
methods at different steps. In contrast, this pa-
per comprehensively introduces AHE methods by
following the structure of the proposed pipeline,
as illustrated in Figure 1 and Figure 2. It begins
with an overview of Datasets and Benchmarks,
which is the first step and foundation of AHE (see
§ 2). This is followed by a discussion of Evidence
Collection, which identifies WF/SF evidence for
hallucination evaluations(see § 3). Then, this paper
details how evaluators use the evidence for Com-
parison to get the quantitative evaluation results
(see § 4). Although not all AHE methods fully
implement each of these steps, this standardized
pipeline methodology helps us understand the un-
derlying connections between different approaches
and their evolution from the pre-LLM era to the
post-LLLM era. We also present Table 1 and Ta-
ble 2 for all the methods surveyed in this paper,
including key aspects discussed in the following
sections. Finally, following the pipeline, this pa-
per summarizes the current state of research on
AHE, outlining existing challenges and suggesting

potential directions for future investigation.

2 Dataset and Benchmark

This section introduces datasets and benchmarks
developed for evaluating model hallucination.
Of the evaluators surveyed, 56.1% present their
datasets or benchmarks for evaluation. The evo-
lution has shifted from task-specific methods to
general factuality assessments, with recent works
focusing on more practical and diverse domains,
adapting design patterns to various usage scenarios.

2.1 Task-specific

Task-specific datasets, though not designed for hal-
lucination research, inherently exhibit relevant phe-
nomena, making them suitable for hallucination
evaluation. For summarization task, many works
manually evaluate the model-generated summaries
and publish the annotations. On the news datasets
Xsum and CNN/DM, Maynez et al. (2020) publish
XSumPFaith with hallucination types (intrinsic or ex-
trinsic) at the span positions, CoGenSumm (Falke
et al., 2019) gives annotation on CNN/DM dataset,
and QAGS (Wang et al., 2020) annotates each sen-
tence with a binary label of SF on both datasets.
Polytope (Huang et al., 2020) provides both SF
and WF annotations to measure both extractive and
abstractive summarization.

However, the binary classes of texts can be diffi-
cult to determine. FRANK (Pagnoni et al., 2021)
collects annotation based on a more fine-grained
defined typology of factual errors. Similarly, for di-
alogue summarization task, FactEval (Wang et al.,
2022) includes hallucination error during annotat-
ing and RefMatters (Gao et al., 2023) further re-
fines the error categories by combining content-



based and form-based factual errors. Additionally,
Devaraj et al. (2022) categorize 3 types of factual
errors for data collected from Newsela (Xu et al.,
2015) and Wikilarge (Zhang and Lapata, 2017)
for text simplification. In dialogue generation, Dia-
logueNLI (Welleck et al., 2018) provides three-type
labels of the entailment of sentence pairs.

Besides annotating existing generated sum-
maries, data augmentation serves as an ad-
ditional method for creating training data.
Falsesum (Utama et al., 2022) automates the aug-
mentation process and can control the intrinsic and
extrinsic errors in summaries. Task-specific data an-
notation and augmentation methods are advancing
toward greater detail, automation, and scalability.
As LLMs evolve, the task boundaries become in-
creasingly blurred, suggesting that future datasets
should align with more comprehensive domains.

2.2 General Factuality

Beyond task-specific datasets, some studies have
shifted their focus toward more generalized evalu-
ations to assess LLMs’ ability to avoid hallucina-
tions. This process is usually carried out through
multiple turns of Questions and Answers (QA).

Within knowledge-grounded dialogue, Q? (Hon-
ovich et al., 2021) gives an annotated dataset of
factual consistency with respect to a given knowl-
edge. FACTOR (Muhlgay et al., 2023) follows
the error types from FRANK (Pagnoni et al.,
2021) and performs a multi-choice factual eval-
uation task with the help of Wikipedia, news, and
expert-curated QA datasets. Also with the help
of Wikipedia, PHD (Yang et al., 2023) focuses on
passage-level entity-centric knowledge, and HaluE-
val (Li et al., 2023) verifies hallucinations in Chat-
GPT. The truthfulness of LLMs extends beyond
mere knowledge to encompass other behaviors,
where Truthful QA (Lin et al., 2022) highlights the
trade-off between truthfulness and informativeness
in LLMs, stating that hedging is better than provid-
ing wrong answers. The evaluation of hallucina-
tions in LLMs focuses more on WF accuracy. As
a result, large-scale common knowledge sources,
such as Wikipedia, are often used to support the
construction of evaluation datasets.

2.3 Frontiers

Recent advancements have increasingly focused on
AHE across multiple diverse and critical aspects.

Long Context/Generation Despite recent ad-
vancements in LLMs enabling them to handle long
texts better, hallucination evaluation in a long con-
text or generation remains a challenge. BAM-
BOO (Dong et al., 2023) includes the hallucination
detection task to its multi-task long context bench-
mark, and FactScore (Min et al., 2023) provides
long-form biographies sampled from Wikipedia
and breaks the generated text into fine-grained
atomic facts with each assigned a binary label.

Domain-specific Hallucinations in specialized
fields such as medicine or law can lead to serious
consequences, and constructing relevant datasets is
particularly needed. MedHalt (Pal et al., 2023)
gathers seven medical datasets to a benchmark
for LLMs’ hallucination evaluation. Magesh et al.
(2024) provide references for QA in the law field,
including legal questions from five aspects.

Non-English Languages Numerous Chinese
LLMs have also emerged along with the trend
and hallucination is also a crucial problem.
UHGEVval (Liang et al., 2023) hallucination dataset
is generated by Chinese LLMs in news domain,
while ChineseFactEval (Wang et al., 2023a) cov-
ers areas in daily life and specifically includes the
modern Chinese history. Similarly, inspired by
Truthful QA (Lin et al., 2022), HalluQA (Cheng
et al., 2023) summarizes the question patterns and
combines them with Chinese culture, and cate-
gorizes hallucinations into imitative falsehoods
and factual errors. Another Chinese-English
benchmark ANAH (Ji et al., 2024) prompts the
model to annotate hallucination for each sentence.
Other than Chinese, multilingual datasets such as
HalOmi (Dale et al., 2023b) can help evaluate hal-
lucinations in different languages and distinguish
them between translation errors.

Fact Reasoning Hallucination in LLM reason-
ing can be complex due to the muli-step process.
Laban et al. (2023) build a benchmark SUMMED-
ITS, which provides a three-step protocol for in-
consistency detection benchmark creation and im-
plements it in a 10-domain benchmark.

Fresh Fact As the world is constantly chang-
ing, a critical question arises: how can we assess
whether LLMs possess dynamic knowledge? The
following benchmarks concentrate on construct-
ing time-sensitive datasets to enable the evaluation
of LLMs’ capacity to incorporate up-to-date infor-
mation. FreshQA (Vu et al., 2023) includes ques-



tions about current events and also inputs with false
premises to the LLMs. RealTimeQA (Kasai et al.,
2024) tests on both open- and closed-book QA sys-
tems. KoL A (Yu et al., 2023) uses both Wikipedia
and continuously collected emerging news and nov-
els for evaluation. ERBench (Oh et al., 2024)
leverages the benefits of databases for easy up-
dates through an entity-relationship model. To
facilitate real-world applications, ToolBH (Zhang
et al., 2024) evaluates the hallucination tendencies
of LLMs by examining both depth and breadth
across various scenarios and tasks.

2.4 Evaluate the Evaluators

Furthermore, for evaluating the evaluators them-
selves, SummEval (Fabbri et al., 2021), Sum-
maC (Laban et al., 2022), Dialsummeval (Gao and
Wan, 2022), and AGGREFACT (Tang et al., 2023)
focus on summarization hallucination evaluation
or detection. In the domain of dialogue genera-
tion, Wizard of Wikipedia (Dinan et al., 2018),
CI-ToD (Qin et al., 2021), BEGIN (Dziri et al.,
2022b), FaithDial (Dziri et al., 2022a) and Topi-
calChat (Gopalakrishnan et al., 2023) facilitate the
measurement of consistency in evaluators. Real-
Hall (Friel and Sanyal, 2023) is a benchmark for
evaluation methods and contains both closed- and
open-domain hallucinations, corresponding to SF
and WE. FELM (Zhao et al., 2024) expands to di-
verse domains: science, math, recommendation,
and reasoning. TRUE (Honovich et al., 2022) and
BEAMetrics (Scialom and Hill, 2021) also can eval-
uate metrics across a series of NLG tasks.

In general, datasets and benchmarks from vari-
ous field have emerged to better evaluate halluci-
nations. Despite the abundance of datasets, many
suffer from limited data size and a one-to-one cor-
respondence between datasets and evaluation meth-
ods. Future dataset construction should focus on
integration from multiple sources, standardization,
and maintaining both quality and quantity.

3 Evidence Collection

Datasets and benchmarks provide the foundation
for AHE. Large-scale automation for evidence col-
lection is essential to achieve AHE. In this section,
we explore methods that do not rely on ground-
truth references. For SF evaluation, evidence is
directly derived from the source input or contextual
information, whereas for WF evaluation, it is typi-
cally sourced from external or model knowledge.

3.1 SF Evidence

To determine the faithfulness of the generated text,
the source input can be utilized in two ways: as an
entire reference or by locating relevant evidence
within it.

Entire Input as Evidence Utilizing the entire
input as evidence implies that the evaluation pro-
cess does not involve extracting specific sentences
or spans. For tasks such as text summarization or
simplification with long input, Maskeval (Liu et al.,
2022) gets the token importance weights by con-
catenating the output and source text to fine-tune
a masked language model. For NMT task, the in-
put and output typically have approximately the
same length and convey the same information. So
it is natural for NMT evaluators to use the input as
the comparison object (Guerreiro et al., 2023; Dale
et al., 2023a). While this approach is straightfor-
ward and effective, it also has significant flaws that
encompass much irrelevant information.

Locate Evidence in the Input To avoid infor-
mation redundancy in evidence collection, more
recent methods employ strategies to identify rel-
evant evidence, specifically targeting content that
either supports or contradicts the output text. One
widely adopted approach for evaluating summa-
rization tasks is Question Generation and Question
Answer (QG-QA). A common framework is ex-
tracting QA pairs from the summary, using QA
models to retrieve answers from the document,
and checking consistency, such as FEQA (Durmus
et al., 2020)and QAGS (Wang et al., 2020). In
this context, the answer derived from the document
serves as evidence to validate the summary answer.
Because the summary should contain key informa-
tion from the document, QuestEval (Scialom et al.,
2021) trains a question weighter to label important
questions. QAFactEval (Fabbri et al., 2022) fur-
ther explores the use of abstractive QA models, but
finding no significant difference in performance
between extractive and abstraction QA approaches.
This suggests that QA capability is not the primary
bottleneck in the task. For answer selection, Fabbri
et al. (2022) demonstrate that selecting noun phrase
chunks as answers yields better performance than
entities. These evidences are usually words or short
spans, a more comprehensive approach involves di-
viding the context into segments (Zha et al., 2023)
or representing the core content of the source input
as a semantic graph (Ribeiro et al., 2022).



3.2 WF Evidence

Retrieving evidence from external sources is more
challenging due to the difficulty in determining
search boundaries, identifying connections, and
extracting critical information .

External Knowledge Base (KB) Leveraging the
external KBs offers a comprehensive reservoir of
world knowledge. The main challenge is to ac-
curately identify and extract relevant information
from this extensive data pool. Among the KBs uti-
lized, Wikipedia is the most commonly employed,
with others such as YAGO, KGAP, and UMLS
also being used (Feng et al., 2023). The format
of knowledge extraction can vary, including enti-
ties (Yang et al., 2023), triplets (Feng et al., 2023),
or fine-defined atomic facts (Min et al., 2023).
Domain-wide KBs like PubMed are also essen-
tial for biomedical information retrieval (Pal et al.,
2023). When multiple pieces of evidence are avail-
able, identifying the related ones is also a signifi-
cant step before making the judgement (Wang et al.,
2024).

Online Search While KBs can only provide
static information, utilizing tools such as search en-
gines can help access dynamic and up-to-date infor-
mation. FacTool (Chern et al., 2023) decomposes
the sentences into checkable atomic claims used for
online searches. HaluAgent (Cheng et al., 2024)
also combines smaller LLMs with search tools to
retrieve evidences. Before searching, Factcheck-
GPT (Wang et al., 2023c) incorporates a check-
worthiness selection module for each claim.

LLM as Knowledge Base LLMs have massive
learned knowledge while training, powerful LLMs
can serve as KBs. In a closed-book setting, the
LLM generates answers solely based on the param-
eteratic knowledge, without relying on any external
KBs. Moreover, LLMs can be injected with more
knowledge by fine-tuning and retrieving (Ovadia
et al., 2023; Chen et al., 2024b). UFO (Huang et al.,
2024b) introduces a fact verification framework
that incorporates multiple sources of evidence, in-
cluding knowledge from LLMs. Similarly, CON-
NER (Chen et al., 2023a) utilizes LLMs to generate
related knowledge as evidence for evaluation. Re-
fChecker (Hu et al., 2024a) applies LLMs’ knowl-
edge to solve the zero-context hallucination detec-

'The retrieval-augmented phase of the Retrieval-

Augmented Generation (RAG) framework follows a process
similar to the methods discussed in this section.

tion. These approaches are applied to knowledge-
intensive tasks, such as open-domain question an-
swering and knowledge-grounded dialogue.

The effectiveness of evidence derived from fixed
sources, such as SF evidence and ones based on
static KBs, is largely determined by extraction ac-
curacy. Online search, while offering extensive
coverage, can suffer from information loss due to
the lengthy search pipeline, and the effectiveness
of online search often depends on the quality of
search recommendations. Reliance on LLMs for
evidence retrieval may lead to the issue of "lying to
verify lies", as LLMs themselves can suffer from
hallucinations. The manner in which this evidence
is utilized, specifically, how it is compared with the
generated text directly determines the evaluation
outcome.

4 Comparison

Various approaches have been proposed to compare
the generated text with corresponding ground truths
or collected evidence. These range from model-
free methods to more advanced techniques that
employ multiple models for judgment. While cer-
tain methods leverage the evidence to compute this
similarity, others operate independently of the evi-
dence, instead relying on the knowledge encoded
within the model itself. In this section, we catego-
rize the comparison methods into distinct groups
and present an overview of the corresponding scor-
ing metrics alongside the associated approaches.

4.1 Lexical Similarity

Lexical similarity refers to the measurement of
the closeness or similarity between two pieces of
text based on their word usage. Traditional n-
gram methods like ROUGE (Lin, 2004) measure
n-gram overlap between texts but show weak cor-
relation with human evaluations (Maynez et al.,
2020). Therefore, the methods discussed below
represent statistical metrics grounded in the defini-
tion of facts instead of n-grams.

Exact Match (EM) EM score is based on the
definition of facts. Fact,.. (Goodrich et al., 2019)
defines the fact schemas as triplet tuples (entity-
relation-entity), and then the score is calculated by
comparing the schema between the ground-truths
and generated text. Maskeval (Liu et al., 2022)
evaluates on the token level, and combines masked
LM weights with EM scores.



QG-QA Answer Match In the context of QG-
QA approaches, some answers are relatively short,
such as entities or informative text segments.
Within this framework, the similarity between
system-generated outputs and source-derived an-
swers can be quantitatively assessed through lexi-
cal overlap. For summarization task, FEQA (Dur-
mus et al., 2020), QAGS (Wang et al., 2020)
and QuestEval (Scialom et al., 2021) use F1-
score to compare the answers. MQAG (Manakul
et al., 2023a) computes the statistical distance (e.g.
KL-Div) of answers over automatically generated
multiple-choice questions,

QA Benchmark Answer Match To assess the
hallucination level of LLMs, many of the bench-
marks introduced in Sec. 2 are typically framed
in QA tasks. While the focus of these bench-
marks may differ, they all provide ground-truth
answers for evaluation. One line of research in-
volves prompting LLMs to generate answers to the
given questions and subsequently evaluating their
performance using EM scores (Kasai et al., 2024;
Oh et al., 2024). Another line of research involves
using multiple-choice tasks (Lin et al., 2022; Ka-
sai et al., 2024; Oh et al., 2024; Dong et al., 2023),
where accuracy or F-score are computed as the final
performance metrics.

4.2 Semantic Similarity

The approaches presented in this section diverge
from the lexical similarity, as they are not based
on the word matching score. Instead, these meth-
ods exploit the semantic meaning of text, either
by assessing the entailment likelihood between the
generated text and the source evidence or leverag-
ing from more diverse perspectives

Data-augmentation NLI One way to measure
semantic similarity involves evaluating the degree
of entailment using a NLI model, wherein the pre-
dicted likelihood is utilized as a measure of the
entailment score. Among these methods, data aug-
mentation is a widely adopted technique to enhance
the performance of NLI models. Building positive
and negative samples is an effective way to im-
prove model ability to distinguish them. Positive
data is usually built by paraphrasing or backtrans-
lation (Kryscinski et al., 2020; Wang et al., 2022).
For negative data, FactCC and FactCCX (Kryscin-
ski et al., 2020) achieve this through word swap-
ping and noise injection. And FactPush (Steen
et al., 2023) further augments negative samples

by appending random phrases. Alternatively, Fac-
tKB (Feng et al., 2023) augments the training data
with external triplet knowledge, which can improve
the model’s ability of knowledge understanding.

Semantic-structure NLI With more focus on
the encoding processes, some studies leverage sen-
tence or document structure to construct semantic
representations. For example, DAE (Goyal and
Durrett, 2020) applies the entailment model on
the dependency level of a sentence, specifically
focusing on the relationship between the head and
tail of a dependency arc. Expanding on this, Fact-
Graph (Ribeiro et al., 2022) improves discourse
understanding by encoding semantic structures as
graphs for both the input and output.

NLI for Answer Match Beyond using NLI mod-
els solely for text entailment checking, studies (Fab-
bri et al., 2022; Honovich et al., 2021) within the
QG-QA pipeline have demonstrated that leveraging
NLI models for answer similarity checking is an
effective approach. These works further highlight
that QA-based and NLI-based metrics can provide
complementary insights.

Other Methods The aforementioned NLI meth-
ods focus on evaluating similarity within a bi-
nary classification framework. However, halluci-
nations can be assessed from a broader range of
perspectives, allowing for more nuanced evalua-
tion. CoCo (Xie et al., 2021) introduces counter-
factual data to measure the causal effects between
source documents and generated summaries. Align-
Score (Zha et al., 2023) builds an alignment model
utilizing a LM and 3 individual linear layers as
the 3-way classification (aligned, contradict, neu-
tral), binary classification (aligned, not-aligned),
and regression (score € [0, 1]) heads.

In addition to employing a single metric for
evaluation, several studies have explored the ag-
gregation of multiple metrics in a collaborative
manner to provide a more comprehensive assess-
ment. WeCheck (Wu et al., 2023) introduces a
weak supervision learning paradigm that builds
upon existing metrics, utilizing a combination of
NLI datasets for initialization and noise-aware fine-
tuning to develop a target metric model. Similarly,
STARE (Himmi et al., 2024) combines signals
from internal model-based and external detectors
to improve hallucination detection on NMT task.
Other than using the off-the-shelf methods, ExtE-
val (Zhang et al., 2023b) identifies five broad cat-



egories of unfaithfulness issues in extractive sum-
marization that cannot be fully addressed by entail-
ment models, with each category being assessed
through a specific sub-metric.

4.3 LLM as a Judge

In this section, we introduce approaches that lever-
age LLMs as evaluators for hallucination evalu-
ation. The core premise of this approach is that
LLMs possess parametric knowledge acquired dur-
ing training and can be prompted to complete vari-
ous tasks (Li et al., 2024).

The evaluation process involves first providing
the LLM with the evaluation criteria and task
description, followed by supplying the task in-
puts for judgment. The feasibility of ChatGPT
as an effective evaluator is specifically examined
by Wang et al. (2023b), demonstrating its poten-
tial for building evaluators with or without refer-
ence inputs. For specific tasks, SCALE (Lattimer
et al., 2023) focuses on long-form dialogue, seg-
menting lengthy source documents into chunks and
assessing the level of support provided by each
text snippets. Chen et al. (2023b) experiments the
few-shot and zero-shot scenarios to evaluate sum-
marization task. Expanding to a broader range of
tasks, GPTScore (Fu et al., 2023) and G-Eval (Liu
et al., 2023) both offer multi-faceted evaluation
frameworks that include consistency as a key met-
ric. Chain-of-thoughts (CoT) also can enables the
reasoning capabilities of LLMs (Liu et al., 2023;
Friel and Sanyal, 2023; Akbar et al., 2024), as it
provides transparency by outlining the intermediate
steps involved in judging and improves the complex
and nuanced judgments.

4.4 Consistency Cross Check

The evaluators discussed above primarily focus
on comparing the target text with either extracted
evidence or the broader context. However, when
assessing LLMs, an alternative approach is to ex-
amine the consistency of the LLM’s output. The
underlying premise is that a model with lower gen-
eration uncertainty is likely to demonstrate higher
confidence in producing hallucination-free content.
This method can be categorized into two distinct ap-
proaches: self-consistency check and cross-model
consistency check.

Self-consistency Check This approach assumes
that an LLM will show self-consistency if it pos-
sesses relevant knowledge. Based on this, Self-

CheckGPT (Manakul et al., 2023b) employs a
zero-resource hallucination detection framework
by evaluating the consistency of multiple sampled
responses. InterrogateL. LM (Yehuda et al., 2024)
measures consistency by reconstructing the input
query from generated responses and comparing it to
the original. To evaluate LLMs’ world knowledge,
KoL A (Yu et al., 2023) develops a self-contrast
metric by contrasting two completions generated
by the same model and gets the similarity score.

In addition to examining the generated text,
the semantic information retained within the in-
ternal states can also assist in the judgment process.
Based on multiple generations, EigenScore (Chen
et al., 2024a) leverages eigenvalues of responses’
covariance matrix to measure self-consistency. An-
other line of research does not rely on multiple
generations from the model but instead utilizes
the difference between internal states and outputs.
LLM-Check (Sriramanan et al.) employs internal
attention kernel maps, hidden activations, and out-
put prediction probabilities to assess hallucinations,
while Lookback-Lens (Chuang et al., 2024) uses
attention maps to detect contextual hallucinations.
EGH (Hu et al., 2024b) models the distributional
distance between embeddings and gradients of reg-
ular conditional and unconditional outputs through
Taylor expansion. Likewise, PHR (Jesson et al.,
2024) estimates hallucination rates by evaluating
response log probabilities from conditional genera-
tive models.

Cross-model Consistency Check Although self-
inconsistency in LLMs is often associated with hal-
lucinations, self-consistency does not inherently en-
sure factual accuracy in generated content. There-
fore, SAC? (Zhang et al., 2023a) includes verifier
LMs to perform cross-checking, and considers both
question inputs and answer outputs when measur-
ing semantic consistency.

When ground truth or evidence is available, eval-
uation typically involves measuring lexical or se-
mantic similarity, where the NLI models can also
integrate effectively with QG-QA evaluators. The
use of LL.Ms for evaluation is straightforward and
convenient, offering flexibility in designing evalu-
ation criteria based on specific tasks and enabling
multi-faceted assessments. However, despite in-
creasing confidence in LLMs as their size and ca-
pabilities expand, ensuring their stability and re-
liability in evaluation tasks remains an open chal-
lenge. Enhancing LLMs’ capabilities in judgment,



retrieval, and self-improvement represents a critical
direction for future research.

5 Discussion and Future Directions

While existing AHE methods have demonstrated
substantial progress, critical gaps persist in hallu-
cination detection and evaluation. Particularly in
cutting-edge task domains, certain hallucinations
remain complex and difficult to detect and evaluate,
which deserve further investigation.

5.1 Discussion Questions

Hallucination vs. Text Error It can be chal-
lenging to distinguish between hallucinations and
other text errors (Guerreiro et al., 2023), such as
less severe entity mistranslations. According to the
traditional definition of hallucination (smooth but
incorrect), any response from a large model that
differs from the ground truth can be considered
as hallucination, which is obviously unreasonable
and can mislead researchers. Some works in NMT
have already made progress in this area (Dale et al.,
2023a), and future evaluation methods should aim
to accurately identify real hallucinations.

Fine vs. Coarse Fact Granularity The studies
surveyed in this work attempt to evaluate halluci-
nations at various granularities, ranging from fine-
grained units such as tokens and entities to more
coarse-grained units like phrase spans, claims, sen-
tences, and document chunks. Which fact granu-
larity is the best? Some studies have explored dif-
ferent levels of fact granularity (Hu et al., 2024a),
or sought to integrate multiple granularities (Xie
et al., 2021; Zhao et al., 2024). Determining the
optimal granularity is challenging, as it is highly
context-dependent and task-specific.

Hallucination vs. Imagination Is hallucination
always bad? Not necessarily. In certain contexts,
such as discussions about a sci-fi novel, imagina-
tive content is expected, and the dialogue should
be creative. In such cases, the line between hallu-
cination and imagination becomes subtle. Differ-
entiating between these two phenomena can help
models more effectively evaluate diverse types of
text (Zhou et al., 2024).

5.2 Future Directions

Supporting Theories Previous evaluations and
detection of hallucinations have primarily focused
on examining the final output of the model, specifi-
cally the hallucinations manifested in the generated

text. Some preliminary studies have explored the
feasibility of using internal states for hallucination
evaluation (Chuang et al., 2024; Hu et al., 2024b).
However, the underlying mechanisms remain under
investigation.

Interpretability Identifying fact granularity and
analyzing the reasons behind hallucination can pro-
vide significant assistance in solving hallucination
problems. Some reasoning methods (Akbar et al.,
2024) have the potential to analyze the underlying
causes of hallucinations and offer better evaluation.
Other observing aspects lie in the internal state of
model generation (Su et al., 2024), which provide
more analytical perspectives.

Complex Context It is crucial to address hallu-
cinations caused by the model’s difficulty in un-
derstanding complex inputs, including the long
or multi-form context. Hallucinations caused by
contradictions between the beginning and end
of long outputs are also worth further explo-
ration (Wei et al., 2024), such as detecting in-
consistencies in character behavior within model-
generated narratives. Furthermore, investigating
multi-evidence verification during hallucination
evaluation also presents a promising direction for
future research (Wang et al., 2024).

Other Applications Moreover, the latest re-
search focuses on expanding LL.Ms to areas such
as multilingual, multimodality, autonomous agents,
and real-world applications, which bring about new
types of hallucinations, such as code hallucina-
tion (Qian et al., 2023), tool hallucination (Zhang
et al., 2024), visual hallucination, cross-lingual hal-
luciantion (Dale et al., 2023b), multimodal halluci-
nation (Huang et al., 2024a), and so on. Evaluating
such hallucinations is a very interesting and worth-
while direction to explore.

6 Conclusion

Evaluating hallucination in NLG is essential, as
it influences the direction and future trends in de-
veloping more robust models. In this survey, we
present the works of AHE by organizing it accord-
ing to the steps of the evaluation pipeline, covering
both SF and WF fields. Traditionally, most evalua-
tion metrics have been task-specific, given the rela-
tive ease of defining criteria for task performance.
However, with the growing focus on LLMs, new
demands and challenges have emerged, prompting
researchers to reconsider evaluation frameworks.



7 Limitation

In this paper, we collect a broad range of related
papers and reports, categorize and compare various
methods, and provide insights into discussion and
potential future directions. However, this paper
does have several limitations.

First of all, we did not do comprehensive ex-
periments to revisit the above evaluators, because
the evaluators usually focus on different types of
hallucinations for various tasks, and it wouldn’t
be fair to compare across the categories. For ex-
ample, evaluators for LLMs intend to build their
own datasets with human annotation, which vary in
categories and schemes. Secondly, content related
to fact-checking and human evaluation is provided
in Appendix C and Appendix D. Meanwhile, this
survey focuses exclusively on text-to-text halluci-
nations. Due to space limitations, a comprehensive
discussion of these topics is not included, as such
details may divert attention from the primary focus
of this paper. Last but not least, the case study we
provide in Appendix B only includes a few repre-
sentative cases on selective models for reference.
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A Evaluator Taxonomy and Meta-Info

We present Figure 2 to clearly display the tax-
onomy for AHE methods according to the pipeline
we proposed. We also provide a table of meta in-
formation for the evaluators here, as in Table 1 and
Table 2. For the Based-model column, it means the
models that evaluators use to perform evaluation or
generate synthetic data. Metric column means the
calculating method to get the final score. v'and X
in SF and WF columns mean the aspects that the
evaluators focus on.

B Case Study

Among the SF and WF errors discussed in this
paper, we present a four-quadrant diagram in Fig-
ure 3 to more effectively illustrate these errors.

Here we present some results of selected evalua-
tors on different kinds for SF or WF errors on sum-
marization data in Table 3. The data we used are
from XEnt dataset (Cao et al., 2022) and FactCol-
lect (Ribeiro et al., 2022). We selected evaluators
that use the GPT series and those that do not, cov-
ering both models that evaluate SF and WF facets.
For the models utilizing LLMs, we specifically em-
ployed GPT-3.5-turbo. Although FacTool is not
directly applicable for evaluating summarization
tasks, we conducted experiments under its KBQA
(Knowledge-Based Question Answering) setup to
see its transfer ability.

The results of different models on these cases
show considerable variation. In the SF-WF case,
only FacTool made an incorrect judgment, which
might be attributed to its insufficient transfer abil-
ity. SelfCheckGPT uses a zero-shot approach
in its prompt to assess the consistency, whereas
HaluEval’s prompt provides examples for judg-
ment. However, the SFE cases indicate that the
results of these two evaluators remain unstable. For
the WFE cases, FacTool provides the correct an-
swers, and surprisingly, WeCheck also made cor-
rect judgments. Currently, to our best knowledge,
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no such labeled data is available for full evalua-
tion. More accurate data is needed for further ex-
periments to validate the preferences of different
evaluators.

C Fact-checking

Fact-checking or fact-verification task is another
line of work that has been paid much attention.
The fact-checking framework can be divided into
three components: claim detection, evidence re-
trieval, and claim verification (Guo et al., 2022),
which is a relatively mature pipeline. Distinct from
the evaluation methods discussed before in this
paper, it typically involves assessing the factual
accuracy of individual claims, mostly focusing on
their WF. Wikipedia is a commonly used source
for world knowledge (Thorne et al., 2018; Schus-
ter et al., 2021; Kamoi et al., 2023; Gupta et al.,
2022; Schuster et al., 2021), not only for fact-
checking, but also for factuality evaluation. Es-
pecially when extracting evidence from a specific
source, the WF turns into SF, which also demon-
strates the dialectical unity of WF and SF. Benefit-
ing from LLMs, fact-checking can process longer
and more complex texts with more confidence and
efficiency (Wang et al., 2023c¢). Due to the nature of
the fact-checking task, it can be seen as a WF eval-
uator for text generation with a binary (true/false)
checker.

D Human Evaluation

For hallucination evaluation, human perspec-
tives can play a pivotal role, providing datasets
and establishing benchmarks for the development
of automatic models. To build a human annotation
framework, there are three aspects requiring con-
sideration: 1) How to design error categories and
unify guidelines for annotators; 2) How to ensure
the reliability of human annotation; And 3) how
to digitally present annotated results. Human eval-
uation can be time-consuming and is particularly
inefficient for large-scale evaluations, but still is
the most trustworthy way of model evaluation.
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‘WF Evidence (§3.2) }{Online Search HFacToal (Chern et al., 2023), HaluAgent (Cheng et al., 2024), Factcheck-GPT (Wang et al., 2023c)
LLM as
Knowledge Base

{Exact Match (EM) HFactMc (Goodrich et al., 2019), Maskeval (Liu et al., 2022)

Lexical QG-QA Answer FEQA (Durmus et al., 2020), QAGS (Wang et al., 2020) , QuestEval (Scialom et al., 2021), MQAG (Man-
Similarity (§4.1) Match akul et al., 2023a)

QA Benchmark RealTimeQA (Kasai et al., 2024), ERBench (Oh et al., 2024), TruthfulQA (Lin et al., 2022), BAM-
Answer Match BOO (Dong et al., 2023)

Q
)
4
=
S
[Sa
T
<
—
S
>
)
z
5
7

Ovadia et al. (2023), UFO (Huang et al., 2024b), CONNER (Chen et al., 2023a), RefChecker (Hu et al.,
2024a)

L

L ___JL J

(Y

Data-augmentation Kryscinski et al. (2020), Wang et al. (2022), FactCC (Kryscinski et al., 2020), FactPush (Steen et al.,
NLI 2023), FactKB (Feng et al., 2023)

Semantic-structure DAE (Goyal and Durrett, 2020), FactcheFactGraph (Ribeiro et al., 2022)
Semantic NLI
Similarity (§4.2) NLI for Ans
mQAFactEva] (Fabbri et al., 2022), @* (Honovich et al., 2021)

Other Method CoCo (Xie et al., 2021), AlignScore (Zha et al., 2023), PHR (Jesson et al., 2024), WeCheck (Wu et al.,
ther Methods 2023), STARE (Himmi et al., 2024), ExtEval (Zhang et al., 2023b)

Comparison (§4)

. _Jo J G __J

SCALE (Lattimer et al., 2023), Chen et al. (2023b), GPTScore (Fu et al.,
2023), G-Eval (Liu et al., 2023), Wang et al. (2023b), ChainPoll (Friel and
Sanyal, 2023), HalluMeasure (Akbar et al., 2024)

SelfCheckGPT (Manakul et al., 2023b), InterrogateLLM (Yehuda et al., 2024), KoLA (Yu et al., 2023),
EigenScore (Chen et al., 2024a), LLM-Check (Sriramanan et al.), Lookback-Lens (Chuang et al., 2024),
EGH (Hu et al., 2024b)

SAC? (Zhang et al., 2023a) ]

Figure 2: Taxonomy of AHE methods based on the distinct techniques employed at each stage of the pipeline.
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Era Name New Dataset Data Source Fact Definition Task Based-model Method Metric SF | WF
Wikipedia,
Fact e WikiFact ipedia, Triplet Summ Transformer Triplet Extraction PR, Fl v ox
Wikidata KB
FactCC FactCC CNN/DM, XSumPFaith Sent Summ BERT NLI (2-class) Likelihood 7 x
DAE DAE PARANMTS0M Dependency Summ ELECTRA NLI (2-class) Likelihood v x
Wik -
Maskeval / CNN/DM, WikiLarge, Word Summ, Simp TS Word Weighting cighted v ox
ASSET Match Score
Guerreiro et al. (2023) Haystack WMT2018, DE-EN Text Span NMT Transformer Uncertainty Measure Avg. Similarity v X
Dale etal. (2023a) 7 Haystack Text Span NMT Transformer Source Contribution Percentage VX
BART (QG),
FEQA FEQA CNN/DM, XSum Sent Span Summ Q3 QG-QA Avg. Fl v | ox
BERT (QA)
Ent, BART (QG), Ave.
QAGS QAGS CNN/DM, XSum " Summ (QG) QG-QA Ave v ox
Noun Phrase BERT (QA) Similarity
Ent,
QuestEval / CNN/DM, Xsum N" Summ T5 (QG, QA) QG-QA PR, Fl v ox
oun
QAFactEval / SummaC NP Chunk Summ BART (QG), QG-Qa, LERC v ox
ELECTRA (QA) NLI
QAGS, XSumFaith, Podcast, 5 (QG) Choice
Before MQAG / » Xoumbaith, Podeast, | g span Summ >QG), Multi-Choice QA Statistical v | ox
Assessment, SummEval Longformer (QA)
LLM Era Distance
Token, Span,
CoCo / QAGS, SummEval :C" D"“‘" Summ BART Counterfactual Estimation | Avg. Likelihood Diff | v | X
Sent, Doc
FactGraph FactCollect CNN/DM, XSum Dependency Summ ELECTRA Classification BACC, FI v x
FactKB FactKB CNN/DM, XSum Triplet Summ RoBERTa Classification BACC, F v x
Discourse, SpanBERT Direct Predicti s ati £
ExtEval ExtEval CNN/DM Coreference, Summ panBERT, trect Frediction. ummation o v ox
° RoBERTa Statistic Sub-scores
Sentiment
) T5 (QG), Albert-Xlarge (QA), o
2 2 WOowW Sent Span Dia G-QA, NLI Likelihood v
@ @ P ¢ RoBERTa (NLI) QG-Q ! x
FactPush 7 TRUE Span Diag, Summ, Paraphr DeBERTa NLI AUC v x
NLI, QA, Paraphrase,
. 22 datasets . oo e " )
AlignScore / Sent Fact Verification, IR, RobERTa 3-way Classification Likelihood v ox
from 7 tasks o
Semantic Similarity, Summ
Summ, Diag, Weakly Supervised
WeCheck / TRUE Response umim, Diag DeBERTaV3 Cakly Supervise Likelihood V| ox
Para, Fact Check NLI

Table 1: AHE Meta-Info Table before LLM era, which means the methods do not rely on the ability of LLMs such
as ChatGPT.
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Era Name New Dataset Data Source Fact Definition Task Based-model Method Metric SF | WF
SCALE ScreenEval LLM, Human Sentence Long Diag Flan-T5 NLI Likelihood 7 x
SummEval, Flan-T5, code-davinci-002, V-

Chen et al. (2023b) / XSumPFaith, Response Summ text-davinci-003, Sent St Promnt Balanced Acc VX
Goyal21, CLIFF ChatGPT, GPT-4 4 P
GPTScore / 37 datasets Various Summ, Diag, GPT2, OPT, Direct Assessment Direct Score V| ox
from 4 ¢ NMT, D2T FLAN, GPT-3
bl ; SummEval, Response Summ, opra cot. Weighted 1 x
Topical-Chat, QAGS Diag Form-filling Scores
Summ, D2T, Direct Assessment, )
Wang et al. (2023b) / 5 datasets from 3 tasks Response umm, D22 ChatGPT trect Assessmen Direct score V| ox
Story Gen Rating
RealHall-closed, "OVID-QA, DROP, Direct Assessment
ChainPoll cattiall-close COVID-Q o Response Hallu Detect pt-3.5-turbo irect Assessmen Acc vlx
RealHall-open | Open Ass prompts, TriviaQA (2-class)
i Semantic Consistency/
) CoQA., SQUAD, TriviaQA . Open-book QA LLaMA, emantic Lonsisiency AUROC,
EigenScore / . Inner State Diversity in Dense V| X
Natural Questions Closed-book QA OPT ' pcC
Embedding Space
Multi-Choice QA, o
TruthfulQA TruthfulQA LLM, Human Response v G‘e“e:‘lfan GPT-3-175B Answer Match Percentage, Likelihood | X | v
at
QA, Summ,
Task-specific Alpaca, Knowledge-
HaluEval : Task datasets Response ‘ ChatGPT Direct Assessment Ace Vv
General grounded Diag,
ChatGPT .
Generation
Wiki-/News-/
Wikipedia, Refin- FRANK E
FACTOR Expert- d"N": F'i ;[Q"A Sent Span Generation / Chasiti ‘;:" likelihood x| v
FACTOR CaTVeD, Bxp 8
World Knowledge,
TruthfulQA, Quora, — S o dTmf: CMgfh Vicuna, -
FELM FELM MMLU, GSM8K, e:‘l, par. WC‘[“" e;['{ am ChatGPT, Direct Assessment Balanccd A Vv
OGP Mo aim rting and Recom- v alanced Ace
mendation, Reasoning
Never/Slow
FreshQA Fast-changing, Human Response Generation / Answer Match Ace x| v
false-premise
"NN, THE WEEK, Multi-Choice QA, PT3,
RealTimeQA RealTimeQA CNN, Response ulti-Choice Q G Answer Match Acc. EM, Fl x| v
USA Today Generation TS
Ans/Rat/
ERBench Binary/ Multipl Direct Assessment,
ERBench ene 5 datasets from Kaggle Ent-Rel eyl Ve iple / rect Assessen Ans-Rat Acc, x| v
Database -choice QA String Matching
Hallu Rate
Biographies in TostructGPT,
FactScore / “fk_p o Atomic Fact Generation ChatGPT, Binary Classification P x| v
ikipedia
P Perplexity Al
SenHallu 10 datasets Multi-choice tasks,
BAMBOO ' Res g ChatGPT Answer Matct PR FI v
AbsHallu from 5 tasks esponse Select tasks a nswer Mateh d
After M'\g‘dﬁgﬁﬁ‘b Reasoning Hallu Tost Pointwise
LLM Era MedHalt MedHalt ccda LOMILE, Response casoning Hatu Test, ChatGPT Answer Match Score, x| v
Medga (Taiwan), Memory Hallu Test .
Headqa, PubMed ¢
- . FacTool,
ChineseFactEval | ChineseFactEval / Response Generation / Direct Score x| v
Human annotator
Chinese Generative/ Answer Match A
awer Mate N
UHGEval UHGEval inest Keywords Discriminative/ GPT-4 Swer Vel A x| v
News Websites Similarity Similarity Score
Selective Evaluator
GLM-130B, Non-hall
HalluQA HalluQA Human Response Generation ! Direct Assessment on-haflu x| v
ChatGPT, GPT-4 Rate
Claim Extraction,
Knowledge-based QA,
RoSE, FactPrompts, i e Q Query Generation,
FacTool / HumanEval, oo Ml Bt ChatGPT Tool Querying, P.R.Fl v
GSM-Hard, Self-instruct esponse ath Reasoning, Evidence Collection,
Sci-literature Review .
Agreement Verification
NQ. HotpotQA, Open-domain/ Fact Unit Extraction,
Truthful QA., 'eb Remev?l based/ ChatGPT Fac}l Sm{nce Ave.
UFO / CNN/DM, Ent Expert-validated/ (3.5 turbo1106) Verification, - Vv
Multi-News, Retrieval-Augmented QA, EpLo Fact Consistency Pub-scores
MS MARCO News Fact Generation Discrimination
Open-domain QA, NLI-RoBERTa
CONNER / NQ, Wow Sentence Knowledge-grounded arge, 3-way NLI Ace x| v
Dialogue ColBERTv2
o " . . NLI, Ngram,
SelfCheckGPT | SelfCheckGPT WikiBio Response Hallu Detect GPT3 0 AUC-PR vl x
QA, BERTScore, Prompt
The Movies Dataset, GCI - AUC,
InterrogateLLM / © Viovies Datase Response Hallu Detect GPT-3, LLaMA-2 Query Consistency x| v
The Book Dataset (Kaggle) Balanced Acc
2pt-3.5-urbo, )
HotpotQA, . Cross-checking,
SACH / otpoiQ Response QA Generation Falcon-7Tb-instruct, ross-checking AUROC G
NQ-open QA Pair Consistency
Guanaco-33b
Wikipedia, Knowledge Memorization
) ) Self-contrast I
KoLA KoLA Updated News Response /Understanding/Applying / Similarity x| v
N Answer Match
and Novels [Creating
Construct Query,
RV PHD Human Annotator Ent Generation ChatGPT Access Databases, PR, Fl vlx
Entity-Answer Match
N Seed summary verify,
, 9 datasets from ) '
SummEdits SummEdits Span Summ, Reasoning gpt-3.5-turbo Summary edits, Balanced Acc V| ox
Summ task )
Annotation
FAVA-Annotation, e, L Auulyzl::‘ml‘clmuvl attention
LLM-Check / RAGTruth, Response Fact-checking ama-2, ama-s, | xeme maps, AUROC, FPR, Acc | X | v
. GPT4. Mistral-7b hidden activations and
SelfcheckGPT o
output prediction probabilities
. Posterior Hallucinati
PHR synthetic / Response 1cL Llama-2, Gemma-2 ostertor Pauemnation Hallu Rate v | ox
Rate (Baysian)
HalluMeasure | TechNewsSumm | CNN/DM, SummBEval claim Summ Claude COT, Reasoning PR FI 7 x
EGH / HADES, HaluBval, Response QA, Diag Summ LLaMa2, OPT, GPT-based Taylor expansion on Acc, B, R, F1, vl
SelfcheckGPT embedding difference AUC, G-Mean, BSS
STARE / LfaN-Hall, HalOmi Sentence NMT COMET-QE, LASER, |, repate hallucination scores | AUROC, FPR o ox
XNLI and LaBSE
HaluEval-QA, WebQA, Knowledge-based QA, math, Sentence Segmentation,
HaluAgent / Ape210K, HumanEval, | Response, Sent | code generation, and Baichuan2-Chat, GPT-4 Tool Selection Ace, PR, Fl Vv
WordCnt, conditional text generation. and Verification, Reflection
Natural Questions, Closed-Book QA, RAG,
RefChecker KnowHalBench |  MS MARCO, databricks | ~claim-triplet Summ, Closed QA Mistral-7B, GPT-4, NLI Extractor and Checker Ace, PR, Fl s
~dolly15k Information Extraction
CNN/DM, XSum, -
Summ, QA, Multi-tun LLaMA-2-7B-Chat, )
Lookback Lens / Natural Questions, Response umm, QA, Muld-turn . : Attention Map AUROC, EM V| v
conversation GPT-based
MT-Bench
Halu-J ME-FEVER FEVER Claim Fact-checking GPT-4, Mistral- 7B-Instruct Reasoning Acc X7

Table 2: AHE Meta-Info Table after LLM era, which means the methods utilize the ability

ChatGPT.
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g : The influence of singer-
songwriter Swift is not
confined to the world of
music where she has megastar
status. Her mere presence at
American football games to
watch her boyfriend Travis
Kelce has been credited with
raising NFL viewing figures.
Her album 7988 (Taylor's
Version) was the best-selling
vinyl LP of last year, followed
by the Rolling Stones'
Hackney Diamonds.

World
Unfactual

@ . Taylor Swift's impact extends
beyond music. Her attendance boosts
NFL viewership, and her album 7988
(Taylor's Version) topped vinyl sales,
beating the Rolling Stones

@ : Swift's impact extends beyond
music. Her presence at games of
Travis Kelce raised NFL viewership,
who is serving Cincinnati Bearcats
football team.

Source
Faithful

Source

@ : Taylor Swift's impact extends
beyond music. Her attendance boosts
NFL viewership, and her album
topped vinyl sales, beating the
Rolling Stones.

World

@& . Taylor Swift's impact extends
beyond music. Her attendance boosts
NFL viewership, and her album 7989
(Taylor's Version) topped vinyl sales,
beating the Rolling Stones

Factual

Unfaithful

Figure 3: Source Faithful Error (SFE) and World Factual Error (WFE) examples. The correct album is "7989", but
the source document contains incorrect information. If the generated text says "/988", it is SF but has WFE. If it
corrects to "71989", it is WF but has SFE. When the text exhibits both SFE and WFE, it often includes non-factual
content not from the source, e.g. the incorrect statements about Travis Kelce not serving the Cincinnati Bearcats

football team. Otherwise, if no such errors are present, the text should be both SF and WF.

Document Summary Note WeCheck | SelfCheckGPT | HaluEval | FacTool
SF-WF Harry Kane has been given the | The DR Congo | The summaryiscor-| TRUE TRUE TRUE FALSE
nod by Youssouf Mulumbu for this sea- | international has | rect.
son’s players’ Player of the Year award | picked Chelsea
The West Brom midfielder has picked | wideman Eden
Chelsea wideman Eden Hazard for the | Hazard for the
young player of the year prize Congo | young player of the
international Mulumbu posted his votes | year prize .
for this year’s PFA awards to Twitter on
Wednesday Mulumbu challenges QPR
defender Yun Suk-Young during West
Brom’s 4-1 defeat at The Hawthorns
Goalkeepe ...
SF-WFE ... Since the end of March, the Vikings’ | Widnes Vikings can | "Chris Betts" is in | FALSE TRUE TRUE FALSE
only wins have been in the Challenge | turn their poor start | the document but
Cup against lower-league sides. "We’ve | to the Super League | is incorrect essen-
got the personnel and we’ve got the | season around if | tially.
people to spark us back into life," | they can find a win-
Chris Betts told BBC Radio Mersey- | ning streak, says as-
side. "When we get rolling again I'm | sistant coach Chris
sure, or I’m positive, that we can really | Betts.
turn this year around for ourselves." ...
"The players are hurting and we’ve got
to win," added England assistant coach
Betts. ...
SFE-WF The panther chameleon was found on | A chameleon has | The Marl Park is in TRUE FALSE TRUE TRUE
Monday by a dog walker in the wooded | been put down by | Cardiff but not men-
area at Marl Park. It had to be put | RSPCA Cymru af- | tioned in the docu-
down after X-rays showed all of its | ter it was found | ment.
legs were broken and it had a deformed | injured and aban-
spine. RSPCA Cymru said it was an | doned in a Cardiff
"extremely sad example of an aban- | park.
doned and neglected exotic pet". ......
SFE-WFE | A number of men, two of them believed | A man has been as- | "Ballymena" is nei- | FALSE TRUE TRUE FALSE
to have been carrying guns, forced their | saulted by a gang | ther in the docu-
way into the property at Oakfield Drive | of armed men dur- | ment nor correct ac-
shortly after 20:00 GMT on Saturday. | ing a robbery at a | cording to external
They demanded money before assault- | house in Ballymena, | knowledge.
ing a man aged in his 50s. ... Alliance | County Antrim.
East Antrim MLA Stewart Dickson has
condemned the attack. ...

Table 3: Examples of the results from selected evaluators on the SFE and WFE.

labeled it as correct while "FALSE" means incorrect.
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"TRUE" means the evaluator
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