Attention Mechanism, Max-Affine Partition,
and Universal Approximation

Hude Liu* Jerry Yao-Chieh Hu*'  Zhao Song® Han Liuf#!

TCenter for Foundation Models and Generative Al & Department of Computer Science, $ Department of
Statistics and Data Science, Northwestern University, Evanston, IL 60208, USA
tSimons Institute for the Theory of Computing, UC Berkeley, Berkeley, CA 94720, USA

hudeliu0208@gmail.com, jhu@u.northwestern.edu,
magic.linuxkde@gmail.com, hanliu@northwestern.edu

Abstract

We establish the universal approximation capability of single-layer, single-head
self- and cross-attention mechanisms with minimal attached structures. Our key
insight is to interpret single-head attention as an input domain-partition mechanism
that assigns distinct values to subregions. This allows us to engineer the attention
weights such that this assignment imitates the target function. Building on this, we
prove that a single self-attention layer, preceded by sum-of-linear transformations,
is capable of approximating any continuous function on a compact domain under
the L..-norm. Furthermore, we extend this construction to approximate any
Lebesgue integrable function under L,-norm for 1 < p < oo. Lastly, we also
extend our techniques and show that, for the first time, single-head cross-attention
achieves the same universal approximation guarantees.

1 Introduction

We establish the universal approximation capability of single-layer, single-head self- and cross-
attention mechanisms. Departed from prior studies, our results demonstrate that the expressive
power of transformers arises from only the (softmax) attention module and an attached linear layer,
without additional components such as positional encodings or feed-forward networks (FFNs). More
importantly, our proofs show that sequence-to-sequence universal approximation requires only a
minimalist configuration: single-layer, single-head attention with linear transformations.

In this era, the power of transformers [Vaswani et al., 2017] is undeniable, given their dominance in
modern machine learning. They drive models such as BERT [Devlin, 2018], ChatGPT [Brown et al.,
2020, Achiam et al., 2023], and LLaMA [Touvron et al., 2023a,b, Dubey et al., 2024] for language;
ViT [Dosovitskiy et al., 2021] and DiT [Peebles and Xie, 2023] for image and video; DNABERT
[Ji et al., 2021, Zhou et al., 2023] for genomics; and Moirai [Woo et al., 2024, Liu et al., 2024]
for time series, among many others. Central to these successes is the attention mechanism. While
numerous variants and implementations exist [Tay et al., 2022], the softmax-based vanilla attention
[Vaswani et al., 2017] remains a mainstay in both research and industry communities (e.g., ChatGPT
and Llama).

However, despite its practical importance, theoretical insights into why softmax attention is so
powerful remain incomplete. Moreover, the extent to which softmax attention alone drives perfor-
mance is unclear. Empirical [Tay et al., 2022] and theoretical [Keles et al., 2023, Deng et al., 2023,
Alman and Yu, 2024] evidence suggests that deviating from softmax attention (e.g., via sub-quadratic
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approximations) often degrades performance, indicating that softmax attention may be a central
engine in Transformer architectures. At the same time, a growing body of work explores its memory
capacity [Mahdavi et al., 2023, Kim et al., 2023, Kajitsuka and Sato, 2024], universal approximation
properties [Yun et al., 2019, Kajitsuka and Sato, 2023, Jiang and Li, 2023], representation learning
[Sanford et al., 2024b, Chen and Li, 2024], and task-specific theoretical performance [Gurevych et al.,
2022, Edelman et al., 2022]. However, these studies often rely on additional components, such as
feed-forward networks (FFNs) or multi-head setups or customized assumptions, as they target the
entire Transformer architecture rather than isolating the role of attention module.

To this end, this work presents attention-only expressiveness results: softmax-based attention alone
already suffices for universal approximation of sequence-to-sequence functions. We operate under
three key premises for investigating the expressiveness of attention:

1. We focus on softmax-based attention,

2. We seek a minimalist design (a single layer of single-head attention plus a linear transforma-
tion),

3. We impose minimal assumptions on the data distribution or network architecture (no posi-
tional encodings, no multi-head expansions, no FENs).

We provide new proofs that a single self-attention layer approximates any continuous sequence-to-
sequence function on a compact domain, in both the L., and L, norms. Furthermore, we show, for
the first time, a parallel result for cross-attention, revealing its universal approximation capability
under the same minimalist setting.

Contributions. Our contributions are as follows:

* Interpreting Attention as a Max-Affine Partition. We show that single-head softmax
attention, combined with a linear layer, implicitly partitions the input domain using a max-
affine construction. This partitioning allows attention to assign distinct outputs to each
partition cell. This perspective clarifies how softmax-based attention enables a powerful
piecewise-linear approximation scheme.

 Single-Layer, Single-Head Self-Attention Universality. We prove that a single self-
attention layer is a universal approximator for continuous sequence-to-sequence functions
on compact domains. Our results cover both L,- and L,-norms guarantees and require
minimal assumptions on data and architecture, highlighting the inherent expressive power
of attention alone.

¢ Single-Head Cross-Attention Universality. We establish, for the first time, that the same
approach also endows a single-layer, single-head cross-attention with universal approxima-
tion capabilities. This result further underscores that much of a Transformer’s expressiveness
can reside solely in its attention block, even when the queries and keys come from distinct
input sequences.

Organization. Section 2 presents the ideas we built on. Section 3 shows our interpretation of Atten-
tion as a Max-Affine Partition in a simplified setting. Section 4 presents our universal approximation
results for single-layer, single-head self- and cross-attentions.

Related Work

Universal Approximation. Early works of universal approximation theorems focuses on the ex-
pressiveness of feed-forward networks (FFN) [Cybenko, 1989, Hornik, 1991, Carroll and Dickinson,
1989]. Since Vaswani et al. [2017] propose the transformer architecture and the scaled dot-product
attention module, there is a series of research aiming to explain the expressiveness of transformer.
Yun et al. [2019], Kajitsuka and Sato [2023] offer explanation from the perspective of contextual map-
ping. Among them, Yun et al. [2019] are the first to prove the universal approximation capability of
transformer. Yet since the network in [Yun et al., 2019] requires excessive layers (O(n(1/8)4" /n!)),
Kajitsuka and Sato [2023] make more careful estimation upon the numerical results of contextual
mapping and proves that with skip connections, a one-layer transformer is capable of approximat-
ing any permutation equivariant continuous function. Takakura and Suzuki [2023] add positional
encoding to lift the restriction of permutation equivariance, and demonstrate a one-layer transformer
approximates shift-equivariant a.-smoothness function with an error independent of input and output
dimension. Jiang and Li [2023] give a non-constructive proof using Kolmogorov representation



theorem on the Jackson-type approximation rate of a two-layer transformer. While prior works have
achieves diverse and extensive result regarding the expressive capability of transformer, their results
require the feed-forward network (FFN) to add expressiveness to the attention module in order to
achieve universal approximation, which differs from our results derived from attention-only network.
Concurrently, Hu et al. [2025a] give an interpolation-based proof that softmax attention alone (no
FFN) is a universal approximator for continuous sequence-to-sequence maps on compact domains.

Provable Capabilities of Transformer. Recent theoretical studies also shed light on the practical
behavior of attention mechanism. Olsson et al. [2022] show that induction heads help models learn
patterns in context. Sanford et al. [2024a] prove that Transformers can do complex computations with
few layers because they work in parallel. In contrast, Luo et al. [2022] find that some Transformer
designs lose expressivity when using relative positional encodings. Kim and Suzuki [2024], Chen et al.
[2025] provide Transformer’s hardness results on learning constrained boolean functions. Building
on [Hu et al., 2025a], Hu et al. [2025b] show that a fixed two-attention-layer softmax Transformer
is prompt-programmable: it emulates any algorithm implementable by a single attention layer (cf.
[Bai et al., 2023]), providing a constructive account of one-model-many-tasks behavior with softmax
(not ReLLU) Transformers. To add on these ideas, we prove that a single-layer, single-head softmax
attention with a simple linear layer can approximate any continuous function on a compact domain.
This shows that attention alone can learn arbitrary sequence-to-sequence mappings.

2 Preliminaries

‘We now present some ideas we built on.

Notation. For a vector v, we denote its i-th entry by v; and its subvector from the 71 -th to the i5-th
entry (inclusive) by v;, .5, with 41 < 4. For a matrix M, we use M; ; for the entry in the i-th row
and j-th column, M; . for the i-th row, and M. ; for the j-th column. The submatrix spanning rows
11 through ¢3 and columns j; through j is denoted by M;, s, ;.5 With i1 < i2,,71 < jo. We
define ¢, as an a X b matrix with constant entries ¢, and abbreviate ¢, 1 as ¢,. For norms, we
define || - || as the maximum absolute element in a vector or matrix. The p-norms are given by
[v]l, = (32, [vi|P)/P for a vector v and ||M||, = (>i; |M; ;|P)1/P for a matrix M. For function
norms, we define the Log norm as || f|[2., = sup,ex, || f(2)|| o0, where Xy is the input domain of
f.and the L, norm as || f||z, := (-fzeXf |f(z)[b, dx)*/? for 1 < p < oc. For functions, when a
function f : R — R is applied on a vector or a matrix, it means to apply f on every entry of the
vector/matrix (i.e.,exp([a1, az]) := [exp(a1), exp(a2)]).

Self-Attention and Cross-Attention Layers. For a self-attention Attn, : RP*N — RP*Nout and
any input Z € RP*N we define its output as:

Attng(Z) = Wy Z Softmax(Wg Z) " Wo Z)Wo,
where Wi, Wq € RéauwnxD 117, € RPXP W, € RN*Nouwt Here dayy stands for the hidden size
of the attention block. N, stands for the output sequence length.

For a cross-attention Attn, : RPXN x RPXN — RP*Nowe and any input Zx, Zg € RP*N, we
define its output as:

Attn.(Zx, Zg) = Wy Zk Softmax((Wx Zx) ' WoZg)Wo.
Here Wi, W, Wy, Wo are defined as those in self-attention.

Since we provide separate discussions for self-attention and cross-attention in this work, we omit the
subscript and denote them as Attn when this causes no ambiguity.

Layer of Sum of Linear Transformations. We use Linear : RP1 XM — RP2XN2 g denote a layer
of sum of linear transformations. For any input Z € RP1*N1 we define its output as follows:

H
Linear(Z2) := ZPiZQi + R,

i=1

where P; € RP2xP1 @, € RM*N2 for g € [H], R € RP2*N2_ Here H is a positive integer which
denotes the number of linear transformations to sum.



3 Attention as Max-Affine Value Reassignment

In this section, we introduce a new interpretation of attention as a value reassignment to a max affine
function. Essentially, we show that attention prepended with a Linear layer is able to reassign values
to a partition generated by a max-affine function. We start with the below definition.

Definition 3.1 (Max-Affine Function). Let X C R% be a domain, and fix a positive integer N,..
For each i € [Np,], define an affine function y; : X — R forall z € X:

yi(z) = a?m +b;, wherea; € R% and b; € R.

The max-affine function MaxAff : X — R corresponding to affine functions {y;(-)};=[n,,.] is
defined as

MaxAff(z) = max {a; z + b;}.
i€[Nmal
Intuitively, a max-affine function selects, at each point z € X, the largest output among N, affine
functions. Geometrically, each affine function y;(x) = a = + b; defines a hyperplane in R%=+1,
Thus, MaxAff follows the highest hyperplane at each z, forming a piecewise linear, convex surface
— the upper envelope of the given affine hyperplanes.

Remark 3.1 (Technical Assumption). For simplicity of presenting our interpretation, we make the
following technical assumption for all results in this section:

Assumption 3.1. For any max-affine function MaxAff, we exclude situations where the difference
between its largest and second-largest affine components is smaller than a specified threshold. (Please
see proofs for explicit definition.)

We do not apply this assumption in other sections.

3.1 Max-Affine Partition

We now show that a max-affine function MaxAff(-) induces a partition of its input domain X.
Specifically, the input domain X is divided up according to which affine function is the maximum at
each point x. To be concrete, we define this partition as follows:

Proposition 3.1 (Max-Affine Partition). Following Definition 3.1, consider a max-affine function
MaxAff(z) = max;e(n,,.j{a] * + b}, and let X C R% be its input domain. Then MaxAff
generates a partition on X’:

Pua :={Ui | i € [Nma]}, Ui:={z € X |MaxAff(z) =a]z+b;}, i€ [Nma).
We call the partition P,,, the max-affine partition of X induced by MaxAff.

Intuitively, U; is the set of all point « for which the i-th affine function a, * + b; achieves the same
value as the max-affine output. Since MaxAff(-) is the maximum of all the affine components, the
i-th component is (one of) the highest among all components. Hence, the input domain &’ becomes
partitioned “regions” {U; };—|n,,,]- That is, if a point x belongs to a region Uj, the corresponding
affine function a, x + b; is (tied for) the largest. Please see Appendix D.1 for a detailed proof.

Set Overlaps and Boundaries. By construction, every « € X’ lies in at least one of the sets {U; }, but
it may belong to multiple sets if several affine components attain the same maximal value. Hence, the
collection {U;} is generally a “partition” in an informal sense: while each U is typically associated
with a distinct region, their pairwise intersections are non-empty on boundary hyperplanes. We
address these overlaps in detail within our theorems, where boundary regions do not affect the main
approximation arguments but require careful handling to ensure mathematical rigor.

Indicator Encoding of the Partition. For certain analytical and algorithmic tasks, it is helpful to
embed the notion of “which affine part is active” into a vector-valued indicator. Formally, we define
the indicators for max-affine partitions.

Definition 3.2 (Indicator of Max-Affine Partition). Following the notations in Proposition 3.1, for
a max-affine partition {U;|i € [Nya]}, we define i, := argmax;. y_ (yi()) to be the label of the



maximal affine component. Then, we define the indicator E : R% — RVma as:
Nma
E(x) = egw )7
which is a one-hot vector whose only non-zero entry is the i,-th one.

Namely, each component of F(z) is zero unless it corresponds to an index achieving the maximum,
in which it has the value of 1. In Figure 1a, we show an example of the max-affine partition.

4

(a) Max-Affine Partition on a 2-D Domain. Colored (b) Value Reassignment of Figure 1a. Each region is
regions show where each affine component is active. reassigned a different affine function.

3.2 Attention Scores Encode Indicators for Max-Affine Partition

We now discuss the connection between self-attention and a max-affine partition. We show that
self-attention with a Linear layer attached before it can generate a max-affine partition. Further, for
every input token, the attention score matrix approximately indicates which part of the partition it
belongs to. We state this result as follows:

Proposition 3.2 (Attention Approximates Indicator of Max-Affine Partition). Let X =
[X1, X2, , X,] € R¥"™ denote any input sequence. We use X' to denote the domain of all
X, i € [n]. Let MaxAff be any max-affine function on X’ with N,,, components, and let € > 0 be
any positive real number. We define Py, = {U;|i € [Nma]} as the max-affine partition generated
by MaxAff as in Proposition 3.1. Then, there exists a Linear layer and a self-attention Attn whose
attention matrix satisfies:

|| Softmax ((Wx Linear(X)) " WoLinear(X))Wo — [E(X1), E(X2), -, E(X,)]lleo < €,

with exception of a region of arbitrarily small Lebesgue measure in R™. Here Wg, W are the
attention weights within Attn. Wy only truncates the irrelevant part of the attention score matrix.

Proposition 3.2 shows that the attention matrix is able to approximate a vector denoting the position
of the input token, by indicating which part of the max-affine partition contains the input token.

3.3 Attention Reassign Value to Each Part of the Max-Affine Partition

In the work of [Kim and Kim, 2022], they prove that max-affine functions are universal approximators
for convex functions. In order to turn them into universal approximators, a possible solution is to
reassign value to each part of the max-affine partition generated by the original max-affine function.
In the following theorem, we show that a single-head self-attention is capable of completing this task.

Proposition 3.3 (Attention Reassigns Value to Max-Affine Partition). Following the notation in
Proposition 3.2, Let F' : R? — RY , be a piece-wise constant function which is separately constant



on each U;, i € [Ny,,]. We show that for any € > 0, there exists an self-attention Attn such that
[Attn(X) — [F(X1), F(X2), -, F(Xn)][lo <,
for every X in X with exception of a region of arbitrarily small Lebesgue measure in R"™.

Proposition 3.3 shows that attention is able to output different values according to the indicator
generated in Proposition 3.2.

‘We conclude this section with two remarks.

Remark 3.2 (Extension to Function on All Tokens). In this section, for the conciseness in demon-
stration of method, we adopted a token-wise function F' as the example function. Yet since affine
functions on all tokens can be easily obtained by adding token-wise affine functions, this simplified
version of our method generalizes well on functions taking all tokens as input and leads us to results
shown in Section 4.

Remark 3.3. Lastly, we emphasize that here the approximation excludes a small area for overall
simplicity in this demonstration of our method. We address this issue in the proofs of the universal
approximation theorems in the next section.

Figure 1b provides us an example of Proposition 3.3.

4 Single-Layer, Single-Head Attention Achieves Universal
Sequence-to-Sequence Approximation

In this section, we present our main results:

* A single layer of single-head self-attention preceded by one linear layer is a
sequence-to-sequence universal approximator for continuous functions on any compact
domain.

* A single layer of single-head cross-attention preceded by one linear layer is likewise a
sequence-to-sequence universal approximator for continuous functions on any compact
domain.

Importantly, we achieve attention-only universal approximation for both the L,-norm and L.,-norm,
whereas most existing results apply only to the L,,-norm and require additional auxiliary components
in the transformer block (e.g., multiple attention or feed-forward layers). Moreover, our universality
result for cross-attention is the first of its kind. Specifically, we present our results for self-attention
in Section 4.1 and for cross-attention in Section 4.2.

4.1 Single-Head Self-Attention as a Universal Seq-to-Seq Approximator

We now present our main result: a single-layer, single-head self-attention module, combined with
a linear transformation, is sufficient to approximate any continuous map f : R¥"™ — R?*" on
a compact domain U C [—D, D]4*". We present the result first in terms of the L., norm for
continuous f and then extend it to L,, integrable functions.

Theorem 4.1 (L.,-Norm Universal Approximation). Let f : R?*" — R9*" denote any continuous
function on a compact domain U C R%*"™ and let € > 0 be any positive real number. There exists a
self-attention Attn with a prepended Linear layer, such that

||f — Attn o Linear||r_ <e.

Theorem 4.1 indicates that a single-layer self-attention block, combined with a linear preprocessing
layer Linear, approximates sequence-to-sequence f in the L.,-norm.

Overview of Proof Strategy. We adopt a proof strategy based on a key observation: self-attention is
capable of approximating target functions via implicit MaxAff operations. Our proof consists of the
following 4 steps:

* Step 1: Partition Input Domain U via MaxAff. Construct a max-affine function MaxAff
over U (i.e., input domain of target function f) such that this MaxAff induces a partition of
size- Ny, of U.



* Step 2: Configure Linear and Attn to Imitate MaxAff over U. Use Linear and Wi, W
in Attn to map the input Z € U to values of the affine components {y;(Z) = a] Z +

bi}ic[n... of MaxAff. Here we flatten the input sequence Z € R**" toZ € R to
compute MaxAff.

» Step 3: Engineer Attn to Generate an Indicator of Which Partition Cell the Input
Belongs To. Within self-attention Attn, design K ' @ so that Softmax (K ' Q) produces
a near-one-hot vector as an indicator to the max-affine partition induced by MaxAff (as
defined in Definition 3.2). This indicator (approximately an one-hot vector) shows which
part (i.e., partitioned cell) of the partition contains the input sequence Z.

* Step 4: Map the Indicator to the Target Value f(Z). Map each partition cell’s indicator
to the corresponding value of f. By continuity of f, refining the partitioned cell ensures
|If — Attn o Linear||o < e.

Proof Sketch. We elaborate above in detail. Consider a continuous function f : U C [-D, D]*" —
R¥*™ on a compact domain U. Let € > 0. We aim to construct a single-layer, single-head self-
attention mechanism Attn (prepended with a linear transformation Linear) such that

||f — Attn o Linear| . < e.

Step 1: Partition Input Domain U via MaxAff.

* Flattening Input. Each input Z € R?*" is reshaped into a single vector Z € R by
stacking its rows or columns. This unifies the domain as Z € [—D, D],

* Grid / Max-Affine Construction. Since f is uniformly continuous on the compact set U,
choose 6 > 0 such that

121 = Zslloo <6 = [If(Z1) = f(Z2)]0 <e.

We subdivide [—D, D]%" into cubes of side < 4, yielding G = P?" grid centers {v;}.
We treat MaxAff as a piecewise (max-)affine or piecewise-constant partition: for each 7 s
there’s a nearest v; within 6/2.

* Technical Highlight. This partition-based approach leverages uniform continuity to dis-
cretize U. The number of partitions can be large but finite, ensuring we only need a
single-layer of attention to “select” the correct grid cell.

Step 2: Configure Linear and Attn to Imitate MaxAff over U.

* Sum-of-Linear-Transformations Map Linear. Design Linear : R¥*" — RM (for some
dimension M) to capture the dot products (v;, Z). Essentially, Linear(Z) arranges these
{va Z} in a form accessible to attention. This ensures each grid center v; can be individually
“queried.”

« Encoding Affine Components. Observe that max;{(v;, Z) — 3[lv;][?} is akin to a max-
affine function. We store terms va Z, plus —3||v;||%, into K and Q for later use in
Softmax(K ' Q).

* Technical Highlight. This step demonstrates how we embed {(v,, Z)} into a single-head
attention setting — no extra feed-forward layers required. The linear map Linear is carefully
constructed so that each “component” is individually addressable.

Step 3: Engineer Attn to Generate an Indicator of Which Partition Cell the Input Belongs To.

« Construct K Q. In the self-attention block, let KQ =~ R({v;, Z) — 3| v;||?), where
R > 0 is large. This makes Softmax(K ' Q) favor the row j* maximizing

(v, Z) — g llvs1*.
* Near-One-Hot Distribution. Hence the j*-th row obtains probability close to 1, effectively

identifying which grid center v;~ is nearest to Z. We interpret this as a near-one-hot
“indicator” vector for the correct partition cell.



* Technical Highlight. This is the crux: attention’s softmax can act as a continuous arg max
by scaling the scores with R. As R — oo, the distribution becomes more peaked, approxi-
mating a hard partition.

Step 4: Map the Indicator to the Target Value f(2).

* Assigning Values. We place f(v;) in the “value matrix” Wy, so that once row j* is selected,
the attention output is =~ f (v, ). Since Z is within 6/2 of v, uniform continuity implies

| f(Z) — f(vj+)|| <€ (for suitably chosen d).

* Final Reshaping (If Needed). A small linear projection M can reshape the output back
to R%*"_ The essential logic is that the correct f (v;) is “routed” to the final output via the
near-one-hot attention distribution.

* Technical Highlight. This reveals how a single-head attention layer, armed with linear
preprocessing, suffices to replicate the entire function f. No feed-forward sub-layer or
multiple heads are needed to achieve universal approximation.

In sum, combining these steps, we see that: (i) A finite grid subdivides U to handle uniform continuity.
(ii) Linear encodes {(v;, Z)}. (iii) Large-R Softmax(K ' Q) selects the best anchor v;. (iv) A
“value matrix” translates that selection into f(v;-). We conclude that a single-layer, single-head
self-attention block approximates f within € in the L, norm. Please see Appendix E.1 for a proof. [

Our result in Lo, norm can be easily extended to L,, norm, where it applies to not just the continuous
functions but all Lebesgue integrable functions with compact support. Please see Corollary E.1.1 for
more details.

4.2 Single-Head Cross-Attention as a Universal Seq-to-Seq Approximator

Here we extend self-attention universal approximation results from Section 4.1 to cross-attention.
Importantly, we establish the first known universal approximation in cross-attention setting. First, we
state our main result in L,,-norm.

Theorem 4.2 (L..-Norm Universal Approximation). Let f : Ux x Ug — R?X™ denote any
continuous function on a compact domain Ug x Ug and let € be any positive real number. Here

Uk, Ug € R¥*™ stands for the compact domain of the two input sequences of cross-attention. Then
there exists a cross-attention Attn prepended with a Linear layer such that

|| f — Attn o Linear||r,_ <e.

Theorem 4.2 indicates that a single-layer cross-attention block, prepended with a linear preprocessing
layer Linear, approximates f : Ux — Ug — RY*™ in L., -norm.

Proof Sketch. Our proof follows that of Theorem 4.1 except one additional step: use Attn to aggre-
gate the max-affine functions on Uk, Ug and merge into a MaxAff function on Ui x Ug. The proof
consists of the following steps:

Step 1: Partition the Input Domain U and Uy with MaxAff - and MaxAff Respectively. Con-
struct two max-affine function MaxAff - over Ux and MaxAffg over Ug such that this MaxAff i
induces a partition of size-Ny,, of U and MaxAff¢ a same size partition on Ug.

Step 2: Configure Linear and Attn to Imitate MaxAff i, MaxAffg over Wy, Uy Respectively.
Use Linear and W, W in Attn to map the input Zx, Zg € U to values of the affine components
{vi(Z) = a] Z + b;}icn,,.) of MaxAff x and MaxAff respectively. Here we flatten the input
sequence Z € R™™ to Z € R to express MaxAff concisely.

Step 3: Use Attn to Aggregate MaxAff x and MaxAffg to Form a MaxAff : Ux x Ug —
R on Both Input Sequences. Use Attn to generate MaxAff(Zx, Zg) := MaxAffx(Zk) +

MaxAff(Zg). This max-affine function merges the partition on U and Ug to generate a unified
partition on Ux x Ug.

Step 4: Use Attn to Indicate the Position of the Both Input Sequence in the MaxAff-Generated
Partition. Use Attn to generate an indicator to the max-affine partition generated by MaxAff (as



defined in Definition 3.2). This indicator (approximately a one-hot vector) shows which part of the
MaxAff-generated partition contains the Cartesian product of both input sequences Zx x Z.

Step 5: Map the indicator to the Corresponding Value of f. Map the indicator to the corresponding
value of the target function f by adding terms related to f to Attn.

Please see Appendix E.2 for a detailed proof. O

5 Concluding Remarks

We introduce a novel interpretation of attention as a mechanism for reassigning values to a partition
induced by a max-affine function. This unique perspective allows us to show that prepending a single
linear layer before either self-attention or cross-attention enables the network to (i) generate indicator
functions representing max-affine partitions (Proposition 3.2) and (ii) selectively reassign values to
each partition cell (Proposition 3.3). As a result, we prove that both single-head self-attention and
single-head cross-attention, when combined with a single layer of sum of linear transformations,
achieve universal approximation of compactly supported continuous functions under L., norm, or
integrable functions under L, norm. Numerical validations backup our theory in Appendix B.

Key Insights and Results.

* Max-Affine Partition. A max-affine function naturally partitions its input domain, and
attention (with appropriate transformations) can approximate the indicator functions of these
partitions.

* Value Reassignment. Self-attention reassigns output values based on partition indicators,
capturing a broad class of piecewise-defined functions.

» Universal Approximation. With only a single linear layer and a single-head attention
module, one can approximate arbitrary sequence-to-sequence maps in both the L., and
L, senses, for both self-attention (Theorem 4.1 and Corollary E.1.1) and cross-attention
(Theorem 4.2 and Corollary E.2.1) architectures.

Limitations. While our results highlight the surprising representational power of single-head attention
with linear preprocessing, several limitations warrant discussion:

e Large Dimensions and Network Size. Our minimal-assumption design needs many
partition regions to cover diverse targets. This follows naturally from the general setting
we study. High-dimensional inputs or long sequences then inflate the parameter count and
hinder practice. Appendix A eases the burden but does not eliminate it entirely.

* Training Complexity. Our proofs are constructive rather than prescriptive for training,
meaning standard gradient-based methods may not (always) efficiently find the required
weight configurations.

* Data Distribution Shifts. Like many universal approximation results, our approach does
not account for distribution shifts or generalization beyond the compact domain used for
training.

Implications and Future Work. Our findings explain why transformers excel at modeling heteroge-
neous data: attention can create flexible partitions of the input space and assign context-dependent
outputs. This perspective raises open questions for future research: Can multi-head or deeper atten-
tion layers simplify representational requirements or reduce approximation constants? How might
learned partitions or specialized positional encodings improve efficiency in practice? Can adaptive or
data-driven strategies automatically discover near-optimal partitions for specific tasks?

Overall, our results establish a theoretical foundation for understanding attention-based architectures
as universal function approximators. They illustrate how token-wise information is partitioned and
reassigned to represent complex sequence-to-sequence functions with minimal assumptions and
structural requirements on data and model.
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Impact Statement

By the formal nature of this work, we do not expect any immediate negative social impact.
A Extension to Practical Settings
In practical scenarios, despite defined on a high dimension input domain (R*™), attention is often

considered to approximate a function defined upon a small input domain X C R*".

To this end, we extend our method to the approximation rate of L-Lipschitz functions with a relatively
small input domain. We state our result as the following theorem.

Theorem A.1. Let f : R4X™ — R?*" denote an L-Lipschitz function (in terms of 2-norm) whose
input domain is X’. For any € > 0, assume X’ is contained in N,, spheres by the radius of €/(3L) in
2-norm. Then, there exists a Linear layer and a Attn layer such that:

|[Attn o Linear — floo < €.

Furthermore, Attn and Linear have a total number of O(dnNN,,) trainable parameters.

Proof Sketch. This proof only differs from the proof of Theorem 4.1 on the choice of partition. For
universal approximation, we choose a partition that evenly partition the whole space. In this theorem,
we change this partition to have each part centered on a different sphere described in the Theorem A.1.
By characterizing our partition, we achieve a more precise approximation result.

Please see Appendix F.1 for a detailed proof. [

Theorem A.1 states that when the input domain is contained in [V, spheres of e-level radius, there
exists a single-head self-attention layer that approximates the target function with a precision of e.

B Proof-of-Concept Experiments

In Proposition 3.2, we demonstrate domain-partition mechanism of attention. In this mechanism,
the temperature of the Softmax function affects the precision of the max-affine partition generated
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MNIST CIFAR1O FashionMNIST

Square Sum of Weights

Figure 2: Scale of Attention Weights vs. Training noise. For MNIST, CIFAR-10, and Fashion-MNIST
we plot the ¢>-norm of Wi and W against the injected label-noise ratio. In all three datasets the weight
scale declines monotonically as noise increases, corroborating Proposition 3.2: higher noise hampers precise
partitioning, so the model reduces the magnitude of weights that form the attention score matrix.

by attention, which is crucial to the complex approximations accomplished in Theorem 4.1 and
Corollary E.1.1.

Since the temperature of Softmax is equivalent to the scale of the matrix involved in computing the
attention score matrix (W, W), our theory suggests the scale of Wy, W decreases when the
input data contains more noise, as a result of the rise in difficulty to form a clear partition, and an
approximation based on this partition.

To verify this conjecture, we test the correlation between the scale of W, W, and the noise level in
the training data.

Objectives. Examine the relationship between scale of matrix involved in computing the attention
score matrix in attention (Wx, W) and the noise level (using Gaussian noise) in the dataset.

Data. We perform separate experiments on the training set of the noised MNIST, CIFAR10 and
FashionMNIST datasets with noise level (the coefficient multiplying the standard Gaussian noise)
gradually adding from 0 to 0.72 by the step size of 0.03.

Network setups. Our network consists of a single-head self-attention followed by a feed-forward
network. Due to the complexity and different characteristics of the selected datasets, the size of the
feed-forward network slightly differs between datasets.

Results. Figure 2 presents our results. As the noise level increases, a decrease in the scale of
weights in W, Wg becomes evident in all settings. This aligns with our theory.

C Additional Experimental Results
In this section, we present additional experimental results to support our theoretical results.
C.1 Numerical Justifications for Theoretical Results in Section 3

To validate our results in Proposition 3.2, we conducted the following experiment to examine whether
the max-affine function generated within the attention of the form in Proposition 3.2 can learn to
separate the input domain according to the values of the target function.

Specifically, we use attention to approximate a step function and observe the max-affine function
generated by the weights in K and ) matrices in the attention score matrix. The result of this
experiment is shown in Figure 3.

The max-affine function generated in the attention score matrix turns at points close to the switching
points in the step function. This generates a partition in the input domain that resembles the
distribution of the flat parts in the step function. This result aligns with our theory.
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Figure 3: Result of using a single-head attention to approximate a step function. The max-affine
function generated in the attention score matrix turns at points close to the switching points in the
step function.
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D Proofs of Results in Section 3

D.1 Proof of Proposition 3.1

Proposition D.1 (Proposition 3.1 Restated: Max-Affine Partition). Following Definition 3.1, consider
a max-affine function MaxAff(z) = max;e|n,..;{a; « + b;}, and let ¥ C R% be its input domain.
Then MaxAff generates a partition on X

1B, 3= {Uz ‘ 1€ [Nma]}a
Ui = {z € X | MaxAff(z) = a] £+ b;}, i € [Nma)-

We call the partition P,,, the max-affine partition of X induced by MaxAff.

Proof. TIf an x is not grouped to any U;, i € [Nymaxass]- Since MaxAff is define over X and thus
defined on xg, we have:

MaxAff(xg) # a;rxo +bi, 1€ [NMaxati]-

This is contradictory to the definition of MaxAff.

Since in Section 3 we exclude the discussion on the overlapped regions of the affine components
{y: = a;r x4+ b;}, {U; | i € [NMmaxan]} form a partition on X'. This completes the proof. O

D.2 Proof of Proposition 3.2

Proposition D.2 (Proposition 3.2 Restated: Attention Approximates Indicator of Max-Affine Par-
tition). Let X = [X1, Xo, -+, X,,] € R4X" denote any input sequence. We use X to denote the
domain of all X, i € [n]. Let MaxAff be any max-affine function on X with Nyraxag components,
and let ¢ > 0 be any positive real number. We define Pyaxae = {U; | @ € [NMmaxas]|} as the
max-affine partition generated by MaxAff as in Proposition 3.1. Let F be the indicator of Pyiaxaft as
defined in Definition 3.2. Under the above definitions, there exists a Linear layer and a self-attention
Attn whose attention matrix satisfies

|| Softmax((WxLinear(X)) T WgLinear(X))Wo — [E(X1), E(X2),- -, B(Xy)]leo < €,
with exception of an arbitrarily small region. Here Wy, W are the attention weights within Attn.
Proof. We first denote that according to the premise of Section 3, the intersection region of dif-
ferent affine components are omitted. This means for an arbitrarily small 6 > 0, this proposition

malfunctions on any points within a § radius neighborhood of the intersecting lines of max-affine
partitions.

Our proof consists of two parts:

1. Construct Linear and Attn.
2. Estimate the error between the attention score matrix of Attn o Linear and the target indicator.
For the max-affine function MaxAff, we denote it as follows.

Definition D.1 (Max-Affine Function). Let a; € R%, b; € R, i € [Nyaxas] denote the coefficients
of the affine components of MaxAff. In this definition, MaxAff writes out as

MaxAff(Z) = max {aiTZ + b}, (D.1)

1€ [NMaxas]

for any Z € R9.
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Remark D.1. For conciseness of presentation, we assume the top component of MaxAff exceeds
the second-largest by a fixed A > 0, independent of the input and arbitrarily small.

Construction of Linear. Without loss of generality, assume Nypaxag > n. We construct Linear
(the layer of linear transformations) to be

Iy

Onxd

Linear(Z) := [ AN

0
} VA [In O’rLX(NMaxAHf’n)} + { dXNMaxAH:| .

The the output of Linear(X) is

: [ I 0
Linear(X) = 0nf<d:| X [In O,LX(NM”AH_”)] + { dﬁ/{iﬁj:;ﬁ}
_ X OdX(NMaxAH_n) + Odx Nntasae
_Onxn Onx(NM.dXAgfn) INMaxAFf
[ X OdX(NMafof*n)
- I’n OnX(NMaXAH—n) . (Dz)
_O(NMafof—n)Xn Nuaxag—n

Construction of Attn. Since we only use the attention score matrix Softmax(K ' ), we only
have to construct the Wx and W matrices.

‘We construct them to be as follows
Ogxa a1 az -+ an
Wi =R X MaxA ff
K { 0 b1 by - DNywesn

W _ Id Ole OIXNI\/IaXAﬂ‘—d
@~ o 1 0 ’
1xd 1xd 1X Nyiaxag—d

where R is a coefficient to control the precision of the approximation. Specifically, as R increases,
Softmax is closer to maximum function, and the approximation is more precise.

In this construction, we now calculate the K and () matrices of attention

K = WgLinear(X)

X Oax (N, —n)
Ogxa a1 az --- an o X (NMaxag—"n ‘
=R |: OX by by - bNII\\;[ 1:: I, OnX(NMafof—n) (By (D,Z))
” O(NMaxAH*”)Xn NMaxag—n
ap as --- an
=R MaxAff |
and
@ = WgLinear(X)
[ X 0 _
_ 1q 01xd leNMaxAﬁ_d I OdX(NMaxAH n) '
= . n nX (NuMaxAfE—n) (B} (D2)>
O1xd  lixd O1xNyjaxag—d
B O(NMaxAH—n)Xn NMaxag—n

X - 1q OdXNMaxAH
L 1ixa OlXNlVIafof

X 0dx Nytaxas
_11><d leNl\qaxAﬁ'
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Calculation of Softmax(K Q). We now calculate the attention score matrix as

Softmax (K ' Q)
T
= SOftmaX R a1 az e aNMaxAﬂ' X OdX NnaxAff
b b2 - DNyaean lixa  O1xNyaxas
[ air by
L
a b
= Softmax | R 2 2 . X 0dx Nytaxass
: Lixd  O1x Nyxas
T
LA Nataxas bNMaxAH
- T -
ay 1+ by aq Tp + b1 01 x (Nntaxarr—d)
J T
ay T1 + by Gy Ty + ba 01 x (Nntaxarr—d)
= Softmax | R .
T ’ T ’
LONyaxar T1 T O Natasers O NytaxanTn T ONutaxast le(NMafof—d)

Estimation of Approximation Error. For i € [n], we have

ai'—xi + b
T
Qo X; + by
Softmax (KTQ): , = Softmax | R ? .
aJEMaxAHl‘i + ONytaxan
exp Ra?xi + Rby
1 exp(Rag z; + Rby
B Zf]v:Mf"AH exp(Ra%'—xi + Rby) :

. :
eXp(RaNMafofxi + RbNMaxAH)

This yields the entry on the k-th row of Softmax K TQ:’Z- to be

exp (Ra;xi + Rbk)

Softmax (K 'Q), , =
oftmax ( Q)k,z ZnNiAlaxAH eXp(RCL;,rxi =+ Rbn>

When aga:i + by, is the maximal affine component and a,I, x; + by is the second largest, we have

.exp(Ra,, z; + Rb
Softmax (KTQ)k —=1— ZUE[NI\I\;IaxAH]J?#k ( n 77)
32 Z MaxA ff eXp (RQJZL‘Z + Rbn)

n=1
T
>1— ZUE[NMaxAH]J/;‘ék exp (Raﬂ Ti + Rbn)

B Zf}VZMf"A“ exp (Ragxi + Rbk)
Ra},x; + Rby
21_(NMaXAff_1)exp( asz/ k)
exp (Rak T; + Rbk)
1 Nutaxag — 1
exp (Ra;xi + Rby, — (Ra;/xi + Rbk/))

~ Numaxag — 1
exp(RA)

Thus when
R > A (In(Nyaxag — 1) — lne),
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we have

Nyaxag — 1 <
exp(RA) —

€,

which means

Softmax KTQ,M- >1—e

Moreover, since the sum of all entries in Softmax K TQ:J is 1, we have

Softmax (KTQ)W <1-SoftmaxK'Q,,<1-(1—€)=¢, h#k.

(D.3) and (D.3) are equivalent to

|| Softmax K TQy; — 1f|oc < €

|| Softmax K'Q), ; — Ol|loc <€, h#k.
This yields

|[Softmax (K" Q). . — E(Xi)||ls < e

Thus, by the nature of || - || o,

[Softmax (K" Q). . — [E(X1), B(X2), -+, E(Xy)][le < €.

01

We construct W to discard Softmax K ' Q - in Softmax K T Q:

n+1:NMaxAafr,t

-
O(NM;LXAH-fn)Xn ’

Thus
[Softmax (K ' Q) Wo — [E(X1), E(Xa2), -+, E(Xn)]|ls
= [|Softmax (K 'Q),. . — [E(X1), E(X2), -, E(Xn)]ll

1:in,

<e.
This completes the proof.

D.3 Proof of Proposition 3.3

(D.3)

(D.4)

Proposition D.3 (Proposition 3.3 Restated: Attention Reassigns Value to Max-Affine Partition).
Following the notation in Proposition 3.2, let F : RY — R . be a piece-wise constant function
which is separately constant on each U;, i € [Npaxas]. We show that for any e > 0, there exists an

self-attention Attn such that

[Attn(X) — [F(X1), F(X2), -, F(Xn)llleo <6

for every X in X with exception of a region of arbitrarily small Lebesgue measure in R"™.

Proof. Let Linear and the Wy, W and Wy matrices be the same as in Appendix D.2. Then by

Appendix D.2, we have

[[Softmax (K ' Q) Wo — [E(X1), E(Xa), -+, B(X,)] e < €0,
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for any ¢y > 0.
Let V; denote the value of F' on Uj;.

Construction of Wy,. We construct Wy, to be

Wy :=[0i1xa Vi Vo - Viuaas-

Thus V equals to
V := WyLinear(X)

X OdX(NMaxAH_n)
= [led Vl Vi te VNMafof] I’ﬂ OnX(NMaxAﬁ‘*n)
O(NMaxAH—n)Xn NMaxag—n

= [Vl Voo VNMaxAFf] .

Thus we have
|VSoftmax (K 'Q) Wo — [F(X1), F(X2),- -+, ( )]Iloo

= || [Vl Vooo-e VNMaxAH SOftmaX (KTQ) Wo — )7F(X2)a T 7F(Xn>]HOO
= ” [Vl Vooooee VNmeAH SOftmaX (KTQ) Wo — Vl Vo oo-- VNMaxAH’] [E(Xl)vE(X2)a e
< Vsc€o-
Let ||V ||cc€o < € yields the final result. This completes the proof. O

20
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E Proof of Results in Section 4
E.1 Proof of Theorem 4.1

In this section we give the proofs of our universal approximation theorems of self-attention. We first
prove the L., norm version whose target function are continuous. Then we combine this result with
the well known Lusin’s theorem and extend our result to Lebesgue integrable functions in terms of
L, norm.

P

Theorem E.1 (Theorem 4.1 Restated: L..-Norm Universal Approximation of Self-Attention). Let
f: R4Xn — R4X" denote any continuous function on a compact domain U C R%*™ and let € > 0
be any positive real number. Then, there exists a self-attention Attn with a prepended Linear layer,
such that

||f — Attn o Linear||_ <e.

Proof Sketch. Our proof consists of four conceptual steps.

Step 1: Partition Input Domain U via MaxAff.

* Flattening Input. Each input Z € R**" is reshaped into a single vector Z € R by stacking its
rows or columns. This unifies the domain as Z € [—D, D]4".

* Grid / Max-Affine Construction. Since f is uniformly continuous on the compact set U, choose
0 > 0 such that

121 = Zslloe <6 = [|f(Z1) = f(Z2)]0 <e.

We subdivide [—D, D]" into cubes of side < 4, yielding G = P9" grid centers {v; }?:_01. We

treat MaxAff as a piecewise (max-)affine or piecewise-constant partition: for each Z, there’s a
nearest v; within ¢/2.

Step 2: Configure Linear and Attn to Imitate MaxAff over U.

* Sum-of-Linear-Transformations Map Linear. Design Linear : R4*" — RM (for some dimen-

sion M) to capture the dot products (v;, Z). Essentially, Linear(Z) arranges these {v] Z}ina
form accessible to attention. This ensures each grid center v; can be individually “queried.”

* Encoding Affine Components. Observe that max;{(v;, Z) — 11jv;]1?} is akin to a max-affine
2 into K and @ for later use in Softmax (K Q).

function. We store terms v;'—Z , plus — 3 |v;
Step 3: Enginner Attn to Generate an Indicator of Which Partition Cell the Input Belongs To.

* Construct K " Q. In the self-attention block, let K" Q ~ R({v;, Z) — {lv;]1?), where R > 0 is
large. This makes Softmax(K T Q) favor the row j* maximizing

(v, Z) = 5 llvs1*.

* Near-One-Hot Distribution. Hence the j*-th row obtains probability close to 1, effectively

identifying which grid center v;- is nearest to Z. We interpret this as a near-one-hot “indicator”
vector for the correct partition cell.

Step 4: Map the Indicator to the Target Value f(Z).
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* Assigning Values. We place f(v;) in the “value matrix” Wy, so that once row j* is selected, the
attention output is ~ f(v;+). Since Z is within ¢ /2 of v;+, uniform continuity implies

1£(2) = f(v;+)

| <e, (for suitably chosen ¢).

+ Final Reshaping (If Needed). A small linear projection M can reshape the output back to R4*™.
The essential logic is that the correct f(7;) is “routed” to the final output via the near-one-hot
attention distribution.

Thus, a single-head attention block with a minimal linear layer can approximate any continuous
function on the domain. This completes the proof. O

Proof. We divide our proof into two parts:

 Part 1: Construction of Attn and Linear. We construct Attn and Linear in accordance with the
steps shown in the proof sketch, and calculate the precise output of our construction.

* Part 2: Estimation of Approximation Error between Attn o Linear and f. We calculate the
difference between the output calculated in previous part and the target function to

Part 1: Construction of Attn and Linear.

We first construct the grid points in [—D, D]%" used in the construction of Linear and Attn.

These grid points are used to construct the max-affine partition. Specifically, the max-affine partition
we use is a grid-partition and these points are the center points of these grids.

Construction of Grid Centers in [—D, D]9". Let Z = [21,22, - , 2,] € R¥™ denote the input

to Linear. Define Z := [z] 2] ,---,2]]T. P € Ny is a parameter that controls the size of the

attention block and the error of our approximation.
Definition E.1 (Grid Centers in [—D, D]*"). Define vg, ,.... k,, € R as

2Dk, — DP 2Dky — DP 9Dkgn, — DP] "
Vky ko, kan ~— P ) P y "y P )

fork;, € {0,1,2,--- ,P — 1}, i € [dn].

Remark E.1 (Scalar-Labeled Grid Centers). For each multi-index (ki,...,kq,) with k; €
{0,..., P — 1}, we define

dn
si=Y kP! sefo,..,P"—1}
i=1
This base- P expansion gives a one-to-one map between the tuple and the scalar. This notation allows
us to define another representation of the grid center:
Us = Uky,....kan -
For every v € V, we define

VU 1= |V1:d, Vd+1:2d5 " ** ’U(n—l)d+1:nd] .

dxn

We now construct functions F and 7'. They are linear functions of f : R¥*™ — R4*™ playing crucial
roles in the constructions of Wy and W, in Attn(-).
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Construction of F and 7. We first show that f is bounded. Because [ is continuous within a
closed region, its output value is bounded oco-norm. Let By denote this bound

Bo = |[fllL

We now construct two functions E(-), T'(-) related to f. Their sum is a constant while their subtraction
is scaled f. Forany Z € R4*" we define

E(Z) = layn — %f), (E.1)
T(Z) = Lagn + g ), (E2)
and
(E+T)(2):=E2)+T(2),
(E—T)(2) = E(Z) - T(Z
By the definition of E(-) and T(-), we have
(E+T)(Z) =2axn (E.3)
(E-T)(2Z)= %OZ). (E.4)

for any Z € R4x",

Construction of the Layer of Sum of Linear Transformations. We now construct the Linear
layer to be

G-1 [ (n-1) d—1 0
. () \T /.. ((24G+1) (2dG) (2dG) 1x2dG
Linear(Z § , (Zey i) (Wiraiinara | €1 E : €itst1 1 € pstaas1 + Luc |
J dx1
(( ( )“H \](1( L1 is shifting the 1 in e j:l down for dG 10\)\\)
where G = P,

This layer multiplies the flattened input with the grid centers in Definition E.1 and append a 2dG-
dimensional identity matrix below the matrix containing these multiplications.

We now express the output of Linear in a simpler form in the following discussion.

First, we show that

(n—1) (n—1)

(n) T(o. _ T ,
E ( Zey iy ) (Vi)katiikdra = 241 (V) kas 1k
= S~ k=0
retrieve the (k + 1)-th token
[, T T T
*[21722’ ,Zn]’Uj
= ZTUj (By Z being the flattened input)

=v/Z€eR, j€{0,1,2,--,G—1}.
This yields

G-1 d—
Linear(Z) = v; Tz
=0 s=0

=

(24G)  (2dG) T (2dG-+1) 01x24G
Citst1 T Cjysfac+1) €1 oye

<.
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Xo Xo
= | lac  Ougxac| - (E.5)
Oaexac  lac

Explicitly, the last line is by

G-1 d—1 2ac) \ T
TS 2
Uj 4 ( j+s+1) = Xo,
7=0 s=0
which implies
G-1 d—1 (240 (200 .
TS 2 2
v; Z (ej+s+1 + ej+s+dG+1) = [Xo Xol.
7=0 s=0
Here
Xo = [UOTEllxd U1T211><d UQTleXd Ugflgllxd} .

To summarize, in the output of the first layer of linear transformations, the first row consists of linear
transformations of the flattened input, while the other rows are together an identity matrix (I24¢).

Construction of K and () Matrices. We now construct the W, and W matrices in the self-
attention block and calculate the output of Softmax (K TQ).

We define Wy as follows

1 0 0 0 0
WK — 0 _HUOHgl _HUG—lﬂgl _H%H%l _””G—lﬂgl
. D) B 1><_|gl 2~ l><_|gl D) N IX_Fi 2~ 1><_l|j
0, In(T'(vg)) -+ In(T(Wg-1)) In(E@y)) - In(E(vg-1))

The definition of W yields that

K := WkLinear(2)

1 0 0 0 0 0
2 2 va_1l2 voll2 12
— 0 _va”z 11><Td _ HU;HQ 11><Td _H G2 I3 11><Td _H ;Hz 11><_g _HU2||2 11><_Fl
0, W) W@GE) - WT@FEe-1) WEG) nEG))

X, X,
: [ Lic OdedG‘|

Odexac  lac

0

lva 1113
-5 tlhix

In(E(vg_1))"

U()nglxd Uizglxd Ug_1221><d Uonglxd Uszglxd U(T;_lzllxd
- | ””3”211@ - Hv;Hz 11XTd o IIvG;Hz 11XTd _ ||v;\|211XTd _ Hv;l\z 11><Td _ ““G;”?thd ,
W(T@) W(T@) - W(TEe-1) WEG) WE@) - hEEe1))
(By (E.S))

where the last line follows from X being multiplied by 1 and thus appearing in the first row of the
output.

Next, we construct W, to be
0 Rlixn Oix@da—n)

Wqo:= 10 Rlixn Oi1x@dc—n)
0, I, OnX(Qden)
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This yields that

Q@ = WyLinear(Z)
[0 Rlixn Oix(2ac—n) Xo Xo
= |0 Rlixn O1x@2dc-n) Lic  Ougxac
| On I, Onx (2dG—n) Oacxac  lac
_Rllxn le(Zden)
= |Rlixn 0O1x(2dG-n)
L I, 0n><(2dG—n)
We now calculate the attention matrix Softmax (K TQ).
Calculation of Softmax(K ' Q). First, K ' Q) writes out as
[T llvoll3 ~ i
vy Z14 2 la IWn(T(vo))
ol Z1, ey, w(T@))
Tz loll2 ~ Rlixn  Oix2da—n)
KTQ= UG—F1~Zld H'ui”z 14 ln(T(vCi_l)) Rlixn O ioic
Yo %1d Tzld IH(E(’U())) n Onx(QdG—n)
ol Z1, ey, wm(E®G))
~ 2 .
vl 21, 1, m(B@e,))]
i R(vg Z — HU%”E Vlasn + In(T (Vo)) Od><(2dG7n)_
R(o] Z = ")l + (T@)  Ouxiacn)
~ 2 ’ ~
_ R(vgleN— HUG2—1‘2‘2)1an +1n(T(UG71)) 0d><(2dG7n) (E6)
R(%T% - ””3”2)1dx” + In(E(vo)) 0dx (2dG—n)
R(v] Z — ””;”2)1an +In(E(v1)) 0dx (2dG—n)
> va—_1]|? . ~
R(vf 12 — 0 liy 1y 4 M(BT61)) O 2acn))

where the last line follows from the multiplication of block matrices. This multiplication between
KT and Q is equivalent to first multiplying the first 2 columns in K T with R and then broadcasting
their sum to the first n columns, and then adding the result with 7" and E related blocks. Columns are

all filled with 0 except

for the first n columns.
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Remark E.2 (Interpretation of K ' Q). The non-zero entries of K ' () is an aggregation of two

matrices
[ R(UJZ— [[vo 2”3)1an ]
R(UlTZ— [[v 1”§)ld><n
T 5 leel?
R(UG 1Z Hvﬁ )1d><n (E.7)
R(v, T7 — v 2)1 dxn
R( TZ Hvlﬂz)l dxn
_R(U(T;—1Z - %ﬂdxn_
and
[ In(T'(v0)) ]
In(7'(v1))
In(T(Fg-1))
in(E (i) | &
In(E(v1))
In(E@e-1))]

In these two matrices, (E.7) is identical between columns and has the precision coefficient R free of
our choice. In later discussions, we set R to be sufficiently large so that the Softmax approximates a

maximum function, and “selects” the i of the maximal R(v; Z— %)10[)“1 fori € {0,1,--- ,G—1}.
By "select" we mean only the entries with the selected label has a value not close to 0 in each column
of Softmax(K T Q).

(E.8) does not include R related terms. Thus when R is set to be sufficiently large in our later
discussions, (E.8) does not affect the selection made by (E.7).

If we exclude the (E.8) in the attention score matrix Softmax (K ' Q), the output approximates a
matrix whose columns are all-zero except for two sub-vector equal to 1/2d - 14. This writes out as
(here we only show the first n non-constant columns)

O(sfl)dxn
=1
2d tdxn
O(G*S)dxn (E9)
0(5—1)d><n
=1
9d tdxn
O(G—s)dxn

for any s € [G]. The addition of (E.8) change the 14 in (E.9) to

?(s 1)dxn
6dT(US 1)
(G=s)dxn | E.10
0(5 1)dxn ( )
2dE(US 1)

O( —s)dxn

In later discussion, we use V' to transform (E.10) to T'(vs_1) — E(Us—1) = 2f(Us—1)/2d By to obtain
the final output.
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Now, we divide the calculation of Softmax (K ' Q) into two parts: the calculation of exp(K ' Q)
and the calculation of the denominator of every column of Softmax (K ' Q). This denominator

explicitly writes out as Z?icf exp(K TQ)M for each i € [2dG].

For exp (KTQ), by (E.6), we have

exp(R(vg Z — HU%“ ) )T (vo) Lax (2dG—n)
exp(R(v{ Z — HU;“% T(v1) Lax (2dG—n)

= el
GXP(R(UT_ Z— 2)>T(UG—1) lax (2dG—n
exp(KTQ) = GITN ”iw N X (@G
exp(R(vg Z — 52) ) E(vo) Lax (2dG—n)

exp R(UIZ— Hvéllg) E(v1) Lax(2dc—n)

E.11)

- )
exp(R(vg,lZ — %))E(UG—Q Lax(2aG—n) |

For the denominator, we calculate it in columns. Let ¢ denote the column which we calculate the
denominator in Softmax. Wheni € {n+ 1,n + 2,---,2dG}, there are 1 - 2dG = 2dG columns.
And when i € [n], we denote that

2dG G 2

- _ ~ i
E eXP(KTQ)i,j = § : (LixdT(Vj-1).i + LixaE(Vj-1). ) ~exp<R (U]T_lz _ logallz ]21|2)>}
=1 =

(By (E.11))

:(11><d(E +T)(vj-1).4) - exp (R (vj_lé - m;n%)ﬂ

:(11xd(2dxn):,i) : eXP(R (UJT1Z - |vj21”%>>]

~ . 2
2d - exp <R (valZ - ”“321”2» i € [n. (E.12)

I
Ma

<.
Il
—

I
M a

<.
Il
—_

Il
Ma

1

<.
I

Observing from (E.12), Zji(f exp(KTQ) ; is invariant of i for i € [n]. In this case, we define

i,

2dG

G
1 = vi_1]|3 .
a(Z) = 24 E exp(KTQ)m. = E eXp(R <v;1Z — HJ;HQ)) eR, i€[n]
i=1 i=1

From (E.11) and (E.12), we have
Softmax (KTQ)
1 1
= exp(KTQ) ® {m ladagxn m12de(2dG—n)}

(e —
y zji(;vxp(l\’ Q),/

is invariant of ¢ for 7 € [HD
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) )T (Vo) Lax (2dG—n)
2 o~
exp( R(v] Z — |v2\|2) T(v1) Lax(2ac—n)

eXP(R(UcT;qZ— e 2 ) T(@6 1) Tax(aac—n) . .
© | 5darzy 12dGxn m12dG><(2dG—n)}

(o) Lax (2dG—n)
exp( R(v z - Iv ||§) E(v1) Lax(2ac—n)

eXP<R(Ugf1Z - w))E(%G—l) Lax(2dG—n) |

a(Z) T(EO) éldX(Qden)
exp( R Z— \\1/12”2) N )
«(2) T'(v1) & Llax(2dG—n)

exp | R(vg T n
]. vG— ral —_n
_ 1 e - (va-1)  Glax@2da—n) (E.13)
2d exp (R(vng g 2) _ )
o) E(vo) G Lax (2da—n)
exp R(v;g—%)
o) E(vy) & lix(2dG—n)

~ 2
exp R(vg,1Z—7”vG;1 HQ)

L a(Z) E@a-1) &lax@dc—n))

Construction of W, and Wy. We now construct the Wy, matrix and calculate the V' matrix of the
self-attention.

We define Wy, as:

Wy =104 X1 _Xl]dx(1+2dG)’

where

X1 = [Id Id Id]dxdG’

is a matrix formed by stacking G I matrix horizontally.

With this definition, we compute V' matrix as follows

V := WyLinear(Z2)

X, X,
=[0q X1 —X1]'[ Iic OdedG]
Odaxaa IpTe]

= [X; —Xi]. (E.14)
After the construction and calculation of V', we go on to construct Wy as:

dBoyI, }

Wo = .
© |:0(2dG—n) xXn
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The sole purpose of Wy is to extract the non-zero entries of the final output.

Calculation of the Qutput of Attn o Linear.
block

We now compute the final output of the self-attention

Lax (2dG—n)

Lix(2dG—n)

Lax(2da—n)
Lax(2da—n)

Lix(2dc—n)

Lix(2aG—n) |
(By (E

Odx (2dG—n)

Odx (2dG—n)

Odx (2dG—n)

Wo.

.14) and (E.l3))

Wo

(By (E.3))

Attn o Linear(Z)
[ exp R(vJ27%)
o(2) T (o) é
exp R(UIE—LJ;”%)
~ 1
o(Z) T (1) el
= v 113
exp(R(vgilZ—$) .
-l X sy )
2d exp (R('u(;r 2—%)
(2) E(vo) e
exp (R(U;I'Z_LU;‘@)) 5 L
a(2) E() el
Rl 7— chflug)>
exp Va1 5 = L
L a(2) Elvg-1) g
[ exp R(vOTE——H“gHg) _ "
(2 (T'(v0) — E(20))
~ 2
1 exp(R(vIZ—%)) - _
= 5751 (2) (T(v1) — E(01))
T oz lvg1l3 '
exp| R(vg_12 5 ) _ _
_ - (T(56-1) — Elio-1))
(Sum of X1 multiplied by 7" related blocks and —X; multiplied by F related (mes)
[ T lvol3 1
eXp(R(UO i 2)) 2 (%) 0
a(2) , Bo dx (2dG—n)
ex T Z— llvillg "
, p(roiz-0) o .
:27d 1 a(Z) Bo dx(2dG—n)
exp(R(vg 1277“11G71H§)> ~
7 2 2f(va—1)
L a(Z) BGO 0d><(2dG—n)_

Let I; denote the d-dimensional identity matrix. We have

~ flogll2
exp (R(v&rsz))

2f (vo)

a(2) ) Bo

oo (BT 5 Jo113 N
p(R( 1 )> 2f(vo)

X1 a(Z) Bo

~ e 2
exp (R(vg,lz—i" G;1 12 ))

2f(ve—1)

a(Z)

Bo
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[ T lvoll} 1
OL(Z) 5 B(]
T el
x| R 2732 ) hr 5
= [Id Id Id]dXdG : O‘(Z) Bo
= llvg-_1l3
L a(Z) Bo
=5
(Equi\ulcnl to summing all blocks in S)
G-1 T vl ) .
_ ]d.eXp(R(UJ z 2 ) 21(5)
s a(Z) By
G—-1 ~
1 T i3 2/ (@)
= Ty 12y ) 2/
2 a(2)? (R(”ﬂ 2 )" B,
This yields
ex R(UTE— ijHg)
Attn o Linear(Z) = { G-1 P J 2 2f(v;) 0 ] Wo
=0 a(Z) Bo dx (2dG—n)
T lvills dBnI
[z ey s ]
l:Zj—O a(Z) ,:(30') 0dx(2dG—n) O(Qden)Xn
G-1 1 _ 1
=3 gee(RWTZ- i) ) /@) ©.15)
7=0

Part 2: Estimation of the Approximation Error between Attn o Linear and f.

With above calculations of the output of Attn o Linear, we now demonstrate how this output
approximates our target function.

Essentially, we demonstrate that each term in the summation of (E.15), given by

1 s 1,
oé(Z)eXp<R(vj Z 2|Uj|2)),

approximates a max-affine indicator as R becomes sufficiently large. They are each multiplied with
f(v;), which is the value of the target function at the center point of the indicated region.

Definition E.2 (Max-Affine Function on Z). Let Aff; € R¥ — Rwithj € {0,1,2,--- ,G — 1}
denote a group of affine functions defined as:

~ - 1 .

J

Then let MaxAff € R — R denote a max affine function whose affine components are {Aff; |
j€{0,1,2,---,G — 1}}. Explicitly defined as:

MaxAff(Z) = _ max {Affj(Z)} .

Because the target function f is a continuous function on a closed domain, the function f is uniformly

continuous. Thus for ¢, there exists a § > 0 such that for any Z;, Z, as long as ||Zl — ZQHOO <4,
we have | f(Z1) — f(Z2) | < ¢/3.
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According to this §, we divide the affine components of MaxAff into three parts:

1. The maximal component, which has the smallest label j,,.

2. All affine components that match the maximal component or fall within § of it (Jy as defined
below).

3. The remaining Aff; for j € {0,1,...,G — 1} (J; as defined below).

We write out the labels of these groups of components as follows

je{o,lgl,l-g,cfl}{Aﬁj(Z) = MaxAff(Z2)},
Jo == {j | MaxAff(Z) — Aff;(Z) < 8},

Ji = {j | MaxAff(Z) — Aff;(Z) > 6}.

Jm =

For any pair of ¢, j € {0,1,--- ,G — 1}, we have

oy ag Ty il sl
Aft;(2) - Aft;(Z) =, Z 5 v; Z 5

:_Hm@+ﬁ§_M@_<_Z§+ﬁg_Wﬂa

2 2 2 2

1, ~ 1, ~
= —SIZ -l + 517 - vl
Thus for j,,, we have

1~ 1~ ~ ~ _
—§IIZ—vij§+ §|\Z—vj||§ = Aff; (Z) - Aff;(Z) >0, je{0,1,---,G—-1}.

This yields
1Z = v, 13 < 11Z = v5ll3,
forall j € {0,1,--- ,G —1}.
This denotes j,, is also the label of the closest v; to Z among all v;, ¢ € {0,1,--- ,G — 1}. Thus we
have
=2 = i i — 22} E.16
g = Zllo = min {vi = Zl) (E.16)

Now, we prove v, (the grid point nearest to Z ) has a distance to Z smaller than half of the grid
width (e.g., D/g) in infinite norm.

Let D := 2D/g x {—1,0,1}" denote a set differences to v;, from the set of all v; (i €
{0,1,--- ,G — 1}) neighboring v;, . For any A in D, from (E.16) we have

v, = 213 < llvs,, + A& = Z] 3.
This yields

20T(Z —v;,,) < ||A]3:
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This means that, for any k € [dn], by selecting A to be £2D/ geédn), we have:

2D  ~

4D?

£2- 2 (Z — v, ) =207 (Z —v;,) < AR = 2

g

Thus we have

which implies
D

1Z = vj, llos < =
Jm |loo g

Set g to be larger than 2D/J; we have

(%)

1Z = v, )1 < 5,

thus

1F(2) = F@) o0 < <,

w

where the inequality holds by 6/2 < 6.

(E.17)

Calculation of ||Attn o Linear — f||o.. We now calculate the difference between the output in

(E.15) and target function f

||Attn o Linear(Z) — f(Z)]|0o
G-1 exp(R(v]TZ I

=1y :

)
F@) = F(2)]|oo

- GZ eXp(R(UJ; (Z;) B gey-sam s T )
- G: . (;<Z~z>_ s - s (By poperyof i o)
- exp(R(U;;(ZZ; ) ) - sl

& exp(R(ié) )iy s

"5 GXP(R(i(ZN@ )iy s E19

We now calculate each part in (E.18).
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As previously stated, for any Z1, Zs, as long as || Z1 — Za || < 8, we have || f(Z1) — f(Z2)]loe < €/3.
Thus when we designate Z; = v; for any j € Jy and Z, = v;, , along with (E.17) we have

~ i ll2
eXp(R(vaZ— I %”2)) N
Jj€Jo
~ vill2
exp(R(vaZ— I élb)) N N N
< (1f @) = f@Wj,)lee + 1 £(05,,) = F(Z)]|0)
_ a(2)
Jj€Jo
§ eXp(R(vaZ — ”v;”2)> o«
<2 a(2) 5+3)
Jj€Jo
exp (R(’UJ-TZ ”g”ﬂ) ¢
= ~ 3 (E.19)
= a(2)
For j,,, we have
exp(R(v) Z = §lv;,,13) o o(BELZ -5l D)
When R is larger than 53 In(2 BoGe), we have
exp(R(v;rZ — ””;”g)) N
JEJ
exp(R(v]TZ — ””;Hg))
< , o(2) 2By (BY Ifllzo = Bo)
JEJ
~ v 2
deJl exp(R(UJTZ _ | %”2))
< 2B
a(Z)
~ vill2
ZjeJl exp(R(v]TZ _ I %H2)>
<2Bo > [0l
exp(R(v}:an L 2))
((1;(Z) is the sum of all exp /1’(’1,‘72 — ‘lg 2 )) , thus larger than exp (I:’(’u;” Z - Mg’ Iz )))
R
—280 3 exp( 3oy, - 21~ o - 21 )
JjE€J1
R, 6
<2l e g |3~ ))
_aps2
< 2B0G€Xp( 319 )
_a52 8In(3BoGe)
< 2ByGexp 2 2 (By R > 55 In(2BoGe))
€
= —. E.21
3 ( )
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Combining (E.19) and (E.20) yields

exp <R(’UJTZ _ H%Q‘Hg ))

SV f(7
> "7 1) = £(2)
J€JoU{jm}
> v;]|2 — v 2
) eXp(R(v;Z— I ;”2)) 9% eXp(R(v]TmZ— Il J§nH2>) c o e
= o(2) 37 o(2) 3 (ByE19ad(E20)
Jj€Jo
7 vill3
B Z exp(R(v;'—Z— I -2H )) %
— Z o
JE€JoU{jm} a(2) s
2€
< — E.22
S35 (E.22)
where the last line is by . 1 (..} a7y exp(R(vaZ - %Hm”%)) <1
We plug (E.21) and (E.22) to (E.18) and get
— v 2
. exp(R(vij— Il J§L|\2)> N
[[Attn o Linear(Z) — f(Z)]|o0 < o(Z) 1£(©5,,) = F(Z) oo
exp(R(vaZ — vau’;‘)
) — £l
+ "7 1) - £(2)]
J€Jo
7 il
eXp(R(vaZ -3 2)) N
JE€J1
2«
3 3
=e.
This completes the proof. O

We also extend this L..-Norm result we just proved to L,-Norm.

Corollary E.1.1 (L,-Norm Universal Approximation). Let f : R4*™ — R9*" denote any Lebesgue

integrable function on a compact domain U € R%*™ and let ¢ > 0 be any positive real number. Then,
there exists a self-attention Attn prepended with a Linear layer such that

||f — Attn o Linear|r, <e.

Proof Sketch. The same partition-based construction applies almost everywhere; outside a negligible
set, f is continuous (Lusin’s theorem). Thus the L., argument extends.

Proof. Since f is Lebesgue integrable on a compact set, f is bounded almost every where. Let B,
denote the bound of || f||,.

By Lusin’s theorem, for f on a compact domain U, there exists a continuous function g which is
equal to f in U except for a region Ds such that u(Dy) < A. This can be written as

Ds ={Z|f(2) # g(Z)}, (E.23)
u(Ds) < A. (E24)

Here p stands for the Lebesgue measure of a set.
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By Theorem 4.1, there exists a net work Attn o Linear, consists of a self-attention Attn and a layer
of sum of linear transformation Linear such that

|[Attn o Linear — g1, < €q,

for any ¢y > 0.
This denote that for any Z € U

| Attn o Linear(Z) — g(Z)||, < (dn - €?) = eo(dn)7.

Combine this with (E.23) and (E.24), we get

n({Z|[|Attn o Linear(Z) — g(Z)[|c > €o}) < n({f(Z) # 9(Z2)})
<A, (E.25)

since that f(Z) = g(Z), ||Attn o Linear(Z) — g(Z)|| = ||Attn o Linear(Z) — f(Z)]| < €.
This yields
|| f — Attn o Linear| ,, = (/ If — Attn o Linear|[? dz)7

zZeU

< (/ | f — Attn o Linear||) dz + / | f — Attn o Linear||? dx)%
ZeU\Ds ZeDs

=

= (/ lg — Attn o Linear||} dz + / | f — Attn o Linear||} dz)
ZeU\Ds ZeDs

< (w(U\Ds)(eo(dn)7)? + A - BE)¥ (By (E.25))
< eo(dnp(U))7 + A7 B,.

Set
€
€ < T
2dnpu(U))>
P
A<
= B,-2°
We have
|f — Attn o Linear| r,, < eo(dnu(U))% + A%Bp
< (dnp(U))} - —— (5T )iB
s nup P - T P
2dnp(U))r  Bpo2t
_eL €
202
=e.
This completes our proof. O

E.2 Proof of Theorem 4.2

Theorem E.2. Let Ux C R¥*™ and Ug C R¥*" be two compact domains, and let f : Ug x Ug —
RY*" be any continuous function that takes input from both domains. We use Zy, Zg € R¥" to
denote the two inputs of f from Ux and Ug respectively. Without loss of generality, suppose both
input domains to be [~ D, D]?*", where D € R,. Then for any ¢ > 0, there exists a single-head
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cross-attention Attn and two layers of sum of linear transformations, Linearx and Linearg such
that:

[|Attn (Linear g (Zx ), Linearg(Zq)) — f(Zk, Zg)||s < €,

forany Zx, Zg € [-D, D]¥*".

Proof. Without loss of generality, assume Ux = Ug = [-D, D]*" fora D € R;.

Construction of Grid Centers in Ux,Ug. Same as in Appendix E.I, we define Z =

[2{,29, -+ ,2 ]T. P € N is a parameter that controls the size of the attention block and the error
of our approximation. Define v, k, ... k., € R to be

9Dk, — DP 2Dky — DP 9Dky, — DP1"
Vky ko, kan *— P 5 P sty 2

, k; €{0,1,2,--- ,P—1}, i € [dn].

Let V := {0k, ko, by |Ki € {0,1,2,--- , P —1}, i € [dn]} be the set of all vy, iy ... k,, . We also
define another way to refer to a vector in V, denoted as

US~dn o pio1) = Uky ko, kan -
Ei:lk’P( )

Please see Remark E.1 for the reason for the feasibility of such expression.

Following the notation in Appendix E.1, for every v € V, we define

U= [V1.d, Vat1:2d, " 7v(n—1)d+1,nd]

dxn
as a d x n matrix-form representation of v.
Construction of f Related Function £ and 7. The continuity of f within a closed region

guarantees it to be bounded in co-norm. Let By denote this bound. For any ax,aq € RIX" we
define

ag,a
E(G’K7aQ) = laxn — f( Z Q)
0
a Y
T(ak,aq) = lixn + W~
0

We define (E + T')(ak,aq) = Elak,aq) + T(ak,aq). By the definition of E and T, (E +
T)(ak,aq) = 24xn forany ax,aq € Réxn,

Remark E.3 (Intuition behind E and T'). F and T are constructed to satisfy 3 conditions:

J T(Zk,ZQ) + E(Zk, ZQ) = 2.
* T(Zy, Zq) — E(Zk, Zq) = 2f(Zk, Zq)/Bo.
e T, E > 0 for any input.

The first condition is used to configure the denominator in the Softmax expression of attention to a
constant value. The second condition is used to form the value of f in the

For simplicity, same as in Appendix E.1, define

G := pi,
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‘We now construct the Linear i and Linear layers to be

G-1 [(n—1) dG—1
. L (n) \T (2dG?+G) (2dG?) (2dG?)
Linearx (Zr) := Z Z (Zr 1) Wi pasinara | €2a624511 Z (ej+s+1 T € stdaz 41
J=0 \ k=0 s=0
n Of2dG2 } 7
G x2dG?
1 (n 1)
. n+G
Linearq(Zq) = ZQekJrl)T(vj)kd-'rl:kd-i-d e§'+1 )[11X" 01 (262 )]

b

_|_

0G><n Ocx(2dG2—n)
In Op x (2dG2—n)

Same as that in Theorem E.1, we have

(n—1)

(Zrey )T (0) pas1mara = ) Zic, (E.26)
k=0
(n—1) - _

(ZQek11)T(Uj)kd+1:kd+d = UJTZQ’ (E.27)
k=0

forj €{0,1,2,--- ,G —1}.
We now calculate the output of Linear x and Linear.

For Linear g, we have

G-1 dG—1
. _ TS (2dG2+G) (2dG?) | (2dG?) T Lac»
Linearx (Zr) = Z Vj Zke 2dG2+j+1 <61+s+1 + ]+s+dc2+1> + [chzdc;?
7=0 s=0
[ L2 .
— 2 2 by (E.26)
S0 7 0 (99 o) (ov ®29)
[ Ly Oagzxda?
_ 04G2 xdG2 . PTes .
T dG 1 ( (2dG?) dG 1 [ (2dG?)
Z] 0o Yj Z Z ( ]+s+1) ZJ =0 Yj Z Z ( j+9+1)
Lyg2 OdG2xdG2
= |0agzxaq? Lig= |, (E.28)
L Xk Xk
G-1 0 0
. _ (n+G) ) Gxn Gx(2dG2?—n)
Linearg(Zg) = jgo v; ZerJrl [Lixn  O1x(2dc2—n)| + { I, Onx(mG?n)]
G 2dG*+G
— ZJ 01 U Z 5_;,_1 * )11><n 01><(2dG2—n) (b\" (E.27)>
In OnX(QdGQ—n) ’
Xq Ogx(2dgz—n)
- , E.29
|: I, 0nX(2dG27n) ( )

in which X5 and X, are defined as

U B 4 T T T
XK = [UQZKllxdG v Zxlixag Vg Zxlixde - UG_1ZK11><dG}a

1xdG?

37

%



’UJ%Qlan
UI%Qllxn
XQ = U;ZQllxn
Ug,leth

—_—
GXxXn

We now construct the W, and W matrices in the self-attention block and calculate the output of

Softmax (KTQ).

In the following, we define W in parts. First, we present it as a block matrix

O1xdaz Oixgez 1

. Wo Wo 0
k=1 w, w0
W Wg 0

We then define the submatrices in (E.30) as follows

2 — 2 574 3 W
Wy = [_Ml xda + Wy _wllxdc‘i‘WO —@hxda-f-wo

Wr = [WT W}Gil)} )

I%y=[w$>tvm wien],

Wy= Wy Wy Wi .- WI]GXdGQ )

in which

Wo = [—%hxd —%hxd —%hxd _wllxd}

W= (@, 0) " (@, 5)"

dxGn

Wy = In(E@;,5) m(EG;, 7)) I(E(¥;,06-1) "], 7€{0,1,2,
dxGn

Wy = {Rega)llxd ReéG)llxd ReE;G)llxd :

Gxd

The definition of W yields that

K := WkLinearg (Zk)

) 01‘}?0@2 01{}}1002 (1) 1, I;iG2 2 Od?2X5G2
== Wl Wl 0 dGXXdG )UéG
| Wr Wg 0 K K
[ Xk Xk
_ | W Wy
W W
\Wr Wg

38
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(E.30)

_lvaallzy W
2 1xdG 0>

G -1},
G -1},
(By (E.28))



Next, we construct the W matrix as

01><G Rllxn
L 01><G Rllxn
WQ o IG len
O1><G In

In this definition, the () matrix in attention can be calculated as follows

Q := WgLinearg(Zg)

_01><G R]-1><n
Oixa Rlixn| [X@ Ogx(2dc2—n)
= . By (E.29
IG O1><n In On><(2dG27n) ( y( )>
_01><G In

[Rlixn O1x(2da2—n)
Rlixn  O1x2da2—n)
Xq  Ogx2daaz—n)
I, 0n><(2dG2—n)

Now we calculate the attention matrix Softmax (K Q).

K T Q can be calculated as follows

X Xk [Rlixn  Oix(zac2—n)
Wo  Wo Rlixn  O1x2da2—n)
Wy Wi Xq  Ogx(2daz-n)
Wr Wg I, Onx (2dG2—n)

_ (RXI—E + RWO—_Dth + W;XQ + Wi 0ac2 x (2462 —n)
(RXI—E + RWO )11><'n + W;XQ + WE OdGQX(QdGZ—n)

K'Q=

The W, X, in the expression of K ' () matrix is further calculated as

W Xo=[W, Wiy W; - Wy
W?"Q
Wi Xq

T

GxdG? XQ

-
Wl XQ dG2?xG

We define Q; := W X, then W, X can be denoted as stacking this block vertically for G' times.

In this definition, J; matrix can be expressed as

Ql = WIXQ
UJ%Qllxn
T UI%Qllxn
= |:R€§G)11><d RC(QG)].lxd RE(GG)].lxd:| v;ZQllxn

”g—lellxn
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TS
r Zol

Re(G)l Vg ~Q 1xn
4 ¢ ’U;—%Q]-lxn
= . ’U;—ZQ].lpr

vg—léQllxn
i RUJZQlan
RUI%Q].an
— | Rvj Zolaxn | . (E.31)

_Rvg_IZQ lan

The calculation of Softmax (K TQ) can be disassembled into two parts, the numerator
exp(Softmax (KT Q)) in the expression of Softmax and the denominator of every column of
Softmax (K" Q), as in the expression of Softmax, explicitly written out as ZQdCf exp(K TQ) for
each i € [2dG].

We calculate exp (K ' Q) as follows

T\ [exp((RX + RW ) 11w, + RW, Xq) © exp(W/ Lig2x (2dG2—n) |
exp(K Q) - T T T T
exp (RXK + RWO )11><n + RW1 XQ) ® exp WE 1dG2 (2dG2—n)

(E.32)

For the denominator, we calculate it in columns. Let ¢ denote the column which we calculate the

denominator in Softmax. Wheni € {n +1,n+2,---,2dG?}, the i-th column has 1 in every entry.

Thus the sum of all entries in this column equals to 1 - 2dG = 2dG.

And when ¢ € [n], we have

N
Q
M

d
eXp(KTQ)m‘

<.
Il
—

I
MQ

c
Z [hxdT Vji—1,0j5—1)i + LixaB(Vj, -1, 0j5-1):4)

J2=1
2 2
> Vi, —1 ~ Vi1
.exp<R (val_lzK — w +UjT2_1ZQ _ HJ22”2>)]

<.
Il
—

1

Jji—1 J2—1

Il
Mo
Ma

<
=
I
=
.
M
I
—

(11a(2a5m)-s o o Maald | v > vl
1><d( dxn):,i)'exp Ujl—l K B) +Uj2—1 Q 5

I
M
Ma

<
=
Il
-
.
[V
Il
-

Il
Ma
Ma

sd-exp(R o7 Fe ol L v 5 luelBY)
- eXp v, 172K 5 +vj, 1 5 , 1€n]. (E33)

Il
_

1

J1=1j2

We observe from (E.33), that ZQin exp (K TQ) is invariant of i for i € [n]. In this case, we
define

2dG?
a(Zk,Zq) : =54 Z exp( KTQ)
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I T I T
eI I I IO U A
Ji=1j2=1

to denote the 1/2d of this value invariant of ¢ for simplicity.

Because

2dG?
oZx. 29) = 55 Y _ exp(K'Q), .

j=1

from (E.32) and (E.33) we have

Softmax (K ' Q)

_ KT —! lodGxn 5367 l2dGx (2dG—n)
= eXp( Q) O) Zji? eXp(KTQ)lj 2dG

nominator of Softmax

denominator of Softmax
(By —sga—————— is invariant of 4 for i € [/1])

Z‘;(,(}; \'xp(l\’i(b)) ij

exp(KTQ) ® [mlwcxu ﬁlﬁlGx(Qden)}

_ [exp((RXf + BWY ) 1ixn + BW Xq) © exp(Wi ) Laczx(2d62 —n)
exp((RX o + RWy )lixn + RW Xg) O exp(W5 ) lagzx(2dG2—n)

© {mbdGXn ﬁlszx@dG—n)} (By (E.32))

denominator in Softmax
— 2da(Z1K,ZQ) eXp((RXI—E + RWJ>11XH + RWITXQ) © exp(W;) gdlg2 1dG2><(2dG2fn)
stazi 7y XP((RX + RW )11 + RW) Xq) @ exp(Wg) 5767 Lagex (2a62—n) | |

Now we’ve defined and calculated the attention score matrix Softmax(K ' (Q), we go on to construct
the Wy matrix and calculate the result of multiplying V' = Wy Linear(Z ) to the attention score
matrix.

We define Wy, as

WV = [XQ 7X2 Od],
———

dx (2dG2+1)
where
Xo=[Ig Iz --- I4.
dxdG?
This yields the V' matrix to be
V = Wy Linear(Z k)
L2 Oagzxaa?
= [X2 —X2 04]|04c2xdc? Lac2
| ——
dx (2dG2+1) Xk Xk
(2dG241) x 2dG?2
— [Xg —XQ} 1o lage Od§2XdG2 (xincc X i is multiplied by ())
——— |Yag2xda? dG?2
dx2dG?
2dG2 x2dG2
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— X2 —Xy].

With V, we compute the output of V Softmax(K T Q) as follows

V Softmax(K ' Q)
sime—7— eXP((RX & + RW ) 11yn + RW Xg) @ exp(W]) 5w lace 2
— X2 —Xo]- Qda(ZK Zq) XP K 0 Jlixn Q pP\Wrp 242 LdG? x (2dG2—n)
WKZQ) eXp(RXK + RWO )11><n ® eXp(RW;XQ) @exp(WE) ﬁldGQX(QdGQ—n)

= XQ [m exp((RX}z + RWO )11><n + RWl XQ) ® eXp(WT) WldG2><(2dG27n):|

—X, [m exp(RXI—E + RWOT)llxn ® exp(RWlTXQ) ® exp(Wg) ﬁldcﬁx(ngz,n)}
7X2 in [X2 7X2]
1

(E.34)

To further calculate V Softmax(K ' @), we now calculate the result of its non-trivial part (the part
beside Odgz x (2dG? ,n))

Xs [exp((RX i + RW 11w + RW) Xq) © lexp(W) —exp(W4)]] - (E.35)
We now calculate each part in (E.35)
exp(Wr) — exp(Wg)
= (exp([w w Wl —ew([w® W w7
e (117) " —exp (W)

exp (W}”)T - exp(W() ' (E.36)

T T
| exp (WéG_l)) — exp (WéG_l))

In (E.36), we have

)
exp (W:(Fi))T B eXp(W(i))T _ exp(In(7T'(v;, v1 —.eXp n(E(v;, vo

[exp(In(T (@1, v6-1))) — exp(In(E (T, v0)))
B T(E“'UO) E(UZ,’U())
T(v;,v1) — E(v;,v0)

LT (v, va—1) — E(v;,v0)

2f(vi,vo)
Bo

2f(vi,v1)
By

L Bo
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Thus (E.36) is equal to

2f (vi_1,v0)
_Bo
T NT 2f(viz1,01)
(exp (W}”) fexp<Wg)> > - Bo . ielal. (E37)
(i—=1)G+1:G,: :

2f (vim1,v6-1)
By

We also calculate the other part exp((RX; + RW, )11x, + RW;' Xg) in separate parts

T llvoll3
exp(vg Zx — % lagxn
T lloall3
- - _ exp|vy Zx — 52 | lacxn
exp((RX e + BWo )11xn) juc jas1idcs 1), = §

~ 2
exp (vgleK - LG; Il ) LaGxn

BT T
= exp| v, Zx — Laxn,

idG+jd+1:idG+(j+1)d,:

2
and
Q1
1
T _
exp((RW; XQ)1)idG+jd+1:idG+(j+1)d,: B
Q1 idG4jd+1:idG+(j+1)d,:
(This is a stack of G 1 in (E.3l))
= (Q1)ja+1:(j+1)d,:
= Q}]TZQldxn.
Thus

eXp((RXIT( + RWOT)llxn + RWlTXQ)idG+jd+1:idG+(j+1)d,:

~ 12 |12 ~
= eXp<R(’U,TZK — HU;HQ - ||U;||2 +UJTZQ)> lixn, 4,7 € {0, 1,--- . G— 1} (E.38)

Combing (E.37) and (E.38), we have
idG+(j—1)d+1:4dG4jd,:

[exp((RXjr + RWy )11xn + RW, X)) ® [exp(W,) — exp(WZ )]]
|

jod (% 2 (% 2 > 2 @'— s, Vj—
— eXp(R(U;rZK— H 2|2 _ H ;HQ +’UJTZQ))1d><n® f( éo J 1)7

i,j€{0,1,--- ,G —1}.
Thus we compute (E.35) as

(X2 [exp((RX L + RWy )1ixn + RW) Xq) © [exp(W]) — exp(WZ)]])

Q
Q

= (X2): idG+jd+1:dG+(j+1)d

@
I
=)
<.
I
=)

"R [exp((RX e + RW )lixn + RW{' Xq) © [exp(W7 ) — eXp(WJ—Er)HidG+(j71)d+1:idG+jd,:
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Q
L
Q

_ I - R( TZ _ ”'UZH% _ HUJ”% + TZ ) 1 o
ey d " €Xp Vi 4K 5 5 Uy 4Q dxn

2f(Vi—1,vj-1)
By

s
Il
o
<.
I
o

(Bccausc X is a horizontal stack of [(/)

2f(Vi—1,vj-1)
By '

Q

G-1
_ e RecT 2 - 1208 101
=0

9 9 +’U]T2Q)> 1d><’rL<D

&
I

o
<.

We now put back the 1/2da(Zx, Zg) in (E.34) and calculate the final output as

V Softmax K ' Q
1
- WKZQ)X2 [exp((RX ¢ + RW ) lixn + RWY Xq) © [exp(Wy') — exp(W)] Oagex(2ace—n)]
> v; ||2 v;]|2 > 2f(v;— , Vi
1 ! Gz_l exp(R(viTZK — ez Jeglle v]TZQ))lan ® JC(B%OJO Ot (2462 )
Qda(ZK, ZQ) —_———
=0 j=0 exp(WjT)—exp(Wg)
eXP(R('U;rEK—LU;H% ”“7”2 +v TZQ)) 1dxn@f(:%:jfl> .
dBo Z Z a(Zx,2q) Odx (2dG2—n)

Next, we construct Wy to be

W ::[ dBol, }

O(2dG27n)><n

This yields the final output of Attn o Linear to be

Attn o Linear(Z2)

= V Softmax KTQWO
75 Zi E (ZK,ZQ) Odx(2dc2—ny| |02dG2—n)xn
—_—
Wo
~ Vi 2 Vs 2 ~ ;};7 vy

G-1G-1 eXp(R(’UZTZK _ 5”2 _ 5”2 + U;—ZQ))].dxn © f(éiol)

=2 (E.39)

Oé(ZK7 ZQ)

Estimation of Error between Attn o Linear and f We now calculate the loss between the result

in (E.39) and the target function f. For simplicity, we first define Z := [[ZI—';, 25 ] 7] to accommodate
to the expression of affine functions.

Definition E.3 (Max-Affine Function on Z.). Let Aff;; e R?" 5 R, j € {0.1.2.--- ,G -1}
denote a group of affine functions defined as

= . = 1 1 -
Aﬁzvj(z) = UZTZK + ’U_;FZQ - 5””1”% _ iHv]”%’ %,]) € {07 172a U 7G _ 1}

Then let MaxAff € R% — R denote a max affine function whose affine components are
{Aff, ;14,5 € {0,1,2,--- ,G — 1}}. Explicitly defined as:

MaxAff(Z) = Aff; (2) ).
rh i) i,je{O,{I,éa-)-(- G71}{ i )}
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In the following discussion, we use € {0,1,--- , G — 1}? to refer to a pair of coefficients (i, j),
and denote A; ; as A,, for the corresponding 7). Furthermore, we denote the two labels encapsulated
in 7 as i, and j,

Because the target function f is a continuous function on a closed domain, the function f is uniformly
continuous. Thus for ¢, there exists a § > 0 such that for any Z1) = [Z{})] ZS)], Z®? =

122, 25)). as long as | 2() — Z®)||o < 8, we have || f(ZD) — f(ZW)[| < /3.

According to this §, we divide the affine components of MaxAff into three parts, the maximal
component (and also with the smallest label on both entry), whose label is denoted as 7,,, the group
of affine components equal to the maximal component or smaller than it by no more than J, and
finally, the other Aff,. We write out the labels of these groups of components as follows

fhn = ne{o,l,g,l.l.p,c—l}Q{AH”(Z) = MaxAft(2)},
Eq := {n | MaxAff(Z) — Aff,(Z) < 6},

By = {n | MaxAff(Z) — Aff,(Z) > 6}.
For any pair of ny,72 € {0,1,--- , G — 1}2, we denote that
Aff,, (2) — Aff,,(Z)

2 2 2 2
T 5 ||vi7 |2 T = ||Uj7 |2 T = ||Ui,, |2 T = ||vj7 |2

2

Z 2 " v |12 Z 2 _ Vi
_ H ;("2 JrrUiTmZK . H Zvél H2 B ” 5”2 JrUij ZQ . ” JmH2 (E.40)
1Zxl3 |« 5 vl 1Zal3 | 7 5 lvi,ll3
_ (- 9 +vin2 ZK — 9 — B -+ ’Uj772 ZQ — T
1 ~ 1, ~ 1 ~ 1 ~
= — 517k — v, 13— 120 — v, I3+ 512k — i, B + 511 70 — vs,, 13
1 ~ v; 1, ~ v;
= | Z = [T |2 = = Z_|:ZTI1] 2, E.41
12 - o= 18- 312 - o |18 @41
Let v, := [v.),v]]7, denote a flatten stack of v; and v; . Same as v;, define v, := [v; ,v; ].
n tn? “In n In n n? YIn

Then the above expression denotes 7,, is also the label of the v, closest to Z among all Uy, 1) €
{0,1,--+,G — 1}2. Thus we have

o0, = Zlo= _ min | Lo, - Z]a} (B42)

This means that v,,  is the grid center closest to Z in 2-norm.

We now prove this closest grid center has a distance to Z smaller than half of the grid width (D/g) in
infinite norm.

LetD :=2D/g x {—1,0,1}" denote a set of differences to v,,, of all the v; (i € {0,1,--- ,G—1})
neighboring vy, ,. For any A in D, from (E.42) we have

Vg, = ZII5 < llvg,, + A = Z]I3.
This yields

20T(Z —v;,,) < ||Al3,
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(dn)

which means for any k € [dn], by selecting A to be i% -ep

2D ~ =
+£2 x 7(2 — vy, )k = 20T(Z —vy,,) < Al =

Thus we have

~ D
(1Z = vy, i < =, k€ [dn),

This is equivalent to

1Z = vy, oo

IN

Set g to be larger than 2D/, we have

0

1Z = v loe < 5

thus

1£(Z) = f@y)llo < =.

w

2, k € [dn].

we have

4D?
g%

(because 0/2 < (5)

Calculation of ||Attn o Linear — f||.__. We now calculate the difference between the output in

(E.39) and target function f

6-1 exp(R(v] Z — Il
|Attn o Linear(2) — £(Z)ll = | 3 ( T >ﬂmw¢w>w

G-1 exp (R(’UTZ _ “'Un”g

-1Y 7

5
exp( R(v] 2 ﬂ])
G-1 2

(By > =1)

n=0 a(Z)

IN

1f(Wn) = f(Z)lloo

(By property of infinite norm)

1/ (0n,.) = F(Z) oo

)f(ﬁn) — (D)l

a(Z)

exp (R(v;g _ lell3
i a(Z)

exp (R(’U;Z _ llvallz
T Z)

)
1£@y) = F(Z)lloe.  (E43)

The last row is simply a separation of the summation in the row above.

We now calculate each part in (E.43).
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As previously stated, for any Z1, Zs, as long as || Z1 — Za || < 8, we have || f(Z1) — f(Z2)]loe < €/3.
Thus when we designate Z; = v,, for any n € 7 and Z3 = v,,_, along with (E.40) we have

exp(R(ng _ liogl )>

n ~
= Oé(Z) Hf(vn) - f(Z)”oo
exp R(UTZ _ H%Hg)
<> ( - - >(||f(5n)—f(5nm) oo T 1 (0y,,) = f(Z)lls0)
ISUD) Oé(Z)
exp(R(oy 7~ Igle)) -
<2 o(2) (3+3)
IS
exp(R(v,TZ - va\lﬁ)) %
= oZ) R (E.44)
n€n0
For any 7,,,, we have
exp(R(u;mZ _ %)) ) exp(R(v;mg B ||vn§nu§)) )
o(2) £ (0n,.) = F(Z2)]lec < o) 3 (B4

When R is larger than 8 1n(3/2 - BoGe)/(352), we have

exp(R(v] Z — sl
( o) >||f(5n)f(Z)lloo <y

nen

nenL

exp (R(v;]rm 7 ¥))

~ 2
r . ~ r v - .
((1(/) is the sum of all cxp(l{(z‘j/ — %)) , larger than any element in the sum)

R
—280 3 exp( 5 o — 213 - oy - 218 )

nem

< 28| exp@ [@2 ) 5])
3R52)

< 2ByGexp (

Cas2 81n(2 BoGe)

= 2ByG exp 3 307

(E.46)

€
3.
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Combing (E.44) and (E.45) yields

eXp(R(UnTZ _ ||v;\|§ ))

1 (@n) = F(Z)lloo

n€noU{nm} a(2)
< eXP(R(vJZ _ %D e, (R(ULZ . M)) .= (By (E44) and (E45))
= a(Z) 3 a(2) 3 ST
B exp(R(v;]rZ — %)) . %
- n€NoU{nm} a(2) 3
< % (E.47)

T lenl3
exp R(Un zZ > )
77€E0U{77'm} a(Z) -
By (E.47) and (E.46), we have

where the last line is by >

exp(R(v;mZ - HU"Q"'HE)) T

| Attn o Lineax(Z) — £(2)llse < 7 Ba) — (D)1
exp R(’UTZ— ”'UnHS
+ ( AR )nf@n) — £(2)ls
neky
exp R(’UTZ— H”n”g)
+ 2 ( T )IIf('ﬁn) - H(2)]
nek,
< 2¢ €
=73 + 3
This completes the proof. O

Theorem 4.2 can be easily extended to Lebesgue integrable functions in L, norm in the following
result.

Corollary E.2.1 (L,-Norm Universal Approximation). Let f : Ux x Uy — R¥*™ denote any
Lebesgue integrable function on a compact domain Ux x Ug and let € be any positive real number.

Here Uk, Uq € R¥*™ stands for the compact domain of the two input sequences of cross-attention.
Then, there exists a cross-attention Attn prepended with a Linear layer such that

||f — Attn o Linear|r, <e.

Proof. Without loss of generality, assume Uy = Ug = [~D, D]|**" fora D € R,.

Since f is Lebesgue integrable on a compact set, f is bounded almost every where. Let B, denote
the bound of || f||,,.

By Lusin’s theorem, for f on a compact domain U, there exists a continuous function g which is
equal to f in U except for a region Ds such that u(Dy) < A. This can be written as

Ds ={Z|f(2) # 9(2)}, (E48)
1(Ds) < A, (E.49)

where p stands for the Lebesgue measure of a set.
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By Theorem 4.2, there exists a network Attn o Linear, consists of a cross-attention Attn and a layer
of sum of linear transformation Linear such that

|[Attn o Linear — g1, < €q,

for any ¢y > 0.
This denote that for any Z € U x U

||Attn o Linear(Z) — g(Z)|, < (dn - ep)% = eo(dn)%.

Combing this with (E.48) and (E.49), we get

p({Z| Attn o Linear(Z) — g(Z) e > co}) < w({f(Z) £9(D)) <A, ©50)
since if f(Z) = g(Z), ||Attn o Linear(Z) — g(Z)|| = ||Attn o Linear(Z) — f(Z)|| < e
This yields

||f — Attn o Linear||r, = (/ | f — Attn o Linear||} dx)%
ZeUxU

< (/ | f — Attn o Linear||? dx—|—/ | f — Attn o Linear|| da:)%
ZGUXU\DJ ZeDs

=

(/ lg — Attn o Linear||} dz + / | f — Attn o Linear||} dx)
ZeUxU\Ds ZeDs

< (u(U x U\Ds)(eo(dn) )P + A - BY)»
< eo(dnpu(U x V)7 + AV B,

Set
€
€0 S 1
2(dnu(U x U))»
N
<
= B,-2°
‘We have
||f — Attn o Linear||r, < eo(dnu(U x U))% + A%Bp
< (dnp(U x U) ()t B
< (dnp D - P
2(dnu(U x U))% By, -2v :
L€
202
=e
This completes the proof. O
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F Proof of Results in Appendix A

F.1 Proof of Theorem A.1

Theorem F.1 (Theorem A.1 Restated). Let f : R?*™ — R%*" denote an L-Lipschitz function (in
terms of 2-norm) whose input domain is X'. For any € > 0, assume X is contained in IN,, sphere by
the radius of €¢/(3L) in 2-norm. Then, there exists a Linear layer and a Attn layer such that:

||Attn o Linear — f||oo < e.

Furthermore, Attn and Linear have a total number of O(dnNN,,) trainable parameters.

Proof sketch. This proof is identical with Theorem 4.1, except for an alteration on the set of v;. [

Proof. We follow the proof of Theorem 4.1.

Notation of Sphere Centers. Let Z = [z1,29, -+ ,2,] € R%*™ denote the input to Linear. Define

7 = [2{,29 , -+ ,2 ]T. P € Ny is a parameter that controls the size of the attention block and the

error of our approximation.

Let v;, i € [IN,] denote the centers of the N, spheres that covers X. Let V := {v;|i € [N;]} denote
the set of all v;.

=TT T T
Forevery v € V, we define 0 := [v1,4, Vg 100 > V(n—1)at1:ndl

Construction of f Related Functions. Because f is continuous within a closed region, its output
value is bounded in co-norm. Let By denote this bound, we now construct two functions that. For
any a € R¥*" we define E(a) := lgxn — f(a)/Bo and T(a) = 14x, + f(a)/By. We define
(E +T)(a) = E(a) + T(a). By the definition of E and T, (E + T)(a) = 24x», for any a € R4*",

Construction of the Layer of Sum of Linear Transformations. We now construct the Linear
layer to be

N,—1 [(n-1) d—1 T
. . (n) \T 24Nz +1) (2dN, ) (2dN,) 01x2dn,
Linear(Z) := Z Z (Zej11) (”j)kd+1:kd+d €1 Z( Citst1 T j+s+dN +1> + { ];dN ] )

=0 \ k=0 5=0
where N,, = Pdn,

We now express the output of Linear in a simpler form in the following discussion. First, we show
that

(n-1) (n-1)
(n) _ T
E : (Z€k+1) (Uj)k:dJrl:derd = E : Zk+1(”j)kd+1:kd+d

k=0 k=0
.17 .T T
_[Zl Y29 5 7zn]vj

:vaZeR,je{071,2,-~-,NI—1}.

This yields
N,—1 d—1 e T o o
. (2dN, 2dN, 24N, +1 1x2dN,
Linear(Z) = Z v; ZZ( € bst1 T ]+s+sz+1) e + { I>2<dN }
=0 s=0 *
Xo Xo
= Ign, 04w, xdn, |
04N, xdnN, Iin,
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in which X, is defined as follows

Xo = [UJlexd Uirzvllxd U;Zvllxd 'U]—\rfwflgllxd-

Construction of K and () Matrices. We now construct the W, and W matrices in the self-
attention block and calculate the output of Softmax (K ' Q).

We define Wi as follows:

1 013<d 01><d 01?<d 01><d
Wi = [0 Moy . _leweoaldy, o _lweldy o _lewgal3g
. 2~1>§rd 3 1><_|(_i 2~1><_|£] 3 1><_(ri
0 In(T(wo)) -+ W(T(n,-1)) W(E(@)) - In(E@ON,-1))

The definition of Wi yields

K := WkLinear(2)

1 O1x4 O1x4 O1x4 01xd X, X,
= |0 —%11xd _7HUN12_1”§11><(1 —%1”(1 _7HUN$2_1“§11><d | Ian, 0an, xdn,
0 In(T(@W)" - W(T@n,—1)" W(E@)) - W(E@y,_1) ] Oivexan,  lan,
_08—211xd U]—\r/m_lgllxd U(—)erlxd U]—\r/m_lgllxd
= *%hxd *7HvN1271H§11><d *%hxd *7‘IUN1271‘|311><(1

|In(T@)" -+ W(T@N,1) WEG) - W(E@y,))

Next, we construct W to be

0 Rlixn Oix@2dnN,—n)
Wqo:=10 Rlixn Oix@an,—n)

On I, On><(2defn)
This yields that
Q = WgLinear(Z)
[0 Rlixn Oix(2an,—n) Xo Xo
= |0 Rlixn Oix@iv,—n)| | Ian, 0dN, xdN,
On  In  Onx(2dN,—n) 04N, xdN, Iyn,

[Rlixn  O1x(2an,—n)
= |Rlixn Oix@dn,—n)
I, 0n><(2sz—")

We now calculate the attention matrix Softmax (K ' Q).
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Calculation of Softmax(K ' Q). First, K ' Q can be expressed as follows

vzl lsley, (7))
v Z14 ““1“21 In(T (7))

T Zld ||U1H§1 In(T (v ) Rlixn  O1x(2dN,—n)

KTQ= |"Ne-1 Nt Rlixn O1x(2an,—n)
’Ug%].d HUOH2 ]- IH(E(:J())) In On><(2de7’rL)
’U1TZ1d ””1H21 IH(E(El))

~ v .2 -
ol 121y 1, m(B@, )]

R(v) Z — %)Mxn + In(7'(vo)) Odx (24N, —n)
R(v] Z — l2y1 0+ In(T(3y)) O (24, —m)

_ R(UJT/FlFZV lorectla ) gy, + In(T(Ty, -1)) Odx (24N, —n)
e lz)lan-HH( E(v)) Odx (2dn, —n)
(

R(v] Z —
R(v{ Z — “2)1dm +1In(E

Cl\D

’—‘l\)

1)) Odx (24N, —n)

~ 2: — ’
R(UI’ 1Z = w)ldxn +In(E(vn,-1)) Odx (2dN, —n) |

L x

Now, we divide the calculation of Softmax (K TQ) into two counterparts, the calculation of
exp (K TQ) and the calculation of the denominator of every column of Softmax (K TQ), as in

the expression of Softmax, explicitly written out as Zjijfz exp (K TQ)Z,], for each i € [2dN,].

For exp(K ' Q), we have

_ e B -

exp(R(vg Z — | 3”2) T'(v) Lax (2dN, —n)

~ w2 _
exp(R(v] Z — 1ulzy) 7 (3) Lax (24N, —n)
T ‘UNL 1”2

eXp (v, 7 — longoal )T(UN ~1)  lax(dn,—n)
exp(KTQ) = s el (1)

vy Z 2 2) E(vo) Lix(2dN, —n)

’U 2
1T ; 2) ) E(v1) Lax (2dN,—n)
~ 2 —
| exp (R(UI/E_12 - MDE(UNVH Lax(2an, —n) |

52



exp(R(v] Z — ””3”3) T'(v) Lax (2aN, —n)
~ 2 —
exp( R(v{ Z — ””;”2) T'(v1) Lax (2dN, —n)

eXP(R(UerlZ M )T(UN -1)  lax(2dn,—n)

— voll2 (F2)
exp(R(vd Z — 3 2)) E(%) Lax (2dN, —n)
2
exp(R(v{ Z — ;2) E(v1) Lax(2an, —n)

~ .v 2 -
eXp(R(Uszqu - %))E(Um—l) Lax (2dN, —n)

For the denominator, we calculate it in columns. Let 7 denote the column which we calculate the
denominator in Softmax. Wheni € {n + 1,n+ 2,--- ,2dN,}, it obviously equals to 1 - 2dN,, =
2dN,. And when ¢ € [n], we denote that

2dN,

2

x [ _ _ - Vi 2
Z eXP(KTQ)M (LixaT(0j-1).i + LixaE(Vj—-1).:) - exp (R <U;1Z - ”J21H2>)]
j=1 j=11L
- [ = vl
= (11><d(E + T)(Uj_l):ﬂ‘) - exXp (R (va_lZ — J;”)):|
j=1t
[ 5 vl
= (L1xa(2dxn):i) - €xp <R (UJ‘T_1Z - ];H)H
=1t
.- 5 lvial3
= 2d - exp(R (v;—rlZ— ];1 2>>7 i € [n]. (E3)

1

.
I

We observe from (F.3), that ZMY exp(K TQ) is invariant of ¢ for ¢ € [n]. In this case, we define

2dN,

N
1 = = vl )
alZ) = % E exp(KTQ)ij = E exp(R <v;-rlZ - HJ212)> eR, ien]
j=1 j=1

From (F.1) and (F.3) we have

Softmax (KTQ)

1
= eXp(KTQ) © [Zjizvz p(KTQ),, loan, xn mlszwx(szFn)}

( By I/ZjiT’ exp([\" Q)] ] is invariant of ¢ for i € [n] )

U 2 ~
exp(R(v] Z — 1 SHQ) T'(vo) Lax (2dN, —n)
I 1

exp|R(v) Z — *=52) )T (v1) Lax (2dN, —n)

exp(R(v}m_li—w))T(ﬂer) Lax (2dN, —n) L L
© [zda(*z) 2dN, xn  5gN, 12dN, x (2dN, —n)

exp(R(vg Z — val\i) E(v) Lax (2dN, —n)
exp(R(v{ Z — H'U;Hg) E(v) Las (24N, —n)

~ v _ 2 -
_eXP<R(U% 14— w))E(UNxfl) Lax(2dN, —n) |
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~ flonll2
exp R(UJZ—%)

a(2) , T(GO)
exp (R(U;r Z— %) _
T(v1)

a(Z)

=~ lon, 112
cxp<R<v£z,lz—%>)

_1 () TN, -1)
2d oo (ROgZ-1131))
a(Z) E(vo)
exp R('U;FZ—LU;H%) 5
a(2) E(u1)
T =~ lon, 112
cxp(RwNm_lZ—#) -
I a(2) E(UN,-1)

Construction of Wy, and Wo.
self-attention.

We define Wy, as

Wy = [0g

where

X1 = [Id

Iy - I

11
N, tdx(2dN;—n)

19
N, tdx(2dN;—n)

+1
N, dx(2dNgz—n)
+1
N, tdx(2dN;—n)

11
N, tdx(2dN;—n)

19
N, tdx (2de—n)_

We now construct the Wy, matrix and calculate the V' matrix of the

X1 =X,

dxXdN, "’

is a matrix formed by stacking N, I; matrices horizontally.

In this definition, V' matrix can be calculated as follows:

V := Wy Linear(2)

X, X,
Il lan, 04N, xdN,
04N, xdN., Ian,

After the construction and calculation of V', we go on to construct Wy as

wo - |

dBylI, ]

O(2dNT,—n) xXmn

The sole purpose of Wy is to extract the non-zero entries of the final output.

Calculation of the Output of Attn o Linear.
block.

We now calculate the final output of the self-attention
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exp R(UJE— L’gl\g)
a(Z) T'(vo) - Ldx (24N, —n)
~ vy 2
exp (R(UIZ*%) _ L
T(v1) ~ Lax (2dN, —n)

a(Z)

=~ lvn, 112
exp(R(U;rlZ_%))

1 T(n,—1) =1 n
Attn o Linear(Z) = — [X1  —X{] al2) 2 (ON-1) 7, Lax(2an,—n) Wo
2d exp (R('UJ Z—m))
«(Z) E(v) - Ldx (24N, —n)
~ vy 2
exp| R(v] Z— I 2H2 )) _ )
E(vy) ~ Lax (2dN, —n)

a(Z)

~ e 2
exp (R(v;rlz_w))

L a2 E@N,-1) 7 lax@iN,—n) |
[ exp (R(vggfw) i
2 (T'(vo) — E(v0)) Odx (2N, —n)
1 exp (R(UITZ—L];H%)
= 55%1 (Z) (T'(v1) — E(v1)) Odx (2an,—n) | Wo
exp(R(vI, 71274”“1\%2—1\\%)
i —@ (T(on,—1) = E(UN,-1))  Oax(2an,—n) |
- _ . -
exp (R('UOTZ— vaH2)> 2 f(
f(v
a7 o Odx (24N, —n)
= vl
L ew(nel2-140) ) G
= 2 a(2) Bo Odx (24N, —n) | Wo-
exp(R(vT E,M)) ~
Mot ? 2f(on, 1)
L o(Z) By dx (2dN;—n) |
We have
[ R(v] Z Ivoll3 1 I T2 lvol3
exp | R(vy Z——52) 2f (vo) exp| R(vy Z——5-2) 2F (o)
alZ) Bo aZ) Bo
exp R(UFE* H’”;Hz) ~ exp R(v;gf HU;HQ) ~
2f(v — 2f(v
Xi a(Z) éol) =[a I Id]ddez ’ a(Z) éol)
exp | R(vy, E_M exp( R}l _,Z— ||“N,,,71H§) N
P Net 2 2f(vng—1) P Ne—1 2 2f(vng—1)
L a(Z) Bo L a(Z) Bo i
— vi_1|?
Nm—lj eXp(R(vaZ— Il 121”2)) 24 ()
= a(2) By
No—1 ex R(UTZ N H%‘H%) -
o p J 2 2f(v])
=0 a(Z) By -
This yields
Attn o Linear(Z) { e (R07Z-195)) ] -
1 o Linear = Nz—1 2f(v;) (o)
>0 a2 By Vdx(2dN,—n)
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~ 12
_ L ew(roz-1E) o dBoly,
|:Z;V_£O ! a(2) 2fBEOJ) OdX(Qde—n) O(Zsz—n)X'n,
N,—1 exp(R(vJTZ _ u/u;n% ))
= f(@5)- (F4)
= a(Z)

Estimation of the Error between Attn o Linear(Z) and f(Z). After the above calculations of
the output of the network, we can now demonstrate how this output approximates our target function.

Definition F.1 (Max-Affine Function on Z). Let Aff; e R 5 R, j€{0,1,2,--- , N, — 1} denote
a group of affine functions defined as

- . 12
Aﬁ?j(Z):vaZ—””J%,je{o,1,2,.-- ,N, —1}.

Then let MaxAff € R¥ — R denote a max affine function whose affine components are {Aff; |
j€{0,1,2,--- , N, — 1}}. Explicitly defined as

MaxAff(Z) = Aff(Z)}.
pelil) = o s ()
Because the target function f is a continuous function on a closed domain, the function f is uniformly
continuous. Thus for e, there exists a § > 0 such that for any 71, Z, as long as || Z1 — Za||oc < 0,
we have || f(Z1) — f(Z2) o < ¢/3.

According to this §, we divide the affine components of MaxAff into three parts, the maximal
component(and also with the smallest label), whose label is denoted as j,,, the group of affine
components equal to the maximal component or smaller than it by no more than ¢, and finally, the
other Aff;, j € {0,1,2,--- , N, — 1}. We write out the labels of these groups of components as
follows

Jm = je{O,l,g}-l-p,wal}{Aﬂ‘j(Z) = MaxAff(Z2)},
Jo = {j | MaxAff(Z) — Aff;(Z) < 6},
Jy = {j | MaxAff(Z) — Aff;(Z) > 6}.

For any pair of 4,5 € {0,1,--- , N, — 1}, we have

A(Z) — AfE;(Z) = o) 7 — IillE (vrg_ le|§>
? J — Y 2 '

2
_ HZQH worz - Ll <_22 foT7 - ||vj2-|3>
= — SIZ w17 — vl
This denotes j,, is also the label of the closest v; to 7 among all v;, i € {0,1,--- , N, — 1}. Thus
we have
o = 2l = o min, — {llo = Z]l2)- (F5)

Thus, when considering the Z in the input domain of f, which by definition is contained in IV,
spheres, the closest center to 7 is the sphere containing Z. This gives

~ €
12 = V), ]2 <

= 3r (F.6)
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Then, with the L Lipschitzness of L we have
- € €
1£(Z) = f(0),)]lo0 < s Lb=3 (F.7)

Difference between Attn o Linear and f. We now calculate the difference between the output in
(F.4) and target function f

||Attn o Linear(Z) — f(Z)]co
N,—1 exp(R(vaZ _ ij\li)

=13 -

f@) = (2]

Z a(2)

Ne—lexp(R(v] Z — ””12'“3) B e (reyE- o3
P> (;@) U@ - @) (0 ( - >1>

N.—1 exp(R(v] Z — ij\lg)
< - ( ;(Z) : ) ||f(5_7) - f(Z)”oo (propcrty of infinite norm)

7=0

Z  lviml3

_ (B2~ 20w@m—ﬂmm

)
exp (R(UJTZ — ““32'“3 ))

1 (W) = F(Z)]l

j€Jo OZ(Z)
exp(R(vT Z — Il
+ ( 7 2>W@%ﬂﬂm. ES)
JjE€J1

We now calculate each part in (F.8).

For the L-Lipschitzness of f, for any 71, Z,, as long as ||21 - ZQ”OO < 37, we have || f(Z1) —
f(Z2)]|l < €/3. Thus when we designate Z; = v; for any j € Jy and Zy = vj, , along with (F.7)
we have:

exp(R(UJTZ — ””é”%) N
g% o0 1£(5) = F(Z)loe (E9)
exp R(UJTZ— ””%”g)
<2 ( o(2) )(If('ﬁj)—f(%)llooJr||f(ajm)—f(2)||oo)
j€Jo
exp(R(v]TZ _ Hvél\g)) C .
= j;(, o(2) (3+3)
exp(R(UJTZ _ Hvél\g)) o
B ;;0 a(2) e (F.10)

For j,,, we have

e (Reof, 2 - L)

(F11)
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When R is larger than 55 In(2 - ByN,e€), we have:

exp (R(UTZ — —”U;”g )

J ~
1£(;) = f(Z)]le
iJ, o(Z)
Z vl
exp( R(v] Z — 1%412)
< jezJ ( ;(Z) 2 ) - 2By (hy the bounded nature of /)

exp (0], Z - 110 )

(n (Z) is the sum of all L\])(/ (zTZ % )), thus larger than any element within the summation)

_2p, exp( (. ||vj—Z|%>)
JjeJ1

<aplnlen (g |G -#))

_3Rs2
< 2ByN, exp( 3R >
_352. 81In(2BoNae)
= 2By N, exp 3 302
€
== F.12
. (F12)
Combing (F.10) and (F.11) yields
exp(R(v] Z - Iglay) .
J€JoU{jm}
> v |2 4 Vi 2
< eXp(R(UJTZ— Il 5”2)) 9 exp(R(v;”Z _ J'én“2 )) .
C = .= By (F.10) and (F.11
= a(2) 3" ) 3 (ByEIDadEID)
Jj€Jo
B exp(R(v;'—Z - \|v£\|§)> %
= Z} a(Z) 3
]EJOU{J’WL}
2e
< = F.13
<5 (F.13)
exp ( R( vy ||2))
where the last line is by >, 7 5 4 o7 <1.

We plug (F.12) and (F.13) to (F.8) and get

exp(R(vT 7 — %))
[[Attn o Linear(Z) — f(Z)]|c0 <

1/ (05,.) = F(Z) ]l
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exp(R(v;'—Z — Hv;‘lg)) B
+]§) o7 1£(0;) — F(2) ]l
exp(R(v]—'—g— %)) N
2¢ €
=3 + 3

This concludes our result on the approximation error.

Estimation of the Number of Trainable Parameters.

‘We now estimate the number of trainable

parameter in the network we constructed to verify our claim on number of trainable parameters in the
main text of this theorem.

Remark F.1 (Meaning of Trainable Parameters). By trainable parameters we denote the parameters
that differs according to f. This includes the parameters related to the input domain of X, and
excludes the constants (i.e., 0 and 1) in the network.

We estimate the number of trainable parameters by each layer in the network.

First, we do the estimation for the Linear layer. It consists of a sum over N, UJT 7 , j € [N.], and
thus contain dn - IV, trainable parameters.

Then we do the estimation for W and W,. We restate the construction of Wg and Wo:

WK =

Wq =

R

[0 Rlixn
0 Rlixn
0, 1,

led
0 _RH”ng 1

5 1xd
L0 In(T(%))"

01%(2dN, —n)
01x(2dN, —n)
nx(2dNy—n)

led2 lef led2
_R\|UNT,2—1H2 11—?(1 _R”USHQ 11?d _R|\UNm2—1H2 11_>Fd ,
In(T(0on,-1)) In(E(vy)) In(E(Wn,-1))

From this, we observe they combined together have 2d - N, + 2dn - N, trainable parameters.

Finally, For Wy, and Wy, we restate their definition:

where

WV = [Od X1 7X1]7
dBol,,
Wo =
© |:O(2dGn)><n:| ’
X1:=[q 14 Ia) g acs -

Wo contains n trainable parameters (dBy).

In conclusion, the whole network contains a total of

dnN, + 2dN, + 2dnN, +n = 4dnN, + 2dN, + n,

trainable parameters, which is of O(dnN,,) level.

This completes the proof.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [ Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the relevant
information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

¢ Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: The Abstract and Introduction explicitly list the three main contributions — Max-

Affine interpretation, self-attention universality, and cross-attention universality — and no addi-
tional claims are made elsewhere.

Guidelines:

» The answer NA means that the abstract and introduction do not include the claims made in the
paper.

* The abstract and/or introduction should clearly state the claims made, including the contribu-

tions made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

* Itis fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Sec 5 “Concluding Remarks”, paragraph “Limitations” (lines 336-350) details
assumptions on partition granularity, boundary effects, training difficulty, and distribution shift.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]

Justification: All assumptions are stated next to each theorem in Section 3-4; complete formal
proofs are given in Appendices C-D (pp. 16-48).

Guidelines:

» The answer NA means that the paper does not include theoretical results.
* All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
 All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they appear
in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Appendix B specifies datasets, noise-injection protocol, model size, and training
procedure; code will be released anonymously with the supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.
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If the paper includes experiments, a No answer to this question will not be perceived well by
the reviewers: Making the paper reproducible is important, regardless of whether the code and
data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submissions to
provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: All datasets (MNIST, CIFAR-10, Fashion-MNIST) are public; an anonymized
PyTorch implementation and run scripts will be included in the supplemental ZIP.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code,
unless this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions (if

applicable).

Providing as much information as possible in supplemental material (appended to the paper) is

recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
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Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Appendix B lists optimizer, batch size, epochs, and random-seed protocol for each
dataset.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental material.
. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Figure 2 (page 14) shows mean + 1s.d.v. over five random seeds for each noise
ratio; the caption clarifies what the shaded region represents.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for example,

train/test split, initialization, random drawing of some parameter, or overall run with given

experimental conditions).

The method for calculating the error bars should be explained (closed form formula, call to a

library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% ClI, if the hypothesis of Normality of
errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer:

Justification: The proof-of-concept experiments run on a single commodity GPU, but exact
hardware specifications and wall-clock times are not reported.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experi-
mental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).
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9.

10.

11.

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The work is purely theoretical/empirical on public data; no ethical concerns were
identified (Impact Statement, line 361).

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: The Impact Statement (lines 361-363) argues that the work is foundational and
poses no immediate societal risk.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [NA|

Justification: No high-risk models or new datasets are released; only small proof-of-concept code
is provided.

Guidelines:

* The answer NA means that the paper poses no such risks.

» Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.
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12.

13.

14.

* Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: Standard datasets are cited in Appendix B; each dataset carries a permissive academic
license.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The work does not introduce new datasets, models, or benchmarks.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]
Justification: No human subjects or crowdsourcing involved.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.
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15.

16.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]

Justification: No human-subject study carried out.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

¢ For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: No LLMs are used in the method, only in standard writing support tools.
Guidelines:

e The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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