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Abstract

Learning representations of words in a continu-
ous space is perhaps the most fundamental task
in NLP, a prerequisite for nearly all modern
machine-learning techniques. Often the objec-
tive is to capture distributional similarity via
vector dot product, however this is just one re-
lation between word meanings we may wish
to capture. It is natural to consider words as
(soft) equivalence classes based on similarity,
it is natural to expect the ability to perform set-
theoretic operations (intersection, union, differ-
ence) on these representations. This is particu-
larly relevant for words which are homographs
- for example, “tongue”N“body” should be sim-
ilar to “mouth”, while “tongue”’N*“language”
should be similar to “dialect”. Box embed-
dings are a novel region-based representation
which provide the capability to perform these
set-theoretic operations. In this work, we pro-
vide a fuzzy-set interpretation of box embed-
dings, and train box embeddings with a CBOW

objective where contexts are represented using
intersection. We demonstrate improved perfor-
mance on various word similarity tasks, partic-
ularly on less common words, and perform a
quantitative and qualitative analysis exploring
the additional unique expressivity provided by
WORD2BOX.

1 Introduction

The concept of learning a distributed representa-
tion for a word has fundamentally changed the field
of natural language processing. The introduction
of efficient methods for training vector representa-
tions of words in Word2Vec (Mikolov et al., 2013),
and later GloVe (Pennington et al.) as well as Fast-
Text (Bojanowski et al., 2017) revolutionized the
field, paving the way for the recent wave of deep
architectures for language modeling, all of which
implicitly rely on this fundamental notion that a
word can be effectively represented by a vector.
While now ubiquitous, the concept of represent-
ing a word as a single point in space is not partic-

ularly natural. All senses and contexts, levels of
abstraction, variants and modifications which the
word may represent are forced to be captured by
the specification of a single location in Euclidean
space. It is thus unsurprising that a number of
alternatives have been proposed.

Gaussian embeddings (Vilnis and McCallum,
2015) propose modeling words using densities in
latent space as a way to explicitly capture uncer-
tainty. Poincaré embeddings (Tifrea et al., 2019)
attempt to capture a latent hierarchical graph be-
tween words by embedding words as vectors in
hyperbolic space. Trained over large corpora via
similar unsupervised objectives as vector baselines,
these models demonstrate an improvement on word
similarity tasks, giving evidence to the notion that
vectors are not capturing all relevant structure from
their unsupervised training objective.

A more recent line of work explores region-
based embeddings, which use geometric objects
such as disks (Suzuki et al., 2019), cones (Vendrov
et al., 2016; Lai and Hockenmaier, 2017; Ganea
et al., 2018), and boxes (Vilnis et al., 2018) to rep-
resent entities. These models are often motivated
by the need to express asymmetry, benefit from par-
ticular inductive biases, or benefit from calibrated
probabilistic semantics. In the context of word rep-
resentation, their ability to represent words using
geometric objects with well-defined intersection,
union, and difference operations is of interest, as
we may expect these operations to translate to the
words being represented in a meaningful way.

In this work, we introduce WORD2BOX, a
region-based embedding for words where each
word is represented by an n-dimensional hyperrect-
angle or “box”. Of the region-based embeddings,
boxes were chosen as the operations of intersec-
tion, union, and difference are easily calculable.
Specifically, we use a variant of box embeddings
known as Gumbel boxes, introduced in (Dasgupta
et al., 2020). Our objective (both for training and



inference) is inherently set-theoretic, not proba-
bilistic, and as such we first provide a fuzzy-set
interpretation of Gumbel boxes yielding rigorously
defined mathematical operations for intersection,
union, and difference of Gumbel boxes.

We train boxes on a large corpus in an unsu-
pervised manner with a continuous bag of words
(CBOW) training objective, using the intersection
of boxes representing the context words as the rep-
resentation for the context. The resulting model
demonstrates improved performance compared to
vector baselines on a large number of word simi-
larity benchmarks. We also compare the models’
abilities to handle set-theoretic queries, and find
that the box model outperforms the vector model
90% of the time. Inspecting the model outputs
qualitatively also demonstrates that WORD2BOX
can provide sensible answers to a wide range of
set-theoretic queries.

2 Background

Notation Let V = {v;}, denote the vocab-
ulary, indexed in a fixed but arbitrary order. A
sentence s = (s1,...,s;) is simply a (variable-
length) sequence of elements in our vocab s; € V,
and a document d = {s;} is a multiset' of sen-
tences. We view our corpus C' = {d;} as a mul-
tiset of documents, and also consider the multiset
Cs = {s : s € d € C} of all sentences in our
corpus. Given some fixed “window size” ¢, for
each word s; in a sentence s we can consider the
window centered at 7,

W; = [Si—b-'wsia"' asi—i-da

where we omit any indices exceeding the bounds
of the sentence. Given a window w; we denote
the center word using cen(w;) = s;, and denote all
remaining words as the context con(w;). We let
Cw be the multiset of all windows in the corpus.

2.1 Fuzzy sets

Given any ambient space U a set S C U can be
represented by its characteristic function 1g : U —
{0,1} such that 1g(u) =1 <= wu € S. This
definition can be generalized to consider functions
m : U — [0, 1], in which case we call the pair
A = (U,m) a fuzzy set and m = my4 is known
as the membership function (Zadeh, 1965; Klir
and Yuan, 1996). There is historical precedent for

'A multiset is a set which allows for repetition, or equiva-
lently a sequence where order is ignored.

the use of fuzzy sets in computational linguistics
(Zhelezniak et al., 2019; Lee and Zadeh, 1969),
and more generally are naturally required any time
we would like to learn a set representation in a
gradient-based model, as hard assignments would
not allow for gradient flow.

In order to extend the notion of intersection to
fuzzy sets, it is necessary to define a t-norm, which
is a binary operation T : [0,1] x [0,1] — [0, 1]
which is commutative, monotonic, associative, and
equal to the identity when either input is 1. The
min and product operations are common exam-
ples of t-norms. Given any t-norm, the intersec-
tion of fuzzy sets A and B has membership func-
tion manp(z) = T(ma(z), mp(x)). Any t-norm
has a corresponding t-conorm which is given by
1(a,b) = 1 —-T(1 —a,1 — b); for min the t-
conorm is max, and for product the t-conorm is
the probabilistic sum, Lgmn(a,b) = a + b — ab.
This defines the union between fuzzy sets, where
maup(x) = L(ma(z), mp(zx)). Finally, the com-
plement of a fuzzy set simply has member function
mape(z) =1—ma(z).

2.2 Box embeddings

Box embeddings, introduced in (Vilnis et al., 2018),
represent elements x of some set X as a Cartesian
product of intervals,

L o 0

X [zy,z8] C R4,

The volume of a box can be calculated as
d
| Box(x)| = [ [ max(0, 2} — ;).
i=1

and when two boxes intersect, their intersection is
Box(x) N Box(y)

d
= [ [max(z;, y;), min(a, ;7).
=1

Boxes are trained via gradient descent, and these
hard min and max operations result in large ar-
eas of the parameter space with no gradient signal.
Dasgupta et al. (2020) addresses this problem by
modeling the corners of the boxes {z: } with Gum-
bel random variables, { X"}, where the probability



of any point z € R? being inside the box Box(x)
is given by

d

P(z € Boxg(x)) = [ [ P(z > X )P(zi < X]1).

i=1

For clarity, we will denote the original (‘“hard”)
boxes as Box, and the Gumbel boxes as Box. The
Gumbel distribution was chosen as it was min/max
stable, thus the intersection Box(x) N Boxg(y)
which was defined as a new box with corners mod-
eled by the random variables { Z;* } where

Z7 =max(X;,Y;")and Z;" == min(X;", Y;")

7

is actually a Gumbel box as well. Boratko et al.
observed that

P(z € Boxg(x) NBoxg(y)) =
P(z € Boxg(x))P(z € Boxg(y)), (2)

and also provided a rigorous probabilistic inter-
pretation for Gumbel boxes when embedded in a
space of finite measure, leading to natural notions
of “union” and “intersection” based on these oper-
ations of the random variables (Boratko et al.).

In this work, we do not embed the boxes in a
space of finite measure, but instead interpret them
as fuzzy sets, where the above probability acts as a
soft membership function.

3 Fuzzy Sets of Windows

In this section, we describe the motivation for us-
ing fuzzy sets to represent words, starting with an
approach using traditional sets.

First, given a word v € V, we can consider the
windows centered at v,

ceny (v) = {w € W : cen(w) = v},
and the set of windows whose context contains v,
conyy (v) = {w € W : con(w) 3 v}.

A given window is thus contained inside the inter-
section of the sets described above, namely

[w_j,...,wo,...,wj]

€ cenyy (wp) N ﬂ conyy (w;).
i#0

As an example, the window

w = “quick brown fox jumps over”,

is contained inside the cenyy (“fox”) set, as
well as  conpy(“quick”),  cony (“brown”),
conyy (“jumps”), conyy (“over”). With this formu-
lation, the intersection of the conyy sets provide a
natural choice of representation for the context. We
might hope that cenyy (v) provides a reasonable
representation for the word v itself, however for
any u # v we have cenyy (u) N cenyy (v) = (.

We would like the representation of u to overlap
with v if » has “similar meaning” to v, i.e. we
would like to consider

—~

cenyy (v) .= {w € W : cen(w) similar to v}.

A crisp definition of meaning or similarity is not
possible (Hill et al., 2015; Finkelstein et al., 2001)
due to individual subjectivity. Inner-annotator
agreement for Hill et al. (2015) is only 0.67, for
example, which makes it clear that cenyy (v) could
not possibly be represented as a traditional set. In-
stead, it seems natural to consider cenyy (v) as rep-
resented by a fuzzy set (W, m), where m(w) €
[0, 1] can be thought of as capturing graded similar-
ity between v and cen(w).? In the same way, we
can define

conyy (v) == {w € W : con(v) > w similar to v},

which would also be represented as a fuzzy set.

As we wish to capture these similarities with a
machine learning model, we now must find train-
able representations of fuzzy sets.

Remark 1. Our objective of learning trainable rep-
resentations for these sets provides an additional
practical motivation for using fuzzy sets - namely,
the hard assignment of elements to a set is not dif-
ferentiable. Any gradient-descent based learning
algorithm which seeks to represent sets will have
to consider a smoothed variant of the characteristic
function, which thus leads to fuzzy sets.

4 Gumbel Boxes as Fuzzy Sets

In this section we will describe how we model
fuzzy sets using Gumbel boxes (Dasgupta et al.,
2020). As noted in Section 2.2, the Gumbel Box
model represents entities x € X by Boxg(x)
with corners modeled by Gumbel random variables
{XF}. The probability of a point z € R? being

For an even more tangible definition, we can consider
m(w) the percentage of people who consider u to be similar
to cen(w) when used in context con(w).



inside this box is

d
P(z € Boxg(x)) = [ [ P(2i > X; ) P(zi < X;1).
=1

Since this is contained in [0, 1], we have that
(R4, P(z € Boxg(x)) is a fuzzy set. For clarity,
we will refer to this fuzzy set as Boxp(x).

The set complement operation has a very nat-
ural interpretation in this setting, as Boxp(x)¢
has membership function 1 — P(z € Boxg(x)),
that is, the probability of z not being inside the
Gumbel box. The product t-norm is a very natu-
ral choice as well, as the intersection Boxp(x) N
Boxp(y) will have membership function P(z €
Boxg(x))P(z € Boxg(y)), which is precisely the
membership function associated with Boxg(x) N
Box¢(y), where here the intersection is between
Gumbel boxes as defined in Dasgupta et al. (2020).
Finally, we find that the membership function for
the union Boxr(x) U Boxp(y) is given (via the
t-conorm) by

P(z € Boxg(x)) + P(z € Boxg(y))—
P(z € Boxg(x)P(z € Boxg(y)). (3)

Remark 2. Prior work on Gumbel boxes had not
defined a union operation on Gumbel boxes, how-
ever (3) has several pleasing properties apart from
being a natural consequence of using the product
t-norm. First, it can be directly interpreted as the
probability of z being inside Box(x) or Boxg(y).
Second, if the Gumbel boxes were embedded in a
space of finite measure, as in Boratko et al., inte-
grating (3) would yield the probability correspond-
ing to P(Box(x) U Box(y)).

To calculate the size of the fuzzy set Boxp(x)
we integrate the membership function over R9,

| Boxp(x)| = /Rd P(z € Boxg(x)) dz.

The connection between this integral and that
which was approximated in (Dasgupta et al., 2020)
is provided by Lemma 3 of (Boratko et al.), and
thus we have

d s
| Boxp(x)| = il;[lﬁlog (1 + exp (Hlﬁul - 2’y>)

where p,”, u;r are the location parameters for the
Gumbel random variables X, , X Z+ , respectively.
As mentioned in Section 2.2, Gumbel boxes are

closed under intersection, i.e. Boxg(x) NBoxg(y)
is also a Gumbel box, which implies that the size
of the fuzzy intersection

| Boxp(x) N Boxz(y)|

-/, P(z € Boxg(x))P(z € Boxa(y)) dz

= P(z € Boxg(x) NBoxg(y)) dz
R4
can be approximated as well. As both of these
are tractable, integrating (3) is also possible via
linearity. Similarly, we can calculate the size of
fuzzy set differences, such as

| Boxp(x) \ Boxr(y)| =

/]Rd P(z € Boxg(x))[1-P(z € Boxg(y))] dz.

By exploiting linearity and closure under intersec-
tion, it is possible to calculate the size of arbitrary
fuzzy intersections, unions, and set differences, as
well as any combination of such operations.

Remark 3. If our boxes are embedded in a space
of finite measure, as in (Boratko et al.), the sizes
of these fuzzy sets correspond to the intersection,
union, and negation of the binary random variables
they represent.

S Training

In this section we describe our method of training
fuzzy box representations of words, which we refer
to as WORD2BOX.

In Section 3 we defined the fuzzy sets cenyy (v)
and cenyy (v), and in Section 4 we established that
Gumbel boxes can be interpreted as fuzzy sets, thus
for WORD2BOX we propose to learn center and
context box representations

cenpg(v) = Boxp(cenyy (v))

—~—

conp(v) = Boxp(ceny (v)).

Given a window, w = [w_j,...,wp,...,w;],
we noted that w must exist in the intersection,
cenyy (wp) N ﬂ conyy (w;) 4)
i£0

and thus we consider a max-margin training objec-
tive where the score for a given window is given as

f(w) :==|cenp(wp) N ﬂ ceng(wi)|.  (5)
i#0



To create a negative example w’ we follow the
same procedure as CBOW from Mikolov et al.
(2013), replacing center words with a word sam-
pled from the unigram distribution raised to the
3/4. We also subsample the context words as
in (Mikolov et al., 2013). As a vector baseline,
we compare with a WORD2VEC model trained
in CBOW-style. We attach the source code with
supplementary material.

6 Experiments and Results

We evaluate both WORD2VEC and WORD2BOX
on several quantitative and qualitative tasks that
cover the aspects of semantic similarity, related-
ness, lexical ambiguity, and uncertainty. Follow-
ing the previous relevant works (Athiwaratkun and
Wilson, 2018; Meyer and Lewis, 2020; Baroni
et al., 2012), we train on the lemmatized WaCk-
ypedia corpora (Baroni et al., 2009) which, after
pre-processing (details in Appendix A) contains
around 0.9 billion tokens, with just more than
112k unique tokens in the vocabulary. Noting
that an n-dimensional box actually has 2n param-
eters (for min and max coordinates), we compare
128-dimensional WORD2VEC embeddings and 64-
dimensional WORD2Bo0X embeddings for all our
experiments. We train over 60 different models for
both the methods for 10 epochs using random sam-
pling on a wide range of hyperparameters (please
refer to appendix A for details including learning
rate, batch size, negative sampling, sub-sampling
threshold etc.). In order to ensure that the only dif-
ference between the models was the representation
itself, we implemented a version of WORD2VEC in
PyTorch, including the negative sampling and sub-
sampling procedures recommended in (Mikolov
et al., 2013), using the original implementation as
areference. As we intended to train on GPU, how-
ever, our implementation differs from the original
in that we use Stochastic Gradient Descent with
varying batch sizes. We provide our source code
with the supplementary materials.

6.1 Word Similarity Benchmarks

We primarily evaluate our method on several word
similarity benchmarks: SimLex-999 (Hill et al.,
2015), WS-353 (Finkelstein et al., 2001), YP-130
(Yang and Powers, 2006), MEN (Bruni et al., 2014),
MC-30 (Miller and Charles, 1991), RG-65 (Ruben-
stein and Goodenough, 1965), VERB-143 (Baker
et al., 2014), Stanford RW (Luong et al., 2013),

Mturk-287 (Radinsky et al., 2011) and Mturk-771
(Halawi et al., 2012). These datasets consist of
pairs of words (both noun and verb pairs) that are
annotated by human evaluators for semantic simi-
larity and relatedness.

In table 1 we compare the WORD2BOX and
WORD2VEC models which are best performing
on the similarity benchmarks. We observe that
WORD2BOX outperforms WORD2VEC (as well
as the results reported by other baselines) in the
majority of the word similarity tasks. We outper-
form WORD2VEC by a large margin in Stanford
RW and YP-130, which are the rare-word datasets
for noun and verb respectively. Noticing this effect,
we enumerated the frequency distribution of each
dataset. The datasets fall in different sections of
the frequency spectrum, e.g., Stanford RW (Luong
et al., 2013) only contains rare words which make
its median frequency to be 5,683, where as WS-353
(Rel) (Finkelstein et al., 2001) contains many more
common words, with a median frequency of 64,490.
We also observe that we we achieve a much better
score on other datasets which have low to median
frequency words, e.g. MC-30, MEN-Tr-3K, and
RG-65, all with median frequency less than 25k.
The order they appear in the table and the subse-
quent plots is lowest to highest frequency, left to
right. Please refer to Appendix B for details.

In figure 1, we see that WORD2BOX outper-
forms WORD2VEC more significantly with less
common words. In order to investigate further, we
selected four datasets (RW-Stanford (rare words),
Simelex-999, SimVerb-3500,WS-353 (Rel)), trun-
cated them at a frequency threshold, and calculated
the correlation for different levels of this thresh-
old. In Figure 2, we demonstrate how the perfor-
mance gap between WORD2B0OX and WORD2VEC
changes as increasing amount frequent words are
added to these similarity datasets. We posit that the
geometry of box embeddings is more flexible in the
way it handles sets of mutually disjoint words (such
as rare words) which all co-occur with a more com-
mon word. Boxes have exponentially many corners,
relative to their dimension, allowing extreme flexi-
bility in the possible arrangements of intersection
to achieve complicated co-occurrance models.

6.2 Set Theoretic Operations

All the senses, contexts and abstractions of a word
can not be captured captured accurately using a
point vector, and must be captured with sets. In



Stanford RW RG-65 YP-130 MEN MC-30 Muwrk-287 SimVerb-3500 SimLex-999 Murk-771 WS-353 (Sim) WS-353 (All) WS-353 (Rel) VERB-143
*Poincaré — 7597 —  — 8046 — 18.90 31.81 — — 62.34 — —
*Gaussian — 7100 4150 7131 7041 — — 32.23 — 76.15 65.49 58.96 —
WORD2VEC 4025 6680 4377 6845 7557 61.83 23.58 37.30 59.90 75.81 69.01 61.29 3197
WORD2BOX 4508 8145 516 73.68 8712 70.62 29.71 38.19 68.51 78.60 68.68 60.34 48.03

Table 1: Similarity: We evaluate our box embedding model WORD2BOX against a standard vector baseline WORD2VEC. For
comparison, we also include the reported results for Gaussian and Poincaré embeddings, however we note that these may not be
directly comparable as many other aspects (eg. corpus, vocab size, sampling method, training process, etc.) may be different

between these models.

Word2Vec
Word2Box
Cifference

N/ SN

Correlation

85 a0 95 100 15 MO M5 120 125

Log of median frequency of the similarity datasets

Figure 1: This plot depicts the gain in correlation score for
WORD2BOX against WORD2VEC is much higher for the low
and mid frequency range.

this section, we evaluate our models capability of
representing sets by performing set operations on
the trained models.

6.2.1 Quantitative Results

Homographs, words with identical spelling but dis-
tinct meanings, and polysemous words are ideal
choice of stimuli for this purpose. We constructed
set theoretic logical operations on words based on
common polysemous words and homographs (Nel-
son et al., 1980). For example, the word *property’
will have association with words related both “as-
set’ and attribute’, and thus the union of the later
two should be close to the original *word’ property.
Likewise, intersection set of *property’ and *math’
should contain many words related to properties
of algebra and geometry. Our dataset consists of
triples (A, B, C') where A o B should yield a set
similar to C. In this task, given two words A and
B and a set theoretic operation o, we try to find
the rank of word C in the sorted list based on the
set similarity (vector similarity scores for the vec-
tors) score between A o B and all words in the
vocab. The dataset consists of 52 examples for
both Union and Negation, 20 examples for Inter-
section. The details of the dataset can be found in
appendix B. In table 2, we report the percentage of

Box
Vector ANB | A\B| AuB
Addition 0.90 0.92 0.98
Subtraction 0.90 0.65 0.80
Max Pooling 0.95 0.86 0.86
Min Pooling 0.90 0.75 0.92
Score Max Pooling | 0.95 0.84 0.94
Score Min Pooling | 1.0 0.80 0.84

Table 2: Percentage of times the Box Embeddings set oper-
ations are better than different vector operations. Thus more
than 0.5 means that boxes are better. The Intersection, Union
and Difference can be performed with Boxes as they originally
are, however, we choose an exhaustive list of similar vector
operations.

times the WORD2BOX outperformes WORD2VEC,
i.e., the model yields better rank for the word C.
Note that, it is not evidently clear how to design
the union, difference or the intersection operations
with vectors. Thus, in this work, we compare with
a comprehensive list of operations for them. We
observe that almost of all the values are more than
0.9, which means WORD2BOX gets better rank for
90 out of 100 examples. This empirically validates
that our model is indeed capturing the underlying
set theoretic aspects of the words in the corpus.

Here, the addition, subtraction, max pool, min
pool are point wise vector operations between vec-
tor for word A and B. We also propose score
max and score min operations where, we select
the max(A - X, B - X) and min(A - X, B - X),
where X is any word. The purpose of this design
of operation if to mimic the essence of union and in-
tersection in the vector space, however, it is evident
that the trained vector geometry is not harmonious
to this construction as well.

6.2.2 Qualitative Analysis

In this section, we present some interesting exam-
ples of set theoretic queries on words, with different
degrees of complexities. For all the tables in this
section, we perform the set-operations on the query
words then look at the ranked list of most similar
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Figure 2: We plot the Spearman’s correlation score vs Threshold frequency in log scale for Stanford RW, Simelex-999
SimVerb-3500, WS-353 (Rel). The correlation value is calculated on the word pairs where both of them have frequency less than

the threshold frequency.

words to the output query. Many of these queries
are based on words with multiple senses which is
very instrumental for the inspection of the models.

Evidently, our the results from WORD2BOX
look much better. Note that, from table, we observe
that set difference of *property’ and ’land’ yields
a set of words that are related to attributes of sci-
ence subjects, they are mostly “chemical-property”
, “algebraic-property” etc. Thus, we wanted to ex-
amine how to this resulting query of *property’ - *fi-
nance’, relate to algebra and chemistry. We observe
that the outputs indeed correspond to properties of
those sub fields of science. We can observe such
consistency of WORD2B0X with all the example
logical queries.

Operation X
Model

girl boy WorD2Box ANBNX kid girls schoolgirl teenager
woman boys child baby
teenage orphan

shoeshine nanoha  soulja
schoolgirl yeller beastie jeezy
crudup ’girl rahne

cemetery bury estate grave in-
terment tomb dwelling site
gravesite sarcophagus
interment moated interred
dunams  ceteris  burials
catafalque easement deeded
inhumation

historic estate artifact archaeo-
logical preserve ownership pat-
rimony heritage landmark site
krajobrazowy burgage ease-
ment kravis dilapidation to-
hono intangible domesday
moated laertius

estate mansion manor resi-
dence houses tenement build-
ing premise buildings site
leasehold mansion tenements
outbuildings estate burgage
bedrooms moated burgesses
manor

eye mouth ear limb lip fore-
head anus neck finger penis
tubercle ribcage meatus
diverticulum forelegs radula
tuberosity elastin  foramen
nostrils

dialect idiom pronunciation
meaning cognate word accent
colloquial speaking speak
fluently dialects vowels patois
languages loanwords phonol-
ogy lingala tigrinya fluent

WORD2VEC (A+B)-X

property  burial WorD2BoXx ANBNX

WORD2VEC (A+B)-X

historical  WOrRD2Box ANBNX

WORD2VEC (A +B) X

house WORD2BOX ANBNX

WORD2VEC (A+B)-X

tongue body WorD2Box ANBNX

WORD2VEC (A+B)-X

language WORD2BOX ANBNX

WORD2VEC (A+B)-X

Operation X

A B Model

algebra finance WORD2BOX (A B)NX homomorphism isomorphism
automorphism abelian alge-
braic bilinear topological mor-
phism spinor homeomorphism
homeomorphic unital ho-
momorphisms nilpotent
algebraically projective
holomorphic  propositional
nondegenerate endomorphism
wensum junction neman
mouth tributary downstream
corner embankment forks
sandwich

shaddai takla thrombus gauley
paria epenthetic chibchan
urubamba foremast bolshaya
barclays hsbc banking citi-
group citibank firm ipo broker-
age interbank kpmg

cheques tymoshenko receiv-
ables citibank eurozone brinks
defrauded courtaulds refinance
mortgage

biochemistry superconductor
physics physic eutectic heat
isotope fluorescence yttrium
spectroscopy

augite alkyne desorption phos-
phorylating dimorphism fu-
marate hypertrophic empedo-
cles hydratase enantiomer
homotopy isomorphism invo-
lution register bijection sym-
plectic eigenvalue idempotent
compactification lattice

brst stieltjes I'p repressor
absurdum doesn conjugates
nonempty didn wouldn

WORD2VEC (A-B)-X

bank finance WORD2BOX (A B)NX

WORD2VEC (A-B)-X

river WORD2BOX (A B)NX

WORD2VEC (A-B)-X

chemistry finance WORD2BOX (A B)NnX

WORD2VEC (A-B)-X

property  land WoRrD2Box (A B)NX

WORD2VEC (A-B)-X

Operation X

A B C Model

property finance algebra WORD2BOX ((A\B)NC)NX laplacian nilpotent antideriva-
tive lattice surjective automor-
phism invertible homotopy in-
teger integrand

expropriate extort refco under-
write reimburse refinance par-
malat refinancing brokerage
privatizing

eutectic desiccant allotrope
phenocryst hardness solubil-
ity monoclinic hygroscopic
nepheline trehalose

refinance brokerage burgage
stockbroking refinancing war-
ranties reimburse madoff pri-

vatizing valorem

WORD2VEC (A-B+0C)-X

chemistry WORD2BoX ((A\B)NnC)nX

WORD2VEC (A-B+0C)-X

7 Related Work

Learning distributional vector representations from
a raw corpus was introduced in Mikolov et al.
(2013), quickly followed by various improvements
(Pennington et al.; Bojanowski et al., 2017). More
recently, vector representations which incorporate
contextual information have shown significant im-



bank N finance bank U finance bank \ finance bank + finance bank - finance

max(bank, finance)

min(bank, finance) max_score(bank, finance) min_score(bank, finance)

investment banking wensum subprime shaddai refinance securities refinance securities
banking treasury junction securities takla laundering subprime laundering subprime
investor investor neman refinance thrombus reimbursements jpmorgan reimbursements jpmorgan
financing investment mouth liquidity gauley superannuation citigroup superannuation citigroup
fund business tributary laundering paria liquidity equities liquidity equities
government economy downstream kaupthing epenthetic debit ebrd debit ebrd
corporation management corner underwrite chibchan controllata kaupthing controllata kaupthing
treasury firm embankment  receivables urubamba subprime mortgage subprime mortgage
citigroup fund forks ibrd foremast underwrite refinance underwrite refinance
firm financial sandwich equities bolshaya disbursement debentures disbursement debentures
Similarity
Word Model
bank WORD2BOX population median age female race family poverty every career census
WORD2VEC debit depositors securities kaupthing interbank subprime counterparty citibank fdic
nasdaq
economics WORD2BOX population median age female race family poverty every career census
WORD2VEC microeconomic keynesian microeconomics minored macroeconomics econometrics
sociology thermodynamics evolutionism structuralist
microeconomics WORD2BOX population median age female race family poverty every career census
WORD2VEC microeconomic initio germline instantiation zachman macroeconomics oxoglutarate
glycemic noncommutative pubmed
property WORD2BOX population median age female race family poverty every career census
WORD2VEC easement infringes burgage krajobrazowy chattels policyholder leasehold intestate
liabilities ceteris
rock WORD2BOX population median age female race family poverty every career census
WORD2VEC shoegaze rhyolitic punk britpop mafic outcrops metalcore bluesy sedimentary

quartzite

provements (Peters et al., 2018; Devlin et al., 2019;
Radford et al., 2019; Brown et al., 2020). As these
models require context, however, Word2Vec-style
approaches are still relevant in settings where such
context is unavailable.

Hyperbolic representations (Nickel and Kiela,
2017; Ganea et al., 2018; Chamberlain et al., 2017)
have become popular in recent years. Most re-
lated to our setting, Tifrea et al. (2019) propose a
hyperbolic analog to GloVe, with the motivation
that the hyperbolic embeddings will discover a la-
tent hierarchical structure between words.? Vilnis
and McCallum (2015) use Gaussian distributions
to represent each word, and KL. Divergence as a
score function. 4+ Athiwaratkun and Wilson (2018)
extended such representations by adding certain
thresholds for each distribution. For a different
purpose, Ren and Leskovec (2020) use Beta Distri-
butions to model logical operations between words.
Our work can be seen as a region-based analog to
these models.

Of the region-based embeddings, Suzuki et al.
(2019) uses hyperbolic disks, and Ganea et al.
(2018) uses hyperbolic cones, however these are
not closed under intersection nor are their inter-

3Reported results are included in table 1 as “Poincaré”
*Reported results are included in table 1 as “Gaussian”

sections easily computable. Vendrov et al. (2016)
and Lai and Hockenmaier (2017) use an axis-
aligned cone to represent a specific relation be-
tween words/sentences, for example an entailment
relation. Vilnis et al. (2018) extends Lai and Hock-
enmaier (2017) by adding an upper-bound, prov-
ably increasing the representational capacity of the
model. Li et al. (2019) and Dasgupta et al. (2020)
are improved training methods to handle the diffi-
culties inherent in gradient-descent based region
learning. Ren et al. (2020) and Abboud et al. (2020)
use a box-based adjustment of their loss functions,
which suggest learning per-entity thresholds are
beneficial. (Chen et al., 2021) use box embeddings
to model uncertain knowledge graphs, and (Onoe
et al., 2021) use boxes for fined grained entity typ-
ing.

8 Conclusion

In this work we have demonstrated that box em-
beddings can not only effectively train to represent
pairwise similarity but also the it can capture the
rich set theoretic logical structure of the words. The
expressivity of box models allows them to capture
cooccurrances is such a distributed set theoretic
way which is inaccessible to vector models.
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A Preprocessing

The WaCKypedia corpus has been tokenized and
lemmatized. We used the lemmatized version of
the corpus, however it was observed that various
tokens were not split as they should have been (eg.
“1.5billion” -> “1.5 billion”). We split tokens us-
ing regex criteria to identify words and numbers.
All punctuation was removed from the corpus, all
numbers were replaced with a “<num>" token, and
all words were made lowercase. We also removed
any words which included non-ascii symbols. Af-
ter this step, the entire corpus was tokenized once
more, and any token occurring less than 100 times
was dropped.

B Dataset Analysis

Median
Dataset

Frequency
Men-Tr-3K 23942
Mc-30 25216.5
Mturk-771 43128.5
Simlex-999 40653.0
Verb-143 309192.0
Yp-130 23044.0
Rw-Stanford | 5683.5
Rg-65 13088.0
Ws-353-All 58803.0
Ws-353-Sim. | 57514.0
Ws-353-Rel 64490.0
Mturk-287 32952
Simverb-3500 | 39020

Table 3: Median Frequency of each similarity dataset.

C Hyperparameters

As discussed in Section 6, we train on 128
dimensional WORD2VEC and 64 dimensional
WORD2B0X models for 10 epochs. We ran at
least 60 runs for each of the models with random
seed and randomly chose hyperparamter from the
following range - batch_size:[2048, 4096, 8192,
16384, 32768], learning rate log_uniform[exp(-1),
exp(-10)], Window_size: [5, 6, 7, 8, 9, 10], nega-
tive_samples: [2, 5, 10, 20], sub_sampling thresh-
old: [0.001, 0.0001].

D Set Theoretic Queries
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A

table

car

city
wolf
shirt
computer
red
movie
school
doctor
box

big

dog

fish
sports
carry
sadness
bend
hit
combine
happy
acquire
location
hot
information
furry
entry
exhibition
good
luck
odor
crotch
thin
sleep
broadcast
small
overlook
thing
target
air
category
mercy
truck
topic
jump
first
move
surface
bravery
luggage
create
rise

B

chair
plane
village
bear
pant
phone
blue
book
college
engineer
circle
small
tree
tone
wing
animal
color
weapon
food
building
list
agreement
organise
leave
food
lower
bewitch
judgement
charge
whale
angry
race
slant
wrong
life

time
woman
oppose
thing
turn
keyboard
type
teach
impose
miss
time
drink
ordinary
remove
beer
vegetables
flower

AB
furniture
transportation
location
animal
clothes
Electronics
color
entertainment
education
Profession
shape

size

bark

bass

bat

bear

blue

bow
buffet
compound
content
contract
coordinate
desert
digest
down
entrance
fair

fine

fluke
incense
lap

lean

lie

live
minute
miss
object
object
wind

type

kind

train
subject
skip
second
shake
plain
pluck
porter
produce
rose



