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Abstract
Learning representations of words in a continu-001
ous space is perhaps the most fundamental task002
in NLP, a prerequisite for nearly all modern003
machine-learning techniques. Often the objec-004
tive is to capture distributional similarity via005
vector dot product, however this is just one re-006
lation between word meanings we may wish007
to capture. It is natural to consider words as008
(soft) equivalence classes based on similarity,009
it is natural to expect the ability to perform set-010
theoretic operations (intersection, union, differ-011
ence) on these representations. This is particu-012
larly relevant for words which are homographs013
- for example, “tongue”∩“body” should be sim-014
ilar to “mouth”, while “tongue”∩“language”015
should be similar to “dialect”. Box embed-016
dings are a novel region-based representation017
which provide the capability to perform these018
set-theoretic operations. In this work, we pro-019
vide a fuzzy-set interpretation of box embed-020
dings, and train box embeddings with a CBOW021

objective where contexts are represented using022
intersection. We demonstrate improved perfor-023
mance on various word similarity tasks, partic-024
ularly on less common words, and perform a025
quantitative and qualitative analysis exploring026
the additional unique expressivity provided by027
WORD2BOX.028

1 Introduction029

The concept of learning a distributed representa-030

tion for a word has fundamentally changed the field031

of natural language processing. The introduction032

of efficient methods for training vector representa-033

tions of words in Word2Vec (Mikolov et al., 2013),034

and later GloVe (Pennington et al.) as well as Fast-035

Text (Bojanowski et al., 2017) revolutionized the036

field, paving the way for the recent wave of deep037

architectures for language modeling, all of which038

implicitly rely on this fundamental notion that a039

word can be effectively represented by a vector.040

While now ubiquitous, the concept of represent-041

ing a word as a single point in space is not partic-042

ularly natural. All senses and contexts, levels of 043

abstraction, variants and modifications which the 044

word may represent are forced to be captured by 045

the specification of a single location in Euclidean 046

space. It is thus unsurprising that a number of 047

alternatives have been proposed. 048

Gaussian embeddings (Vilnis and McCallum, 049

2015) propose modeling words using densities in 050

latent space as a way to explicitly capture uncer- 051

tainty. Poincaré embeddings (Tifrea et al., 2019) 052

attempt to capture a latent hierarchical graph be- 053

tween words by embedding words as vectors in 054

hyperbolic space. Trained over large corpora via 055

similar unsupervised objectives as vector baselines, 056

these models demonstrate an improvement on word 057

similarity tasks, giving evidence to the notion that 058

vectors are not capturing all relevant structure from 059

their unsupervised training objective. 060

A more recent line of work explores region- 061

based embeddings, which use geometric objects 062

such as disks (Suzuki et al., 2019), cones (Vendrov 063

et al., 2016; Lai and Hockenmaier, 2017; Ganea 064

et al., 2018), and boxes (Vilnis et al., 2018) to rep- 065

resent entities. These models are often motivated 066

by the need to express asymmetry, benefit from par- 067

ticular inductive biases, or benefit from calibrated 068

probabilistic semantics. In the context of word rep- 069

resentation, their ability to represent words using 070

geometric objects with well-defined intersection, 071

union, and difference operations is of interest, as 072

we may expect these operations to translate to the 073

words being represented in a meaningful way. 074

In this work, we introduce WORD2BOX, a 075

region-based embedding for words where each 076

word is represented by an n-dimensional hyperrect- 077

angle or “box”. Of the region-based embeddings, 078

boxes were chosen as the operations of intersec- 079

tion, union, and difference are easily calculable. 080

Specifically, we use a variant of box embeddings 081

known as Gumbel boxes, introduced in (Dasgupta 082

et al., 2020). Our objective (both for training and 083
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inference) is inherently set-theoretic, not proba-084

bilistic, and as such we first provide a fuzzy-set085

interpretation of Gumbel boxes yielding rigorously086

defined mathematical operations for intersection,087

union, and difference of Gumbel boxes.088

We train boxes on a large corpus in an unsu-089

pervised manner with a continuous bag of words090

(CBOW) training objective, using the intersection091

of boxes representing the context words as the rep-092

resentation for the context. The resulting model093

demonstrates improved performance compared to094

vector baselines on a large number of word simi-095

larity benchmarks. We also compare the models’096

abilities to handle set-theoretic queries, and find097

that the box model outperforms the vector model098

90% of the time. Inspecting the model outputs099

qualitatively also demonstrates that WORD2BOX100

can provide sensible answers to a wide range of101

set-theoretic queries.102

2 Background103

Notation Let V = {vi}Ni=1 denote the vocab-104

ulary, indexed in a fixed but arbitrary order. A105

sentence s = (s1, . . . , sj) is simply a (variable-106

length) sequence of elements in our vocab si ∈ V ,107

and a document d = {si} is a multiset1 of sen-108

tences. We view our corpus C = {di} as a mul-109

tiset of documents, and also consider the multiset110

CS = {s : s ∈ d ∈ C} of all sentences in our111

corpus. Given some fixed “window size” ℓ, for112

each word si in a sentence s we can consider the113

window centered at i,114

wi = [si−ℓ, . . . , si, . . . , si+ℓ],115

where we omit any indices exceeding the bounds116

of the sentence. Given a window wi we denote117

the center word using cen(wi) = si, and denote all118

remaining words as the context con(wi). We let119

CW be the multiset of all windows in the corpus.120

2.1 Fuzzy sets121

Given any ambient space U a set S ⊆ U can be122

represented by its characteristic function 1S : U →123

{0, 1} such that 1S(u) = 1 ⇐⇒ u ∈ S. This124

definition can be generalized to consider functions125

m : U → [0, 1], in which case we call the pair126

A = (U,m) a fuzzy set and m = mA is known127

as the membership function (Zadeh, 1965; Klir128

and Yuan, 1996). There is historical precedent for129

1A multiset is a set which allows for repetition, or equiva-
lently a sequence where order is ignored.

the use of fuzzy sets in computational linguistics 130

(Zhelezniak et al., 2019; Lee and Zadeh, 1969), 131

and more generally are naturally required any time 132

we would like to learn a set representation in a 133

gradient-based model, as hard assignments would 134

not allow for gradient flow. 135

In order to extend the notion of intersection to 136

fuzzy sets, it is necessary to define a t-norm, which 137

is a binary operation ⊤ : [0, 1] × [0, 1] → [0, 1] 138

which is commutative, monotonic, associative, and 139

equal to the identity when either input is 1. The 140

min and product operations are common exam- 141

ples of t-norms. Given any t-norm, the intersec- 142

tion of fuzzy sets A and B has membership func- 143

tion mA∩B(x) = ⊤(mA(x),mB(x)). Any t-norm 144

has a corresponding t-conorm which is given by 145

⊥(a, b) = 1 − ⊤(1 − a, 1 − b); for min the t- 146

conorm is max, and for product the t-conorm is 147

the probabilistic sum, ⊥sum(a, b) = a + b − ab. 148

This defines the union between fuzzy sets, where 149

mA∪B(x) = ⊥(mA(x),mB(x)). Finally, the com- 150

plement of a fuzzy set simply has member function 151

mAc(x) = 1−mA(x). 152

2.2 Box embeddings 153

Box embeddings, introduced in (Vilnis et al., 2018), 154

represent elements x of some set X as a Cartesian 155

product of intervals, 156

Box(x) :=
d∏

i=1

[x−i , x
+
i ]

= [x−1 , x
+
1 ]× · · · × [x−d , x

+
d ] ⊆ Rd.

(1) 157

The volume of a box can be calculated as 158

|Box(x)| =
d∏

i=1

max(0, x+i − x−i ), 159

and when two boxes intersect, their intersection is 160

161

Box(x) ∩ Box(y) 162

=

d∏
i=1

[max(x−i , y
−
i ),min(x+i , y

+
i )]. 163

Boxes are trained via gradient descent, and these 164

hard min and max operations result in large ar- 165

eas of the parameter space with no gradient signal. 166

Dasgupta et al. (2020) addresses this problem by 167

modeling the corners of the boxes {x±i } with Gum- 168

bel random variables, {X±
i }, where the probability 169
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of any point z ∈ Rd being inside the box BoxG(x)170

is given by171

P (z ∈ BoxG(x)) =

d∏
i=1

P (zi > X−
i )P (zi < X+

i ).172

For clarity, we will denote the original (“hard”)173

boxes as Box, and the Gumbel boxes as BoxG. The174

Gumbel distribution was chosen as it was min/max175

stable, thus the intersection BoxG(x) ∩ BoxG(y)176

which was defined as a new box with corners mod-177

eled by the random variables {Z±
i } where178

Z−
i := max(X−

i , Y −
i ) and Z+

i := min(X+
i , Y +

i )179

is actually a Gumbel box as well. Boratko et al.180

observed that181
182

P (z ∈ BoxG(x) ∩ BoxG(y)) =183

P (z ∈ BoxG(x))P (z ∈ BoxG(y)), (2)184

and also provided a rigorous probabilistic inter-185

pretation for Gumbel boxes when embedded in a186

space of finite measure, leading to natural notions187

of “union” and “intersection” based on these oper-188

ations of the random variables (Boratko et al.).189

In this work, we do not embed the boxes in a190

space of finite measure, but instead interpret them191

as fuzzy sets, where the above probability acts as a192

soft membership function.193

3 Fuzzy Sets of Windows194

In this section, we describe the motivation for us-195

ing fuzzy sets to represent words, starting with an196

approach using traditional sets.197

First, given a word v ∈ V , we can consider the198

windows centered at v,199

cenW (v) := {w ∈ W : cen(w) = v},200

and the set of windows whose context contains v,201

conW (v) := {w ∈ W : con(w) ∋ v}.202

A given window is thus contained inside the inter-203

section of the sets described above, namely204
205

[w−j , . . . , w0, . . . , wj ]206

∈ cenW (w0) ∩
⋂
i ̸=0

conW (wi).207

As an example, the window208

w = “quick brown fox jumps over”,209

is contained inside the cenW (“fox”) set, as 210

well as conW (“quick”), conW (“brown”), 211

conW (“jumps”), conW (“over”). With this formu- 212

lation, the intersection of the conW sets provide a 213

natural choice of representation for the context. We 214

might hope that cenW (v) provides a reasonable 215

representation for the word v itself, however for 216

any u ̸= v we have cenW (u) ∩ cenW (v) = ∅. 217

We would like the representation of u to overlap 218

with v if u has “similar meaning” to v, i.e. we 219

would like to consider 220

c̃enW (v) := {w ∈ W : cen(w) similar to v}. 221

A crisp definition of meaning or similarity is not 222

possible (Hill et al., 2015; Finkelstein et al., 2001) 223

due to individual subjectivity. Inner-annotator 224

agreement for Hill et al. (2015) is only 0.67, for 225

example, which makes it clear that c̃enW (v) could 226

not possibly be represented as a traditional set. In- 227

stead, it seems natural to consider c̃enW (v) as rep- 228

resented by a fuzzy set (W,m), where m(w) ∈ 229

[0, 1] can be thought of as capturing graded similar- 230

ity between v and cen(w).2 In the same way, we 231

can define 232

c̃onW (v) := {w ∈ W : con(v) ∋ w similar to v}, 233

which would also be represented as a fuzzy set. 234

As we wish to capture these similarities with a 235

machine learning model, we now must find train- 236

able representations of fuzzy sets. 237

Remark 1. Our objective of learning trainable rep- 238

resentations for these sets provides an additional 239

practical motivation for using fuzzy sets - namely, 240

the hard assignment of elements to a set is not dif- 241

ferentiable. Any gradient-descent based learning 242

algorithm which seeks to represent sets will have 243

to consider a smoothed variant of the characteristic 244

function, which thus leads to fuzzy sets. 245

4 Gumbel Boxes as Fuzzy Sets 246

In this section we will describe how we model 247

fuzzy sets using Gumbel boxes (Dasgupta et al., 248

2020). As noted in Section 2.2, the Gumbel Box 249

model represents entities x ∈ X by BoxG(x) 250

with corners modeled by Gumbel random variables 251

{X±
i }. The probability of a point z ∈ Rd being 252

2For an even more tangible definition, we can consider
m(w) the percentage of people who consider u to be similar
to cen(w) when used in context con(w).

3



inside this box is253

P (z ∈ BoxG(x)) =
d∏

i=1

P (zi > X−
i )P (zi < X+

i ).254

Since this is contained in [0, 1], we have that255

(Rd, P (z ∈ BoxG(x)) is a fuzzy set. For clarity,256

we will refer to this fuzzy set as BoxF (x).257

The set complement operation has a very nat-258

ural interpretation in this setting, as BoxF (x)
c259

has membership function 1 − P (z ∈ BoxG(x)),260

that is, the probability of z not being inside the261

Gumbel box. The product t-norm is a very natu-262

ral choice as well, as the intersection BoxF (x) ∩263

BoxF (y) will have membership function P (z ∈264

BoxG(x))P (z ∈ BoxG(y)), which is precisely the265

membership function associated with BoxG(x) ∩266

BoxG(y), where here the intersection is between267

Gumbel boxes as defined in Dasgupta et al. (2020).268

Finally, we find that the membership function for269

the union BoxF (x) ∪ BoxF (y) is given (via the270

t-conorm) by271

272

P (z ∈ BoxG(x)) + P (z ∈ BoxG(y))−273

P (z ∈ BoxG(x)P (z ∈ BoxG(y)). (3)274

Remark 2. Prior work on Gumbel boxes had not275

defined a union operation on Gumbel boxes, how-276

ever (3) has several pleasing properties apart from277

being a natural consequence of using the product278

t-norm. First, it can be directly interpreted as the279

probability of z being inside BoxG(x) or BoxG(y).280

Second, if the Gumbel boxes were embedded in a281

space of finite measure, as in Boratko et al., inte-282

grating (3) would yield the probability correspond-283

ing to P (Box(x) ∪ Box(y)).284

To calculate the size of the fuzzy set BoxF (x)285

we integrate the membership function over Rd,286

|BoxF (x)| =
∫
Rd

P (z ∈ BoxG(x)) dz.287

The connection between this integral and that288

which was approximated in (Dasgupta et al., 2020)289

is provided by Lemma 3 of (Boratko et al.), and290

thus we have291

|BoxF (x)| ≈
d∏

i=1

β log

(
1 + exp

(
µ+
i − µ−

i

β
− 2γ

))
292

where µ−
i , µ

+
i are the location parameters for the293

Gumbel random variables X−
i , X+

i , respectively.294

As mentioned in Section 2.2, Gumbel boxes are295

closed under intersection, i.e. BoxG(x)∩BoxG(y) 296

is also a Gumbel box, which implies that the size 297

of the fuzzy intersection 298

|BoxF (x) ∩ BoxF (y)| 299

=

∫
Rd

P (z ∈ BoxG(x))P (z ∈ BoxG(y)) dz 300

=

∫
Rd

P (z ∈ BoxG(x) ∩ BoxG(y)) dz 301

can be approximated as well. As both of these 302

are tractable, integrating (3) is also possible via 303

linearity. Similarly, we can calculate the size of 304

fuzzy set differences, such as 305
306

|BoxF (x) \ BoxF (y)| = 307∫
Rd

P (z ∈ BoxG(x))[1−P (z ∈ BoxG(y))] dz. 308

By exploiting linearity and closure under intersec- 309

tion, it is possible to calculate the size of arbitrary 310

fuzzy intersections, unions, and set differences, as 311

well as any combination of such operations. 312

Remark 3. If our boxes are embedded in a space 313

of finite measure, as in (Boratko et al.), the sizes 314

of these fuzzy sets correspond to the intersection, 315

union, and negation of the binary random variables 316

they represent. 317

5 Training 318

In this section we describe our method of training 319

fuzzy box representations of words, which we refer 320

to as WORD2BOX. 321

In Section 3 we defined the fuzzy sets c̃enW (v) 322

and c̃enW (v), and in Section 4 we established that 323

Gumbel boxes can be interpreted as fuzzy sets, thus 324

for WORD2BOX we propose to learn center and 325

context box representations 326

cenB(v) := BoxF (c̃enW (v)) 327

conB(v) := BoxF (c̃enW (v)). 328

Given a window, w = [w−j , . . . , w0, . . . , wj ], 329

we noted that w must exist in the intersection, 330

c̃enW (w0) ∩
⋂
i ̸=0

c̃onW (wi) (4) 331

and thus we consider a max-margin training objec- 332

tive where the score for a given window is given as 333

334

f(w) :=

∣∣∣∣ cenB(w0) ∩
⋂
i ̸=0

cenB(wi)

∣∣∣∣. (5) 335
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To create a negative example w′ we follow the336

same procedure as CBOW from Mikolov et al.337

(2013), replacing center words with a word sam-338

pled from the unigram distribution raised to the339

3/4. We also subsample the context words as340

in (Mikolov et al., 2013). As a vector baseline,341

we compare with a WORD2VEC model trained342

in CBOW-style. We attach the source code with343

supplementary material.344

6 Experiments and Results345

We evaluate both WORD2VEC and WORD2BOX346

on several quantitative and qualitative tasks that347

cover the aspects of semantic similarity, related-348

ness, lexical ambiguity, and uncertainty. Follow-349

ing the previous relevant works (Athiwaratkun and350

Wilson, 2018; Meyer and Lewis, 2020; Baroni351

et al., 2012), we train on the lemmatized WaCk-352

ypedia corpora (Baroni et al., 2009) which, after353

pre-processing (details in Appendix A) contains354

around 0.9 billion tokens, with just more than355

112k unique tokens in the vocabulary. Noting356

that an n-dimensional box actually has 2n param-357

eters (for min and max coordinates), we compare358

128-dimensional WORD2VEC embeddings and 64-359

dimensional WORD2BOX embeddings for all our360

experiments. We train over 60 different models for361

both the methods for 10 epochs using random sam-362

pling on a wide range of hyperparameters (please363

refer to appendix A for details including learning364

rate, batch size, negative sampling, sub-sampling365

threshold etc.). In order to ensure that the only dif-366

ference between the models was the representation367

itself, we implemented a version of WORD2VEC in368

PyTorch, including the negative sampling and sub-369

sampling procedures recommended in (Mikolov370

et al., 2013), using the original implementation as371

a reference. As we intended to train on GPU, how-372

ever, our implementation differs from the original373

in that we use Stochastic Gradient Descent with374

varying batch sizes. We provide our source code375

with the supplementary materials.376

6.1 Word Similarity Benchmarks377

We primarily evaluate our method on several word378

similarity benchmarks: SimLex-999 (Hill et al.,379

2015), WS-353 (Finkelstein et al., 2001), YP-130380

(Yang and Powers, 2006), MEN (Bruni et al., 2014),381

MC-30 (Miller and Charles, 1991), RG-65 (Ruben-382

stein and Goodenough, 1965), VERB-143 (Baker383

et al., 2014), Stanford RW (Luong et al., 2013),384

Mturk-287 (Radinsky et al., 2011) and Mturk-771 385

(Halawi et al., 2012). These datasets consist of 386

pairs of words (both noun and verb pairs) that are 387

annotated by human evaluators for semantic simi- 388

larity and relatedness. 389

In table 1 we compare the WORD2BOX and 390

WORD2VEC models which are best performing 391

on the similarity benchmarks. We observe that 392

WORD2BOX outperforms WORD2VEC (as well 393

as the results reported by other baselines) in the 394

majority of the word similarity tasks. We outper- 395

form WORD2VEC by a large margin in Stanford 396

RW and YP-130, which are the rare-word datasets 397

for noun and verb respectively. Noticing this effect, 398

we enumerated the frequency distribution of each 399

dataset. The datasets fall in different sections of 400

the frequency spectrum, e.g., Stanford RW (Luong 401

et al., 2013) only contains rare words which make 402

its median frequency to be 5,683, where as WS-353 403

(Rel) (Finkelstein et al., 2001) contains many more 404

common words, with a median frequency of 64,490. 405

We also observe that we we achieve a much better 406

score on other datasets which have low to median 407

frequency words, e.g. MC-30, MEN-Tr-3K, and 408

RG-65, all with median frequency less than 25k. 409

The order they appear in the table and the subse- 410

quent plots is lowest to highest frequency, left to 411

right. Please refer to Appendix B for details. 412

In figure 1, we see that WORD2BOX outper- 413

forms WORD2VEC more significantly with less 414

common words. In order to investigate further, we 415

selected four datasets (RW-Stanford (rare words), 416

Simelex-999, SimVerb-3500,WS-353 (Rel)), trun- 417

cated them at a frequency threshold, and calculated 418

the correlation for different levels of this thresh- 419

old. In Figure 2, we demonstrate how the perfor- 420

mance gap between WORD2BOX and WORD2VEC 421

changes as increasing amount frequent words are 422

added to these similarity datasets. We posit that the 423

geometry of box embeddings is more flexible in the 424

way it handles sets of mutually disjoint words (such 425

as rare words) which all co-occur with a more com- 426

mon word. Boxes have exponentially many corners, 427

relative to their dimension, allowing extreme flexi- 428

bility in the possible arrangements of intersection 429

to achieve complicated co-occurrance models. 430

6.2 Set Theoretic Operations 431

All the senses, contexts and abstractions of a word 432

can not be captured captured accurately using a 433

point vector, and must be captured with sets. In 434
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Stanford RW RG-65 YP-130 MEN MC-30 Mturk-287 SimVerb-3500 SimLex-999 Mturk-771 WS-353 (Sim) WS-353 (All) WS-353 (Rel) VERB-143

*Poincaré — 75.97 — — 80.46 — 18.90 31.81 — — 62.34 — —
*Gaussian — 71.00 41.50 71.31 70.41 — — 32.23 — 76.15 65.49 58.96 —

WORD2VEC 40.25 66.80 43.77 68.45 75.57 61.83 23.58 37.30 59.90 75.81 69.01 61.29 31.97
WORD2BOX 45.08 81.45 51.6 73.68 87.12 70.62 29.71 38.19 68.51 78.60 68.68 60.34 48.03

Table 1: Similarity: We evaluate our box embedding model WORD2BOX against a standard vector baseline WORD2VEC. For
comparison, we also include the reported results for Gaussian and Poincaré embeddings, however we note that these may not be
directly comparable as many other aspects (eg. corpus, vocab size, sampling method, training process, etc.) may be different
between these models.

Figure 1: This plot depicts the gain in correlation score for
WORD2BOX against WORD2VEC is much higher for the low
and mid frequency range.

this section, we evaluate our models capability of435

representing sets by performing set operations on436

the trained models.437

6.2.1 Quantitative Results438

Homographs, words with identical spelling but dis-439

tinct meanings, and polysemous words are ideal440

choice of stimuli for this purpose. We constructed441

set theoretic logical operations on words based on442

common polysemous words and homographs (Nel-443

son et al., 1980). For example, the word ’property’444

will have association with words related both ”as-445

set’ and ’attribute’, and thus the union of the later446

two should be close to the original ’word’ property.447

Likewise, intersection set of ’property’ and ’math’448

should contain many words related to properties449

of algebra and geometry. Our dataset consists of450

triples (A,B,C) where A ◦ B should yield a set451

similar to C. In this task, given two words A and452

B and a set theoretic operation ◦, we try to find453

the rank of word C in the sorted list based on the454

set similarity (vector similarity scores for the vec-455

tors) score between A ◦ B and all words in the456

vocab. The dataset consists of 52 examples for457

both Union and Negation, 20 examples for Inter-458

section. The details of the dataset can be found in459

appendix B. In table 2, we report the percentage of460

Vector
Box

A ∩B A \B A ∪B

Addition 0.90 0.92 0.98
Subtraction 0.90 0.65 0.80
Max Pooling 0.95 0.86 0.86
Min Pooling 0.90 0.75 0.92
Score Max Pooling 0.95 0.84 0.94
Score Min Pooling 1.0 0.80 0.84

Table 2: Percentage of times the Box Embeddings set oper-
ations are better than different vector operations. Thus more
than 0.5 means that boxes are better. The Intersection, Union
and Difference can be performed with Boxes as they originally
are, however, we choose an exhaustive list of similar vector
operations.

times the WORD2BOX outperformes WORD2VEC, 461

i.e., the model yields better rank for the word C. 462

Note that, it is not evidently clear how to design 463

the union, difference or the intersection operations 464

with vectors. Thus, in this work, we compare with 465

a comprehensive list of operations for them. We 466

observe that almost of all the values are more than 467

0.9, which means WORD2BOX gets better rank for 468

90 out of 100 examples. This empirically validates 469

that our model is indeed capturing the underlying 470

set theoretic aspects of the words in the corpus. 471

Here, the addition, subtraction, max pool, min 472

pool are point wise vector operations between vec- 473

tor for word A and B. We also propose score 474

max and score min operations where, we select 475

the max(A · X,B · X) and min(A · X,B · X), 476

where X is any word. The purpose of this design 477

of operation if to mimic the essence of union and in- 478

tersection in the vector space, however, it is evident 479

that the trained vector geometry is not harmonious 480

to this construction as well. 481

6.2.2 Qualitative Analysis 482

In this section, we present some interesting exam- 483

ples of set theoretic queries on words, with different 484

degrees of complexities. For all the tables in this 485

section, we perform the set-operations on the query 486

words then look at the ranked list of most similar 487
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Figure 2: We plot the Spearman’s correlation score vs Threshold frequency in log scale for Stanford RW, Simelex-999
SimVerb-3500, WS-353 (Rel). The correlation value is calculated on the word pairs where both of them have frequency less than
the threshold frequency.

words to the output query. Many of these queries488

are based on words with multiple senses which is489

very instrumental for the inspection of the models.490

Evidently, our the results from WORD2BOX491

look much better. Note that, from table, we observe492

that set difference of ’property’ and ’land’ yields493

a set of words that are related to attributes of sci-494

ence subjects, they are mostly “chemical-property”495

, “algebraic-property” etc. Thus, we wanted to ex-496

amine how to this resulting query of ’property’ - ’fi-497

nance’, relate to algebra and chemistry. We observe498

that the outputs indeed correspond to properties of499

those sub fields of science. We can observe such500

consistency of WORD2BOX with all the example501

logical queries.502

Operation X
A B Model

girl boy WORD2BOX A ∩ B ∩ X kid girls schoolgirl teenager
woman boys child baby
teenage orphan

WORD2VEC (A + B) · X shoeshine nanoha soulja
schoolgirl yeller beastie jeezy
crudup ’girl rahne

property burial WORD2BOX A ∩ B ∩ X cemetery bury estate grave in-
terment tomb dwelling site
gravesite sarcophagus

WORD2VEC (A + B) · X interment moated interred
dunams ceteris burials
catafalque easement deeded
inhumation

historical WORD2BOX A ∩ B ∩ X historic estate artifact archaeo-
logical preserve ownership pat-
rimony heritage landmark site

WORD2VEC (A + B) · X krajobrazowy burgage ease-
ment kravis dilapidation to-
hono intangible domesday
moated laertius

house WORD2BOX A ∩ B ∩ X estate mansion manor resi-
dence houses tenement build-
ing premise buildings site

WORD2VEC (A + B) · X leasehold mansion tenements
outbuildings estate burgage
bedrooms moated burgesses
manor

tongue body WORD2BOX A ∩ B ∩ X eye mouth ear limb lip fore-
head anus neck finger penis

WORD2VEC (A + B) · X tubercle ribcage meatus
diverticulum forelegs radula
tuberosity elastin foramen
nostrils

language WORD2BOX A ∩ B ∩ X dialect idiom pronunciation
meaning cognate word accent
colloquial speaking speak

WORD2VEC (A + B) · X fluently dialects vowels patois
languages loanwords phonol-
ogy lingala tigrinya fluent

503

Operation X
A B Model

algebra finance WORD2BOX (A B) ∩ X homomorphism isomorphism
automorphism abelian alge-
braic bilinear topological mor-
phism spinor homeomorphism

WORD2VEC (A - B) · X homeomorphic unital ho-
momorphisms nilpotent
algebraically projective
holomorphic propositional
nondegenerate endomorphism

bank finance WORD2BOX (A B) ∩ X wensum junction neman
mouth tributary downstream
corner embankment forks
sandwich

WORD2VEC (A - B) · X shaddai takla thrombus gauley
paria epenthetic chibchan
urubamba foremast bolshaya

river WORD2BOX (A B) ∩ X barclays hsbc banking citi-
group citibank firm ipo broker-
age interbank kpmg

WORD2VEC (A - B) · X cheques tymoshenko receiv-
ables citibank eurozone brinks
defrauded courtaulds refinance
mortgage

chemistry finance WORD2BOX (A B) ∩ X biochemistry superconductor
physics physic eutectic heat
isotope fluorescence yttrium
spectroscopy

WORD2VEC (A - B) · X augite alkyne desorption phos-
phorylating dimorphism fu-
marate hypertrophic empedo-
cles hydratase enantiomer

property land WORD2BOX (A B) ∩ X homotopy isomorphism invo-
lution register bijection sym-
plectic eigenvalue idempotent
compactification lattice

WORD2VEC (A - B) · X brst stieltjes l’p repressor
absurdum doesn conjugates
nonempty didn wouldn

504

Operation X
A B C Model

property finance algebra WORD2BOX ((A \ B) ∩ C) ∩ X laplacian nilpotent antideriva-
tive lattice surjective automor-
phism invertible homotopy in-
teger integrand

WORD2VEC (A - B + C) · X expropriate extort refco under-
write reimburse refinance par-
malat refinancing brokerage
privatizing

chemistry WORD2BOX ((A \ B) ∩ C) ∩ X eutectic desiccant allotrope
phenocryst hardness solubil-
ity monoclinic hygroscopic
nepheline trehalose

WORD2VEC (A - B + C) · X refinance brokerage burgage
stockbroking refinancing war-
ranties reimburse madoff pri-
vatizing valorem

505

506

7 Related Work 507

Learning distributional vector representations from 508

a raw corpus was introduced in Mikolov et al. 509

(2013), quickly followed by various improvements 510

(Pennington et al.; Bojanowski et al., 2017). More 511

recently, vector representations which incorporate 512

contextual information have shown significant im- 513
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bank ∩ finance bank ∪ finance bank \ finance bank + finance bank - finance max(bank, finance) min(bank, finance) max_score(bank, finance) min_score(bank, finance)

investment banking wensum subprime shaddai refinance securities refinance securities
banking treasury junction securities takla laundering subprime laundering subprime
investor investor neman refinance thrombus reimbursements jpmorgan reimbursements jpmorgan
financing investment mouth liquidity gauley superannuation citigroup superannuation citigroup
fund business tributary laundering paria liquidity equities liquidity equities
government economy downstream kaupthing epenthetic debit ebrd debit ebrd
corporation management corner underwrite chibchan controllata kaupthing controllata kaupthing
treasury firm embankment receivables urubamba subprime mortgage subprime mortgage
citigroup fund forks ibrd foremast underwrite refinance underwrite refinance
firm financial sandwich equities bolshaya disbursement debentures disbursement debentures

Similarity
Word Model

bank WORD2BOX population median age female race family poverty every career census
WORD2VEC debit depositors securities kaupthing interbank subprime counterparty citibank fdic

nasdaq
economics WORD2BOX population median age female race family poverty every career census

WORD2VEC microeconomic keynesian microeconomics minored macroeconomics econometrics
sociology thermodynamics evolutionism structuralist

microeconomics WORD2BOX population median age female race family poverty every career census
WORD2VEC microeconomic initio germline instantiation zachman macroeconomics oxoglutarate

glycemic noncommutative pubmed
property WORD2BOX population median age female race family poverty every career census

WORD2VEC easement infringes burgage krajobrazowy chattels policyholder leasehold intestate
liabilities ceteris

rock WORD2BOX population median age female race family poverty every career census
WORD2VEC shoegaze rhyolitic punk britpop mafic outcrops metalcore bluesy sedimentary

quartzite

provements (Peters et al., 2018; Devlin et al., 2019;514

Radford et al., 2019; Brown et al., 2020). As these515

models require context, however, Word2Vec-style516

approaches are still relevant in settings where such517

context is unavailable.518

Hyperbolic representations (Nickel and Kiela,519

2017; Ganea et al., 2018; Chamberlain et al., 2017)520

have become popular in recent years. Most re-521

lated to our setting, Tifrea et al. (2019) propose a522

hyperbolic analog to GloVe, with the motivation523

that the hyperbolic embeddings will discover a la-524

tent hierarchical structure between words.3 Vilnis525

and McCallum (2015) use Gaussian distributions526

to represent each word, and KL Divergence as a527

score function. 4 Athiwaratkun and Wilson (2018)528

extended such representations by adding certain529

thresholds for each distribution. For a different530

purpose, Ren and Leskovec (2020) use Beta Distri-531

butions to model logical operations between words.532

Our work can be seen as a region-based analog to533

these models.534

Of the region-based embeddings, Suzuki et al.535

(2019) uses hyperbolic disks, and Ganea et al.536

(2018) uses hyperbolic cones, however these are537

not closed under intersection nor are their inter-538

3Reported results are included in table 1 as “Poincaré”
4Reported results are included in table 1 as “Gaussian”

sections easily computable. Vendrov et al. (2016) 539

and Lai and Hockenmaier (2017) use an axis- 540

aligned cone to represent a specific relation be- 541

tween words/sentences, for example an entailment 542

relation. Vilnis et al. (2018) extends Lai and Hock- 543

enmaier (2017) by adding an upper-bound, prov- 544

ably increasing the representational capacity of the 545

model. Li et al. (2019) and Dasgupta et al. (2020) 546

are improved training methods to handle the diffi- 547

culties inherent in gradient-descent based region 548

learning. Ren et al. (2020) and Abboud et al. (2020) 549

use a box-based adjustment of their loss functions, 550

which suggest learning per-entity thresholds are 551

beneficial. (Chen et al., 2021) use box embeddings 552

to model uncertain knowledge graphs, and (Onoe 553

et al., 2021) use boxes for fined grained entity typ- 554

ing. 555

8 Conclusion 556

In this work we have demonstrated that box em- 557

beddings can not only effectively train to represent 558

pairwise similarity but also the it can capture the 559

rich set theoretic logical structure of the words. The 560

expressivity of box models allows them to capture 561

cooccurrances is such a distributed set theoretic 562

way which is inaccessible to vector models. 563
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A Preprocessing754

The WaCKypedia corpus has been tokenized and755

lemmatized. We used the lemmatized version of756

the corpus, however it was observed that various757

tokens were not split as they should have been (eg.758

“1.5billion” -> “1.5 billion”). We split tokens us-759

ing regex criteria to identify words and numbers.760

All punctuation was removed from the corpus, all761

numbers were replaced with a “<num>” token, and762

all words were made lowercase. We also removed763

any words which included non-ascii symbols. Af-764

ter this step, the entire corpus was tokenized once765

more, and any token occurring less than 100 times766

was dropped.767

B Dataset Analysis768

Dataset
Median

Frequency
Men-Tr-3K 23942
Mc-30 25216.5
Mturk-771 43128.5
Simlex-999 40653.0
Verb-143 309192.0
Yp-130 23044.0
Rw-Stanford 5683.5
Rg-65 13088.0
Ws-353-All 58803.0
Ws-353-Sim. 57514.0
Ws-353-Rel 64490.0
Mturk-287 32952
Simverb-3500 39020

Table 3: Median Frequency of each similarity dataset.

C Hyperparameters769

As discussed in Section 6, we train on 128770

dimensional WORD2VEC and 64 dimensional771

WORD2BOX models for 10 epochs. We ran at772

least 60 runs for each of the models with random773

seed and randomly chose hyperparamter from the774

following range - batch_size:[2048, 4096, 8192,775

16384, 32768], learning rate log_uniform[exp(-1),776

exp(-10)], Window_size: [5, 6, 7, 8, 9, 10], nega-777

tive_samples: [2, 5, 10, 20], sub_sampling thresh-778

old: [0.001, 0.0001].779

D Set Theoretic Queries780

A B AB
table chair furniture
car plane transportation
city village location
wolf bear animal
shirt pant clothes
computer phone Electronics
red blue color
movie book entertainment
school college education
doctor engineer Profession
box circle shape
big small size
dog tree bark
fish tone bass
sports wing bat
carry animal bear
sadness color blue
bend weapon bow
hit food buffet
combine building compound
happy list content
acquire agreement contract
location organise coordinate
hot leave desert
information food digest
furry lower down
entry bewitch entrance
exhibition judgement fair
good charge fine
luck whale fluke
odor angry incense
crotch race lap
thin slant lean
sleep wrong lie
broadcast life live
small time minute
overlook woman miss
thing oppose object
target thing object
air turn wind
category keyboard type
mercy type kind
truck teach train
topic impose subject
jump miss skip
first time second
move drink shake
surface ordinary plain
bravery remove pluck
luggage beer porter
create vegetables produce
rise flower rose
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