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ABSTRACT

Multimodal Large Language Models (MLLMs) recognize patterns from diverse
data dimensions, such as shape, color, and associated language cues. However,
inherent biases in training data can lead MLLMs to learn unintended, harmful
shortcuts. For example, MLLMs often misinterpret clock times as defaulting to
10:10 due to memorized visual patterns rather than analyzing clock-hand positions.
To address this, we propose the Multi-Agent Debiasing (MAD) framework, which
performs cross-dimensional verification to correct these shortcut-driven errors. We
first derive six dimensions of debiasing guidelines through a systematic analysis
of failure responses. These guidelines inform the design of a team of specialized
“dimension critic” agents, each an expert in correcting a specific type of error related
to either biased cognition or limited perception. In our framework, potentially
biased responses are dynamically routed through relevant agents. They then refine
and correct the response in cascade over subsequent rounds. We leverage this
cascaded correction process as a data engine to build our Multi-Dimensional
Debiasing Dataset (MD3), a large-scale collection of rich, debiased reasoning
chains. By fine-tuning a model on MD3, we directly teach it to overcome shortcut
learning. Our experiments show that the MAD process encourages deeper thinking
on biased responses. The MAD framework proves highly effective in classical
visual debiasing settings and significantly enhances the reliability of MLLMs.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) Liu et al. (2023); Tong et al. (2024); Radford et al.
(2021); Ravi et al. (2024); Chen et al. (2024; 2023); Abdin et al. (2024); Wang et al. (2024) extend
Large Language Models (LLMs) Touvron et al. (2023b;a); Abdin et al. (2024); DeepSeek-AI et al.
(2025) by incorporating additional input modalities. MLLMs have become increasingly important
as they can capture and integrate information across both visual and textual dimensions Zhang et al.
(2024a); Wu et al. (2023). However, due to the vastness of their training data, MLLMs often learn from
unexpected dataset biases. This occurs when a non-essential attribute becomes spuriously correlated
with the target answer, leading the model to adopt a “shortcut”—a simple decision rule based on
this spurious correlation. As a result, instead of leveraging their comprehensive reasoning abilities,
MLLMs rely on these shortcuts and can be easily misled. For example, Figure 1 demonstrates the
“10:10 dilemma” Deitke et al. (2024). MLLMs often predict the time as 10:10 for any clock image
because most clocks in the training data are set to this time, a common practice in advertising for its
aesthetically pleasing “V-sign” appearance. The MLLMs learn a harmful shortcut associating clock
imagery with a fixed time, ignoring their inherent ability to interpret the positions of the clock hands.

In this paper, we argue that MLLMs adopt such shortcuts because their decision-making lacks
comprehensive cross-verification across different dimensions. In the 10:10 dilemma, for instance, a
robust model should verify the factual relationship between the visual evidence (the positions of the
hour and minute hands) and the textual output (the time). We define this multidimensional verification
as a core component of debiased reasoning. A debiasing approach should therefore guide MLLMs
away from shortcuts and toward this more principled process.

Inspired by emerging multi-agent systems where complex tasks are decomposed among specialized
agents Lu et al. (2022); Feng et al. (2023); Wei et al. (2022); Lightman et al. (2023); Yao et al.
(2023); Roucher et al. (2025), we propose the Multi-Agent Debiasing (MAD) framework. This
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approach uses a team of specialized “dimension critic” agents that work in coordination to perform
cross-dimensional verification. Their collaboration systematically reveals and corrects the model’s
reliance on spurious correlations, fostering a more reliable and multidimensional reasoning process.

Question 2: Where does the minute hand point?

Question 1: What time is it?

Qwen2-VL

Phi-3.5-vision

InternVL2
10:10

Cropped Image

Debias Guideline: The “minute hand” is the longer hand on …

… is pointing at 5 on the clock face …

Results

Figure 1: Example of the 10:10 dilemma. Many
state-of-the-art MLLMs default to 10:10 by mem-
orizing a common pattern rather than reasoning
about the positions of the clock hands, a shortcut
learned from biased internet images.

The design of these specialized agents is guided
by a comprehensive taxonomy of shortcut sce-
narios we developed to serve as a “shortcut
cookbook.” This taxonomy categorizes common
MLLM failure modes into two primary types:
1) biased cognition from the LLM component,
involving errors in factual and counterfactual
reasoning, and 2) limited perception from the
visual encoders, such as confusion over objects,
shapes, spatial relationships, distorted OCR, or
counting failures. To directly address these per-
ceptual limitations, we enhance our agents by
incorporating a visual model zoo with special-
ized tools like CLIP and Depth Anything.

The MAD workflow operates as a cascaded cor-
rection system. It begins with a router that
triages a biased response to the appropriate
agent. The response is then passed through a
series of necessary agents, each iteratively cor-
recting a specific error to form a complete, debi-
ased reasoning chain. We leverage this powerful
workflow as a data engine to construct the Multi-
Dimensional Debiasing Dataset (MD3), which
is populated with these rich, corrected reasoning
chains. We then use this dataset to fine-tune a
model, directly enhancing its resilience to shortcut learning.

We validated the effectiveness of our fine-tuned model through extensive experiments. Our model
shows consistent improvements on general MLLM benchmarks like AI2 Diagrams and on shortcut-
specific evaluations such as OCRBench, RealWorldQA, and CV-Bench. Furthermore, it achieves
substantial progress on datasets with pronounced biases, including VQA-CP, VQA-CE, and GQA-
OOD, proving that our cascaded multidimensional debiasing workflow is effective even with less
robust visual models. Our contributions are thus threefold: the proposal of the novel MAD framework,
the development of a shortcut taxonomy and the resulting MD3 dataset, and the demonstration of our
approach’s effectiveness in significantly improving model robustness and reasoning.

Our contributions are:

• A novel Multi-Agent Debiasing (MAD) framework that employs specialized critic agents to
correct shortcut biases across multiple reasoning dimensions.

• A comprehensive taxonomy of MLLM shortcut types that guides the creation of our new Multi-
Dimensional Debiasing Dataset (MD3), a large-scale resource of debiased reasoning chains.

• Extensive experiments showing that models fine-tuned on MD3 achieve substantial gains in
robustness and reasoning capabilities across a wide range of MLLM evaluations.

2 PRELIMINARY

In this section, we start by exploring how machine learning models capture data dimensions. We
define three types of dimensions within the dataset bias view. By revisiting real-world datasets, we
define shortcuts and discuss related work that explains why models tend to learn shortcuts and what
debiasing means in MLLM.

Dimensions and their relationship with target objects. Real-world data can often be described
through various dimensions (attributes) d. With Figure 2, we use shape, color, and text on boat as
examples of the dimensions Zhang et al. (2023).
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Figure 2: Examples of Venn diagrams illustrating the count distribution of sufficient, weak sufficient,
and unrelated dimensions.

• Some dimensions are strongly associated with the object, allowing identification based solely on
these features, i.e., the shape and function of a lifeboat are distinctive enough to identify it.

• Other dimensions have a weaker association. While most target objects may have these features,
they are not exclusively sufficient to identify the object, i.e., although most lifeboats are orange,
not all orange objects are lifeboats. However, the orange color can suggest that a boat might be
a lifeboat, as this color is often used for lifeboats.

• Finally, some dimensions are unrelated, containing features that have no bearing on identification,
i.e., image watermarks or boat numbering do not impact the identification of a lifeboat.

Based on the above properties, we define the dimensions conditional on the target object.
Definition 1. Dimensions in Dataset Bias View.

• Sufficient dimensions (satisfy all),

x ∈ F (dsufficient) ⇒ x is target object .

• Weak sufficient & unrelated dimension,

x ∈ F (dweak-sufficient) ⇎ x is target object .
– The weak one, and unrelated one,

|F (dweak-sufficient) ∩Xof target| ≈ |Xof target| ; F (dunrelated) ∩Xof target ∼ Uniform Dist. ,

where F (·) represents a particular feature in dimension, such as boat-shaped, orange, or a specific
watermark, meanwhile, the Xof target refers to sub-dataset of target objects.

Revisit the real-world distribution of dimensions. Following the Definition 1, Figure 2 uses a Venn
diagram Ho et al. (2021) to illustrate the distribution of dimensional characteristics. Most samples of
lifeboat have both sufficient dimensions (e.g., being boat-shaped, inflatable, and having life rings)
and weak sufficient dimensions (e.g., being orange). However, some examples, such as “life rafts”
or “platforms”, may differ in color. Thus, the orange cannot be a sufficient characteristic, as not all
orange items are lifeboats. Irrelevant dimensions should be randomly distributed since they have no
relation to the object. Some bias-synthetic datasets Li et al. (2023); Sagawa et al. (2020a) leverage
unrelated dimensions to introduce training biases. For instance, in the CelebA Liu et al. (2015)
dataset, Age is an unrelated dimension when predicting whether cheekbones are high or low. The
training bias arises if the dataset contains numerous samples where the same age group is consistently
paired with a particular cheekbone characteristic. Additionally, some datasets Agrawal et al. (2017);
Dancette et al. (2021) introduce bias on weak sufficient dimensions as real-world scenarios. For
example, in the Waterbirds Sagawa et al. (2020a) dataset, most objects on a water background are
waterbirds instead of landbirds.

Shortcut with spurious correlation. When a training set includes many samples with a dimension
spuriously correlated to the target, a shortcut can develop, allowing the model to make decisions
based solely on these weak-sufficient or unrelated dimensions. For instance, if most lifeboats in a
training set are orange, the model may rely on weak sufficient dimension color to recognize lifeboats.
While this may achieve high accuracy within the training set, it proves useless and harmful for general
decision-making.

Related works. Some works Hermann et al. (2024); Nicolicioiu et al. (2023); Pezeshki et al. (2021);
Hermann & Lampinen (2020) indicate that models often rely on shortcuts because features in weak-
sufficient dimensions are typically easier-to-learn than those in essential dimensions as they prioritize
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Why bias?

RULE 1: COLOR is orange

RULE 2: SHAPE is boat-shaped

Sample 1 Sample 2

RULE 1

RULE 2

Sample 3

RULE 1

RULE 2

Sample 4

RULE 1

RULE 2 ⚠

If the model only discriminates the lifeboat based on the color dimension (RULE 1), then bias is coming

Figure 3: The forming of shortcut. How MLLMs learn color-based shortcuts: orange dominance in
the training set, while neglecting harder dimensions, like shape or other ones.

fitting the former. Further studies examine how different model architectures Izmailov et al. (2022),
parameter intensities McAleese et al. (2024), and the alignment Cheng et al. (2021) or decoupling Kim
et al. (2021) of features impact the extent of shortcut learning. In our paper, we address the bias
problem in sophisticated MLLMs with extensive parameters. Traditional debiasing techniques may
become impractical due to significant storage and computational demands at the feature-capturing
level. Zhang et al. proposed a “post-hoc” debiasing decoding method using nonsensical input;
however, the unbiasedness derived from nonsensical knowledge might inadvertently discard helpful
information from what we term weak sufficient dimensions. Other methods Lim et al. (2023) employ
strong supervision signals by creating adversarial samples from out-of-domain data to regulate model
responses. Our MAD workflow highlights the reliance on shortcuts by lacking consideration of
additional dimensions and uses guided debiasing via a data engine to improve the reasoning process
for reliable debiasing. Addressing bias in MLLMs is crucial for their application in specialized
domains, managing hallucinations Bai et al. (2024) and refusals Mazeika et al. (2024); Shao et al.
(2024b), and ensuring safety in broader societal contexts Gallegos et al. (2024).

3 THE MAD FRAMEWORK

In this section, we first provide an overview of our Multi-Agent Debiasing (MAD) framework. We
then introduce our “shortcut cookbook”, a taxonomy of common MLLM failure modes, and explain
how it guides the design of our specialized agents and the construction of our debiasing dataset.

3.1 A MULTI-AGENT APPROACH TO DEBIASING

Motivation: The core problem with shortcut learning is that a model’s decision-making process
is one-dimensional, relying on a single spurious correlation while ignoring other critical evidence.
To counter this, a debiasing method must enforce a more holistic, multidimensional verification
process. It should compel the model to cross-reference different facets of the input, ensuring that its
conclusion is supported by consistent evidence from multiple dimensions, such as textual semantics,
object relationships, and spatial logic.

Inspired by the success of multi-agent systems in decomposing complex problems, our MAD
framework operationalizes this principle of multidimensional verification. We replace the monolithic
reasoning process of a single MLLM with a collaborative workflow of specialized agents. Each
agent, or “dimension critic,” is an expert in identifying and correcting a specific type of shortcut
bias. By working in concert, these agents systematically analyze a problem from multiple angles,
replacing a flawed, shortcut-based conclusion with a robust, well-reasoned one. This agent-based
collaboration effectively simulates the comprehensive reasoning process that debiased models should
ideally perform internally.

Overall Workflow. As illustrated in Figure 3, the MAD workflow begins with an initial, potentially
biased response from a base MLLM. This response is first sent to a Router Agent, denoted as R,
which acts as a dispatcher. The router’s task is to analyze the response and identify the primary
dimension of the shortcut error. Based on its diagnosis, it routes the problem to the appropriate
specialized Dimension Critic Agent, Ak, where k indexes the agent’s area of expertise, e.g., factual
reasoning, spatial analysis, etc.
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How do Multi-Agent on Multi-Dimension to Debias?

Factual Reasoning: The sur(oard cannot fit into the car.
Counterfactual Verifica5on: a fire hydrant doesn't have 
to be red, and an orange sur(oard isn't a lifeboat.
Small, Edge, OoD Objects: The par;ally seen tricycle is 
an Edge object; the computer at a fruit stand is OoD.
Spa5al Rela5ons & Coun5ng: Challenges include 
understanding the person-sur(oard-car interac;on and 
coun;ng the stacked, occluded apples.

Img

Input Image
Router Agent to Iden. Dim.

Dimension Agent

Another Dim. Agent

Tool-calling

Figure 4: The cascaded workflow of the Multi-Agent Debiasing (MAD) framework.

The selected agent then corrects the specific error, producing a refined reasoning step. If the router
detects multiple types of errors, it can initiate a cascaded correction sequence, where the output from
one agent becomes the input for the next. This creates a complete, debiased reasoning chain.

We can formally represent this cascaded agent workflow. Let x be the multimodal input and F (x)
be the initial, biased response from a base model F . Let the set of K specialized critic agents be
{A1,A2, . . . ,AK}. The process unfolds as follows:

y0 = F (x) // Initial biased response
k1, k2, . . . , kn = R(y0) // Router identifies sequence of agents

yi = Aki
(yi−1) // Agent i corrects the output from the previous step

yfinal = Akn
◦ · · · ◦ Ak2

◦ Ak1
(y0)

(1)

Here, the symbol ◦ denotes function composition, illustrating how agents build upon each other’s
corrections to form the final debiased response, yfinal. The objective of MAD is not just to get the
right answer but to produce a high-quality, transparent chain of debiasing thoughts. This rich output
is then used to construct our training data.

3.2 A SHORTCUT COOKBOOK FOR AGENT SPECIALIZATION

Motivation: To design effective specialized agents, we first needed a systematic understanding of the
errors they must correct. Manually annotating these diverse failures is prohibitively expensive and
time-consuming. Therefore, we developed a Shortcut Cookbook, a comprehensive taxonomy that
categorizes common MLLM failure modes. This cookbook serves as a blueprint for designing our
agents’ roles and for creating guidelines—analogous to an “AI Constitution” Bai et al. (2022)—to
regulate our automated data annotation process. We group the shortcuts into two primary categories,
which guide the specialization of our critic agents.

1. Biased Cognition (Errors from the LLM component): These agents address failures in reasoning
that are not purely perceptual.

• Factual Reasoning: The model correctly identifies objects but fails to reason about their factual
relationships or properties, e.g., knowing a fire hydrant is for water but failing to connect it to a
firefighter in the image.

• Counterfactual Verification: The model defaults to a memorized stereotype or common
correlation, even when visual evidence contradicts it, e.g., stating a banana is yellow when the
image shows a green one.

2. Limited Perception (Errors from the Vision component): These agents tackle failures in visual
understanding, often enhanced with specialized vision tools.

• Object and Attribute Recognition: The model overlooks small, peripheral, or out-of-domain
objects, focusing only on the most salient elements.

• OCR and Text Understanding: The model struggles to read text that is distorted, occluded,
rotated, or contextually complex.

• Spatial Relationships: The model identifies multiple objects but misinterprets their relative
positions, sizes, or interactions, e.g., saying an object is “on” a table when it is “under” it.

• Counting: The model fails to accurately count the number of objects, e.g., in cluttered scenes.
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Q: Who is taking this photo?Q: What percent is le.?Q: Where is the fire?

Qwen2-VL

Phi-3.5-vision

InternVL2

A: It is unknown where the fire 
is. It could be in the street, in 
the grass, or in the sky.

A: The fire is not visible; the 
firefighters are spraying water 
from the fire truck ..

A: There is no visible fire. Two 
firefighters are present next to 
a red fire truck ..

A: It is ambiguous what 
percent is le>. It could be 50% 
or 75%.

A: cut into 16 equal slices .. 
Four slices .. 16 - 4 = 12 .. (12 
slices / 16 slices) * 100 = 75%

A: .. with one slice missing .. 
need to know the total .. 
cannot accurately calculate.

A: It is ambiguous who is 
taking this photo. It could be .. 
or someone else.

A: The photo is taken by a 
person wearing a red shirt, as 
in the reflecNon in the mirror.

A: .. is not visible in the image, 
and the person is just reflected 
in the mirror above the sink ..

Q: Is the roof pointed?Q: What kites si3ng on?Q: How stoplight mounted?

A: .. mounted on a pole.

A: .. mounted on a pole ..

A: .. aSached to a metal post ..

A: .. siTng on the ground.

A: .. suspended in the air ..

A: .. not si?ng on anything ..

A: Yes, .. is pointed.

A: .. described as pointed ..

A: Yes, .. has a pointed design.

Q: What company's logo?Q: What animal carries other?Q: Do you see doors there?

A: No, I do not see any doors ..  

A: No .. no doors visible .. 
A: .. I cannot confirm or 
deny ..  

A: .. ambiguous what animal .. 

A:  .. Larger carrying smaller .. 

A: ..carrying other is a dog .. 

A: I don't know which .. logo .. 

A: .. no clearly .. logo ..

A: … reads .. is Nokia.

Q: What name's on the donuts?Q: What’s on the collar?Q: What car company is ad?

A: .. company ad .. is Ford.

A: .. company ad .. is Ford.

A: .. company ad .. is Ford.

A: .. not sure .. On the collar.  

A: .. is not clear enough ..

A: .. no discernible text .. 

A: I don't know the name .. 

A: .. have the text "SPOKEN“ .. 

A: .. not provide clear text .. 

Q: What is under the beans?Q: What is sculpture holding?Q: Is the glove large?
A: I don't know if the glove .. 

A: .. looks fairly small for .. 

A: .. to be of a medium size ..

A: .. holding a sword.

A: …holding a sword ..

A: .. sculpture is holding a gun.

A: .. beans are under .. egg.

A: .. is a slice of toasted bread.

A: .. slices of bread under ...

Qwen2-VL

Phi-3.5-vision

InternVL2

Qwen2-VL

Phi-3.5-vision

InternVL2

Qwen2-VL

Phi-3.5-vision

InternVL2

Qwen2-VL

Phi-3.5-vision

InternVL2

Q: How many donuts?Q: What number of poles ?Q: How many bears?
A: There are nine teddy bears 

A: There are seven bears ..  

A: There are eight bears .. 

A: There are two poles .. 

A: .. there is one pole .. 

A: There are four poles .. 

A: There are nine donuts .. 

A: There are a total of twelve .. 

A: There are 12 donuts ..  

Qwen2-VL

Phi-3.5-vision

InternVL2

“On LeB”

“50%”

“Man”

“On Wire”

“Poles” “No”

“Yes”

1st

Factual
Reasoning

Counterfactual
Verification

2nd

Small, Edge,
OoD Objects

3rd

Distorted,
Occluded,
Rotated Text

Size, Carry,
Spatial
Relationships

Counting

4th

5th

6th

Feed image, question and answer into GPT-4o (as Agent) 
and PROMPT it to play different critics models
e.g.

How does the MAD DATA ENGINE

Determine which objects are relevant to the context or the 
instruction being addressed, and which elements aid reasoning.

“Horse” “Apple”

“TOYOTA” “Puppy Love”

“JETT”

“Yes” “Bow”

“Eggs”

“10”

“10”

“3”

⚠

⚠

⚠

⚠

⚠

☝

✌

generate training data ?

Q: Where is the fire?

A: On left

Q: Who is taking this photo?

A: Man

Prompt

Reasoning
    process

The water in the image is related to the fire in the question.
The mirror reflect the person taking the photo.

Q: What percent is left?  A: 50%

Place objects and elements within the appropriate context, and 
identify the critical solutions embodied in the pattern.

Prompt

Reasoning
    process

Lined arranged segments occupy 50% of the total.

Deploy VISUAL MODEL ZOO as Tools of Agent to extract 
objects for precise detailed tracking
e.g.

Integrating real-time localized analysis with prior domain 
expertise for high-resolution pre-extraction.

10 counts

🍓

How does MAD System debias?

Qusetion: How is the stoplight mounted?

Answer: The stoplight is mounted on a pole.

<Step 1 Router Agent>

<3rd Agent think>
the visual range, there are no visible poles, but a traffic light 
regulates vehicle movement, likely at intersection or traffic 
controlled area. A sign with “ONE WAY” and …
</3rd Agent think>

<2nd Agent think>
Traffic lights are typically mounted on dedicated metal poles to ensure 
stability and visibility. However, alternative installation methods may 
include suspension from steel cables or electrical wires (though these 
may be too thin to provide adequate stability), attachment to buildings, 
or placement on overpasses. The positioning of traffic lights ...
</2nd Agent think>

<Step 2 Router Agent>

<Tool Call of Visual Models>
      Use CLIP to identify objects in images
</ Tool Call of Visual Models>

Figure 5: Illustration of Shortcut Cookbook. 1) The left part demonstrates samples of different
bias types. 2) Right part: we illustrate how to prompt to generate a debiased reasoning process and
how MAD with critic agents to debias.

As illustrated in Figure 5, these failure patterns are consistent across various state-of-the-art MLLMs
and datasets like VQA-CP Agrawal et al. (2017), VQA-CE Dancette et al. (2021), and GQA-
OOD Kervadec et al. (2020). Our cookbook provides a structured way to address these fundamental
gaps in multidimensional reasoning.

3.3 THE MD3 DATASET

Motivation: Using the MAD framework, we built an automated data engine to generate the Multi-
Dimensional Debiasing Dataset (MD3). Simply using a powerful MLLM for annotation risks
propagating the very biases we aim to eliminate. Therefore, our engine integrates the MAD agent-
based workflow with a suite of specialized tools to ensure the generated reasoning chains are reliable.
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Dataset
Model LLaVA-v1.5-7B LLaVA-Llama-3-8B Llama-3.2-11B-Vision

Base MAD trained Impro. Base MAD trained Impro. Base MAD trained Impro.

General Knowledge, Comprehension, and Reasoning

MMMU Yue et al. (2024) (Val) 35.07 35.41 0.34 36.76 36.09 -0.67 48.76 47.17 -1.59
AI2 Diagrams Kembhavi et al. (2016) (Test) 54.95 56.12 1.17 60.52 60.98 0.46 77.23 76.17 -1.06
ScienceQA Lu et al. (2022) (Test) 71.89 71.74 -0.15 74.27 74.71 0.44 77.05 77.39 0.34

Subgroups with Potential Bias

MMBench Liu et al. (2024a) 66.41 67.75 1.34 69.23 71.77 2.54 72.46 73.92 1.46
OCRBench Liu et al. (2024b) 320 436 116 415 472 57 753 745 -8
RealWorldQA X.ai (2024) 53.86 57.91 4.05 56.21 59.61 3.40 59.08 61.44 2.36

CV-Bench Tong et al. (2024)
(2D) 55.56 61.89 6.33 61.68 63.49 1.81 64.05 64.19 0.14
(3D) 57.00 58.17 1.17 63.42 66.17 2.75 66.33 66.67 0.34

Hallusion Guan et al. (2024)
(VD) 53.13 56.51 3.38 48.90 54.99 6.09 53.81 55.33 1.52
(VS) 43.89 57.78 13.89 61.94 56.39 -5.55 56.11 62.22 6.11
(All) 49.63 56.99 7.36 53.84 55.52 1.68 54.68 57.94 3.26

Challenging Biased Scenarios

VQA-CP Agrawal et al. (2017) (Test) 63.98 68.83 4.85 68.59 69.69 1.10 70.86 74.14 3.28
VQA-CE Dancette et al. (2021) (Hard) 58.73 63.35 4.62 60.09 62.04 1.95 64.30 64.27 -0.03
GQA-OOD Kervadec et al. (2020) (Tail) 59.36 63.78 4.42 63.95 65.10 1.15 68.11 69.99 1.88
MD3 (Ours) 40.72 63.21 22.49 46.11 66.88 20.77 52.83 67.80 14.97

Table 1: Performance comparisons of MLLM trained by MAD data engine on the general,
emphasizing spurious and highly biased multimodal instruction sets. We apply the generated dataset
to three base MLLMs: LLaVA-v1.5-7B, LLaVA-Llama-3-8B, and Llama-3.2-11B-Vision. In each
architecture, the third column is the performance improvement, with darker indicating greater one.

• Cognitive Agents (for Factual & Counterfactual Errors): To correct reasoning biases, we use
a powerful annotation MLLM (GPT-4omini OpenAI et al. (2024)) prompted with fine-grained
object descriptions. By providing detailed context and using reason-based prompts, we guide the
agent to analyze inter-object relationships and underlying factual semantics, rather than relying
on shortcuts.

• Perception Agents (for Visual Errors): To address perceptual limitations, we enhance our
agents with a Visual Model Zoo. This includes specialized tools like CLIP Radford et al.
(2021) for classification, SAM 2 Ravi et al. (2024) for segmentation, and Depth Anything
V2 Yang et al. (2024) for 3D estimation. Following a Visual-CoT Wu & Xie (2024); Shao et al.
(2024a) approach, we feed the outputs of the vision tools back to the annotation MLLM with
dimension-specific prompts, enabling it to correct its initial perceptual errors.

The complete workflow of our MD3 data engine operates as follows:

1. Cold-Start Phase: We initialize the Router Agent using existing dataset annotations to provide
an initial classification of error types for failed MLLM responses.

2. Agent-Based Correction: For each failed response, the Router Agent dispatches it to the
appropriate critic agent based on the Shortcut Cookbook.

i. Cognitive failures trigger our reason-based prompting protocol.

ii. Perceptual failures activate the Visual Model Zoo pipeline.

3. Validation & Iteration: We verify if the agent’s generated reasoning chain successfully mitigates
the bias. Approved chains are added to the MD3 dataset. Both successfully corrected and
persistently biased examples are used as positive and negative samples to further train the Router
Agent, improving its diagnostic capabilities over time.

Ultimately, guided by our Shortcut Cookbook, this data engine leverages the MAD workflow to
systematically generate high-quality training data for both the router and the dimension critic agents.
The resulting dataset, rich with debiased reasoning processes, is then used to fine-tune an MLLM.
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4 EXPERIMENTS

This section outlines the evaluation, data construction, and training details of MAD, followed by an
analysis of its performance improvements across various scenarios.

4.1 TOWARDS RELIABLE DEBIASING PERFORMANCE

Details of the benchmark in Table 1. We evaluate the general knowledge, comprehension, and
reasoning datasets, such as MMMU Yue et al. (2024), AI2Diagrams Kembhavi et al. (2016), and Sci-
enceQA Lu et al. (2022). These datasets focus on various general domains featuring multiple types of
visual instructions and answers. Additionally, we assess datasets that emphasize spurious correlation,
including MMBench Liu et al. (2024a), OCRBench Liu et al. (2024b), RealWorldQA, and CV-
Bench Tong et al. (2024). MMBench covers perception and reasoning aspects, OCRBench deals with
text recognition, RealWorldQA involves real-world spatial relationships, and CV-Bench addresses
visual object relationships, counting in 2D, and distance or proximity in 3D. Lastly, we examine
classic debiased visual question-answering datasets: VQA-CP v1 test Agrawal et al. (2017), VQA-CE
hard Dancette et al. (2021), and GQA-OOD tail Kervadec et al. (2020). From VQA-CP, we sample
approximately 200 examples for each type of shortcut dimension, totaling 1,280 samples in the dataset.

Dataset
Model Base MAD Agent Num.

2 / 6 4 / 6 6 / 6

Hallusion (All) 49.63 50.79 54.68 56.99
VQA-CP (Test) 63.98 65.17 66.49 68.83
GQA-OOD (Tail) 59.63 61.57 62.45 63.78
MD3 (Ours) 40.72 53.24 60.02 63.21

Table 2: Ablation studies. Biased outputs are increasingly
corrected as the number of activated agents increases.

Details of base biased MLLM.
In Table 1, we examine the perfor-
mance of MAD across three distinct
base model architectures: LLaVA-
v1.5-7B Liu et al. (2023), LLaVA-
Meta-Llama-3-8B Liu et al. (2023);
AI@Meta (2024), and Llama-3.2-
11B-Vision Touvron et al. (2023b;a).
These models showcase different in-
trinsic biases inherent in their ar-
chitectures. LLaVA-v1.5-7B and
LLaVA-Meta-Llama-3-8B are trained
using the pretraining and instruction tuning data provided by LLaVA-v1.5 Liu et al. (2023). In
contrast, the Llama-3.2-11B-Vision is aligned with its publicly released version.

Details of the MD3 Data Engine. Our MAD data engine is orchestrated by GPT-4o, which serves
as both the intelligent router agent and the core of the dimension critic agents during the annotation
phase. The process begins by collecting erroneous and shortcut-driven responses from the base biased
MLLMs. Each biased output is then processed through the MAD workflow: the router agent first
diagnoses the failure type and dispatches it to the appropriate specialized critic agent. The critic,
guided by our shortcut cookbook and enhanced with the visual model zoo, generates a corrected,
multi-step reasoning chain. This entire process transforms simple biased outputs into rich, labeled
training samples for our MD3 dataset.

Details of Fine-tuning. Our final MD3 dataset consists of approximately 50k debiased reasoning
chains, generated from an initial pool of 90k instruction prompts. During instruction tuning, this
debiasing data is mixed with a general instruction fine-tuning set in a 1:3 ratio. Following the
LLaVA-v1.5 Liu et al. (2023) methodology, we conduct a two-stage fine-tuning process. In the
first stage, only the visual connector is trained with a learning rate of 1e−3. In the second stage,
we fine-tune both the LLM and the connector for one epoch, with learning rates of 2e−6 and 1e−5,
respectively. All models are trained on 8 × A100 GPUs.

Details of MAD for classic visual debiasing tasks. We also validate our approach in classic visual
debiasing settings by using an ImageNet Deng et al. (2009) pre-trained ResNet50 He et al. (2016) as
our vision backbone. First, we train a base model with empirical risk minimization on the biased
training set. Then, we implement agents that act as linear correctors, focusing on either class or
semantic aspects based on features from the backbone. During inference, the corrective outputs
from the agents are combined with the base model’s prediction to produce a refined, debiased result.
Image features are extracted once, allowing the agent corrections to be stacked efficiently. Additional
training hyperparameters are detailed in the Appendix.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

WaterBirds
Dataset

Model

ERM

89.1

(a) Comparison of MAD to the Classical Debiasing Method

63.7

88.0

89.9

Upweighting

GroupDRO

SUBG

LISA

DFR

MOO

MAD

UrbanCars

64.8

80.8

44.5

28.4

80.0

75.2

87.6

89.2

89.2

90.2

91.8

93.6

77.1

82.8

91.3

98.2

79.0

81.2

82.4

81.9

78.4

83.2

83.6

89.2

79.2

81.2

85.1

83.2

77.5

79.8

46.7

58.2

80.8

76.7

81.7

79.6

78.0

77.6

28.5

19.0

78.7

74.6

82.6

79.6

GG CCCGGC
CelebFaces Attributes

0

100

0

100

0

100

60

72

66

54

61

68

56

62

68

W
G

A

W
G

A

W
G

A

A
cc
ur
ac
y

A
cc
ur
ac
y

A
cc
ur
ac
y

Cascade Step Cascade StepCascade Step

Cascade Step Cascade StepCascade Step

WaterBirds UrbanCars CelebA

VQA-CP VQA-CE GQA-OOD
1st

2nd3rd

4th

5th 6th

Acc
urac
y

(c) Our MD3 Bench(b) Evaluation Performance Changes in Cascade Steps

Init. Biased MLLM
MAD trained MLLM

Figure 6: Performance comparison of classic vision tasks, cascade step variation, and MD3 bench,
. (a) We compare different debiasing methods, including Upweighting, GroupDRO Sagawa et al.
(2020a), SUBG Sagawa et al. (2020b), LISA Yao et al. (2022), DFR Kirichenko et al. (2023a),
and MOO Kim et al. (2024), based on the pretrained ResNet-50. Different groups is divided by
sufficient or weak-sufficient dimensions. Worst Group Accuracy (WGA) is measured on WaterBirds
and UrbanCars, while CelebFaces Attributes analysis covered each group, with ‘G’ correlating the
weak-sufficient dimension and ‘C’ being the sufficient one. b) Performance growth with cascade
steps. We plot curves for each cascade step in the experiments from Table 1 and part (a). c) We
evaluate the multi-dimensional debiasing dataset with LLaVA v1.5 (in light blue) and our correction
of it. From 1st to 6th correspond to the six dimensions in Figure 5.

Main Results. In Table 1, we analyze how MAD reduces biases in three MLLM architectures.
Although these base models often perform well, they still exhibit significant biases when faced with
spurious correlations. Our study shows that MAD effectively mitigates these biases, improving accu-
racy by over 4% on challenging benchmarks like VQA-CP Agrawal et al. (2017), VQA-CE Dancette
et al. (2021), GQA-OOD Kervadec et al. (2020), and RealWorldQA X.ai (2024). In addition to
reducing bias, MAD also reduces hallucination Bai et al. (2024) issues.

Ablation studies. In Table 2, we evaluate the utility of different critic agents. The notation ”2 / 6”
indicates using agents for Factual Reasoning (1st) and Small, Edge, OoD Objects (3rd), while ”4 / 6”
adds agents for Counterfactual Verification (2nd) and Size, Carry, Spatial Relationships (5th). As more
specialized agents are incorporated, responses undergo more comprehensive iterative refinement.
Even interventions from just two agents yield significant performance boosts on GQA-OOD and our
MD3 benchmark.

Debiasing on classic vision tasks. In Figure 6, we compare MAD with several debiasing methods
(e.g., GroupDRO Sagawa et al. (2020a), SUBG Sagawa et al. (2020b), LISA Yao et al. (2022), and
DFR Kirichenko et al. (2023a)) on ResNet-50, reporting the Worst Group Accuracy (WGA) on
WaterBirds and UrbanCars, and per-group accuracy on CelebFaces Attributes. We then illustrate that
performance consistently grows with an increasing number of agent correction steps, plotting the
corresponding improvement curve.

5 DISCUSSION AND CONCLUSION

In this paper, we introduced MAD (Multi-Agent Debiasing), a novel framework that effectively
mitigates shortcut biases in MLLMs by employing a collaborative team of specialized agents. Instead
of relying on a single, monolithic reasoning process, MAD decomposes the debiasing task across
“dimension critic” agents, each an expert in a specific type of MLLM failure. Through a cascaded
correction workflow, our approach guides MLLMs away from spurious correlations and toward a
more comprehensive, multidimensional reasoning process. Our comprehensive shortcut taxonomy
and the automated data engine, which produced the Multi-Dimensional Debiasing Dataset (MD3),
provide a scalable methodology for improving MLLM robustness. The MAD framework is inspired
by the broader trend of multi-agent systems and verifiable, step-by-step reasoning Cobbe et al.
(2021); Lightman et al. (2023); McAleese et al. (2024); DeepSeek-AI et al. (2025). By applying
this collaborative approach specifically to the problem of debiasing, we highlight its potential to
significantly enhance the reliability and trustworthiness of MLLMs in various applications.
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A APPENDIX

A.1 INTRODUCTION

This research aims to address a critical issue in Multimodal Large Language Models (MLLMs): their
tendency to rely on “shortcut features” instead of learning robust and generalizable representations.
These shortcuts are spurious correlations in the training data that allow the model to achieve high
accuracy on the training distribution but fail in real-world scenarios. This phenomenon causes models
to over-focus on simplistic cues while neglecting a comprehensive, multi-dimensional analysis of the
input. To systematically tackle this challenge, our main paper introduces the Multi-Agent Debiasing
(MAD) framework. This appendix elaborates on our methodology, including the completeness of our
bias taxonomy (the “Shortcut Cookbook”), the construction details of our data engine, model training
parameters, and further analysis of our experimental results.

A.2 MAD FRAMEWORK DESIGN AND DEPLOYMENT

A.2.1 CLASSIFICATION AND COMPLETENESS OF BIAS TYPES

The six types of bias proposed in our “Shortcut Cookbook” (Figure 5 of the main paper) are
designed to cover the key failure modes in shortcut learning comprehensively. The completeness of
this classification is demonstrated by its correspondence to established bias categories in existing
research:

• Factual Reasoning: Addresses biases arising from a model’s failure to reason about factual
relationships between correctly identified objects. This is a form of vision reasoning bias.

• Counterfactual Verification: Targets the model’s reliance on stereotypes (e.g., bananas are
yellow) even when contradicted by visual evidence. This corresponds to tackling background
bias or attribute-based shortcuts, where the model must verify if the core object identification
holds true across counterfactual attributes.

• Small, Edge, OoD Objects: Corresponds to local cue bias, where the model over-relies on
salient objects and ignores smaller, peripheral (edge), or out-of-distribution (OoD) ones that are
critical for correct understanding.

• Distorted, Occluded, Rotated Text: Addresses failures in Optical Character Recognition (OCR),
a specific form of perceptual bias related to text.

• Size, Carry, Spatial Relationships: Pertains to biases from co-occurring objects, where the
model misinterprets the interaction, relative size, or position of objects.

• Counting: Addresses a specific numerical stereotype where the model associates certain scenes
with fixed number ranges (e.g., a station platform always has 3-5 pillars) due to frequent co-
occurrence in training data.

We validated this taxonomy through extensive error analysis on challenging datasets such as VQA-CP,
VQA-CE, and GQA-OOD, ensuring our categories are both comprehensive and representative of
common MLLM failure modes.

A.2.2 DEPLOYMENT COST AND PERFORMANCE TRADE-OFF

The MAD framework adopts a “test-time scaling” paradigm, introducing additional specialized
critic agents during inference to reflect on and correct biased responses from the base model. The
associated computational overhead is a strategic trade-off for higher response quality, not an inherent
inefficiency. As shown in Table 3, we can effectively balance cost and accuracy by setting a limit on
the maximum number of sequential agent calls, demonstrating the framework’s flexibility.

Furthermore, we investigated the impact of the critic agents’ calling order. We found that prioritizing
reasoning-focused agents (i.e., Factual Reasoning and Counterfactual Verification) reduces computa-
tional cost due to shorter reasoning chains but yields only marginal gains in debiasing performance
compared to a fully dynamic routing strategy.
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Table 3: Cost-Accuracy Trade-off under Different Agent Call Limits

Max Routing Count ⩽2 3 4 8
Avg. Cost (tokens) 327 510 594 906
Avg. Steps 1.96 2.48 2.86 4.83

A.3 THE FULL PROCESS OF DATA ENGINE CONSTRUCTION

To train our bias-disentangling router agent and the specialized dimension critic agents, we designed
a powerful, automated data engine. The process is as follows:

A.3.1 CONSTRUCTION OF DEBIASING PROCESS DATA (CRITIC AGENT TRAINING DATA)

Based on the biased samples identified by the router, we constructed targeted debiasing Chain-of-
Thought (CoT) data to train our six types of Dimension Critic Agents:

• For Cognitive Biases (Factual Reasoning, Counterfactual Verification): These “Cognitive
Agents” were trained on data generated by a sophisticated process. We used an annotation model
(GPT-4o) to first generate fine-grained textual descriptions for every object in the image. The
model was then prompted to perform joint reasoning over the original image, the query, the
biased baseline answer, and these newly generated descriptions. This process encouraged the
model to verify inter-object relationships and underlying factual semantics, correcting its initial
shortcut-based reasoning. The resulting successful debiasing trajectories were added to our
training set.

• For Visual Perception Biases (Small/Edge/OoD Objects, OCR, Counting, etc.): To train
these “Perception Agents,” we integrated a Visual Model Zoo composed of specialist vision
models, including CLIP for classification, SAM 2 for segmentation, and Depth Anything V2
for 3D estimation. We emphasize that we did not rely solely on GPT-4o for annotation. Instead,
this powerful vision ensemble pre-generated accurate visual information (e.g., object locations,
categories, segmentation masks), which significantly reduced the likelihood of the subsequent an-
notator LLM producing biased or hallucinatory content. Following the Visual-CoT methodology,
the outputs from these vision experts, along with dimension-specific prompts, were iteratively
fed to the annotation MLLM until a verified, corrected answer was produced.

Through this automated engine, we curated approximately 50k high-quality, multi-step debiasing
CoT data points from an initial pool of 90k processed biased pairs. This final dataset is named the
Multi-Dimensional Debiasing Dataset (MD3).

A.3.2 FINAL MODEL TRAINING

The high-quality reasoning chains in the MD3 dataset, which capture the cascaded correction tra-
jectories of our multi-agent system, are used directly for Supervised Fine-Tuning (SFT) of a target
MLLM. The goal is to distill the collaborative, multi-dimensional reasoning process of the MAD
system into a single, more robust model.

• Data Mixture: During instruction tuning, the 50k samples from our MD3 debiasing dataset are
mixed with a general-purpose instruction fine-tuning set in a 1:3 ratio to maintain the model’s
general capabilities while enhancing its robustness.

• Two-Stage Fine-Tuning: Following the LLaVA-v1.5 methodology, we conduct a two-stage
fine-tuning process. In the first stage, only the visual connector (the projection layer) is trained,
using a learning rate of 1× 10−3. This aligns the vision encoder with the frozen LLM. In the
second stage, we fine-tune both the LLM and the visual connector for one epoch, with learning
rates of 2× 10−6 for the LLM and 1× 10−5 for the connector, respectively. All models were
trained on 8 NVIDIA A100 GPUs.
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A.3.3 DETAILS OF CLASSIC VISUAL DEBIASING CLASSIFICATION TASKS

We validated the core principles of MAD on classic vision debiasing benchmarks using a ResNet-50
backbone pre-trained on ImageNet as the visual feature extractor. In this simplified setting, the MAD
framework is adapted by implementing agents as simple linear correctors that focus on either class or
semantic features. The collaborative process is simulated as follows:

• Optimizer: SGD with an MSE loss was used for training the base and each corrective agent.
• WaterBirds: Learning rate of 1× 10−4; each agent was trained for 200 epochs. Convergence

was reached after 9 agents were sequentially added.
• UrbanCars: Learning rate of 5× 10−4; each agent was trained for 20 epochs. Convergence was

reached after 62 agents were added.
• CelebA: Learning rate of 1 × 10−2; each agent was trained for 20 epochs. Convergence was

reached after 65 agents were added.

Unlike the sequential, cascaded workflow in the MLLM setting, inference for these classic tasks is
parallelized: the biased base model and all corrective agents produce outputs simultaneously, which
are then integrated to form the final, debiased prediction.

A.4 OPEN-SOURCE COMMITMENT

We are committed to open-sourcing all related code and resources to facilitate future research.
This includes modules for our MD3 dataset construction, model training scripts, and inference
code for the complete MAD framework. Each component will be implemented as an independent,
well-documented interface with specified inputs to ensure ease of use and reproducibility.

A.5 RELATED WORK ON DEBIASING

Various approaches exist for learning debiased models using different levels of bias information.
Methods guided by explicit bias supervision Sagawa et al. (2020a); Goel et al. (2021); Tartaglione
et al. (2021); Cheng et al. (2021) include adding a bias prediction branch and utilizing techniques like
mutual information minimization and ensemble learning to reduce bias Ganin et al. (2016). These
techniques are demonstrated in works by Kim et al. Kim et al. (2019), Li and Vasconcelos Li &
Vasconcelos (2019), Clark et al. Clark et al. (2019), and others Wang et al. (2020). When explicit
supervision is limited, leveraging bias prior knowledge allows constructing modules that address
specific bias types Hendricks et al. (2018); Geirhos et al. (2019); Li et al. (2021); Cadène et al.
(2019); Arjovsky et al. (2019), as shown by Wang et al. Wang et al. (2019) and Bahng et al. Bahng
et al. (2020) Finally, debiasing through intrinsic bias properties exploits inherent bias characteristics
without needing explicit guidance or prior knowledge, using strategies such as two-branch training
and bias-contradictory augmentation Darlow et al. (2020); Huang et al. (2020); Zhu et al. (2021);
Liu et al. (2021); Kim et al. (2022); Kirichenko et al. (2023b), highlighted by Nam et al. Nam et al.
(2020) and Lee et al. Lee et al. (2021) These collective efforts illustrate diverse ways to tackle bias in
machine learning models.
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