Word2Box: Capturing Set-Theoretic Semantics of Words using Box Embeddings

Anonymous ACL submission

Abstract

001	Learning representations of words in a continu-
002	ous space is perhaps the most fundamental task
003	in NLP, a prerequisite for nearly all modern
004	machine-learning techniques. Often the objec-
005	tive is to capture distributional similarity via
006	vector dot product, however this is just one re-
007	lation between word meanings we may wish
800	to capture. It is natural to consider words as
009	(soft) equivalence classes based on similarity,
010	it is natural to expect the ability to perform set-
011	theoretic operations (intersection, union, differ-
012	ence) on these representations. This is particu-
013	larly relevant for words which are homographs
014	- for example, "tongue"∩"body" should be sim-
015	ilar to "mouth", while "tongue"∩"language"
016	should be similar to "dialect". Box embed-
017	dings are a novel region-based representation
018	which provide the capability to perform these
019	set-theoretic operations. In this work, we pro-
020	vide a fuzzy-set interpretation of box embed-
021	dings, and train box embeddings with a CBOW
022	objective where contexts are represented using
023	intersection. We demonstrate improved perfor-
024	mance on various word similarity tasks, partic-
025	ularly on less common words, and perform a
026	quantitative and qualitative analysis exploring
027	the additional unique expressivity provided by
028	WORD2BOX.

1 Introduction

031

032

035

037

039

The concept of learning a distributed representation for a word has fundamentally changed the field of natural language processing. The introduction of efficient methods for training vector representations of words in Word2Vec (Mikolov et al., 2013), and later GloVe (Pennington et al.) as well as Fast-Text (Bojanowski et al., 2017) revolutionized the field, paving the way for the recent wave of deep architectures for language modeling, all of which implicitly rely on this fundamental notion that a word can be effectively represented by a vector.

041While now ubiquitous, the concept of represent-042ing a word as a single point in space is not partic-

ularly natural. All senses and contexts, levels of abstraction, variants and modifications which the word may represent are forced to be captured by the specification of a single location in Euclidean space. It is thus unsurprising that a number of alternatives have been proposed.

043

044

045

046

048

049

051

052

053

054

055

056

057

060

061

063

064

065

066

067

069

070

071

072

073

075

076

077

078

079

080

081

Gaussian embeddings (Vilnis and McCallum, 2015) propose modeling words using densities in latent space as a way to explicitly capture uncertainty. Poincaré embeddings (Tifrea et al., 2019) attempt to capture a latent hierarchical graph between words by embedding words as vectors in hyperbolic space. Trained over large corpora via similar unsupervised objectives as vector baselines, these models demonstrate an improvement on word similarity tasks, giving evidence to the notion that vectors are not capturing all relevant structure from their unsupervised training objective.

A more recent line of work explores regionbased embeddings, which use geometric objects such as disks (Suzuki et al., 2019), cones (Vendrov et al., 2016; Lai and Hockenmaier, 2017; Ganea et al., 2018), and boxes (Vilnis et al., 2018) to represent entities. These models are often motivated by the need to express asymmetry, benefit from particular inductive biases, or benefit from calibrated probabilistic semantics. In the context of word representation, their ability to represent words using geometric objects with well-defined intersection, union, and difference operations is of interest, as we may expect these operations to translate to the words being represented in a meaningful way.

In this work, we introduce WORD2BOX, a region-based embedding for words where each word is represented by an *n*-dimensional hyperrectangle or "box". Of the region-based embeddings, boxes were chosen as the operations of intersection, union, and difference are easily calculable. Specifically, we use a variant of box embeddings known as Gumbel boxes, introduced in (Dasgupta et al., 2020). Our objective (both for training and

inference) is inherently set-theoretic, not proba-084 bilistic, and as such we first provide a fuzzy-set 085 interpretation of Gumbel boxes yielding rigorously defined mathematical operations for intersection, union, and difference of Gumbel boxes.

We train boxes on a large corpus in an unsupervised manner with a continuous bag of words (CBOW) training objective, using the intersection 091 of boxes representing the context words as the representation for the context. The resulting model demonstrates improved performance compared to vector baselines on a large number of word similarity benchmarks. We also compare the models' 096 abilities to handle set-theoretic queries, and find 097 that the box model outperforms the vector model 90% of the time. Inspecting the model outputs 100 qualitatively also demonstrates that WORD2BOX can provide sensible answers to a wide range of 101 set-theoretic queries. 102

2 Background

103

107

115

121

122

123 124

125

126

127

128

129

Notation Let $V = \{v_i\}_{i=1}^N$ denote the vocab-104 ulary, indexed in a fixed but arbitrary order. A 105 sentence $\mathbf{s} = (s_1, \ldots, s_j)$ is simply a (variable-106 length) sequence of elements in our vocab $s_i \in V$, and a document $\mathbf{d} = {\mathbf{s}_i}$ is a multiset¹ of sen-108 tences. We view our corpus $C = \{\mathbf{d}_i\}$ as a mul-109 tiset of documents, and also consider the multiset 110 $C_S = {\mathbf{s} : \mathbf{s} \in \mathbf{d} \in C}$ of all sentences in our 111 corpus. Given some fixed "window size" ℓ , for 112 each word s_i in a sentence s we can consider the 113 window centered at i, 114

$$\mathbf{w}_i = [s_{i-\ell}, \ldots, s_i, \ldots, s_{i+\ell}],$$

116 where we omit any indices exceeding the bounds of the sentence. Given a window \mathbf{w}_i we denote 117 the center word using $cen(w_i) = s_i$, and denote all 118 remaining words as the context $con(\mathbf{w}_i)$. We let 119 C_W be the multiset of all windows in the corpus. 120

2.1 Fuzzy sets

Given any ambient space U a set $S \subseteq U$ can be represented by its characteristic function $\mathbb{1}_S: U \to$ $\{0,1\}$ such that $\mathbb{1}_S(u) = 1 \iff u \in S$. This definition can be generalized to consider functions $m: U \to [0,1]$, in which case we call the pair A = (U, m) a fuzzy set and $m = m_A$ is known as the membership function (Zadeh, 1965; Klir and Yuan, 1996). There is historical precedent for

the use of fuzzy sets in computational linguistics 130 (Zhelezniak et al., 2019; Lee and Zadeh, 1969), 131 and more generally are naturally required any time 132 we would like to learn a set representation in a 133 gradient-based model, as hard assignments would 134 not allow for gradient flow. 135

In order to extend the notion of intersection to 136 fuzzy sets, it is necessary to define a *t-norm*, which 137 is a binary operation $\top : [0,1] \times [0,1] \rightarrow [0,1]$ 138 which is commutative, monotonic, associative, and 139 equal to the identity when either input is 1. The 140 min and product operations are common exam-141 ples of t-norms. Given any t-norm, the intersec-142 tion of fuzzy sets A and B has membership func-143 tion $m_{A\cap B}(x) = \top (m_A(x), m_B(x))$. Any t-norm 144 has a corresponding t-conorm which is given by 145 $\perp(a,b) = 1 - \top(1-a,1-b);$ for min the t-146 conorm is max, and for product the t-conorm is 147 the probabilistic sum, $\perp_{sum}(a, b) = a + b - ab$. 148 This defines the union between fuzzy sets, where 149 $m_{A\cup B}(x) = \bot(m_A(x), m_B(x))$. Finally, the com-150 plement of a fuzzy set simply has member function 151 $m_{A^c}(x) = 1 - m_A(x).$ 152

2.2 Box embeddings

Box embeddings, introduced in (Vilnis et al., 2018), represent elements \mathbf{x} of some set X as a Cartesian product of intervals,

$$Box(\mathbf{x}) \coloneqq \prod_{i=1}^{d} [x_i^-, x_i^+]$$

$$= [x_1^-, x_1^+] \times \dots \times [x_d^-, x_d^+] \subseteq \mathbb{R}^d.$$
(1) 157

153

154

155

156

158

160 161

162

The volume of a box can be calculated as

$$Box(\mathbf{x})| = \prod_{i=1}^{d} \max(0, x_i^+ - x_i^-),$$
159

and when two boxes intersect, their intersection is

$$\operatorname{Box}(\mathbf{x})\cap\operatorname{Box}(\mathbf{y})$$

$$= \prod_{i=1}^{d} [\max(x_i^{-}, y_i^{-}), \min(x_i^{+}, y_i^{+})].$$
 163

Boxes are trained via gradient descent, and these 164 hard min and max operations result in large ar-165 eas of the parameter space with no gradient signal. 166 Dasgupta et al. (2020) addresses this problem by 167 modeling the corners of the boxes $\{x_i^{\pm}\}$ with Gum-168 bel random variables, $\{X_i^{\pm}\}$, where the probability 169

¹A *multiset* is a set which allows for repetition, or equivalently a sequence where order is ignored.

170 of any point $\mathbf{z} \in \mathbb{R}^d$ being inside the box $Box_G(\mathbf{x})$ 171 is given by

172
$$P(\mathbf{z} \in \text{Box}_G(\mathbf{x})) = \prod_{i=1}^d P(z_i > X_i^-) P(z_i < X_i^+)$$

173

174

175

176

177

178

180

181

182

183

184

185

186

187

188

189 190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

For clarity, we will denote the original ("hard") boxes as Box, and the Gumbel boxes as Box_G . The Gumbel distribution was chosen as it was min/max stable, thus the intersection $Box_G(\mathbf{x}) \cap Box_G(\mathbf{y})$ which was defined as a new box with corners modeled by the random variables $\{Z_i^{\pm}\}$ where

179
$$Z_i^- \coloneqq \max(X_i^-, Y_i^-) \text{ and } Z_i^+ \coloneqq \min(X_i^+, Y_i^+)$$

is actually a Gumbel box as well. Boratko et al. observed that

$$P(\mathbf{z} \in \operatorname{Box}_G(\mathbf{x}) \cap \operatorname{Box}_G(\mathbf{y})) = P(\mathbf{z} \in \operatorname{Box}_G(\mathbf{x}))P(\mathbf{z} \in \operatorname{Box}_G(\mathbf{y})), \quad (2$$

and also provided a rigorous probabilistic interpretation for Gumbel boxes when embedded in a space of finite measure, leading to natural notions of "union" and "intersection" based on these operations of the random variables (Boratko et al.).

In this work, we do not embed the boxes in a space of finite measure, but instead interpret them as *fuzzy sets*, where the above probability acts as a soft membership function.

3 Fuzzy Sets of Windows

In this section, we describe the motivation for using fuzzy sets to represent words, starting with an approach using traditional sets.

First, given a word $v \in V$, we can consider the windows centered at v,

$$\operatorname{cen}_W(v) \coloneqq \{ w \in W : \operatorname{cen}(w) = v \}.$$

and the set of windows whose context contains v,

$$\operatorname{con}_W(v) \coloneqq \{ w \in W : \operatorname{con}(w) \ni v \}.$$

A given window is thus contained inside the intersection of the sets described above, namely

$$[w_{-j},\ldots,w_0,\ldots,w_j]$$

$$\in \operatorname{cen}_W(w_0) \cap \bigcap_{i \neq 0} \operatorname{con}_W(w_i).$$

As an example, the window

$$\mathbf{w} =$$
 "quick brown fox jumps over",

is contained inside the cen_W ("fox") set, as 210 well as con_W ("quick"), con_W ("brown"), 211 con_W ("jumps"), con_W ("over"). With this formu-212 lation, the intersection of the con_W sets provide a 213 natural choice of representation for the context. We 214 might hope that $\operatorname{cen}_W(v)$ provides a reasonable 215 representation for the word v itself, however for 216 any $u \neq v$ we have $\operatorname{cen}_W(u) \cap \operatorname{cen}_W(v) = \emptyset$. 217

We would like the representation of u to overlap with v if u has "similar meaning" to v, i.e. we would like to consider

$$\widetilde{\operatorname{cen}}_W(v) \coloneqq \{ w \in W : \operatorname{cen}(w) \text{ similar to } v \}.$$
 221

218

219

220

222

223

224

225

226

227

228

229

230

231

232

234

235

236

237

238

239

240

241

242

243

244

245

246

A crisp definition of *meaning* or *similarity* is not possible (Hill et al., 2015; Finkelstein et al., 2001) due to individual subjectivity. Inner-annotator agreement for Hill et al. (2015) is only 0.67, for example, which makes it clear that $\widetilde{cen}_W(v)$ could not possibly be represented as a traditional set. Instead, it seems natural to consider $\widetilde{cen}_W(v)$ as represented by a fuzzy set (W, m), where $m(w) \in$ [0, 1] can be thought of as capturing graded similarity between v and cen(w).² In the same way, we can define

$$\widetilde{\operatorname{con}_W}(v) \coloneqq \{ w \in W : \operatorname{con}(v) \ni w \text{ similar to } v \},$$

which would also be represented as a fuzzy set.

As we wish to capture these similarities with a machine learning model, we now must find trainable representations of fuzzy sets.

Remark 1. Our objective of learning trainable representations for these sets provides an additional practical motivation for using fuzzy sets - namely, the hard assignment of elements to a set is not differentiable. Any gradient-descent based learning algorithm which seeks to represent sets will have to consider a smoothed variant of the characteristic function, which thus leads to fuzzy sets.

4 Gumbel Boxes as Fuzzy Sets

In this section we will describe how we model247fuzzy sets using Gumbel boxes (Dasgupta et al.,2482020). As noted in Section 2.2, the Gumbel Box249model represents entities $\mathbf{x} \in X$ by $Box_G(\mathbf{x})$ 250with corners modeled by Gumbel random variables251 $\{X_i^{\pm}\}$. The probability of a point $\mathbf{z} \in \mathbb{R}^d$ being252

²For an even more tangible definition, we can consider m(w) the percentage of people who consider u to be similar to cen(w) when used in context con(w).

53

256

257

inside this box is

254
$$P(\mathbf{z} \in \operatorname{Box}_G(\mathbf{x})) = \prod_{i=1}^d P(z_i > X_i^-) P(z_i < X_i^+)$$

Since this is contained in [0, 1], we have that $(\mathbb{R}^d, P(\mathbf{z} \in \text{Box}_G(\mathbf{x})))$ is a fuzzy set. For clarity, we will refer to this fuzzy set as $\text{Box}_F(\mathbf{x})$.

258 The set complement operation has a very natural interpretation in this setting, as $Box_F(\mathbf{x})^c$ 259 has membership function $1 - P(\mathbf{z} \in \text{Box}_G(\mathbf{x}))$, 260 that is, the probability of z not being inside the 261 Gumbel box. The product t-norm is a very natu-262 ral choice as well, as the intersection $Box_F(\mathbf{x}) \cap$ $Box_F(\mathbf{y})$ will have membership function $P(\mathbf{z} \in$ 264 $Box_G(\mathbf{x}))P(\mathbf{z} \in Box_G(\mathbf{y}))$, which is precisely the 265 266 membership function associated with $Box_G(\mathbf{x}) \cap$ $Box_G(\mathbf{y})$, where here the intersection is between 267 Gumbel boxes as defined in Dasgupta et al. (2020). 268 Finally, we find that the membership function for 269 the union $Box_F(\mathbf{x}) \cup Box_F(\mathbf{y})$ is given (via the 270 271 t-conorm) by 272

274

285

287

289

290

291

293

294

$$P(\mathbf{z} \in \operatorname{Box}_G(\mathbf{x})) + P(\mathbf{z} \in \operatorname{Box}_G(\mathbf{y})) - P(\mathbf{z} \in \operatorname{Box}_G(\mathbf{x})P(\mathbf{z} \in \operatorname{Box}_G(\mathbf{y})). \quad (3)$$

Remark 2. Prior work on Gumbel boxes had not 275 defined a union operation on Gumbel boxes, how-276 ever (3) has several pleasing properties apart from 277 being a natural consequence of using the product 278 t-norm. First, it can be directly interpreted as the 279 probability of z being inside $Box_G(\mathbf{x})$ or $Box_G(\mathbf{y})$. Second, if the Gumbel boxes were embedded in a 281 space of finite measure, as in Boratko et al., inte-282 283 grating (3) would yield the probability corresponding to $P(Box(\mathbf{x}) \cup Box(\mathbf{y}))$. 284

> To calculate the size of the fuzzy set $\text{Box}_F(\mathbf{x})$ we integrate the membership function over \mathbb{R}^d ,

$$|\operatorname{Box}_F(\mathbf{x})| = \int_{\mathbb{R}^d} P(\mathbf{z} \in \operatorname{Box}_G(\mathbf{x})) d\mathbf{z}$$

The connection between this integral and that which was approximated in (Dasgupta et al., 2020) is provided by Lemma 3 of (Boratko et al.), and thus we have

292
$$|\operatorname{Box}_F(\mathbf{x})| \approx \prod_{i=1}^d \beta \log \left(1 + \exp\left(\frac{\mu_i^+ - \mu_i^-}{\beta} - 2\gamma\right)\right)$$

where μ_i^-, μ_i^+ are the location parameters for the Gumbel random variables X_i^-, X_i^+ , respectively. As mentioned in Section 2.2, Gumbel boxes are

closed under intersection, i.e. $Box_G(\mathbf{x}) \cap Box_G(\mathbf{y})$ 296 is also a Gumbel box, which implies that the size 297 of the fuzzy intersection 298

$$|\operatorname{Box}_F(\mathbf{x}) \cap \operatorname{Box}_F(\mathbf{y})|$$
 29

$$= \int_{\mathbb{R}^d} P(\mathbf{z} \in \operatorname{Box}_G(\mathbf{x})) P(\mathbf{z} \in \operatorname{Box}_G(\mathbf{y})) \, d\mathbf{z}$$
 30

$$= \int_{\mathbb{R}^d} P(\mathbf{z} \in \operatorname{Box}_G(\mathbf{x}) \cap \operatorname{Box}_G(\mathbf{y})) \, d\mathbf{z}$$
 30

can be approximated as well. As both of these are tractable, integrating (3) is also possible via linearity. Similarly, we can calculate the size of fuzzy set differences, such as

$$\operatorname{Box}_F(\mathbf{x}) \setminus \operatorname{Box}_F(\mathbf{y})| = 30$$

$$\int_{\mathbb{R}^d} P(\mathbf{z} \in \operatorname{Box}_G(\mathbf{x}))[1 - P(\mathbf{z} \in \operatorname{Box}_G(\mathbf{y}))] \, d\mathbf{z}.$$
 30

By exploiting linearity and closure under intersection, it is possible to calculate the size of arbitrary fuzzy intersections, unions, and set differences, as well as any combination of such operations.

Remark 3. If our boxes are embedded in a space of finite measure, as in (Boratko et al.), the sizes of these fuzzy sets correspond to the intersection, union, and negation of the binary random variables they represent.

5 Training

In this section we describe our method of training fuzzy box representations of words, which we refer to as WORD2BOX.

In Section 3 we defined the fuzzy sets $\widetilde{\operatorname{cen}}_W(v)$ and $\widetilde{\operatorname{cen}}_W(v)$, and in Section 4 we established that Gumbel boxes can be interpreted as fuzzy sets, thus for WORD2BOX we propose to learn center and context box representations

$$\operatorname{cen}_B(v) \coloneqq \operatorname{Box}_F(\widetilde{\operatorname{cen}}_W(v))$$
 327

$$\operatorname{con}_B(v) \coloneqq \operatorname{Box}_F(\widetilde{\operatorname{cen}}_W(v)).$$
 32

Given a window, $\mathbf{w} = [w_{-j}, \dots, w_0, \dots, w_j]$, 329 we noted that \mathbf{w} must exist in the intersection, 330

$$\widetilde{\operatorname{cen}}_W(w_0) \cap \bigcap_{i \neq 0} \widetilde{\operatorname{con}}_W(w_i) \tag{4}$$
 331

and thus we consider a max-margin training objective where the score for a given window is given as

333 334

332

302

304

305

306

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

$$f(\mathbf{w}) \coloneqq \left| \operatorname{cen}_B(w_0) \cap \bigcap_{i \neq 0} \operatorname{cen}_B(w_i) \right|.$$
(5) 335

To create a negative example w' we follow the 336 same procedure as CBOW from Mikolov et al. 337 (2013), replacing center words with a word sam-338 pled from the unigram distribution raised to the 3/4. We also subsample the context words as 340 341 in (Mikolov et al., 2013). As a vector baseline, we compare with a WORD2VEC model trained 342 in CBOW-style. We attach the source code with 343 supplementary material.

345

6 Experiments and Results

346 We evaluate both WORD2VEC and WORD2BOX on several quantitative and qualitative tasks that 347 cover the aspects of semantic similarity, related-348 349 ness, lexical ambiguity, and uncertainty. Following the previous relevant works (Athiwaratkun and 350 Wilson, 2018; Meyer and Lewis, 2020; Baroni 351 et al., 2012), we train on the lemmatized WaCk-352 ypedia corpora (Baroni et al., 2009) which, after 353 354 pre-processing (details in Appendix A) contains around 0.9 billion tokens, with just more than 355 112k unique tokens in the vocabulary. Noting 356 that an n-dimensional box actually has 2n param-357 eters (for min and max coordinates), we compare 358 359 128-dimensional WORD2VEC embeddings and 64dimensional WORD2BOX embeddings for all our 360 experiments. We train over 60 different models for 361 both the methods for 10 epochs using random sam-362 pling on a wide range of hyperparameters (please 363 refer to appendix A for details including learning 364 rate, batch size, negative sampling, sub-sampling threshold etc.). In order to ensure that the only dif-366 ference between the models was the representation 367 itself, we implemented a version of WORD2VEC in 368 PyTorch, including the negative sampling and sub-369 370 sampling procedures recommended in (Mikolov et al., 2013), using the original implementation as 371 a reference. As we intended to train on GPU, how-372 ever, our implementation differs from the original 373 in that we use Stochastic Gradient Descent with 374 varying batch sizes. We provide our source code 375 with the supplementary materials. 376

377 6.1 Word Similarity Benchmarks

We primarily evaluate our method on several word
similarity benchmarks: SimLex-999 (Hill et al.,
2015), WS-353 (Finkelstein et al., 2001), YP-130
(Yang and Powers, 2006), MEN (Bruni et al., 2014),
MC-30 (Miller and Charles, 1991), RG-65 (Rubenstein and Goodenough, 1965), VERB-143 (Baker
et al., 2014), Stanford RW (Luong et al., 2013),

Mturk-287 (Radinsky et al., 2011) and Mturk-771385(Halawi et al., 2012). These datasets consist of
pairs of words (both noun and verb pairs) that are
annotated by human evaluators for semantic simi-
larity and relatedness.386

In table 1 we compare the WORD2BOX and 390 WORD2VEC models which are best performing 391 on the similarity benchmarks. We observe that 392 WORD2BOX outperforms WORD2VEC (as well 393 as the results reported by other baselines) in the 394 majority of the word similarity tasks. We outper-395 form WORD2VEC by a large margin in Stanford 396 RW and YP-130, which are the rare-word datasets 397 for noun and verb respectively. Noticing this effect, 398 we enumerated the frequency distribution of each 399 dataset. The datasets fall in different sections of 400 the frequency spectrum, e.g., Stanford RW (Luong 401 et al., 2013) only contains rare words which make 402 its median frequency to be 5,683, where as WS-353 403 (Rel) (Finkelstein et al., 2001) contains many more 404 common words, with a median frequency of 64,490. 405 We also observe that we we achieve a much better 406 score on other datasets which have low to median 407 frequency words, e.g. MC-30, MEN-Tr-3K, and 408 RG-65, all with median frequency less than 25k. 409 The order they appear in the table and the subse-410 quent plots is lowest to highest frequency, left to 411 right. Please refer to Appendix B for details. 412

In figure 1, we see that WORD2BOX outper-413 forms WORD2VEC more significantly with less 414 common words. In order to investigate further, we 415 selected four datasets (RW-Stanford (rare words), 416 Simelex-999, SimVerb-3500, WS-353 (Rel)), trun-417 cated them at a frequency threshold, and calculated 418 the correlation for different levels of this thresh-419 old. In Figure 2, we demonstrate how the perfor-420 mance gap between WORD2BOX and WORD2VEC 421 changes as increasing amount frequent words are 422 added to these similarity datasets. We posit that the 423 geometry of box embeddings is more flexible in the 424 way it handles sets of mutually disjoint words (such 425 as rare words) which all co-occur with a more com-426 mon word. Boxes have exponentially many corners, 427 relative to their dimension, allowing extreme flexi-428 bility in the possible arrangements of intersection 429 to achieve complicated co-occurrance models. 430

6.2 Set Theoretic Operations

All the senses, contexts and abstractions of a word432can not be captured captured accurately using a433point vector, and must be captured with sets. In434

431

	Stanford RW	RG-65	YP-130	MEN	MC-30	Mturk-287	SimVerb-3500	SimLex-999	Mturk-771	WS-353 (Sim)	WS-353 (All)	WS-353 (Rel)	VERB-143
*Poincaré	_	75.97	_	_	80.46	_	18.90	31.81	_	_	62.34	_	_
*Gaussian	-	71.00	41.50	71.31	70.41	-	-	32.23	-	76.15	65.49	58.96	-
WORD2VEC	40.25	66.80	43.77	68.45	75.57	61.83	23.58	37.30	59.90	75.81	69.01	61.29	31.97
WORD2BOX	45.08	81.45	51.6	73.68	87.12	70.62	29.71	38.19	68.51	78.60	68.68	60.34	48.03

Table 1: Similarity: We evaluate our box embedding model WORD2BOX against a standard vector baseline WORD2VEC. For comparison, we also include the reported results for Gaussian and Poincaré embeddings, however we note that these may not be directly comparable as many other aspects (eg. corpus, vocab size, sampling method, training process, etc.) may be different between these models.

Figure 1: This plot depicts the gain in correlation score for WORD2BOX against WORD2VEC is much higher for the low and mid frequency range.

this section, we evaluate our models capability ofrepresenting sets by performing set operations onthe trained models.

438 6.2.1 Quantitative Results

Homographs, words with identical spelling but dis-439 tinct meanings, and polysemous words are ideal 440 choice of stimuli for this purpose. We constructed 441 442 set theoretic logical operations on words based on common polysemous words and homographs (Nel-443 444 son et al., 1980). For example, the word 'property' will have association with words related both "as-445 set' and 'attribute', and thus the union of the later 446 447 two should be close to the original 'word' property. Likewise, intersection set of 'property' and 'math' 448 should contain many words related to properties 449 of algebra and geometry. Our dataset consists of 450 triples (A, B, C) where $A \circ B$ should yield a set 451 similar to C. In this task, given two words A and 452 B and a set theoretic operation \circ , we try to find 453 the rank of word C in the sorted list based on the 454 set similarity (vector similarity scores for the vec-455 tors) score between $A \circ B$ and all words in the 456 457 vocab. The dataset consists of 52 examples for both Union and Negation, 20 examples for Inter-458 section. The details of the dataset can be found in 459 appendix B. In table 2, we report the percentage of 460

Box Vector	$A \cap B$	$A \setminus B$	$A \cup B$
Addition	0.90	0.92	0.98
Subtraction	0.90	0.65	0.80
Max Pooling	0.95	0.86	0.86
Min Pooling	0.90	0.75	0.92
Score Max Pooling	0.95	0.84	0.94
Score Min Pooling	1.0	0.80	0.84

Table 2: Percentage of times the Box Embeddings set operations are better than different vector operations. Thus more than 0.5 means that boxes are better. The Intersection, Union and Difference can be performed with Boxes as they originally are, however, we choose an exhaustive list of similar vector operations.

times the WORD2BOX outperformes WORD2VEC, 461 i.e., the model yields better rank for the word C. 462 Note that, it is not evidently clear how to design 463 the union, difference or the intersection operations 464 with vectors. Thus, in this work, we compare with 465 a comprehensive list of operations for them. We 466 observe that almost of all the values are more than 467 0.9, which means WORD2BOX gets better rank for 468 90 out of 100 examples. This empirically validates 469 that our model is indeed capturing the underlying 470 set theoretic aspects of the words in the corpus. 471

472

473

474

475

476

477

478

479

480

481

482

Here, the addition, subtraction, max pool, min pool are point wise vector operations between vector for word A and B. We also propose score max and score min operations where, we select the $\max(A \cdot X, B \cdot X)$ and $\min(A \cdot X, B \cdot X)$, where X is any word. The purpose of this design of operation if to mimic the essence of union and intersection in the vector space, however, it is evident that the trained vector geometry is not harmonious to this construction as well.

6.2.2 Qualitative Analysis

In this section, we present some interesting examples of set theoretic queries on words, with different483degrees of complexities. For all the tables in this485section, we perform the set-operations on the query486words then look at the ranked list of most similar487

Figure 2: We plot the Spearman's correlation score vs Threshold frequency in log scale for Stanford RW, Simelex-999 SimVerb-3500, WS-353 (Rel). The correlation value is calculated on the word pairs where both of them have frequency less than the threshold frequency.

words to the output query. Many of these queries
are based on words with multiple senses which is
very instrumental for the inspection of the models.

Evidently, our the results from WORD2BOX 491 492 look much better. Note that, from table, we observe that set difference of 'property' and 'land' yields 493 a set of words that are related to attributes of sci-494 ence subjects, they are mostly "chemical-property" 495 , "algebraic-property" etc. Thus, we wanted to ex-496 497 amine how to this resulting query of 'property' - 'finance', relate to algebra and chemistry. We observe 498 that the outputs indeed correspond to properties of 499 those sub fields of science. We can observe such 500 consistency of WORD2BOX with all the example 501 logical queries. 502

			Operation	Х
А	В	Model		
girl	boy	Word2Box	$A\cap B\cap X$	kid girls schoolgirl teenager woman boys child baby teenage orphan
		WORD2VEC	$(\mathbf{A} + \mathbf{B}) \cdot \mathbf{X}$	shoeshine nanoha soulja schoolgirl yeller beastie jeezy
property	burial	WORD2BOX	$A\cap B\cap X$	cemetery bury estate grave in- terment tomb dwelling site gravesite sarcophagus
		WORD2VEC	$(A + B) \cdot X$	interment moated interred dunams ceteris burials catafalque easement deeded inhumation
	historical	WORD2BOX	$A\cap B\cap X$	historic estate artifact archaeo- logical preserve ownership pat- rimony heritage landmark site
		WORD2VEC	$(A+B)\cdot X$	krajobrazowy burgage ease- ment kravis dilapidation to- hono intangible domesday moated laertius
	house	WORD2BOX	$A\cap B\cap X$	estate mansion manor resi- dence houses tenement build- ing premise buildings site
		WORD2VEC	$(A + B) \cdot X$	leasehold mansion tenements outbuildings estate burgage bedrooms moated burgesses manor
tongue	body	WORD2BOX	$A\cap B\cap X$	eye mouth ear limb lip fore- head anus neck finger penis
		WORD2VEC	$(A + B) \cdot X$	tubercle ribcage meatus diverticulum forelegs radula tuberosity elastin foramen nostrils
	language	Word2Box	$A\cap B\cap X$	dialect idiom pronunciation meaning cognate word accent colloquial speaking speak
		WORD2VEC	$(A + B) \cdot X$	fluently dialects vowels patois languages loanwords phonol- ogy lingala tigrinya fluent

			Operation	Х
А	В	Model		
algebra	finance	Word2Box Word2Vec	$(A \ B) \cap X$ $(A - B) \cdot X$	homomorphism isomorphism automorphism abelian alge- braic bilinear topological mor- phism spinor homeomorphism homeomorphic unital ho- momorphisms nilpotent algebraically projective
bank	finance	Word2Box	$(A \ B) \cap X$	holomorphic propositional nondegenerate endomorphism wensum junction neman mouth tributary downstream corner embankment forks sandwich
		WORD2VEC	$(A - B) \cdot X$	shaddai takla thrombus gauley paria epenthetic chibchan
	river	Word2Box	$(A \ B) \cap X$	urubamba foremast bolshaya barclays hsbc banking citi- group citibank firm ipo broker- age interbank kpmg
		WORD2VEC	$(A - B) \cdot X$	cheques tymoshenko receiv- ables citibank eurozone brinks defrauded courtaulds refinance
chemistry	finance	Word2Box	$(A \ B) \cap X$	mortgage biochemistry superconductor physics physic eutectic heat isotope fluorescence yttrium
		WORD2VEC	$(A - B) \cdot X$	spectroscopy augite alkyne desorption phos- phorylating dimorphism fu- marate hypertrophic empedo-
property	land	Word2Box	$(A \ B) \cap X$	cles hydratase enantiomer homotopy isomorphism invo- lution register bijection sym- plectic eigenvalue idempotent
		WORD2VEC	$(A - B) \cdot X$	compactification lattice brst stieltjes l'p repressor absurdum doesn conjugates nonempty didn wouldn
	C	Model	Operation	х
A B property fin	ance algel	model ora WORD2BO	$((A \setminus B) \cap C)$	C) ∩ X laplacian nilpotent antideriva- tive lattice surjective automor-
		WORD2VE	C (A - B + C)	phism invertible homotopy in- teger integrand • X expropriate extort refco under- write reimburse refinance par- malat refinancing brokerage
	chen	nistry WORD2B0	$((A \setminus B) \cap C)$	privatizing ⊂) ∩ X eutectic desiccant allotrope phenocryst hardness solubil- ity monoclinic hygroscopic nepheline trehalose
		Word2Ve	C (A - B + C)	 X refinance brokerage burgage stockbroking refinancing war- ranties reimburse madoff pri- vatizing valorem

504

505

506

507

7 Related Work

Learning distributional vector representations from508a raw corpus was introduced in Mikolov et al.509(2013), quickly followed by various improvements510(Pennington et al.; Bojanowski et al., 2017). More511recently, vector representations which incorporate512contextual information have shown significant im-513

$\text{bank}\cap\text{finance}$	$\text{bank} \cup \text{finance}$	$bank \setminus finance$	bank + finance	bank - finance	max(bank, finance)	min(bank, finance)	max_score(bank, finance)	min_score(bank, finance)
investment	banking	wensum	subprime	shaddai	refinance	securities	refinance	securities
banking	treasury	junction	securities	takla	laundering	subprime	laundering	subprime
investor	investor	neman	refinance	thrombus	reimbursements	jpmorgan	reimbursements	jpmorgan
financing	investment	mouth	liquidity	gauley	superannuation	citigroup	superannuation	citigroup
fund	business	tributary	laundering	paria	liquidity	equities	liquidity	equities
government	economy	downstream	kaupthing	epenthetic	debit	ebrd	debit	ebrd
corporation	management	corner	underwrite	chibchan	controllata	kaupthing	controllata	kaupthing
treasury	firm	embankment	receivables	urubamba	subprime	mortgage	subprime	mortgage
citigroup	fund	forks	ibrd	foremast	underwrite	refinance	underwrite	refinance
firm	financial	sandwich	equities	bolshaya	disbursement	debentures	disbursement	debentures

		Similarity
Word	Model	
bank	Word2Box	population median age female race family poverty every career census
	WORD2VEC	debit depositors securities kaupthing interbank subprime counterparty citibank fdic nasdaq
economics	WORD2BOX	population median age female race family poverty every career census
	WORD2VEC	microeconomic keynesian microeconomics minored macroeconomics econometrics sociology thermodynamics evolutionism structuralist
microeconomics	WORD2BOX	population median age female race family poverty every career census
	WORD2VEC	microeconomic initio germline instantiation zachman macroeconomics oxoglutarate glycemic noncommutative pubmed
property	WORD2BOX	population median age female race family poverty every career census
	WORD2VEC	easement infringes burgage krajobrazowy chattels policyholder leasehold intestate liabilities ceteris
rock	WORD2BOX	population median age female race family poverty every career census
	WORD2VEC	shoegaze rhyolitic punk britpop mafic outcrops metalcore bluesy sedimentary quartzite

provements (Peters et al., 2018; Devlin et al., 2019;
Radford et al., 2019; Brown et al., 2020). As these
models require context, however, Word2Vec-style
approaches are still relevant in settings where such
context is unavailable.

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

Hyperbolic representations (Nickel and Kiela, 2017; Ganea et al., 2018; Chamberlain et al., 2017) have become popular in recent years. Most related to our setting, Tifrea et al. (2019) propose a hyperbolic analog to GloVe, with the motivation that the hyperbolic embeddings will discover a latent hierarchical structure between words.³ Vilnis and McCallum (2015) use Gaussian distributions to represent each word, and KL Divergence as a score function.⁴ Athiwaratkun and Wilson (2018) extended such representations by adding certain thresholds for each distribution. For a different purpose, Ren and Leskovec (2020) use Beta Distributions to model logical operations between words. Our work can be seen as a region-based analog to these models.

Of the region-based embeddings, Suzuki et al. (2019) uses hyperbolic disks, and Ganea et al. (2018) uses hyperbolic cones, however these are not closed under intersection nor are their intersections easily computable. Vendrov et al. (2016) and Lai and Hockenmaier (2017) use an axisaligned cone to represent a specific relation between words/sentences, for example an entailment relation. Vilnis et al. (2018) extends Lai and Hockenmaier (2017) by adding an upper-bound, provably increasing the representational capacity of the model. Li et al. (2019) and Dasgupta et al. (2020) are improved training methods to handle the difficulties inherent in gradient-descent based region learning. Ren et al. (2020) and Abboud et al. (2020) use a box-based adjustment of their loss functions, which suggest learning per-entity thresholds are beneficial. (Chen et al., 2021) use box embeddings to model uncertain knowledge graphs, and (Onoe et al., 2021) use boxes for fined grained entity typing.

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

8 Conclusion

In this work we have demonstrated that box em-
beddings can not only effectively train to represent
pairwise similarity but also the it can capture the
rich set theoretic logical structure of the words. The
expressivity of box models allows them to capture
cooccurrances is such a distributed set theoretic
to vector models.557

³Reported results are included in table 1 as "Poincaré"

⁴Reported results are included in table 1 as "Gaussian"

References

564	References	embeddings for uncertain knowledge graph rea-	619
FCF	Dalph Abbaud İsmail İlkan Caulan Thomas	soning. Proceedings of the 2019 Conference of	620
505	Lukasiawicz and Tommaso Salvatori 2020 Boxe:	the North American Chapter of the Association for	621
500	A how embedding model for knowledge base	Computational Linguistics.	622
562	completion In Proceedings of the 34th Annual		
560	Conference on Neural Information Processing	Shib Sankar Dasgupta, Michael Boratko, Dongxu	623
570	Systems NeurIPS	Zhang, Luke Vilnis, Xiang Lorraine Li, and Andrew	624
570	Systems, Neurii 5.	McCallum. 2020. Improving local identifiability in	625
571	Ben Athiwaratkun and Andrew Gordon Wilson. 2018.	probabilistic box embeddings. In Advances in Neural	626
572	Hierarchical density order embeddings. In Interna-	Information Processing Systems.	627
573	tional Conference on Learning Representations.	Jacob Devlin, Ming Wei Chang, Kenton Lee, and	622
		Kristina Toutanova 2010 BERT: Pre-training of	620
574	Simon Baker, Roi Reichart, and Anna Korhonen. 2014.	deen bidirectional transformers for language under-	630
575	An unsupervised model for instance level subcate-	standing In Proceedings of the 2019 Conference of	631
576	gorization acquisition. In Proceedings of the 2014	the North American Chapter of the Association for	632
577	Conference on Empirical Methods in Natural Lan-	Computational Linguistics: Human Language Tech-	633
578	guage Processing (EMNLP), pages 278–289, Doha,	nologies, Volume 1 (Long and Short Papers), Min-	634
579	Qatar. Association for Computational Linguistics.	neapolis, Minnesota, Association for Computational	635
590	Marco Baroni, Baffaella Bernardi, Ngoc Ouvnh Do, and	Linguistics.	636
581	Chung-chieh Shan 2012 Entailment above the word	C	
582	level in distributional semantics. In Proceedings of	Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,	637
583	the 13th Conference of the European Chapter of the	Ehud Rivlin, Zach Solan, Gadi Wolfman, and Ey-	638
584	Association for Computational Linguistics, pages 23–	tan Ruppin. 2001. Placing search in context: The	639
585	32. Avignon, France, Association for Computational	concept revisited. In Proceedings of the 10th in-	640
586	Linguistics.	ternational conference on World Wide Web, pages	641
	6	406–414.	642
587	Marco Baroni, Silvia Bernardini, A. Ferraresi, and		0.40
588	E. Zanchetta. 2009. The wacky wide web: a col-	Usefmann 2018 Usershalia antailmant sanas for	643
589	lection of very large linguistically processed web-	loorning historehical ambaddings. In International	044
590	crawled corpora. Language Resources and Evalua-	Conference on Machine Learning	645
591	tion, 43:209–226.	Conference on Machine Learning.	040
500	Piotr Rojanowski, Edouard Grave, Armand Joulin, and	Guy Halawi, Gideon Dror, Evgeniy Gabrilovich, and	647
592	Tomas Mikolov 2017 Enriching word vectors with	Yehuda Koren. 2012. Large-scale learning of	648
594	subword information Transactions of the Associa-	word relatedness with constraints. KDD '12, page	649
595	tion for Computational Linguistics 5:135–146	1406–1414, New York, NY, USA. Association for	650
		Computing Machinery.	651
596	Michael Boratko, Javier Burroni, Shib Sankar Dasgupta,		
597	and Andrew McCallum. Min/Max Stability and Box	Felix Hill, Roi Reichart, and Anna Korhonen. 2015.	652
598	Distributions. page 10.	Simlex-999: Evaluating semantic models with (gen-	653
		uine) similarity estimation. Computational Linguis-	654
599	Tom Brown, Benjamin Mann, Nick Ryder, Melanie	<i>tics</i> , 41(4):665–695.	655
600	Subbian, Jared D Kaplan, Pratulla Dhariwal, Arvind	George I Klir and Bo Vuon 1006 Euzzy sets fuzzy	656
601	Neelakanian, Pranav Snyam, Girish Sasiry, Amanda	logic and fuzzy systems: selected papers by lotfi a	657
602	Askell, Salulilli Agarwal, Allel Herbert-voss, Crotaban Kruagar Tam Hanighan Dawan Child	zadeh	658
604	Aditya Ramesh Daniel Ziegler Jeffrey Wu Clemens	Euten.	000
605	Winter Chris Hesse Mark Chen Frie Sigler Ma-	Alice Lai and Julia Hockenmaier. 2017. Learning to	659
606	teusz Litwin Scott Gray Benjamin Chess Jack	predict denotational probabilities for modeling entail-	660
607	Clark Christopher Berner Sam McCandlish Alec	ment. In EACL.	661
608	Radford, Ilva Sutskever, and Dario Amodei, 2020. In		
609	Advances in Neural Information Processing Systems.	E.T. Lee and L.A. Zadeh. 1969. Note on fuzzy lan-	662
		guages. Information Sciences, 1(4):421-434.	663
610	Elia Bruni, Nam Khanh Tran, and Marco Baroni. 2014.		
611	Multimodal distributional semantics. J. Artif. Int.	Xiang Li, Luke Vilnis, Dongxu Zhang, Michael Bo-	664
612	<i>Res.</i> , 49(1):1–47.	ratko, and Andrew McCallum. 2019. Smoothing the	665
		geometry of probabilistic box embeddings. <i>ICLR</i> .	666
613	Benjamin Paul Chamberlain, James R. Clough, and	Thang Luong Richard Socher and Christopher Mar	667
614	Marc Peter Deisenroth. 2017. Neural embeddings of	ning 2013 Better word representations with resur	100
610	graphs in hyperbolic space. ArXiv, abs/1/05.10359.	sive neural networks for morphology. In <i>Proceed</i>	000
616	Xuelu Chen, Michael Boratko, Muhao Chen	ings of the Seventeenth Conference on Computational	670
617	Shib Sankar Dasgunta, Xiang Lorraine Li and	Natural Language Learning, pages 104–113 Sofia	671
618	Andrew McCallum. 2021. Probabilistic box	Bulgaria. Association for Computational Linguistics.	672
			_

673	Francois Meyer and Martha Lewis. 2020. Modelling	Ryota Suzuki, Ryusuke Takahama, and Shun Onoda.	725
674	lexical ambiguity with density matrices. pages 276–	2019. Hyperbolic disk embeddings for directed	726
675	290.	acyclic graphs. In International Conference on Ma-	727
		chine Learning, pages 6066–6075. PMLR.	728
676	Tomas Mikolov, Ilva Sutskever, Kai Chen, Greg S Cor-	0,1,0,1	
677	rado and leff Dean 2013 Distributed representa-	Alexandru Tifrea, Gary Becigneul, and Octavian-Eugen	729
678	tions of words and phrases and their compositionality	Ganea, 2019. Poincare glove: Hyperbolic word em-	730
070	In NIDS	beddings. In International Conference on Learning	731
079	111 IVIT 5.	Representations	732
000	Course A Millor of Walter C Charles 1001 Conter	Representations.	102
080	tuel complete of comparis circilerity. I means a	Ivan Vendrov, Rvan Kiros, Sania Fidler, and Raquel	733
681	tual correlates of semantic similarity. Language α	Urtasun 2016 Order-embeddings of images and	734
682	Cognitive Processes, 6(1):1–28.	language In International Conference on Learning	735
		Representations	736
683	Douglas Nelson, Cathy Mcevoy, John Walling, and	Representations.	150
684	Joseph Wheeler. 1980. The university of south florida	Luke Vilnis, Xiang Li, Shikhar Murty, and Andrew	737
685	homograph norms. Behavior research methods, in-	McCallum 2018 Probabilistic embedding of knowl	720
686	struments, computers: a journal of the Psychonomic	adge graphs with her lattice measures. In Associa	730
687	Society, Inc, 12:16–37.	euge graphs with box fattice measures. In Associa-	739
		tion for Computational Linguistics.	740
688	Maximilian Nickel and Douwe Kiela. 2017. Poincaré	Luke Vilnis and Andrew McCallum 2015 Word repre	7/1
689	embeddings for learning hierarchical representations	sontations via gaussian ambadding. In ICLD	741
690	In Neural Information Processing Systems	sentations via gaussian embedding. In ICLR.	742
000	in neural information i rocessing systems.	Donggiang Vang and David M. W. Powers 2006 Verb	7/0
601	Vasumasa Once Michael Boratko, and Greg Durrett	similarity on the toyonomy of wordnet. In Is the 2nd	743
600	2021 Modeling fine grained entity types with her	similarity on the taxonomy of wordnet. In <i>In the Sta</i>	744
092	2021. Modeling line-granied entity types with box	International WordNet Conference (GWC-06), Jeju	745
693	embeddings. Association for Computational Linguis-	Island, Korea.	746
694	tics.		
		L.A. Zaden. 1965. Fuzzy sets. Information and Control,	/4/
695	Jeffrey Pennington, Richard Socher, and Christopher	8(3):338-353.	748
696	Manning. GloVe: Global vectors for word represen-	Vitalii 7 halamiala Alabaan dan Gaadaan Amil Chan	740
697	tation. In Proceedings of the 2014 Conference on	vitam Znelezmak, Aleksandar Savkov, April Snen,	749
698	Empirical Methods in Natural Language Processing	Francesco Moramarco, Jack Flann, and Nils Y. Ham-	750
699	(EMNLP). Association for Computational Linguis-	merla. 2019. Don't settle for average, go for the max:	751
700	tics.	Fuzzy sets and max-pooled word vectors. In Interna-	752
		tional Conference on Learning Representations.	753
701	Matthew Peters, Mark Neumann, Mohit Iyyer, Matt		
702	Gardner, Christopher Clark, Kenton Lee, and Luke		
703	Zettlemover. 2018. Deep contextualized word repre-		
704	sentations. New Orleans, Louisiana, Association for		
705	Computational Linguistics		
100	Computational Emglistics.		
706	Alec Radford Jeffrey Wu R Child David Luan Dario		
707	Amodei and Ilva Sutskever 2019 Language models		
702	are unsupervised multitask learners		
100	are unsupervised mutitask feathers.		
700	Kira Radinsky Eugana Agiahtain Euganiy Cabrilaviah		
710	and Shoul Markovitah 2011 A word at a first		
710	and Shau iviarkovitch. 2011. A word at a time:		
/11	Computing word relatedness using temporal seman-		
712	tic analysis. WWW 11, page 337–346, New York,		
713	NY, USA. Association for Computing Machinery.		
714	Hongyu Ren, Weihua Hu, and Jure Leskovec. 2020.		
715	Query2box: Reasoning over knowledge graphs in		
716	vector space using box embeddings. In 8th Inter-		
717	national Conference on Learning Representations.		
718	OpenReview.net.		
719	Hongyu Ren and Jure Leskovec. 2020. Beta embed-		
720	dings for multi-hop logical reasoning in knowledge		
721	graphs. arXiv preprint arXiv:2010.11465.		
	-		
722	Herbert Rubenstein and John B. Goodenough. 1965.		
723	Contextual correlates of synonymy. Commun. ACM,		
724	8(10):627–633.		

754 A Preprocessing

The WaCKypedia corpus has been tokenized and 755 lemmatized. We used the lemmatized version of 756 the corpus, however it was observed that various 757 tokens were not split as they should have been (eg. 758 "1.5billion" -> "1.5 billion"). We split tokens us-759 ing regex criteria to identify words and numbers. 760 All punctuation was removed from the corpus, all 761 numbers were replaced with a "<num>" token, and 762 all words were made lowercase. We also removed 763 any words which included non-ascii symbols. Af-764 ter this step, the entire corpus was tokenized once 765 more, and any token occurring less than 100 times 766 was dropped. 767

B Dataset Analysis

768

	Median
Dataset	
	Frequency
Men-Tr-3K	23942
Mc-30	25216.5
Mturk-771	43128.5
Simlex-999	40653.0
Verb-143	309192.0
Yp-130	23044.0
Rw-Stanford	5683.5
Rg-65	13088.0
Ws-353-All	58803.0
Ws-353-Sim.	57514.0
Ws-353-Rel	64490.0
Mturk-287	32952
Simverb-3500	39020

Table 3: Median Frequency of each similarity dataset.

769 C Hyperparameters

770 As discussed in Section 6, we train on 128 dimensional WORD2VEC and 64 dimensional 771 WORD2BOX models for 10 epochs. We ran at 772 least 60 runs for each of the models with random 773 774 seed and randomly chose hyperparamter from the following range - batch_size:[2048, 4096, 8192, 775 16384, 32768], learning rate log_uniform[exp(-1), 776 exp(-10)], Window_size: [5, 6, 7, 8, 9, 10], nega-777 tive_samples: [2, 5, 10, 20], sub_sampling thresh-778 old: [0.001, 0.0001]. 779

780 D Set Theoretic Queries

А	В	AB
table	chair	furniture
car	plane	transportation
city	village	location
wolf	bear	animal
shirt	pant	clothes
computer	phone	Electronics
red	blue	color
movie	book	entertainment
school	college	education
doctor	engineer	Profession
box	circle	shape
big	small	size
dog	tree	bark
fish	tone	bass
sports	wing	bat
carry	animal	bear
sadness	color	blue
bend	weapon	bow
hit	food	buffet
combine	building	compound
happy	list	content
acquire	agreement	contract
location	organise	coordinate
hot	leave	desert
information	food	digest
furry	lower	down
entry	bewitch	entrance
exhibition	judgement	fair
good	charge	fine
luck	whale	fluke
odor	angry	incense
crotch	race	lap
thin	slant	lean
sleep	wrong	lie
broadcast	life	live
small	time	minute
overlook	woman	miss
thing	oppose	object
target	thing	object
air	turn	wind
category	keyboard	type
mercy	type	kind
truck	teach	train
topic	impose	subject
iump	miss	skip
first	time	second
move	drink	shake
surface	ordinarv	plain
braverv	remove	pluck
luggage	beer	porter
create	vegetables	produce

flower

rose

rise