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Abstract

We establish the universal approximation capability of single-layer, single-head
self- and cross-attention mechanisms with minimal attached structures. Our key
insight is to interpret single-head attention as an input domain-partition mechanism
that assigns distinct values to subregions. This allows us to engineer the attention
weights such that this assignment imitates the target function. Building on this, we
prove that a single self-attention layer, preceded by sum-of-linear transformations,
is capable of approximating any continuous function on a compact domain under
the L∞-norm. Furthermore, we extend this construction to approximate any
Lebesgue integrable function under Lp-norm for 1 ≤ p < ∞. Lastly, we also
extend our techniques and show that, for the first time, single-head cross-attention
achieves the same universal approximation guarantees.

1 Introduction

We establish the universal approximation capability of single-layer, single-head self- and cross-
attention mechanisms. Departed from prior studies, our results demonstrate that the expressive
power of transformers arises from only the (softmax) attention module and an attached linear layer,
without additional components such as positional encodings or feed-forward networks (FFNs). More
importantly, our proofs show that sequence-to-sequence universal approximation requires only a
minimalist configuration: single-layer, single-head attention with linear transformations.

In this era, the power of transformers [Vaswani et al., 2017] is undeniable, given their dominance in
modern machine learning. They drive models such as BERT [Devlin, 2018], ChatGPT [Brown et al.,
2020, Achiam et al., 2023], and LLaMA [Touvron et al., 2023a,b, Dubey et al., 2024] for language;
ViT [Dosovitskiy et al., 2021] and DiT [Peebles and Xie, 2023] for image and video; DNABERT
[Ji et al., 2021, Zhou et al., 2023] for genomics; and Moirai [Woo et al., 2024, Liu et al., 2024]
for time series, among many others. Central to these successes is the attention mechanism. While
numerous variants and implementations exist [Tay et al., 2022], the softmax-based vanilla attention
[Vaswani et al., 2017] remains a mainstay in both research and industry communities (e.g., ChatGPT
and Llama).

However, despite its practical importance, theoretical insights into why softmax attention is so
powerful remain incomplete. Moreover, the extent to which softmax attention alone drives perfor-
mance is unclear. Empirical [Tay et al., 2022] and theoretical [Keles et al., 2023, Deng et al., 2023,
Alman and Yu, 2024] evidence suggests that deviating from softmax attention (e.g., via sub-quadratic
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approximations) often degrades performance, indicating that softmax attention may be a central
engine in Transformer architectures. At the same time, a growing body of work explores its memory
capacity [Mahdavi et al., 2023, Kim et al., 2023, Kajitsuka and Sato, 2024], universal approximation
properties [Yun et al., 2019, Kajitsuka and Sato, 2023, Jiang and Li, 2023], representation learning
[Sanford et al., 2024b, Chen and Li, 2024], and task-specific theoretical performance [Gurevych et al.,
2022, Edelman et al., 2022]. However, these studies often rely on additional components, such as
feed-forward networks (FFNs) or multi-head setups or customized assumptions, as they target the
entire Transformer architecture rather than isolating the role of attention module.

To this end, this work presents attention-only expressiveness results: softmax-based attention alone
already suffices for universal approximation of sequence-to-sequence functions. We operate under
three key premises for investigating the expressiveness of attention:

1. We focus on softmax-based attention,
2. We seek a minimalist design (a single layer of single-head attention plus a linear transforma-

tion),
3. We impose minimal assumptions on the data distribution or network architecture (no posi-

tional encodings, no multi-head expansions, no FFNs).

We provide new proofs that a single self-attention layer approximates any continuous sequence-to-
sequence function on a compact domain, in both the L∞ and Lp norms. Furthermore, we show, for
the first time, a parallel result for cross-attention, revealing its universal approximation capability
under the same minimalist setting.

Contributions. Our contributions are as follows:

• Interpreting Attention as a Max-Affine Partition. We show that single-head softmax
attention, combined with a linear layer, implicitly partitions the input domain using a max-
affine construction. This partitioning allows attention to assign distinct outputs to each
partition cell. This perspective clarifies how softmax-based attention enables a powerful
piecewise-linear approximation scheme.

• Single-Layer, Single-Head Self-Attention Universality. We prove that a single self-
attention layer is a universal approximator for continuous sequence-to-sequence functions
on compact domains. Our results cover both Lp- and L∞-norms guarantees and require
minimal assumptions on data and architecture, highlighting the inherent expressive power
of attention alone.

• Single-Head Cross-Attention Universality. We establish, for the first time, that the same
approach also endows a single-layer, single-head cross-attention with universal approxima-
tion capabilities. This result further underscores that much of a Transformer’s expressiveness
can reside solely in its attention block, even when the queries and keys come from distinct
input sequences.

Organization. Section 2 presents the ideas we built on. Section 3 shows our interpretation of Atten-
tion as a Max-Affine Partition in a simplified setting. Section 4 presents our universal approximation
results for single-layer, single-head self- and cross-attentions.

Related Work

Universal Approximation. Early works of universal approximation theorems focuses on the ex-
pressiveness of feed-forward networks (FFN) [Cybenko, 1989, Hornik, 1991, Carroll and Dickinson,
1989]. Since Vaswani et al. [2017] propose the transformer architecture and the scaled dot-product
attention module, there is a series of research aiming to explain the expressiveness of transformer.
Yun et al. [2019], Kajitsuka and Sato [2023] offer explanation from the perspective of contextual map-
ping. Among them, Yun et al. [2019] are the first to prove the universal approximation capability of
transformer. Yet since the network in [Yun et al., 2019] requires excessive layers (O(n(1/δ)dn/n!)),
Kajitsuka and Sato [2023] make more careful estimation upon the numerical results of contextual
mapping and proves that with skip connections, a one-layer transformer is capable of approximat-
ing any permutation equivariant continuous function. Takakura and Suzuki [2023] add positional
encoding to lift the restriction of permutation equivariance, and demonstrate a one-layer transformer
approximates shift-equivariant α-smoothness function with an error independent of input and output
dimension. Jiang and Li [2023] give a non-constructive proof using Kolmogorov representation
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theorem on the Jackson-type approximation rate of a two-layer transformer. While prior works have
achieves diverse and extensive result regarding the expressive capability of transformer, their results
require the feed-forward network (FFN) to add expressiveness to the attention module in order to
achieve universal approximation, which differs from our results derived from attention-only network.
Concurrently, Hu et al. [2025a] give an interpolation-based proof that softmax attention alone (no
FFN) is a universal approximator for continuous sequence-to-sequence maps on compact domains.

Provable Capabilities of Transformer. Recent theoretical studies also shed light on the practical
behavior of attention mechanism. Olsson et al. [2022] show that induction heads help models learn
patterns in context. Sanford et al. [2024a] prove that Transformers can do complex computations with
few layers because they work in parallel. In contrast, Luo et al. [2022] find that some Transformer
designs lose expressivity when using relative positional encodings. Kim and Suzuki [2024], Chen et al.
[2025] provide Transformer’s hardness results on learning constrained boolean functions. Building
on [Hu et al., 2025a], Hu et al. [2025b] show that a fixed two-attention-layer softmax Transformer
is prompt-programmable: it emulates any algorithm implementable by a single attention layer (cf.
[Bai et al., 2023]), providing a constructive account of one-model-many-tasks behavior with softmax
(not ReLU) Transformers. To add on these ideas, we prove that a single-layer, single-head softmax
attention with a simple linear layer can approximate any continuous function on a compact domain.
This shows that attention alone can learn arbitrary sequence-to-sequence mappings.

2 Preliminaries

We now present some ideas we built on.

Notation. For a vector v, we denote its i-th entry by vi and its subvector from the i1-th to the i2-th
entry (inclusive) by vi1:i2 with i1 < i2. For a matrix M , we use Mi,j for the entry in the i-th row
and j-th column, Mi,: for the i-th row, and M:,j for the j-th column. The submatrix spanning rows
i1 through i2 and columns j1 through j2 is denoted by Mi1:i2,,j1:j2 with i1 < i2, , j1 < j2. We
define ca×b as an a × b matrix with constant entries c, and abbreviate ca×1 as ca. For norms, we
define ∥ · ∥∞ as the maximum absolute element in a vector or matrix. The p-norms are given by
∥v∥p = (

∑
i |vi|p)1/p for a vector v and ∥M∥p = (

∑
i,j |Mi,j |p)1/p for a matrix M . For function

norms, we define the L∞ norm as ∥f∥L∞ := supx∈Xf
∥f(x)∥∞, where Xf is the input domain of

f , and the Lp norm as ∥f∥Lp := (
∫

x∈Xf
|f(x)|pp, dx)1/p for 1 ≤ p < ∞. For functions, when a

function f : R → R is applied on a vector or a matrix, it means to apply f on every entry of the
vector/matrix (i.e.,exp([a1, a2]) := [exp(a1), exp(a2)]).
Self-Attention and Cross-Attention Layers. For a self-attention Attns : RD×N → RD×Nout , and
any input Z ∈ RD×N , we define its output as:

Attns(Z) = WV Z Softmax((WKZ)⊤WQZ)WO,

where WK , WQ ∈ RdAttn×D, WV ∈ RD×D, WO ∈ RN×Nout . Here dAttn stands for the hidden size
of the attention block. Nout stands for the output sequence length.

For a cross-attention Attnc : RD×N × RD×N → RD×Nout and any input ZK , ZQ ∈ RD×N , we
define its output as:

Attnc(ZK , ZQ) = WV ZK Softmax((WKZK)⊤WQZQ)WO.

Here WK , WQ, WV , WO are defined as those in self-attention.

Since we provide separate discussions for self-attention and cross-attention in this work, we omit the
subscript and denote them as Attn when this causes no ambiguity.

Layer of Sum of Linear Transformations. We use Linear : RD1×N1 → RD2×N2 to denote a layer
of sum of linear transformations. For any input Z ∈ RD1×N1 , we define its output as follows:

Linear(Z) :=
H∑

i=1
PiZQi + R,

where Pi ∈ RD2×D1 , Qi ∈ RN1×N2 for i ∈ [H], R ∈ RD2×N2 . Here H is a positive integer which
denotes the number of linear transformations to sum.
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3 Attention as Max-Affine Value Reassignment

In this section, we introduce a new interpretation of attention as a value reassignment to a max affine
function. Essentially, we show that attention prepended with a Linear layer is able to reassign values
to a partition generated by a max-affine function. We start with the below definition.

Definition 3.1 (Max-Affine Function). Let X ⊂ Rdx be a domain, and fix a positive integer Nma.
For each i ∈ [Nma], define an affine function yi : X → R for all x ∈ X :

yi(x) = a⊤
i x + bi, where ai ∈ Rdx and bi ∈ R.

The max-affine function MaxAff : X → R corresponding to affine functions {yi(·)}i=[Nma] is
defined as

MaxAff(x) = max
i∈[Nma]

{a⊤
i x + bi}.

Intuitively, a max-affine function selects, at each point x ∈ X , the largest output among Nma affine
functions. Geometrically, each affine function yi(x) = a⊤

i x + bi defines a hyperplane in Rdx+1.
Thus, MaxAff follows the highest hyperplane at each x, forming a piecewise linear, convex surface
— the upper envelope of the given affine hyperplanes.

Remark 3.1 (Technical Assumption). For simplicity of presenting our interpretation, we make the
following technical assumption for all results in this section:

Assumption 3.1. For any max-affine function MaxAff, we exclude situations where the difference
between its largest and second-largest affine components is smaller than a specified threshold. (Please
see proofs for explicit definition.)

We do not apply this assumption in other sections.

3.1 Max-Affine Partition

We now show that a max-affine function MaxAff(·) induces a partition of its input domain X .
Specifically, the input domain X is divided up according to which affine function is the maximum at
each point x. To be concrete, we define this partition as follows:

Proposition 3.1 (Max-Affine Partition). Following Definition 3.1, consider a max-affine function
MaxAff(x) = maxi∈[Nma]{a⊤

i x + bi}, and let X ⊂ Rdx be its input domain. Then MaxAff
generates a partition on X :

Pma := {Ui | i ∈ [Nma]}, Ui := {x ∈ X | MaxAff(x) = a⊤
i x + bi}, i ∈ [Nma].

We call the partition Pma the max-affine partition of X induced by MaxAff.

Intuitively, Ui is the set of all point x for which the i-th affine function a⊤
i x + bi achieves the same

value as the max-affine output. Since MaxAff(·) is the maximum of all the affine components, the
i-th component is (one of) the highest among all components. Hence, the input domain X becomes
partitioned “regions” {Ui}i=[Nma]. That is, if a point x belongs to a region Ui, the corresponding
affine function a⊤

i x + bi is (tied for) the largest. Please see Appendix D.1 for a detailed proof.

Set Overlaps and Boundaries. By construction, every x ∈ X lies in at least one of the sets {Ui}, but
it may belong to multiple sets if several affine components attain the same maximal value. Hence, the
collection {Ui} is generally a “partition” in an informal sense: while each Ui is typically associated
with a distinct region, their pairwise intersections are non-empty on boundary hyperplanes. We
address these overlaps in detail within our theorems, where boundary regions do not affect the main
approximation arguments but require careful handling to ensure mathematical rigor.

Indicator Encoding of the Partition. For certain analytical and algorithmic tasks, it is helpful to
embed the notion of “which affine part is active” into a vector-valued indicator. Formally, we define
the indicators for max-affine partitions.

Definition 3.2 (Indicator of Max-Affine Partition). Following the notations in Proposition 3.1, for
a max-affine partition {Ui|i ∈ [Nma]}, we define ix := argmaxi∈Nma(yi(x)) to be the label of the
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maximal affine component. Then, we define the indicator E : Rdx → RNma as:

E(x) = e
(Nma)
ix

,

which is a one-hot vector whose only non-zero entry is the ix-th one.

Namely, each component of E(x) is zero unless it corresponds to an index achieving the maximum,
in which it has the value of 1. In Figure 1a, we show an example of the max-affine partition.

(a) Max-Affine Partition on a 2-D Domain. Colored
regions show where each affine component is active.

(b) Value Reassignment of Figure 1a. Each region is
reassigned a different affine function.

3.2 Attention Scores Encode Indicators for Max-Affine Partition

We now discuss the connection between self-attention and a max-affine partition. We show that
self-attention with a Linear layer attached before it can generate a max-affine partition. Further, for
every input token, the attention score matrix approximately indicates which part of the partition it
belongs to. We state this result as follows:

Proposition 3.2 (Attention Approximates Indicator of Max-Affine Partition). Let X =
[X1, X2, · · · , Xn] ∈ Rd×n denote any input sequence. We use X to denote the domain of all
Xi, i ∈ [n]. Let MaxAff be any max-affine function on X with Nma components, and let ϵ > 0 be
any positive real number. We define Pma = {Ui|i ∈ [Nma]} as the max-affine partition generated
by MaxAff as in Proposition 3.1. Then, there exists a Linear layer and a self-attention Attn whose
attention matrix satisfies:

∥ Softmax((WKLinear(X))⊤WQLinear(X))WO − [E(X1), E(X2), · · · , E(Xn)]∥∞ ≤ ϵ,

with exception of a region of arbitrarily small Lebesgue measure in Rn. Here WK , WQ are the
attention weights within Attn. WO only truncates the irrelevant part of the attention score matrix.

Proposition 3.2 shows that the attention matrix is able to approximate a vector denoting the position
of the input token, by indicating which part of the max-affine partition contains the input token.

3.3 Attention Reassign Value to Each Part of the Max-Affine Partition

In the work of [Kim and Kim, 2022], they prove that max-affine functions are universal approximators
for convex functions. In order to turn them into universal approximators, a possible solution is to
reassign value to each part of the max-affine partition generated by the original max-affine function.
In the following theorem, we show that a single-head self-attention is capable of completing this task.

Proposition 3.3 (Attention Reassigns Value to Max-Affine Partition). Following the notation in
Proposition 3.2, Let F : Rd → Rd

out be a piece-wise constant function which is separately constant
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on each Ui, i ∈ [Nma]. We show that for any ϵ > 0, there exists an self-attention Attn such that

∥Attn(X) − [F (X1), F (X2), · · · , F (Xn)]∥∞ ≤ ϵ,

for every X in X with exception of a region of arbitrarily small Lebesgue measure in Rn.

Proposition 3.3 shows that attention is able to output different values according to the indicator
generated in Proposition 3.2.

We conclude this section with two remarks.

Remark 3.2 (Extension to Function on All Tokens). In this section, for the conciseness in demon-
stration of method, we adopted a token-wise function F as the example function. Yet since affine
functions on all tokens can be easily obtained by adding token-wise affine functions, this simplified
version of our method generalizes well on functions taking all tokens as input and leads us to results
shown in Section 4.

Remark 3.3. Lastly, we emphasize that here the approximation excludes a small area for overall
simplicity in this demonstration of our method. We address this issue in the proofs of the universal
approximation theorems in the next section.

Figure 1b provides us an example of Proposition 3.3.

4 Single-Layer, Single-Head Attention Achieves Universal
Sequence-to-Sequence Approximation

In this section, we present our main results:

• A single layer of single-head self-attention preceded by one linear layer is a
sequence-to-sequence universal approximator for continuous functions on any compact
domain.

• A single layer of single-head cross-attention preceded by one linear layer is likewise a
sequence-to-sequence universal approximator for continuous functions on any compact
domain.

Importantly, we achieve attention-only universal approximation for both the Lp-norm and L∞-norm,
whereas most existing results apply only to the Lp-norm and require additional auxiliary components
in the transformer block (e.g., multiple attention or feed-forward layers). Moreover, our universality
result for cross-attention is the first of its kind. Specifically, we present our results for self-attention
in Section 4.1 and for cross-attention in Section 4.2.

4.1 Single-Head Self-Attention as a Universal Seq-to-Seq Approximator

We now present our main result: a single-layer, single-head self-attention module, combined with
a linear transformation, is sufficient to approximate any continuous map f : Rd×n → Rd×n on
a compact domain U ⊆ [−D, D]d×n. We present the result first in terms of the L∞ norm for
continuous f and then extend it to Lp integrable functions.

Theorem 4.1 (L∞-Norm Universal Approximation). Let f : Rd×n → Rd×n denote any continuous
function on a compact domain U ⊂ Rd×n and let ϵ > 0 be any positive real number. There exists a
self-attention Attn with a prepended Linear layer, such that

∥f − Attn ◦ Linear∥L∞ ≤ ϵ.

Theorem 4.1 indicates that a single-layer self-attention block, combined with a linear preprocessing
layer Linear, approximates sequence-to-sequence f in the L∞-norm.

Overview of Proof Strategy. We adopt a proof strategy based on a key observation: self-attention is
capable of approximating target functions via implicit MaxAff operations. Our proof consists of the
following 4 steps:

• Step 1: Partition Input Domain U via MaxAff. Construct a max-affine function MaxAff
over U (i.e., input domain of target function f ) such that this MaxAff induces a partition of
size-Nma of U .
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• Step 2: Configure Linear and Attn to Imitate MaxAff over U . Use Linear and WK , WQ

in Attn to map the input Z ∈ U to values of the affine components {yi(Z) = a⊤
i Z̃ +

bi}i∈[Nma] of MaxAff. Here we flatten the input sequence Z ∈ Rd×n to Z̃ ∈ Rdn to
compute MaxAff.

• Step 3: Engineer Attn to Generate an Indicator of Which Partition Cell the Input
Belongs To. Within self-attention Attn, design K⊤Q so that Softmax(K⊤Q) produces
a near-one-hot vector as an indicator to the max-affine partition induced by MaxAff (as
defined in Definition 3.2). This indicator (approximately an one-hot vector) shows which
part (i.e., partitioned cell) of the partition contains the input sequence Z.

• Step 4: Map the Indicator to the Target Value f(Z). Map each partition cell’s indicator
to the corresponding value of f . By continuity of f , refining the partitioned cell ensures
∥f − Attn ◦ Linear∥∞ ≤ ϵ.

Proof Sketch. We elaborate above in detail. Consider a continuous function f : U ⊆ [−D, D]d×n →
Rd×n on a compact domain U . Let ϵ > 0. We aim to construct a single-layer, single-head self-
attention mechanism Attn (prepended with a linear transformation Linear) such that

∥f − Attn ◦ Linear∥L∞ ≤ ϵ.

Step 1: Partition Input Domain U via MaxAff.

• Flattening Input. Each input Z ∈ Rd×n is reshaped into a single vector Z̃ ∈ Rdn by
stacking its rows or columns. This unifies the domain as Z̃ ∈ [−D, D]dn.

• Grid / Max-Affine Construction. Since f is uniformly continuous on the compact set U ,
choose δ > 0 such that

∥Z1 − Z2∥∞ < δ =⇒ ∥f(Z1) − f(Z2)∥∞ < ϵ.

We subdivide [−D, D]dn into cubes of side ≤ δ, yielding G = P dn grid centers {vj}G−1
j=0 .

We treat MaxAff as a piecewise (max-)affine or piecewise-constant partition: for each Z̃,
there’s a nearest vj within δ/2.

• Technical Highlight. This partition-based approach leverages uniform continuity to dis-
cretize U . The number of partitions can be large but finite, ensuring we only need a
single-layer of attention to “select” the correct grid cell.

Step 2: Configure Linear and Attn to Imitate MaxAff over U .

• Sum-of-Linear-Transformations Map Linear. Design Linear : Rd×n → RM (for some
dimension M ) to capture the dot products ⟨vj , Z̃⟩. Essentially, Linear(Z) arranges these
{v⊤

j Z̃} in a form accessible to attention. This ensures each grid center vj can be individually
“queried.”

• Encoding Affine Components. Observe that maxj{⟨vj , Z̃⟩ − 1
2 ∥vj∥2} is akin to a max-

affine function. We store terms v⊤
j Z̃, plus − 1

2 ∥vj∥2, into K and Q for later use in
Softmax(K⊤Q).

• Technical Highlight. This step demonstrates how we embed {⟨vj , Z̃⟩} into a single-head
attention setting — no extra feed-forward layers required. The linear map Linear is carefully
constructed so that each “component” is individually addressable.

Step 3: Engineer Attn to Generate an Indicator of Which Partition Cell the Input Belongs To.

• Construct K⊤Q. In the self-attention block, let K⊤Q ≈ R(⟨vj , Z̃⟩ − 1
2 ∥vj∥2), where

R > 0 is large. This makes Softmax(K⊤Q) favor the row j∗ maximizing

⟨vj , Z̃⟩ − 1
2 ∥vj∥2.

• Near-One-Hot Distribution. Hence the j∗-th row obtains probability close to 1, effectively
identifying which grid center vj∗ is nearest to Z̃. We interpret this as a near-one-hot
“indicator” vector for the correct partition cell.
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• Technical Highlight. This is the crux: attention’s softmax can act as a continuous arg max
by scaling the scores with R. As R→∞, the distribution becomes more peaked, approxi-
mating a hard partition.

Step 4: Map the Indicator to the Target Value f(Z).

• Assigning Values. We place f(vj) in the “value matrix” WV , so that once row j∗ is selected,
the attention output is ≈ f(vj∗). Since Z is within δ/2 of vj∗ , uniform continuity implies

∥f(Z) − f(vj∗)∥ ≤ ϵ, (for suitably chosen δ).

• Final Reshaping (If Needed). A small linear projection M can reshape the output back
to Rd×n. The essential logic is that the correct f(vj) is “routed” to the final output via the
near-one-hot attention distribution.

• Technical Highlight. This reveals how a single-head attention layer, armed with linear
preprocessing, suffices to replicate the entire function f . No feed-forward sub-layer or
multiple heads are needed to achieve universal approximation.

In sum, combining these steps, we see that: (i) A finite grid subdivides U to handle uniform continuity.
(ii) Linear encodes {⟨vj , Z̃⟩}. (iii) Large-R Softmax(K⊤Q) selects the best anchor vj∗ . (iv) A
“value matrix” translates that selection into f(vj∗). We conclude that a single-layer, single-head
self-attention block approximatesf within ϵ in the L∞ norm. Please see Appendix E.1 for a proof.

Our result in L∞ norm can be easily extended to Lp norm, where it applies to not just the continuous
functions but all Lebesgue integrable functions with compact support. Please see Corollary E.1.1 for
more details.

4.2 Single-Head Cross-Attention as a Universal Seq-to-Seq Approximator

Here we extend self-attention universal approximation results from Section 4.1 to cross-attention.
Importantly, we establish the first known universal approximation in cross-attention setting. First, we
state our main result in L∞-norm.

Theorem 4.2 (L∞-Norm Universal Approximation). Let f : UK × UQ → Rd×n denote any
continuous function on a compact domain UK × UQ and let ϵ be any positive real number. Here
UK , UQ ∈ Rd×n stands for the compact domain of the two input sequences of cross-attention. Then
there exists a cross-attention Attn prepended with a Linear layer such that

∥f − Attn ◦ Linear∥L∞ ≤ ϵ.

Theorem 4.2 indicates that a single-layer cross-attention block, prepended with a linear preprocessing
layer Linear, approximates f : UK → UQ → Rd×n in L∞-norm.

Proof Sketch. Our proof follows that of Theorem 4.1 except one additional step: use Attn to aggre-
gate the max-affine functions on UK , UQ and merge into a MaxAff function on UK × UQ. The proof
consists of the following steps:

Step 1: Partition the Input Domain UK and UQ with MaxAffK and MaxAffQ Respectively. Con-
struct two max-affine function MaxAffK over UK and MaxAffQ over UQ such that this MaxAffK

induces a partition of size-Nma of U and MaxAffQ a same size partition on UQ.

Step 2: Configure Linear and Attn to Imitate MaxAffK , MaxAffQ over WK , UQ Respectively.
Use Linear and WK , WQ in Attn to map the input ZK , ZQ ∈ U to values of the affine components
{yi(Z) = a⊤

i Z̃ + bi}i∈[Nma] of MaxAffK and MaxAffQ respectively. Here we flatten the input
sequence Z ∈ Rd×n to Z̃ ∈ Rdn to express MaxAff concisely.

Step 3: Use Attn to Aggregate MaxAffK and MaxAffQ to Form a MaxAff : UK × UQ →
R on Both Input Sequences. Use Attn to generate MaxAff(ZK , ZQ) := MaxAffK(ZK) +
MaxAffQ(ZQ). This max-affine function merges the partition on UK and UQ to generate a unified
partition on UK × UQ.

Step 4: Use Attn to Indicate the Position of the Both Input Sequence in the MaxAff-Generated
Partition. Use Attn to generate an indicator to the max-affine partition generated by MaxAff (as

8



defined in Definition 3.2). This indicator (approximately a one-hot vector) shows which part of the
MaxAff-generated partition contains the Cartesian product of both input sequences ZK × ZQ.

Step 5: Map the indicator to the Corresponding Value of f . Map the indicator to the corresponding
value of the target function f by adding terms related to f to Attn.

Please see Appendix E.2 for a detailed proof.

5 Concluding Remarks

We introduce a novel interpretation of attention as a mechanism for reassigning values to a partition
induced by a max-affine function. This unique perspective allows us to show that prepending a single
linear layer before either self-attention or cross-attention enables the network to (i) generate indicator
functions representing max-affine partitions (Proposition 3.2) and (ii) selectively reassign values to
each partition cell (Proposition 3.3). As a result, we prove that both single-head self-attention and
single-head cross-attention, when combined with a single layer of sum of linear transformations,
achieve universal approximation of compactly supported continuous functions under L∞ norm, or
integrable functions under Lp norm. Numerical validations backup our theory in Appendix B.

Key Insights and Results.

• Max-Affine Partition. A max-affine function naturally partitions its input domain, and
attention (with appropriate transformations) can approximate the indicator functions of these
partitions.

• Value Reassignment. Self-attention reassigns output values based on partition indicators,
capturing a broad class of piecewise-defined functions.

• Universal Approximation. With only a single linear layer and a single-head attention
module, one can approximate arbitrary sequence-to-sequence maps in both the L∞ and
Lp senses, for both self-attention (Theorem 4.1 and Corollary E.1.1) and cross-attention
(Theorem 4.2 and Corollary E.2.1) architectures.

Limitations. While our results highlight the surprising representational power of single-head attention
with linear preprocessing, several limitations warrant discussion:

• Large Dimensions and Network Size. Our minimal-assumption design needs many
partition regions to cover diverse targets. This follows naturally from the general setting
we study. High-dimensional inputs or long sequences then inflate the parameter count and
hinder practice. Appendix A eases the burden but does not eliminate it entirely.

• Training Complexity. Our proofs are constructive rather than prescriptive for training,
meaning standard gradient-based methods may not (always) efficiently find the required
weight configurations.

• Data Distribution Shifts. Like many universal approximation results, our approach does
not account for distribution shifts or generalization beyond the compact domain used for
training.

Implications and Future Work. Our findings explain why transformers excel at modeling heteroge-
neous data: attention can create flexible partitions of the input space and assign context-dependent
outputs. This perspective raises open questions for future research: Can multi-head or deeper atten-
tion layers simplify representational requirements or reduce approximation constants? How might
learned partitions or specialized positional encodings improve efficiency in practice? Can adaptive or
data-driven strategies automatically discover near-optimal partitions for specific tasks?

Overall, our results establish a theoretical foundation for understanding attention-based architectures
as universal function approximators. They illustrate how token-wise information is partitioned and
reassigned to represent complex sequence-to-sequence functions with minimal assumptions and
structural requirements on data and model.
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Impact Statement

By the formal nature of this work, we do not expect any immediate negative social impact.

A Extension to Practical Settings

In practical scenarios, despite defined on a high dimension input domain (Rd×n), attention is often
considered to approximate a function defined upon a small input domain X ⊂ Rd×n.

To this end, we extend our method to the approximation rate of L-Lipschitz functions with a relatively
small input domain. We state our result as the following theorem.

Theorem A.1. Let f : Rd×n → Rd×n denote an L-Lipschitz function (in terms of 2-norm) whose
input domain is X . For any ϵ > 0, assume X is contained in Nx spheres by the radius of ϵ/(3L) in
2-norm. Then, there exists a Linear layer and a Attn layer such that:

∥Attn ◦ Linear − f∥∞ ≤ ϵ.

Furthermore, Attn and Linear have a total number of O(dnNx) trainable parameters.

Proof Sketch. This proof only differs from the proof of Theorem 4.1 on the choice of partition. For
universal approximation, we choose a partition that evenly partition the whole space. In this theorem,
we change this partition to have each part centered on a different sphere described in the Theorem A.1.
By characterizing our partition, we achieve a more precise approximation result.

Please see Appendix F.1 for a detailed proof.

Theorem A.1 states that when the input domain is contained in Nx spheres of ϵ-level radius, there
exists a single-head self-attention layer that approximates the target function with a precision of ϵ.

B Proof-of-Concept Experiments

In Proposition 3.2, we demonstrate domain-partition mechanism of attention. In this mechanism,
the temperature of the Softmax function affects the precision of the max-affine partition generated
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Figure 2: Scale of Attention Weights vs. Training noise. For MNIST, CIFAR-10, and Fashion-MNIST
we plot the ℓ2-norm of WK and WQ against the injected label-noise ratio. In all three datasets the weight
scale declines monotonically as noise increases, corroborating Proposition 3.2: higher noise hampers precise
partitioning, so the model reduces the magnitude of weights that form the attention score matrix.

by attention, which is crucial to the complex approximations accomplished in Theorem 4.1 and
Corollary E.1.1.

Since the temperature of Softmax is equivalent to the scale of the matrix involved in computing the
attention score matrix (WK , WQ), our theory suggests the scale of WK , WQ decreases when the
input data contains more noise, as a result of the rise in difficulty to form a clear partition, and an
approximation based on this partition.

To verify this conjecture, we test the correlation between the scale of WK , WQ and the noise level in
the training data.

Objectives. Examine the relationship between scale of matrix involved in computing the attention
score matrix in attention (WK , WQ) and the noise level (using Gaussian noise) in the dataset.

Data. We perform separate experiments on the training set of the noised MNIST, CIFAR10 and
FashionMNIST datasets with noise level (the coefficient multiplying the standard Gaussian noise)
gradually adding from 0 to 0.72 by the step size of 0.03.

Network setups. Our network consists of a single-head self-attention followed by a feed-forward
network. Due to the complexity and different characteristics of the selected datasets, the size of the
feed-forward network slightly differs between datasets.

Results. Figure 2 presents our results. As the noise level increases, a decrease in the scale of
weights in WK , WQ becomes evident in all settings. This aligns with our theory.

C Additional Experimental Results

In this section, we present additional experimental results to support our theoretical results.

C.1 Numerical Justifications for Theoretical Results in Section 3

To validate our results in Proposition 3.2, we conducted the following experiment to examine whether
the max-affine function generated within the attention of the form in Proposition 3.2 can learn to
separate the input domain according to the values of the target function.

Specifically, we use attention to approximate a step function and observe the max-affine function
generated by the weights in K and Q matrices in the attention score matrix. The result of this
experiment is shown in Figure 3.

The max-affine function generated in the attention score matrix turns at points close to the switching
points in the step function. This generates a partition in the input domain that resembles the
distribution of the flat parts in the step function. This result aligns with our theory.
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Figure 3: Result of using a single-head attention to approximate a step function. The max-affine
function generated in the attention score matrix turns at points close to the switching points in the
step function.
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D Proofs of Results in Section 3

D.1 Proof of Proposition 3.1

Proposition D.1 (Proposition 3.1 Restated: Max-Affine Partition). Following Definition 3.1, consider
a max-affine function MaxAff(x) = maxi∈[Nma]{a⊤

i x + bi}, and let X ⊂ Rdx be its input domain.
Then MaxAff generates a partition on X :

Pma := {Ui | i ∈ [Nma]},

Ui := {x ∈ X | MaxAff(x) = a⊤
i x + bi}, i ∈ [Nma].

We call the partition Pma the max-affine partition of X induced by MaxAff.

Proof. If an x0 is not grouped to any Ui, i ∈ [NMaxAff ]. Since MaxAff is define over X and thus
defined on x0, we have:

MaxAff(x0) ̸= a⊤
i x0 + bi, i ∈ [NMaxAff ].

This is contradictory to the definition of MaxAff.

Since in Section 3 we exclude the discussion on the overlapped regions of the affine components
{yi = a⊤

i x + bi}, {Ui | i ∈ [NMaxAff ]} form a partition on X . This completes the proof.

D.2 Proof of Proposition 3.2

Proposition D.2 (Proposition 3.2 Restated: Attention Approximates Indicator of Max-Affine Par-
tition). Let X = [X1, X2, · · · , Xn] ∈ Rd×n denote any input sequence. We use X to denote the
domain of all Xi, i ∈ [n]. Let MaxAff be any max-affine function on X with NMaxAff components,
and let ϵ > 0 be any positive real number. We define PMaxAff = {Ui | i ∈ [NMaxAff ]} as the
max-affine partition generated by MaxAff as in Proposition 3.1. Let E be the indicator of PMaxAff as
defined in Definition 3.2. Under the above definitions, there exists a Linear layer and a self-attention
Attn whose attention matrix satisfies

∥ Softmax((WKLinear(X))⊤WQLinear(X))WO − [E(X1), E(X2), · · · , E(Xn)]∥∞ ≤ ϵ,

with exception of an arbitrarily small region. Here WK , WQ are the attention weights within Attn.

Proof. We first denote that according to the premise of Section 3, the intersection region of dif-
ferent affine components are omitted. This means for an arbitrarily small δ > 0, this proposition
malfunctions on any points within a δ radius neighborhood of the intersecting lines of max-affine
partitions.

Our proof consists of two parts:

1. Construct Linear and Attn.

2. Estimate the error between the attention score matrix of Attn ◦ Linear and the target indicator.

For the max-affine function MaxAff, we denote it as follows.

Definition D.1 (Max-Affine Function). Let ai ∈ Rd, bi ∈ R, i ∈ [NMaxAff ] denote the coefficients
of the affine components of MaxAff. In this definition, MaxAff writes out as

MaxAff(Z) = max
i∈[NMaxAff ]

{a⊤
i Z + bi}, (D.1)

for any Z ∈ Rd.
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Remark D.1. For conciseness of presentation, we assume the top component of MaxAff exceeds
the second-largest by a fixed ∆ > 0, independent of the input and arbitrarily small.

Construction of Linear. Without loss of generality, assume NMaxAff ≥ n. We construct Linear
(the layer of linear transformations) to be

Linear(Z) :=
[

Id

0n×d

]
Z
[
In 0n×(NMaxAff−n)

]
+
[
0d×NMaxAff

IMaxAff

]
.

The the output of Linear(X) is

Linear(X) =
[

Id

0n×d

]
X
[
In 0n×(NMaxAff−n)

]
+
[
0d×NMaxAff

IMaxAff

]
=
[

X 0d×(NMaxAff−n)
0n×n 0n×(NMaxAff−n)

]
+
[
0d×NMaxAff
INMaxAff

]

=

 X 0d×(NMaxAff−n)
In 0n×(NMaxAff−n)

0(NMaxAff−n)×n INMaxAff−n

 . (D.2)

Construction of Attn. Since we only use the attention score matrix Softmax(K⊤Q), we only
have to construct the WK and WQ matrices.

We construct them to be as follows

WK = R

[
0d×d a1 a2 · · · aNMaxAff

0 b1 b2 · · · bNMaxAff

]
WQ =

[
Id 01×d 01×NMaxAff−d

01×d 11×d 01×NMaxAff−d

]
,

where R is a coefficient to control the precision of the approximation. Specifically, as R increases,
Softmax is closer to maximum function, and the approximation is more precise.

In this construction, we now calculate the K and Q matrices of attention

K = WKLinear(X)

= R

[
0d×d a1 a2 · · · aNMaxAff

0 b1 b2 · · · bNMaxAff

]
·

 X 0d×(NMaxAff−n)
In 0n×(NMaxAff−n)

0(NMaxAff−n)×n INMaxAff−n

 (
By (D.2)

)
= R

[
a1 a2 · · · aNMaxAff
b1 b2 · · · bNMaxAff

]
,

and

Q = WQLinear(X)

=
[

Id 01×d 01×NMaxAff−d

01×d 11×d 01×NMaxAff−d

]
·

 X 0d×(NMaxAff−n)
In 0n×(NMaxAff−n)

0(NMaxAff−n)×n INMaxAff−n

 (
By (D.2)

)
=
[
X · Id 0d×NMaxAff
11×d 01×NMaxAff

]
=
[

X 0d×NMaxAff
11×d 01×NMaxAff

]
.
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Calculation of Softmax(K⊤Q). We now calculate the attention score matrix as

Softmax(K⊤Q)

= Softmax
(

R

[
a1 a2 · · · aNMaxAff
b1 b2 · · · bNMaxAff

]⊤ [
X 0d×NMaxAff

11×d 01×NMaxAff

])

= Softmax

R


a⊤

1 b1
a⊤

2 b2
...

...
a⊤

NMaxAff
bNMaxAff

 ·
[

X 0d×NMaxAff
11×d 01×NMaxAff

]

= Softmax

R


a⊤

1 x1 + b1 · · · a⊤
1 xn + b1 01×(NMaxAff−d)

a⊤
2 x1 + b2 · · · a⊤

2 xn + b2 01×(NMaxAff−d)
...

. . .
...

...
a⊤

NMaxAff
x1 + bNMaxAff · · · a⊤

NMaxAff
xn + bNMaxAff 01×(NMaxAff−d)


 .

Estimation of Approximation Error. For i ∈ [n], we have

Softmax
(
K⊤Q

)
:,i = Softmax

R


a⊤

1 xi + b1
a⊤

2 xi + b2
...

a⊤
NMaxAff

xi + bNMaxAff




= 1∑NMaxAff
η=1 exp

(
Ra⊤

η xi + Rbη

)


exp
(
Ra⊤

1 xi + Rb1
)

exp
(
Ra⊤

2 xi + Rb2
)

...
exp
(
Ra⊤

NMaxAff
xi + RbNMaxAff

)
 .

This yields the entry on the k-th row of Softmax K⊤Q:,i to be

Softmax
(
K⊤Q

)
k,i

=
exp
(
Ra⊤

k xi + Rbk

)∑NMaxAff
η=1 exp

(
Ra⊤

η xi + Rbη

) .

When a⊤
k xi + bk is the maximal affine component and a⊤

k′xi + bk′ is the second largest, we have

Softmax
(
K⊤Q

)
k,i

= 1 −
∑

η∈[NMaxAff ],η ̸=k exp
(
Ra⊤

η xi + Rbη

)∑NMaxAff
η=1 exp

(
Ra⊤

η xi + Rbη

)
≥ 1 −

∑
η∈[NMaxAff ],η ̸=k exp

(
Ra⊤

η xi + Rbη

)∑NMaxAff
η=1 exp

(
Ra⊤

k xi + Rbk

)
≥ 1 − (NMaxAff − 1)

exp
(
Ra⊤

k′xi + Rbk′
)

exp
(
Ra⊤

k xi + Rbk

)
= 1 − NMaxAff − 1

exp
(
Ra⊤

k xi + Rbk − (Ra⊤
k′xi + Rbk′)

)
≥ 1 − NMaxAff − 1

exp(R∆) .

Thus when

R ≥ ∆ · (ln(NMaxAff − 1) − ln ϵ),
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we have

NMaxAff − 1
exp(R∆) ≤ ϵ,

which means

Softmax K⊤Qk,i ≥ 1 − ϵ. (D.3)

Moreover, since the sum of all entries in Softmax K⊤Q:,i is 1, we have

Softmax
(
K⊤Q

)
h,i

≤ 1 − Softmax K⊤Qk,i ≤ 1 − (1 − ϵ) = ϵ, h ̸= k. (D.4)

(D.3) and (D.3) are equivalent to

∥ Softmax K⊤Qk,i − 1∥∞ ≤ ϵ

∥ Softmax K⊤Qh,i − 0∥∞ ≤ ϵ, h ̸= k.

This yields

∥Softmax
(
K⊤Q

)
:,i − E(Xi)∥∞ ≤ ϵ.

Thus, by the nature of ∥ · ∥∞,

∥Softmax
(
K⊤Q

)
:,i − [E(X1), E(X2), · · · , E(Xn)]∥∞ ≤ ϵ.

We construct WO to discard Softmax K⊤Qn+1:NMaxAff ,i in Softmax K⊤Q:[
In

0(NMaxAff−n)×n

]
.

Thus

∥Softmax
(
K⊤Q

)
WO − [E(X1), E(X2), · · · , E(Xn)]∥∞

= ∥Softmax
(
K⊤Q

)
1:n,i

− [E(X1), E(X2), · · · , E(Xn)]∥∞

≤ ϵ.

This completes the proof.

D.3 Proof of Proposition 3.3

Proposition D.3 (Proposition 3.3 Restated: Attention Reassigns Value to Max-Affine Partition).
Following the notation in Proposition 3.2, let F : Rd → Rd

out be a piece-wise constant function
which is separately constant on each Ui, i ∈ [NMaxAff ]. We show that for any ϵ > 0, there exists an
self-attention Attn such that

∥Attn(X) − [F (X1), F (X2), · · · , F (Xn)]∥∞ ≤ ϵ,

for every X in X with exception of a region of arbitrarily small Lebesgue measure in Rn.

Proof. Let Linear and the WK , WQ and WO matrices be the same as in Appendix D.2. Then by
Appendix D.2, we have

∥Softmax
(
K⊤Q

)
WO − [E(X1), E(X2), · · · , E(Xn)]∥∞ ≤ ϵ0,

19



for any ϵ0 > 0.

Let Vi denote the value of F on Ui.

Construction of WV . We construct WV to be

WV := [01×d V1 V2 · · · VNMaxAff ] .

Thus V equals to

V := WV Linear(X)

= [01×d V1 V2 · · · VNMaxAff ]

 X 0d×(NMaxAff−n)
In 0n×(NMaxAff−n)

0(NMaxAff−n)×n INMaxAff−n


= [V1 V2 · · · VNMaxAff ] .

Thus we have

∥V Softmax
(
K⊤Q

)
WO − [F (X1), F (X2), · · · , F (Xn)]∥∞

= ∥ [V1 V2 · · · VNMaxAff ] Softmax
(
K⊤Q

)
WO − [F (X1), F (X2), · · · , F (Xn)]∥∞

= ∥ [V1 V2 · · · VNMaxAff ] Softmax
(
K⊤Q

)
WO − [V1 V2 · · · VNMaxAff ] [E(X1), E(X2), · · · , E(Xn)]∥∞

≤ ∥V ∥∞ϵ0.

Let ∥V ∥∞ϵ0 ≤ ϵ yields the final result. This completes the proof.
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E Proof of Results in Section 4

E.1 Proof of Theorem 4.1

In this section we give the proofs of our universal approximation theorems of self-attention. We first
prove the L∞ norm version whose target function are continuous. Then we combine this result with
the well known Lusin’s theorem and extend our result to Lebesgue integrable functions in terms of
Lp norm.

Theorem E.1 (Theorem 4.1 Restated: L∞-Norm Universal Approximation of Self-Attention). Let
f : Rd×n → Rd×n denote any continuous function on a compact domain U ⊂ Rd×n and let ϵ > 0
be any positive real number. Then, there exists a self-attention Attn with a prepended Linear layer,
such that

∥f − Attn ◦ Linear∥L∞ ≤ ϵ.

Proof Sketch. Our proof consists of four conceptual steps.

Step 1: Partition Input Domain U via MaxAff.

• Flattening Input. Each input Z ∈ Rd×n is reshaped into a single vector Z̃ ∈ Rdn by stacking its
rows or columns. This unifies the domain as Z̃ ∈ [−D, D]dn.

• Grid / Max-Affine Construction. Since f is uniformly continuous on the compact set U , choose
δ > 0 such that

∥Z1 − Z2∥∞ < δ =⇒ ∥f(Z1) − f(Z2)∥∞ < ϵ.

We subdivide [−D, D]dn into cubes of side ≤ δ, yielding G = P dn grid centers {vj}G−1
j=0 . We

treat MaxAff as a piecewise (max-)affine or piecewise-constant partition: for each Z̃, there’s a
nearest vj within δ/2.

Step 2: Configure Linear and Attn to Imitate MaxAff over U .

• Sum-of-Linear-Transformations Map Linear. Design Linear : Rd×n → RM (for some dimen-
sion M ) to capture the dot products ⟨vj , Z̃⟩. Essentially, Linear(Z) arranges these {v⊤

j Z̃} in a
form accessible to attention. This ensures each grid center vj can be individually “queried.”

• Encoding Affine Components. Observe that maxj{⟨vj , Z̃⟩ − 1
2 ∥vj∥2} is akin to a max-affine

function. We store terms v⊤
j Z̃, plus − 1

2 ∥vj∥2, into K and Q for later use in Softmax(K⊤Q).

Step 3: Enginner Attn to Generate an Indicator of Which Partition Cell the Input Belongs To.

• Construct K⊤Q. In the self-attention block, let K⊤Q ≈ R(⟨vj , Z̃⟩ − 1
2 ∥vj∥2), where R > 0 is

large. This makes Softmax(K⊤Q) favor the row j∗ maximizing

⟨vj , Z̃⟩ − 1
2 ∥vj∥2.

• Near-One-Hot Distribution. Hence the j∗-th row obtains probability close to 1, effectively
identifying which grid center vj∗ is nearest to Z̃. We interpret this as a near-one-hot “indicator”
vector for the correct partition cell.

Step 4: Map the Indicator to the Target Value f(Z).
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• Assigning Values. We place f(ṽj) in the “value matrix” WV , so that once row j∗ is selected, the
attention output is ≈ f(ṽj∗). Since Z is within δ/2 of vj∗ , uniform continuity implies

∥f(Z) − f(ṽj∗)∥ ≤ ϵ, (for suitably chosen δ).

• Final Reshaping (If Needed). A small linear projection M can reshape the output back to Rd×n.
The essential logic is that the correct f(ṽj) is “routed” to the final output via the near-one-hot
attention distribution.

Thus, a single-head attention block with a minimal linear layer can approximate any continuous
function on the domain. This completes the proof.

Proof. We divide our proof into two parts:

• Part 1: Construction of Attn and Linear. We construct Attn and Linear in accordance with the
steps shown in the proof sketch, and calculate the precise output of our construction.

• Part 2: Estimation of Approximation Error between Attn ◦ Linear and f . We calculate the
difference between the output calculated in previous part and the target function to

Part 1: Construction of Attn and Linear.

We first construct the grid points in [−D, D]dn used in the construction of Linear and Attn.

These grid points are used to construct the max-affine partition. Specifically, the max-affine partition
we use is a grid-partition and these points are the center points of these grids.

Construction of Grid Centers in [−D, D]dn. Let Z = [z1, z2, · · · , zn] ∈ Rd×n denote the input
to Linear. Define Z̃ := [z⊤

1 , z⊤
2 , · · · , z⊤

n ]⊤. P ∈ N+ is a parameter that controls the size of the
attention block and the error of our approximation.

Definition E.1 (Grid Centers in [−D, D]dn). Define vk1,k2,··· ,kdn
∈ Rdn as

vk1,k2,··· ,kdn
:=
[

2Dk1 − DP

P
,

2Dk2 − DP

P
, · · · ,

2Dkdn − DP

P

]⊤

,

for ki ∈ {0, 1, 2, · · · , P − 1}, i ∈ [dn].

Remark E.1 (Scalar-Labeled Grid Centers). For each multi-index (k1, . . . , kdn) with ki ∈
{0, . . . , P − 1}, we define

s :=
dn∑
i=1

ki P i−1, s ∈ {0, . . . , P dn − 1}.

This base-P expansion gives a one-to-one map between the tuple and the scalar. This notation allows
us to define another representation of the grid center:

vs := vk1,...,kdn
.

For every v ∈ V , we define

ṽ := [v1:d, vd+1:2d, · · · , v(n−1)d+1:nd]︸ ︷︷ ︸
d×n

.

We now construct functions E and T . They are linear functions of f : Rd×n → Rd×n playing crucial
roles in the constructions of WK and WQ in Attn(·).
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Construction of E and T . We first show that f is bounded. Because f is continuous within a
closed region, its output value is bounded ∞-norm. Let B0 denote this bound

B0 := ∥f∥L∞ .

We now construct two functions E(·), T (·) related to f . Their sum is a constant while their subtraction
is scaled f . For any Z ∈ Rd×n, we define

E(Z) := 1d×n − f(Z)
B0

, (E.1)

T (Z) := 1d×n + f(Z)
B0

, (E.2)

and

(E + T )(Z) := E(Z) + T (Z),
(E − T )(Z) := E(Z) − T (Z).

By the definition of E(·) and T (·), we have

(E + T )(Z) ≡ 2d×n (E.3)

(E − T )(Z) = 2f(Z)
B0

. (E.4)

for any Z ∈ Rd×n.

Construction of the Layer of Sum of Linear Transformations. We now construct the Linear
layer to be

Linear(Z) :=
G−1∑
j=0

(n−1)∑
k=0

(Ze
(n)
k+1︸ ︷︷ ︸

d×1

)⊤(vj)kd+1:kd+d

 e
(2dG+1)
1

d−1∑
s=0

(
e

(2dG)
j+s+1 + e

(2dG)
j+s+dG+1

)⊤
+
[
01×2dG

I2dG

]
,

(
e

(2dG)
j+s+dG+1 is shifting the 1 in e

(2dG)
j+s+1 down for dG rows.

)
where G = P dn.

This layer multiplies the flattened input with the grid centers in Definition E.1 and append a 2dG-
dimensional identity matrix below the matrix containing these multiplications.

We now express the output of Linear in a simpler form in the following discussion.

First, we show that

(n−1)∑
k=0

( Ze
(n)
k+1︸ ︷︷ ︸

retrieve the (k + 1)-th token

)⊤(vj)kd+1:kd+d =
(n−1)∑
k=0

z⊤
k+1(vj)kd+1:kd+d

= [z⊤
1 , z⊤

2 , · · · , z⊤
n ]vj

= Z̃⊤vj

(
By Z̃ being the flattened input

)
= v⊤

j Z̃ ∈ R, j ∈ {0, 1, 2, · · · , G − 1}.

This yields

Linear(Z) =
G−1∑
j=0

v⊤
j Z̃

d−1∑
s=0

(
e

(2dG)
j+s+1 + e

(2dG)
j+s+dG+1

)⊤
e

(2dG+1)
1 +

[
01×2dG

I2dG

]
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=
[

X0 X0
IdG 0dG×dG

0dG×dG IdG

]
. (E.5)

Explicitly, the last line is by

G−1∑
j=0

v⊤
j Z̃

d−1∑
s=0

(
e

(2dG)
j+s+1

)⊤
= X0,

which implies

G−1∑
j=0

v⊤
j Z̃

d−1∑
s=0

(
e

(2dG)
j+s+1 + e

(2dG)
j+s+dG+1

)⊤
= [X0 X0].

Here

X0 :=
[
v⊤

0 Z̃11×d v⊤
1 Z̃11×d v⊤

2 Z̃11×d · · · v⊤
G−1Z̃11×d

]
.

To summarize, in the output of the first layer of linear transformations, the first row consists of linear
transformations of the flattened input, while the other rows are together an identity matrix (I2dG).

Construction of K and Q Matrices. We now construct the Wk and WQ matrices in the self-
attention block and calculate the output of Softmax

(
K⊤Q

)
.

We define WK as follows

WK :=

 1 0 · · · 0 0 · · · 0
0 − ∥v0∥2

2
2 11×d · · · − ∥vG−1∥2

2
2 11×d − ∥v0∥2

2
2 11×d · · · − ∥vG−1∥2

2
2 11×d

0n ln(T (ṽ0))⊤ · · · ln(T (ṽG−1))⊤ ln(E(ṽ0))⊤ · · · ln(E(ṽG−1))⊤

 .

The definition of WK yields that

K := WKLinear(Z)

=

 1 0 0 · · · 0 0 0 · · · 0
0 − ∥v0∥2

2
2 11×d − ∥v1∥2

2
2 11×d · · · − ∥vG−1∥2

2
2 11×d − ∥v0∥2

2
2 11×d − ∥v1∥2

2
2 11×d · · · − ∥vG−1∥2

2
2 11×d

0n ln(T (ṽ0))⊤ ln(T (ṽ1))⊤ · · · ln(T (ṽG−1))⊤ ln(E(ṽ0))⊤ ln(E(ṽ1))⊤ · · · ln(E(ṽG−1))⊤


·

[
X0 X0
IdG 0dG×dG

0dG×dG IdG

]

=

 v⊤
0 Z̃11×d v⊤

1 Z̃11×d · · · v⊤
G−1Z̃11×d v⊤

0 Z̃11×d v⊤
1 Z̃11×d · · · v⊤

G−1Z̃11×d

− ∥v0∥2
2

2 11×d − ∥v1∥2
2

2 11×d · · · − ∥vG−1∥2
2

2 11×d − ∥v0∥2
2

2 11×d − ∥v1∥2
2

2 11×d · · · − ∥vG−1∥2
2

2 11×d

ln(T (ṽ0))⊤ ln(T (ṽ1))⊤ · · · ln(T (ṽG−1))⊤ ln(E(ṽ0))⊤ ln(E(ṽ1))⊤ · · · ln(E(ṽG−1))⊤

 ,

(
By (E.5)

)
where the last line follows from X0 being multiplied by 1 and thus appearing in the first row of the
output.

Next, we construct WQ to be

WQ :=

 0 R11×n 01×(2dG−n)
0 R11×n 01×(2dG−n)
0n In 0n×(2dG−n)

 .
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This yields that

Q = WQLinear(Z)

=

 0 R11×n 01×(2dG−n)
0 R11×n 01×(2dG−n)
0n In 0n×(2dG−n)

 ·

[
X0 X0
IdG 0dG×dG

0dG×dG IdG

]

=

R11×n 01×(2dG−n)
R11×n 01×(2dG−n)

In 0n×(2dG−n)

 .

We now calculate the attention matrix Softmax
(
K⊤Q

)
.

Calculation of Softmax(K⊤Q). First, K⊤Q writes out as

K⊤Q =



v⊤
0 Z̃1d

∥v0∥2
2

2 1d ln(T (ṽ0))
v⊤

1 Z̃1d
∥v1∥2

2
2 1d ln(T (ṽ1))

...
v⊤

G−1Z̃1d
∥v1∥2

2
2 1d ln(T (ṽG−1))

v⊤
0 Z̃1d

∥v0∥2
2

2 1d ln(E(ṽ0))
v⊤

1 Z̃1d
∥v1∥2

2
2 1d ln(E(ṽ1))

...
v⊤

G−1Z̃1d
∥v1∥2

2
2 1d ln(E(ṽG−1))


·

R11×n 01×(2dG−n)
R11×n 01×(2dG−n)

In 0n×(2dG−n)



=



R(v⊤
0 Z̃ − ∥v0∥2

2
2 )1d×n + ln(T (ṽ0)) 0d×(2dG−n)

R(v⊤
1 Z̃ − ∥v1∥2

2
2 )1d×n + ln(T (ṽ1)) 0d×(2dG−n)

...
...

R(v⊤
G−1Z̃ − ∥vG−1∥2

2
2 )1d×n + ln(T (ṽG−1)) 0d×(2dG−n)

R(v⊤
0 Z̃ − ∥v0∥2

2
2 )1d×n + ln(E(ṽ0)) 0d×(2dG−n)

R(v⊤
1 Z̃ − ∥v1∥2

2
2 )1d×n + ln(E(ṽ1)) 0d×(2dG−n)

...
...

R(v⊤
G−1Z̃ − ∥vG−1∥2

2
2 )1d×n + ln(E(ṽG−1)) 0d×(2dG−n)


, (E.6)

where the last line follows from the multiplication of block matrices. This multiplication between
K⊤ and Q is equivalent to first multiplying the first 2 columns in K⊤ with R and then broadcasting
their sum to the first n columns, and then adding the result with T and E related blocks. Columns are
all filled with 0 except for the first n columns.
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Remark E.2 (Interpretation of K⊤Q). The non-zero entries of K⊤Q is an aggregation of two
matrices 

R(v⊤
0 Z̃ − ∥v0∥2

2
2 )1d×n

R(v⊤
1 Z̃ − ∥v1∥2

2
2 )1d×n

...
R(v⊤

G−1Z̃ − ∥vG−1∥2
2

2 )1d×n

R(v⊤
0 Z̃ − ∥v0∥2

2
2 )1d×n

R(v⊤
1 Z̃ − ∥v1∥2

2
2 )1d×n

...
R(v⊤

G−1Z̃ − ∥vG−1∥2
2

2 )1d×n


(E.7)

and 

ln(T (ṽ0))
ln(T (ṽ1))

...
ln(T (ṽG−1))

ln(E(ṽ0))
ln(E(ṽ1))

...
ln(E(ṽG−1))


. (E.8)

In these two matrices, (E.7) is identical between columns and has the precision coefficient R free of
our choice. In later discussions, we set R to be sufficiently large so that the Softmax approximates a
maximum function, and “selects” the i of the maximal R(v⊤

i Z̃− ∥vi∥2
2

2 )1d×n for i ∈ {0, 1, · · · , G−1}.
By "select" we mean only the entries with the selected label has a value not close to 0 in each column
of Softmax(K⊤Q).
(E.8) does not include R related terms. Thus when R is set to be sufficiently large in our later
discussions, (E.8) does not affect the selection made by (E.7).
If we exclude the (E.8) in the attention score matrix Softmax(K⊤Q), the output approximates a
matrix whose columns are all-zero except for two sub-vector equal to 1/2d · 1d. This writes out as
(here we only show the first n non-constant columns)

0(s−1)d×n
1

2d 1d×n

0(G−s)d×n

0(s−1)d×n
1

2d 1d×n

0(G−s)d×n

 , (E.9)

for any s ∈ [G]. The addition of (E.8) change the 1d in (E.9) to
0(s−1)d×n
1

2d T (ṽs−1)
0(G−s)d×n

0(s−1)d×n
1

2d E(ṽs−1)
0(G−s)d×n

 . (E.10)

In later discussion, we use V to transform (E.10) to T (ṽs−1)−E(ṽs−1) = 2f(ṽs−1)/2dB0 to obtain
the final output.
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Now, we divide the calculation of Softmax
(
K⊤Q

)
into two parts: the calculation of exp

(
K⊤Q

)
and the calculation of the denominator of every column of Softmax

(
K⊤Q

)
. This denominator

explicitly writes out as
∑2dG

j=1 exp
(
K⊤Q

)
ij

for each i ∈ [2dG].

For exp
(
K⊤Q

)
, by (E.6), we have

exp
(
K⊤Q

)
=



exp
(

R(v⊤
0 Z̃ − ∥v0∥2

2
2 )

)
T (ṽ0) 1d×(2dG−n)

exp
(

R(v⊤
1 Z̃ − ∥v1∥2

2
2 )

)
T (ṽ1) 1d×(2dG−n)

...
exp
(

R(v⊤
G−1Z̃ − ∥vG−1∥2

2
2 )

)
T (ṽG−1) 1d×(2dG−n)

exp
(

R(v⊤
0 Z̃ − ∥v0∥2

2
2 )

)
E(ṽ0) 1d×(2dG−n)

exp
(

R(v⊤
1 Z̃ − ∥v1∥2

2
2 )

)
E(ṽ1) 1d×(2dG−n)

...
exp
(

R(v⊤
G−1Z̃ − ∥vG−1∥2

2
2 )

)
E(ṽG−1) 1d×(2dG−n)



. (E.11)

For the denominator, we calculate it in columns. Let i denote the column which we calculate the
denominator in Softmax. When i ∈ {n + 1, n + 2, · · · , 2dG}, there are 1 · 2dG = 2dG columns.
And when i ∈ [n], we denote that

2dG∑
j=1

exp
(
K⊤Q

)
i,j

=
G∑

j=1

[
(11×dT (ṽj−1):,i + 11×dE(ṽj−1):,i) · exp

(
R

(
v⊤

j−1Z̃ − ∥vj−1∥2
2

2

))]
(

By (E.11)
)

=
G∑

j=1

[
(11×d(E + T )(vj−1):,i) · exp

(
R

(
v⊤

j−1Z̃ − ∥vj−1∥2
2

2

))]

=
G∑

j=1

[
(11×d(2d×n):,i) · exp

(
R

(
v⊤

j−1Z̃ − ∥vj−1∥2
2

2

))]

=
G∑

j=1
2d · exp

(
R

(
v⊤

j−1Z̃ − ∥vj−1∥2
2

2

))
, i ∈ [n]. (E.12)

Observing from (E.12),
∑2dG

j=1 exp
(
K⊤Q

)
i,j

is invariant of i for i ∈ [n]. In this case, we define

α(Z) := 1
2d

2dG∑
j=1

exp
(
K⊤Q

)
i,j

=
G∑

j=1
exp
(

R

(
v⊤

j−1Z̃ − ∥vj−1∥2
2

2

))
∈ R, i ∈ [n].

From (E.11) and (E.12), we have

Softmax
(
K⊤Q

)
= exp

(
K⊤Q

)
⊙
[ 1∑2dG

j=1
exp(K⊤Q)1j

12dG×n
1

2dG 12dG×(2dG−n)
]

(
By 1∑2dG

j=1
exp(K⊤Q)

ij

is invariant of i for i ∈ [n]
)
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=



exp
(

R(v⊤
0 Z̃ − ∥v0∥2

2
2 )

)
T (ṽ0) 1d×(2dG−n)

exp
(

R(v⊤
1 Z̃ − ∥v1∥2

2
2 )

)
T (ṽ1) 1d×(2dG−n)

...
exp
(

R(v⊤
G−1Z̃ − ∥vG−1∥2

2
2 )

)
T (ṽG−1) 1d×(2dG−n)

exp
(

R(v⊤
0 Z̃ − ∥v0∥2

2
2 )

)
E(ṽ0) 1d×(2dG−n)

exp
(

R(v⊤
1 Z̃ − ∥v1∥2

2
2 )

)
E(ṽ1) 1d×(2dG−n)

...
exp
(

R(v⊤
G−1Z̃ − ∥vG−1∥2

2
2 )

)
E(ṽG−1) 1d×(2dG−n)



⊙
[

1
2dα(Z) 12dG×n

1
2dG 12dG×(2dG−n)

]

= 1
2d



exp
(

R(v⊤
0 Z̃−

∥v0∥2
2

2 )
)

α(Z) T (ṽ0) 1
G 1d×(2dG−n)

exp
(

R(v⊤
1 Z̃−

∥v1∥2
2

2 )
)

α(Z) T (ṽ1) 1
G 1d×(2dG−n)

...
exp
(

R(v⊤
G−1Z̃−

∥vG−1∥2
2

2 )
)

α(Z) T (ṽG−1) 1
G 1d×(2dG−n)

exp
(

R(v⊤
0 Z̃−

∥v0∥2
2

2 )
)

α(Z) E(ṽ0) 1
G 1d×(2dG−n)

exp
(

R(v⊤
1 Z̃−

∥v1∥2
2

2 )
)

α(Z) E(ṽ1) 1
G 1d×(2dG−n)

...
exp
(

R(v⊤
G−1Z̃−

∥vG−1∥2
2

2 )
)

α(Z) E(ṽG−1) 1
G 1d×(2dG−n)



. (E.13)

Construction of WV and WO. We now construct the WV matrix and calculate the V matrix of the
self-attention.

We define WV as:

WV := [0d X1 −X1]d×(1+2dG) ,

where

X1 := [Id Id · · · Id]d×dG ,

is a matrix formed by stacking G Id matrix horizontally.

With this definition, we compute V matrix as follows

V := WV Linear(Z)

= [0d X1 −X1] ·

[
X0 X0
IdG 0dG×dG

0dG×dG IdG

]
= [X1 −X1] . (E.14)

After the construction and calculation of V , we go on to construct WO as:

WO =
[

dB0In

0(2dG−n)×n

]
.
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The sole purpose of WO is to extract the non-zero entries of the final output.

Calculation of the Output of Attn ◦ Linear. We now compute the final output of the self-attention
block

Attn ◦ Linear(Z)

= 1
2d

[X1 −X1] ·



exp
(

R(v⊤
0 Z̃−

∥v0∥2
2

2 )
)

α(Z) T (ṽ0) 1
G 1d×(2dG−n)

exp
(

R(v⊤
1 Z̃−

∥v1∥2
2

2 )
)

α(Z) T (ṽ1) 1
G 1d×(2dG−n)

...
exp
(

R(v⊤
G−1Z̃−

∥vG−1∥2
2

2 )
)

α(Z) T (ṽG−1) 1
G 1d×(2dG−n)

exp
(

R(v⊤
0 Z̃−

∥v0∥2
2

2 )
)

α(Z) E(ṽ0) 1
G 1d×(2dG−n)

exp
(

R(v⊤
1 Z̃−

∥v1∥2
2

2 )
)

α(Z) E(ṽ1) 1
G 1d×(2dG−n)

...
exp
(

R(v⊤
G−1Z̃−

∥vG−1∥2
2

2 )
)

α(Z) E(ṽG−1) 1
G 1d×(2dG−n)



WO

(
By (E.14) and (E.13)

)

= 1
2d

X1



exp
(

R(v⊤
0 Z̃−

∥v0∥2
2

2 )
)

α(Z) (T (ṽ0) − E(ṽ0)) 0d×(2dG−n)

exp
(

R(v⊤
1 Z̃−

∥v1∥2
2

2 )
)

α(Z) (T (ṽ1) − E(ṽ1)) 0d×(2dG−n)
...

...
exp
(

R(v⊤
G−1Z̃−

∥vG−1∥2
2

2 )
)

α(Z) (T (ṽG−1) − E(ṽG−1)) 0d×(2dG−n)


WO

(
Sum of X1 multiplied by T related blocks and −X1 multiplied by E related ones

)

= 1
2d

X1



exp
(

R(v⊤
0 Z̃−

∥v0∥2
2

2 )
)

α(Z) · 2f(ṽ0)
B0

0d×(2dG−n)

exp
(

R(v⊤
1 Z̃−

∥v1∥2
2

2 )
)

α(Z) · 2f(ṽ1)
B0

0d×(2dG−n)
...

exp
(

R(v⊤
G−1Z̃−

∥vG−1∥2
2

2 )
)

α(Z)
2f(ṽG−1)

B0
0d×(2dG−n)


WO.

(
By (E.3)

)

Let Id denote the d-dimensional identity matrix. We have

X1



exp
(

R(v⊤
0 Z̃−

∥v0∥2
2

2 )
)

α(Z)
2f(ṽ0)

B0

exp
(

R(v⊤
1 Z̃−

∥v1∥2
2

2 )
)

α(Z)
2f(ṽ0)

B0
...

exp
(

R(v⊤
G−1Z̃−

∥vG−1∥2
2

2 )
)

α(Z)
2f(ṽG−1)

B0


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= [Id Id · · · Id]d×dG ·



exp
(

R(v⊤
0 Z̃−

∥v0∥2
2

2 )
)

α(Z)
2f(ṽ0)

B0

exp
(

R(v⊤
1 Z̃−

∥v1∥2
2

2 )
)

α(Z)
2f(ṽ1)

B0
...

exp
(

R(v⊤
G−1Z̃−

∥vG−1∥2
2

2 )
)

α(Z)
2f(ṽG−1)

B0


︸ ︷︷ ︸

:=S(
Equivalent to summing all blocks in S

)
=

G−1∑
j=0

Id ·
exp
(

R(v⊤
j Z̃ − ∥vj−1∥2

2
2 )

)
α(Z)

2f(ṽj)
B0

=
G−1∑
j=0

1
α(Z)exp

(
R(v⊤

j Z̃ − ∥vj∥2
2

2 )
)

2f(ṽj)
B0

.

This yields

Attn ◦ Linear(Z) =
[∑G−1

j=0

exp
(

R(v⊤
j Z̃−

∥vj ∥2
2

2 )
)

α(Z)
2f(ṽj)

B0
0d×(2dG−n)

]
WO

=
[∑G−1

j=0

exp
(

R(v⊤
j Z̃−

∥vj ∥2
2

2 )
)

α(Z)
2f(ṽj)

B0
0d×(2dG−n)

]
·
[

dB0In

0(2dG−n)×n

]

=
G−1∑
j=0

1
α(Z)exp

(
R(v⊤

j Z̃ − 1
2∥vj∥2

2)
)

f(ṽj). (E.15)

Part 2: Estimation of the Approximation Error between Attn ◦ Linear and f .

With above calculations of the output of Attn ◦ Linear, we now demonstrate how this output
approximates our target function.

Essentially, we demonstrate that each term in the summation of (E.15), given by

1
α(Z) exp

(
R(v⊤

j Z̃ − 1
2 |vj |22)

)
,

approximates a max-affine indicator as R becomes sufficiently large. They are each multiplied with
f(ṽj), which is the value of the target function at the center point of the indicated region.

Definition E.2 (Max-Affine Function on Z̃). Let Affj ∈ Rdn → R with j ∈ {0, 1, 2, · · · , G − 1}
denote a group of affine functions defined as:

Affj(Z̃) = v⊤
j Z̃ − 1

2∥vj∥2
2, j ∈ {0, 1, 2, · · · , G − 1}.

Then let MaxAff ∈ Rdn → R denote a max affine function whose affine components are {Affj |
j ∈ {0, 1, 2, · · · , G − 1}}. Explicitly defined as:

MaxAff(Z̃) = max
j∈{0,1,2,··· ,G−1}

{
Affj(Z̃)

}
.

Because the target function f is a continuous function on a closed domain, the function f is uniformly
continuous. Thus for ϵ, there exists a δ > 0 such that for any Z1, Z2, as long as ∥Z̃1 − Z̃2∥∞ ≤ δ,
we have ∥f(Z1) − f(Z2)∥∞ ≤ ϵ/3.

30



According to this δ, we divide the affine components of MaxAff into three parts:

1. The maximal component, which has the smallest label jm.

2. All affine components that match the maximal component or fall within δ of it (J0 as defined
below).

3. The remaining Affj for j ∈ {0, 1, . . . , G − 1} (J1 as defined below).

We write out the labels of these groups of components as follows

jm := min
j∈{0,1,2,··· ,G−1}

{Affj(Z̃) = MaxAff(Z̃)},

J0 := {j | MaxAff(Z̃) − Affj(Z̃) ≤ δ},

J1 := {j | MaxAff(Z̃) − Affj(Z̃) > δ}.

For any pair of i, j ∈ {0, 1, · · · , G − 1}, we have

Affi(Z̃) − Affj(Z̃) = v⊤
i Z̃ − ∥vi∥2

2
2 −

(
v⊤

j Z̃ − ∥vj∥2
2

2

)
= − ∥Z̃∥2

2
2 + v⊤

i Z̃ − ∥vi∥2
2

2 −

(
−∥Z̃∥2

2
2 + v⊤

j Z̃ − ∥vj∥2
2

2

)

= − 1
2∥Z̃ − vi∥2

2 + 1
2∥Z̃ − vj∥2

2.

Thus for jm, we have

−1
2∥Z̃ − vjm

∥2
2 + 1

2∥Z̃ − vj∥2
2 = Affjm

(Z̃) − Affj(Z̃) ≥ 0, j ∈ {0, 1, · · · , G − 1}.

This yields

∥Z̃ − vjm
∥2

2 ≤ ∥Z̃ − vj∥2
2,

for all j ∈ {0, 1, · · · , G − 1}.

This denotes jm is also the label of the closest vi to Z̃ among all vi, i ∈ {0, 1, · · · , G − 1}. Thus we
have

∥vjm
− Z̃∥2 = min

i∈{0,1,··· ,G−1}
{∥vi − Z̃∥2}. (E.16)

Now, we prove vjm
(the grid point nearest to Z̃) has a distance to Z̃ smaller than half of the grid

width (e.g., D/g) in infinite norm.

Let D := 2D/g × {−1, 0, 1}dn denote a set differences to vjm
from the set of all vi (i ∈

{0, 1, · · · , G − 1}) neighboring vjm
. For any ∆ in D, from (E.16) we have

∥vjm
− Z̃∥2

2 ≤ ∥vjm
+ ∆ − Z̃∥2

2.

This yields

2∆⊤(Z̃ − vjm
) ≤ ∥∆∥2

2.
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This means that, for any k ∈ [dn], by selecting ∆ to be ±2D/ge
(dn)
k , we have:

±2 · 2D

g
(Z̃ − vjm

)k = 2∆⊤(Z̃ − vjm
) ≤ ∥∆∥2

2 = 4D2

g2 .

Thus we have (∣∣∣Z̃ − vjm

∣∣∣)
k

≤ D

g
, k ∈ [dn],

which implies

∥Z̃ − vjm
∥∞ ≤ D

g
.

Set g to be larger than 2D/δ; we have

∥Z̃ − vjm
∥∞ ≤ δ

2 ,

thus

∥f(Z) − f(ṽjm
)∥∞ ≤ ϵ

3 , (E.17)

where the inequality holds by δ/2 < δ.

Calculation of ∥Attn ◦ Linear − f∥∞. We now calculate the difference between the output in
(E.15) and target function f

∥Attn ◦ Linear(Z) − f(Z)∥∞

= ∥
G−1∑
j=0

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z) f(ṽj) − f(Z)∥∞

= ∥
G−1∑
j=0

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z) (f(ṽj) − f(Z))∥

(
By
∑G−1

j=0

exp
(

R(v⊤
j Z̃−

∥vj ∥2
2

2 )
)

α(Z) = 1
)

≤
G−1∑
j=0

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z) ∥f(ṽj) − f(Z)∥∞

(
By property of infinite norm

)

=
exp
(

R(v⊤
jm

Z̃ − ∥vjm ∥2
2

2 )
)

α(Z) ∥f(ṽjm
) − f(Z)∥∞

+
∑
j∈J0

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z) ∥f(ṽj) − f(Z)∥∞

+
∑
j∈J1

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z) ∥f(ṽj) − f(Z)∥∞. (E.18)

We now calculate each part in (E.18).
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As previously stated, for any Z1, Z2, as long as ∥Z̃1 −Z̃2∥∞ ≤ δ, we have ∥f(Z1)−f(Z2)∥∞ ≤ ϵ/3.
Thus when we designate Z1 = vj for any j ∈ J0 and Z2 = vjm , along with (E.17) we have

∑
j∈J0

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z) ∥f(ṽj) − f(Z)∥∞

≤
∑
j∈J0

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z) (∥f(ṽj) − f(ṽjm

)∥∞ + ∥f(ṽjm
) − f(Z)∥∞)

≤
∑
j∈J0

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z) · ( ϵ

3 + ϵ

3)

=
∑
j∈J0

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z) · 2ϵ

3 . (E.19)

For jm, we have

exp
(

R(v⊤
jm

Z̃ − 1
2 ∥vjm

∥2
2)
)

α(Z) ∥f(ṽjm
) − f(Z)∥∞ ≤

exp
(

R(v⊤
jm

Z̃ − 1
2 ∥vjm

∥2
2)
)

α(Z) · ϵ

3 . (E.20)

When R is larger than 8
3δ2 ln

( 3
2 B0Gϵ

)
, we have

∑
j∈J1

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z) ∥f(ṽj) − f(Z)∥∞

≤
∑
j∈J1

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z) · 2B0

(
By ∥f∥L∞ = B0

)

≤ 2B0

∑
j∈J1

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z)

< 2B0

∑
j∈J1

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
exp
(

R(v⊤
jm

Z̃ − ∥vjm ∥2
2

2 )
)

(
α(Z) is the sum of all exp

(
R(v⊤

j Z̃ − ∥vj ∥2
2

2 )
)

, thus larger than exp
(

R(v⊤
jm

Z̃ − ∥vjm ∥2
2

2 )
))

= 2B0
∑
j∈J1

exp
(

R

2 (∥vjm − Z∥2
2 − ∥vj − Z∥2

2)
)

≤ 2B0∥J1∥ exp
(

R

2

[
(δ

2)2 − δ2
])

< 2B0G exp
(

−3Rδ2

8

)

≤ 2B0G exp

−3δ2 · 8 ln( 2
3 B0Gϵ)
3δ2

8

 (
By R ≥ 8

3δ2 ln
(

3
2 B0Gϵ

))
= ϵ

3 . (E.21)
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Combining (E.19) and (E.20) yields

∑
j∈J0∪{jm}

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z) ∥f(ṽj) − f(Z)∥∞

≤
∑
j∈J0

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z)

2ϵ

3 +
exp
(

R(v⊤
jm

Z̃ − ∥vjm ∥2
2

2 )
)

α(Z)
ϵ

3
(

By (E.19) and (E.20)
)

≤
∑

j∈J0∪{jm}

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z)

2ϵ

3

≤ 2ϵ

3 , (E.22)

where the last line is by
∑

j∈J0∪{jm}
1

α(Z) exp
(

R(v⊤
j Z̃ − 1

2 ∥vj∥2
2)
)

≤ 1.

We plug (E.21) and (E.22) to (E.18) and get

∥Attn ◦ Linear(Z) − f(Z)∥∞ ≤
exp
(

R(v⊤
jm

Z̃ − ∥vjm ∥2
2

2 )
)

α(Z) ∥f(ṽjm) − f(Z)∥∞

+
∑
j∈J0

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z) ∥f(ṽj) − f(Z)∥∞

+
∑
j∈J1

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z) ∥f(ṽj) − f(Z)∥∞

≤ 2ϵ

3 + ϵ

3
= ϵ.

This completes the proof.

We also extend this L∞-Norm result we just proved to Lp-Norm.

Corollary E.1.1 (Lp-Norm Universal Approximation). Let f : Rd×n → Rd×n denote any Lebesgue
integrable function on a compact domain U ∈ Rd×n and let ϵ > 0 be any positive real number. Then,
there exists a self-attention Attn prepended with a Linear layer such that

∥f − Attn ◦ Linear∥Lp
≤ ϵ.

Proof Sketch. The same partition-based construction applies almost everywhere; outside a negligible
set, f is continuous (Lusin’s theorem). Thus the L∞ argument extends.

Proof. Since f is Lebesgue integrable on a compact set, f is bounded almost every where. Let Bp

denote the bound of ∥f∥p.

By Lusin’s theorem, for f on a compact domain U , there exists a continuous function g which is
equal to f in U except for a region Dδ such that µ(Dδ) ≤ ∆. This can be written as

Dδ = {Z|f(Z) ̸= g(Z)}, (E.23)
µ(Dδ) ≤ ∆. (E.24)

Here µ stands for the Lebesgue measure of a set.
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By Theorem 4.1, there exists a net work Attn ◦ Linear, consists of a self-attention Attn and a layer
of sum of linear transformation Linear such that

∥Attn ◦ Linear − g∥L∞ ≤ ϵ0,

for any ϵ0 > 0.

This denote that for any Z ∈ U

∥Attn ◦ Linear(Z) − g(Z)∥p ≤ (dn · ϵp)
1
p = ϵ0(dn)

1
p .

Combine this with (E.23) and (E.24), we get

µ({Z|∥Attn ◦ Linear(Z) − g(Z)∥∞ > ϵ0}) ≤ µ({f(Z) ̸= g(Z)})
≤ ∆, (E.25)

since that f(Z) = g(Z), ∥Attn ◦ Linear(Z) − g(Z)∥ = ∥Attn ◦ Linear(Z) − f(Z)∥ ≤ ϵ0.

This yields

∥f − Attn ◦ Linear∥Lp
= (
∫

Z∈U

∥f − Attn ◦ Linear∥p
p dx)

1
p

≤ (
∫

Z∈U\Dδ

∥f − Attn ◦ Linear∥p
p dx +

∫
Z∈Dδ

∥f − Attn ◦ Linear∥p
p dx)

1
p

= (
∫

Z∈U\Dδ

∥g − Attn ◦ Linear∥p
p dx +

∫
Z∈Dδ

∥f − Attn ◦ Linear∥p
p dx)

1
p

≤ (µ(U\Dδ)(ϵ0(dn)
1
p )p + ∆ · Bp

p)
1
p

(
By (E.25)

)
≤ ϵ0(dnµ(U))

1
p + ∆

1
p Bp.

Set

ϵ0 ≤ ϵ

2(dnµ(U))
1
p

∆ ≤ ϵp

Bp · 2p
.

We have

∥f − Attn ◦ Linear∥Lp
≤ ϵ0(dnµ(U))

1
p + ∆

1
p Bp

≤ (dnµ(U))
1
p · ϵ

2(dnµ(U))
1
p

+ ( ϵp

Bp · 2p
)

1
p Bp

= ϵ

2 + ϵ

2
= ϵ.

This completes our proof.

E.2 Proof of Theorem 4.2

Theorem E.2. Let UK ⊂ Rd×n and UQ ⊂ Rd×n be two compact domains, and let f : UK × UQ →
Rd×n be any continuous function that takes input from both domains. We use ZK , ZQ ∈ Rd×n to
denote the two inputs of f from UK and UQ respectively. Without loss of generality, suppose both
input domains to be [−D, D]d×n, where D ∈ R+. Then for any ϵ > 0, there exists a single-head
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cross-attention Attn and two layers of sum of linear transformations, LinearK and LinearQ such
that:

∥Attn (LinearK(ZK), LinearQ(ZQ)) − f(ZK , ZQ)∥∞ ≤ ϵ,

for any ZK , ZQ ∈ [−D, D]d×n.

Proof. Without loss of generality, assume UK = UQ = [−D, D]d×n for a D ∈ R+.

Construction of Grid Centers in UK , UQ. Same as in Appendix E.1, we define Z̃ :=
[z⊤

1 , z⊤
2 , · · · , z⊤

n ]⊤. P ∈ N+ is a parameter that controls the size of the attention block and the error
of our approximation. Define vk1,k2,··· ,kdn

∈ Rdn to be

vk1,k2,··· ,kdn
:=
[

2Dk1 − DP

P
,

2Dk2 − DP

P
, · · · ,

2Dkdn − DP

P

]⊤

, ki ∈ {0, 1, 2, · · · , P − 1}, i ∈ [dn].

Let V := {vk1,k2,··· ,kdn
|ki ∈ {0, 1, 2, · · · , P − 1}, i ∈ [dn]} be the set of all vk1,k2,··· ,kdn

. We also
define another way to refer to a vector in V , denoted as

v∑dn

i=1
kiP (i−1) := vk1,k2,··· ,kdn

.

Please see Remark E.1 for the reason for the feasibility of such expression.

Following the notation in Appendix E.1, for every v ∈ V , we define

ṽ := [v1:d, vd+1:2d, · · · , v(n−1)d+1,nd]︸ ︷︷ ︸
d×n

as a d × n matrix-form representation of v.

Construction of f Related Function E and T . The continuity of f within a closed region
guarantees it to be bounded in ∞-norm. Let B0 denote this bound. For any aK , aQ ∈ Rd×n, we
define

E(aK , aQ) := 1d×n − f(aK , aQ)
B0

T (aK , aQ) := 1d×n + f(aK , aQ)
B0

.

We define (E + T )(aK , aQ) = E(aK , aQ) + T (aK , aQ). By the definition of E and T , (E +
T )(aK , aQ) ≡ 2d×n for any aK , aQ ∈ Rd×n.

Remark E.3 (Intuition behind E and T ). E and T are constructed to satisfy 3 conditions:

• T (Zk, ZQ) + E(ZK , ZQ) ≡ 2.
• T (Zk, ZQ) − E(ZK , ZQ) = 2f(ZK , ZQ)/B0.
• T, E > 0 for any input.

The first condition is used to configure the denominator in the Softmax expression of attention to a
constant value. The second condition is used to form the value of f in the

For simplicity, same as in Appendix E.1, define

G := P dn.
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We now construct the LinearK and LinearQ layers to be

LinearK(ZK) :=
G−1∑
j=0

(n−1)∑
k=0

(ZKe
(n)
k+1)⊤(vj)kd+1:kd+d

 e
(2dG2+G)
2dG2+j+1

dG−1∑
s=0

(
e

(2dG2)
j+s+1 + e

(2dG2)
j+s+dG2+1

)⊤

+
[

I2dG2

0G×2dG2

]
,

LinearQ(ZQ) :=
G−1∑
j=0

(n−1)∑
k=0

(ZQe
(n)
k+1)⊤(vj)kd+1:kd+d

 e
(n+G)
j+1

[
11×n 01×(2dG2−n)

]
+
[
0G×n 0G×(2dG2−n)

In 0n×(2dG2−n)

]
.

Same as that in Theorem E.1, we have

(n−1)∑
k=0

(ZKe
(n)
k+1)⊤(vj)kd+1:kd+d = v⊤

j Z̃K , (E.26)

(n−1)∑
k=0

(ZQe
(n)
k+1)⊤(vj)kd+1:kd+d = v⊤

j Z̃Q, (E.27)

for j ∈ {0, 1, 2, · · · , G − 1}.

We now calculate the output of LinearK and LinearQ.

For LinearK , we have

LinearK(ZK) =
G−1∑
j=0

v⊤
j Z̃Ke

(2dG2+G)
2dG2+j+1

dG−1∑
s=0

(
e

(2dG2)
j+s+1 + e

(2dG2)
j+s+dG2+1

)⊤
+
[

I2dG2

0G×2dG2

]

=
[

I2dG2∑G−1
j=0 v⊤

j Z̃K

∑dG−1
s=0

(
e

(2dG2)
j+s+1 + e

(2dG2)
j+s+dG2+1

)⊤

] (
by (E.26)

)

=

 IdG2 0dG2×dG2

0dG2×dG2 IdG2∑G−1
j=0 v⊤

j Z̃K

∑dG−1
s=0

(
e

(2dG2)
j+s+1

)⊤ ∑1−1
j=0 v⊤

j Z̃K

∑dG−1
s=0

(
e

(2dG2)
j+s+1

)⊤


=
[

IdG2 0dG2×dG2

0dG2×dG2 IdG2

XK XK

]
, (E.28)

LinearQ(ZQ) =
G−1∑
j=0

v⊤
j Z̃Qe

(n+G)
j+1

[
11×n 01×(2dG2−n)

]
+
[
0G×n 0G×(2dG2−n)

In 0n×(2dG2−n)

]

=
[∑G−1

j=0 v⊤
j Z̃Qe

(2dG2+G)
j+1 11×n 01×(2dG2−n)

In 0n×(2dG2−n)

] (
by (E.27)

)
=
[
XQ 0G×(2dG2−n)
In 0n×(2dG2−n)

]
, (E.29)

in which XK and XQ are defined as

XK :=
[
v⊤

0 Z̃K11×dG v⊤
1 Z̃K11×dG v⊤

2 Z̃K11×dG · · · v⊤
G−1Z̃K11×dG

]
︸ ︷︷ ︸

1×dG2

,
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XQ :=


v⊤

0 Z̃Q11×n

v⊤
1 Z̃Q11×n

v⊤
2 Z̃Q11×n

· · ·
v⊤

G−1Z̃Q11×n


︸ ︷︷ ︸

G×n

.

We now construct the Wk and WQ matrices in the self-attention block and calculate the output of
Softmax

(
K⊤Q

)
.

In the following, we define WK in parts. First, we present it as a block matrix

WK :=

01×dG2 01×dG2 1
W0 W0 0
W1 W1 0
WT WE 0

 . (E.30)

We then define the submatrices in (E.30) as follows

W0 :=
[
− ∥v0∥2

2
2 11×dG + W 0 − ∥v1∥2

2
2 11×dG + W 0 − ∥v2∥2

2
2 11×dG + W 0 · · · − ∥vG−1∥2

2
2 11×dG + W 0

]
,

WT :=
[
W

(0)
T W

(1)
T · · · W

(G−1)
T

]
,

WE :=
[
W

(0)
E W

(1)
E · · · W

(G−1)
E

]
,

W1 :=
[
W 1 W 1 W 1 · · · W 1

]
G×dG2 ,

in which

W 0 :=
[
− ∥v0∥2

2
2 11×d − ∥v1∥2

2
2 11×d − ∥v2∥2

2
2 11×d · · · − ∥vG−1∥2

2
2 11×d

]
W

(j)
T :=

[
ln(T (ṽj , ṽ0))⊤ ln(T (ṽj , ṽ1))⊤ · · · ln(T (ṽj , ṽG−1))⊤]︸ ︷︷ ︸

d×Gn

, j ∈ {0, 1, 2, · · · , G − 1},

W
(j)
E :=

[
ln(E(ṽj , ṽ0))⊤ ln(E(ṽj , ṽ1))⊤ · · · ln(E(ṽj , ṽG−1))⊤]︸ ︷︷ ︸

d×Gn

, j ∈ {0, 1, 2, · · · , G − 1},

W 1 :=
[
Re

(G)
1 11×d Re

(G)
2 11×d · · · Re

(G)
G 11×d

]
︸ ︷︷ ︸

G×d

.

The definition of WK yields that

K := WKLinearK(ZK)

=

01×dG2 01×dG2 1
W0 W0 0
W1 W1 0
WT WE 0

 ·

[
IdG2 0dG2×dG2

0dG2×dG2 IdG2

XK XK

] (
By (E.28)

)

=

XK XK

W0 W0
W1 W1
WT WE

 .
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Next, we construct the WQ matrix as

WQ :=

01×G R11×n

01×G R11×n

IG 01×n

01×G In

 .

In this definition, the Q matrix in attention can be calculated as follows

Q := WQLinearQ(ZQ)

=

01×G R11×n

01×G R11×n

IG 01×n

01×G In

 ·
[
XQ 0G×(2dG2−n)
In 0n×(2dG2−n)

] (
By (E.29)

)

=

R11×n 01×(2dG2−n)
R11×n 01×(2dG2−n)

XQ 0G×(2dG2−n)
In 0n×(2dG2−n)

 .

Now we calculate the attention matrix Softmax
(
K⊤Q

)
.

K⊤Q can be calculated as follows

K⊤Q =

XK XK

W0 W0
W1 W1
WT WE


⊤ R11×n 01×(2dG2−n)

R11×n 01×(2dG2−n)
XQ 0G×(2dG2−n)
In 0n×(2dG2−n)


=
[
(RX⊤

K + RW ⊤
0 )11×n + W ⊤

1 XQ + W ⊤
T 0dG2×(2dG2−n)

(RX⊤
K + RW ⊤

0 )11×n + W ⊤
1 XQ + W ⊤

E 0dG2×(2dG2−n)

]
.

The W ⊤
1 XQ in the expression of K⊤Q matrix is further calculated as

W ⊤
1 XQ =

[
W 1 W 1 W 1 · · · W 1

]⊤
G×dG2 XQ

=


W ⊤

1 XQ

W ⊤
1 XQ

...
W ⊤

1 XQ


dG2×G

.

We define Q1 := W ⊤
1 XQ, then W ⊤

1 XQ can be denoted as stacking this block vertically for G times.

In this definition, Q1 matrix can be expressed as

Q1 := W ⊤
1 XQ

=
[
Re

(G)
1 11×d Re

(G)
2 11×d · · · Re

(G)
G 11×d

]⊤


v⊤

0 Z̃Q11×n

v⊤
1 Z̃Q11×n

v⊤
2 Z̃Q11×n

...
v⊤

G−1Z̃Q11×n


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=


Re

(G)
1 1d

Re
(G)
2 1d

...
Re

(G)
G 1d

 ·


v⊤

0 Z̃Q11×n

v⊤
1 Z̃Q11×n

v⊤
2 Z̃Q11×n

...
v⊤

G−1Z̃Q11×n



=


Rv⊤

0 Z̃Q1d×n

Rv⊤
1 Z̃Q1d×n

Rv⊤
2 Z̃Q1d×n

...
Rv⊤

G−1Z̃Q1d×n

 . (E.31)

The calculation of Softmax
(
K⊤Q

)
can be disassembled into two parts, the numerator

exp
(
Softmax

(
K⊤Q

))
in the expression of Softmax and the denominator of every column of

Softmax
(
K⊤Q

)
, as in the expression of Softmax, explicitly written out as

∑2dG
j=1 exp

(
K⊤Q

)
ij

for
each i ∈ [2dG].

We calculate exp
(
K⊤Q

)
as follows

exp
(
K⊤Q

)
=
[
exp
(
(RX⊤

K + RW ⊤
0 )11×n + RW ⊤

1 XQ

)
⊙ exp

(
W ⊤

T

)
1dG2×(2dG2−n)

exp
(
(RX⊤

K + RW ⊤
0 )11×n + RW ⊤

1 XQ

)
⊙ exp

(
W ⊤

E

)
1dG2×(2dG2−n)

]
.

(E.32)

For the denominator, we calculate it in columns. Let i denote the column which we calculate the
denominator in Softmax. When i ∈ {n + 1, n + 2, · · · , 2dG2}, the i-th column has 1 in every entry.
Thus the sum of all entries in this column equals to 1 · 2dG = 2dG.

And when i ∈ [n], we have

2dG2∑
j=1

exp
(
K⊤Q

)
i,j

=
G∑

j1=1

G∑
j2=1

[
(11×dT (ṽj1−1, ṽj2−1):,i + 11×dE(ṽj1−1, ṽj2−1):,i)

· exp
(

R

(
v⊤

j1−1Z̃K − ∥vj1−1∥2
2

2 + v⊤
j2−1Z̃Q − ∥vj2−1∥2

2
2

))]

=
G∑

j1=1

G∑
j2=1

[
11×d(E + T )(vj1−1, vj2−1):,i · exp

(
R

(
v⊤

j1−1Z̃K − ∥vj1−1∥2
2

2 + v⊤
j2−1Z̃Q − ∥vj2−1∥2

2
2

))]

=
G∑

j1=1

G∑
j2=1

[
(11×d(2d×n):,i) · exp

(
R

(
v⊤

j1−1Z̃K − ∥vj1−1∥2
2

2 + v⊤
j2−1Z̃Q − ∥vj2−1∥2

2
2

))]

=
G∑

j1=1

G∑
j2=1

2d · exp
(

R

(
v⊤

j1−1Z̃K − ∥vj1−1∥2
2

2 + v⊤
j2−1Z̃Q − ∥vj2−1∥2

2
2

))
, i ∈ [n]. (E.33)

We observe from (E.33), that
∑2dG2

j=1 exp
(
K⊤Q

)
ij

is invariant of i for i ∈ [n]. In this case, we
define

α(ZK , ZQ) := 1
2d

2dG2∑
j=1

exp
(
K⊤Q

)
i,j
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=
G∑

j1=1

G∑
j2=1

exp
(

R

(
v⊤

j1−1Z̃K − ∥vj1−1∥2
2

2 + v⊤
j2−1Z̃Q − ∥vj2−1∥2

2
2

))

to denote the 1/2d of this value invariant of i for simplicity.

Because

α(ZK , ZQ) = 1
2d

2dG2∑
j=1

exp
(
K⊤Q

)
i,j

,

from (E.32) and (E.33) we have

Softmax
(
K⊤Q

)
= exp

(
K⊤Q

)︸ ︷︷ ︸
nominator of Softmax

⊙
[

1∑2dG2

j=1
exp(K⊤Q)1j

12dG×n
1

2dG2 12dG×(2dG−n)
]

︸ ︷︷ ︸
denominator of Softmax(

By 1∑2dG

j=1
exp(K⊤Q)

ij

is invariant of i for i ∈ [n]
)

= exp
(
K⊤Q

)
⊙
[

1
2dα(ZK ,ZQ) 12dG×n

1
2dG2 12dG×(2dG−n)

]
=
[
exp
(
(RX⊤

K + RW ⊤
0 )11×n + RW ⊤

1 XQ

)
⊙ exp

(
W ⊤

T

)
1dG2×(2dG2−n)

exp
(
(RX⊤

K + RW ⊤
0 )11×n + RW ⊤

1 XQ

)
⊙ exp

(
W ⊤

E

)
1dG2×(2dG2−n)

]
⊙
[

1
2dα(ZK ,ZQ) 12dG×n

1
2dG2 12dG×(2dG−n)

]
︸ ︷︷ ︸

denominator in Softmax

(
By (E.32)

)

=
[

1
2dα(ZK ,ZQ) exp

(
(RX⊤

K + RW ⊤
0 )11×n + RW ⊤

1 XQ

)
⊙ exp

(
W ⊤

T

) 1
2dG2 1dG2×(2dG2−n)

1
2dα(ZK ,ZQ) exp

(
(RX⊤

K + RW ⊤
0 )11×n + RW ⊤

1 XQ

)
⊙ exp

(
W ⊤

E

) 1
2dG2 1dG2×(2dG2−n)

]
.

Now we’ve defined and calculated the attention score matrix Softmax(K⊤Q), we go on to construct
the WV matrix and calculate the result of multiplying V = WV Linear(ZK) to the attention score
matrix.

We define WV as

WV := [X2 −X2 0d]︸ ︷︷ ︸
d×(2dG2+1)

,

where

X2 = [Id Id · · · Id]︸ ︷︷ ︸
d×dG2

.

This yields the V matrix to be

V = WV Linear(ZK)

= [X2 −X2 0d]︸ ︷︷ ︸
d×(2dG2+1)

·

[
IdG2 0dG2×dG2

0dG2×dG2 IdG2

XK XK

]
︸ ︷︷ ︸

(2dG2+1)×2dG2

= [X2 −X2]︸ ︷︷ ︸
d×2dG2

·
[

IdG2 0dG2×dG2

0dG2×dG2 IdG2

]
︸ ︷︷ ︸

2dG2×2dG2

(
since XK is multiplied by 0

)
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= [X2 −X2] .

With V , we compute the output of V Softmax(K⊤Q) as follows

V Softmax(K⊤Q)

= [X2 −X2] ·

[
1

2dα(ZK ,ZQ) exp
(
(RX⊤

K + RW ⊤
0 )11×n + RW ⊤

1 XQ

)
⊙ exp

(
W ⊤

T

) 1
2dG2 1dG2×(2dG2−n)

1
2dα(ZK ,ZQ) exp

(
RX⊤

K + RW ⊤
0
)
11×n ⊙ exp

(
RW ⊤

1 XQ

)
⊙ exp

(
W ⊤

E

) 1
2dG2 1dG2×(2dG2−n)

]
= X2

[
1

2dα(ZK ,ZQ) exp
(
(RX⊤

K + RW ⊤
0 )11×n + RW ⊤

1 XQ

)
⊙ exp

(
W ⊤

T

) 1
2dG2 1dG2×(2dG2−n)

]
−X2︸︷︷︸

−X2 in [X2 −X2]

[
1

2dα(ZK ,ZQ) exp
(
RX⊤

K + RW ⊤
0
)
11×n ⊙ exp

(
RW ⊤

1 XQ

)
⊙ exp

(
W ⊤

E

) 1
2dG2 1dG2×(2dG2−n)

]
= 1

2dα(ZK , ZQ)X2
[
exp
(
(RX⊤

K + RW ⊤
0 )11×n + RW ⊤

1 XQ

)
⊙ [exp

(
W ⊤

T

)
− exp

(
W ⊤

E

)
] 0dG2×(2dG2−n)

]
.

(E.34)

To further calculate V Softmax(K⊤Q), we now calculate the result of its non-trivial part (the part
beside 0dG2×(2dG2−n))

X2
[
exp
(
(RX⊤

K + RW ⊤
0 )11×n + RW ⊤

1 XQ

)
⊙ [exp

(
W ⊤

T

)
− exp

(
W ⊤

E

)
]
]

. (E.35)

We now calculate each part in (E.35)

exp
(
W ⊤

T

)
− exp

(
W ⊤

E

)
= (exp

([
W

(0)
T W

(1)
T · · · W

(G−1)
T

])
− exp

([
W

(0)
E W

(1)
E · · · W

(G−1)
E

])
)⊤

=



exp
(

W
(0)
T

)⊤
− exp

(
W

(0)
E

)⊤

exp
(

W
(1)
T

)⊤
− exp

(
W

(1)
E

)⊤

...

exp
(

W
(G−1)
T

)⊤
− exp

(
W

(G−1)
E

)⊤


. (E.36)

In (E.36), we have

exp
(

W
(i)
T

)⊤
− exp

(
W

(i)
E

)⊤
=


exp(ln(T (ṽi, v0))) − exp(ln(E(ṽi, v0)))
exp(ln(T (ṽi, v1))) − exp(ln(E(ṽi, v0)))

...
exp(ln(T (ṽi, vG−1))) − exp(ln(E(ṽi, v0)))



=


T (ṽi, v0) − E(ṽi, v0)
T (ṽi, v1) − E(ṽi, v0)

...
T (ṽi, vG−1) − E(ṽi, v0)



=


2f(ṽi,v0)

B0
2f(ṽi,v1)

B0
...

2f(ṽi,vG−1)
B0

 .
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Thus (E.36) is equal to

(
exp

(
W

(i)
T

)⊤
− exp

(
W

(i)
E

)⊤
)

(i−1)G+1:iG,:
=


2f(ṽi−1,v0)

B0
2f(ṽi−1,v1)

B0
...

2f(ṽi−1,vG−1)
B0

 , i ∈ [G]. (E.37)

We also calculate the other part exp
(
(RX⊤

K + RW ⊤
0 )11×n + RW ⊤

1 XQ

)
in separate parts

exp
(
(RX⊤

K + RW ⊤
0 )11×n

)
idG+jd+1:idG+(j+1)d,: =


exp
(

v⊤
0 Z̃K − ∥v0∥2

2
2

)
1dG×n

exp
(

v⊤
1 Z̃K − ∥v1∥2

2
2

)
1dG×n

· · ·
exp
(

v⊤
G−1Z̃K − ∥vG−1∥2

2
2

)
1dG×n


idG+jd+1:idG+(j+1)d,:

= exp
(

v⊤
i Z̃K − ∥vi∥2

2
2

)
1d×n,

and

exp
(
(RW ⊤

1 XQ)1
)

idG+jd+1:idG+(j+1)d,: =


Q1
Q1
...

Q1


idG+jd+1:idG+(j+1)d,:(

This is a stack of G Q1 in (E.31)
)

= (Q1)jd+1:(j+1)d,:

= v⊤
j Z̃Q1d×n.

Thus

exp
(
(RX⊤

K + RW ⊤
0 )11×n + RW ⊤

1 XQ

)
idG+jd+1:idG+(j+1)d,:

= exp
(

R(v⊤
i Z̃K − ∥vi∥2

2
2 − ∥vj∥2

2
2 + v⊤

j Z̃Q)
)

1d×n, i, j ∈ {0, 1, · · · , G − 1}. (E.38)

Combing (E.37) and (E.38), we have[
exp
(
(RX⊤

K + RW ⊤
0 )11×n + RW ⊤

1 XQ

)
⊙ [exp

(
W ⊤

T

)
− exp

(
W ⊤

E

)
]
]

idG+(j−1)d+1:idG+jd,:

= exp
(

R(v⊤
i Z̃K − ∥vi∥2

2
2 − ∥vj∥2

2
2 + v⊤

j Z̃Q)
)

1d×n ⊙ 2f(ṽi−1, vj−1)
B0

, i, j ∈ {0, 1, · · · , G − 1}.

Thus we compute (E.35) as

(X2
[
exp
(
(RX⊤

K + RW ⊤
0 )11×n + RW ⊤

1 XQ

)
⊙ [exp

(
W ⊤

T

)
− exp

(
W ⊤

E

)
]
]
)

=
G−1∑
i=0

G−1∑
j=0

(X2):,idG+jd+1:idG+(j+1)d

· R
[
exp
(
(RX⊤

K + RW ⊤
0 )11×n + RW ⊤

1 XQ

)
⊙ [exp

(
W ⊤

T

)
− exp

(
W ⊤

E

)
]
]

idG+(j−1)d+1:idG+jd,:
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=
G−1∑
i=0

G−1∑
j=0

Id · exp
(

R(v⊤
i Z̃K − ∥vi∥2

2
2 − ∥vj∥2

2
2 + v⊤

j Z̃Q)
)

1d×n ⊙ 2f(ṽi−1, vj−1)
B0(

Because X2 is a horizontal stack of Id

)
=

G−1∑
i=0

G−1∑
j=0

exp
(

R(v⊤
i Z̃K − ∥vi∥2

2
2 − ∥vj∥2

2
2 + v⊤

j Z̃Q)
)

1d×n ⊙ 2f(ṽi−1, vj−1)
B0

.

We now put back the 1/2dα(ZK , ZQ) in (E.34) and calculate the final output as

V Softmax K⊤Q

= 1
2dα(ZK , ZQ)X2

[
exp
(
(RX⊤

K + RW ⊤
0 )11×n + RW ⊤

1 XQ

)
⊙ [exp

(
W ⊤

T

)
− exp

(
W ⊤

E

)
] 0dG2×(2dG2−n)

]
= 1

2dα(ZK , ZQ)

G−1∑
i=0

G−1∑
j=0

exp
(

R(v⊤
i Z̃K − ∥vi∥2

2
2 − ∥vj∥2

2
2 + v⊤

j Z̃Q)
)

1d×n ⊙ 2f(ṽi−1, vj−1)
B0︸ ︷︷ ︸

exp(W ⊤
T )−exp(W ⊤

E )

0d×(2dG2−n)


=
[

1
dB0

∑G−1
i=0

∑G−1
j=0

exp
(

R(v⊤
i Z̃K −

∥vi∥2
2

2 −
∥vj ∥2

2
2 +v⊤

j Z̃Q)
)

1d×n⊙
f (̃vi−1,vj−1)

B0

α(ZK ,ZQ) 0d×(2dG2−n)

]
.

Next, we construct WO to be

WO :=
[

dB0In

0(2dG2−n)×n

]
.

This yields the final output of Attn ◦ Linear to be

Attn ◦ Linear(Z)
= V Softmax K⊤QWO

=
[

1
dB0

∑G−1
i=0

∑G−1
j=0

exp
(

R(v⊤
i Z̃K −

∥vi∥2
2

2 −
∥vj ∥2

2
2 +v⊤

j Z̃Q)
)

1d×n⊙
f (̃vi−1,vj−1)

B0

α(ZK ,ZQ) 0d×(2dG2−n)

]
·
[

dB0In

0(2dG2−n)×n

]
︸ ︷︷ ︸

WO

=
G−1∑
i=0

G−1∑
j=0

exp
(

R(v⊤
i Z̃K − ∥vi∥2

2
2 − ∥vj∥2

2
2 + v⊤

j Z̃Q)
)

1d×n ⊙ f(ṽi−1,vj−1)
B0

α(ZK , ZQ) . (E.39)

Estimation of Error between Attn ◦ Linear and f We now calculate the loss between the result
in (E.39) and the target function f . For simplicity, we first define Z̃ := [[Z̃⊤

K , Z̃⊤
Q ]⊤] to accommodate

to the expression of affine functions.

Definition E.3 (Max-Affine Function on Z̃.). Let Affi,j ∈ Rdn → R, j ∈ {0.1.2. · · · , G − 1}
denote a group of affine functions defined as

Affi,j(Z̃) = v⊤
i Z̃K + v⊤

j Z̃Q − 1
2∥vi∥2

2 − 1
2∥vj∥2

2, i, j ∈ {0, 1, 2, · · · , G − 1}.

Then let MaxAff ∈ Rdn → R denote a max affine function whose affine components are
{Affi,j |i, j ∈ {0, 1, 2, · · · , G − 1}}. Explicitly defined as:

MaxAff(Z̃) = max
i,j∈{0,1,2,··· ,G−1}

{
Affi,j(Z̃)

}
.
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In the following discussion, we use η ∈ {0, 1, · · · , G − 1}2 to refer to a pair of coefficients (i, j),
and denote Ai,j as Aη for the corresponding η. Furthermore, we denote the two labels encapsulated
in η as iη and jη

Because the target function f is a continuous function on a closed domain, the function f is uniformly
continuous. Thus for ϵ, there exists a δ > 0 such that for any Z(1) = [Z(1)

K , Z
(1)
Q ], Z(2) =

[Z(2)
K , Z

(2)
Q ], as long as ∥Z(1) − Z(2)∥∞ ≤ δ, we have ∥f(Z(1)) − f(Z(1))∥∞ ≤ ϵ/3.

According to this δ, we divide the affine components of MaxAff into three parts, the maximal
component (and also with the smallest label on both entry), whose label is denoted as ηm, the group
of affine components equal to the maximal component or smaller than it by no more than δ, and
finally, the other Affη . We write out the labels of these groups of components as follows

ηm := min
η∈{0,1,2,··· ,G−1}2

{Affη(Z̃) = MaxAff(Z̃)},

E0 := {η | MaxAff(Z̃) − Affη(Z̃) ≤ δ},

E1 := {η | MaxAff(Z̃) − Affη(Z̃) > δ}.

For any pair of η1, η2 ∈ {0, 1, · · · , G − 1}2, we denote that

Affη1(Z̃) − Affη2(Z̃)

= v⊤
iη1

Z̃K −
∥viη1

∥2
2

2 + v⊤
jη1

Z̃Q −
∥vjη1

∥2
2

2 −

(
v⊤

iη2
Z̃K −

∥viη2
∥2

2

2 + v⊤
jη2

Z̃Q −
∥vjη2

∥2
2

2

)

= − ∥Z̃K∥2
2

2 + v⊤
iη1

Z̃K −
∥viη1

∥2
2

2 − ∥Z̃Q∥2
2

2 + v⊤
jη1

Z̃Q −
∥vjη1

∥2
2

2 (E.40)

−

(
−∥Z̃K∥2

2
2 + v⊤

iη2
Z̃K −

∥viη2
∥2

2

2 − ∥Z̃Q∥2
2

2 + v⊤
jη2

Z̃Q −
∥vjη2

∥2
2

2

)

= − 1
2∥Z̃K − viη1

∥2
2 − 1

2∥Z̃Q − vjη1
∥2

2 + 1
2∥Z̃K − viη2

∥2
2 + 1

2∥Z̃Q − vjη2
∥2

2

= 1
2∥Z̃ −

[
viη2
vjη2

]
∥2

2 − 1
2∥Z̃ −

[
viη1
vjη1

]
∥2

2. (E.41)

Let vη := [v⊤
iη

, v⊤
jη

]⊤, denote a flatten stack of viη and vjη . Same as vi, define ṽη := [ṽiη , ṽjη ].
Then the above expression denotes ηm is also the label of the vη closest to Z̃ among all vη, η ∈
{0, 1, · · · , G − 1}2. Thus we have

∥vηm
− Z̃∥2 = min

η∈{0,1,··· ,G−1}2
{∥vη − Z̃∥2}. (E.42)

This means that vηm
is the grid center closest to Z̃ in 2-norm.

We now prove this closest grid center has a distance to Z̃ smaller than half of the grid width (D/g) in
infinite norm.

Let D := 2D/g×{−1, 0, 1}dn denote a set of differences to vηm of all the vi (i ∈ {0, 1, · · · , G−1})
neighboring vηm

. For any ∆ in D, from (E.42) we have

∥vηm − Z̃∥2
2 ≤ ∥vηm + ∆ − Z̃∥2

2.

This yields

2∆⊤(Z̃ − vjm
) ≤ ∥∆∥2

2,
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which means for any k ∈ [dn], by selecting ∆ to be ± 2D
g · e

(dn)
k , we have

±2 × 2D

g
(Z̃ − vηm

)k = 2∆⊤(Z̃ − vηm
) ≤ ∥∆∥2

2 = 4D2

g2 .

Thus we have

(|Z̃ − vηm
|)k ≤ D

g
, k ∈ [dn].

This is equivalent to

∥Z̃ − vηm
∥∞ ≤ D

g
, k ∈ [dn].

Set g to be larger than 2D/δ, we have

∥Z̃ − vηm∥∞ ≤ δ

2 ,

thus

∥f(Z) − f(ṽηm
)∥∞ ≤ ϵ

3 .
(

because δ/2 < δ
)

Calculation of ∥Attn ◦ Linear − f∥L∞ . We now calculate the difference between the output in
(E.39) and target function f

∥Attn ◦ Linear(Z) − f(Z)∥∞ = ∥
G−1∑
η=0

exp
(

R(v⊤
η Z̃ − ∥vη∥2

2
2 )

)
α(Z) f(ṽη) − f(Z)∥∞

= ∥
G−1∑
η=0

exp
(

R(v⊤
η Z̃ − ∥vη∥2

2
2 )

)
α(Z) (f(ṽη) − f(Z))∥

(
By
∑G−1

η=0

exp
(

R(v⊤
η Z̃−

∥vη∥2
2

2 )
)

α(Z) = 1
)

≤
G−1∑
η=0

exp
(

R(v⊤
η Z̃ − ∥vη∥2

2
2 )

)
α(Z) ∥f(ṽη) − f(Z)∥∞(

By property of infinite norm
)

=
exp
(

R(v⊤
ηm

Z̃ − ∥vηm ∥2
2

2 )
)

α(Z) ∥f(ṽηm
) − f(Z)∥∞

+
∑
η∈η0

exp
(

R(v⊤
η Z̃ − ∥vη∥2

2
2 )

)
α(Z) ∥f(ṽη) − f(Z)∥∞

+
∑
η∈η1

exp
(

R(v⊤
η Z̃ − ∥vη∥2

2
2 )

)
α(Z) ∥f(ṽη) − f(Z)∥∞. (E.43)

The last row is simply a separation of the summation in the row above.

We now calculate each part in (E.43).
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As previously stated, for any Z1, Z2, as long as ∥Z̃1 −Z̃2∥∞ ≤ δ, we have ∥f(Z1)−f(Z2)∥∞ ≤ ϵ/3.
Thus when we designate Z1 = vη for any η ∈ η0 and Z2 = vηm , along with (E.40) we have

∑
η∈η0

exp
(

R(v⊤
η Z̃ − ∥vη∥2

2
2 )

)
α(Z) ∥f(ṽη) − f(Z)∥∞

≤
∑
η∈η0

exp
(

R(v⊤
η Z̃ − ∥vη∥2

2
2 )

)
α(Z) (∥f(ṽη) − f(ṽηm

)∥∞ + ∥f(ṽηm
) − f(Z)∥∞)

≤
∑
η∈η0

exp
(

R(v⊤
η Z̃ − ∥vη∥2

2
2 )

)
α(Z) · ( ϵ

3 + ϵ

3)

=
∑
η∈η0

exp
(

R(v⊤
η Z̃ − ∥ṽη∥2

2
2 )

)
α(Z) · 2ϵ

3 . (E.44)

For any ηm, we have

exp
(

R(v⊤
ηm

Z̃ − ∥vηm ∥2
2

2 )
)

α(Z) ∥f(ṽηm) − f(Z)∥∞ ≤
exp
(

R(v⊤
ηm

Z̃ − ∥vηm ∥2
2

2 )
)

α(Z) · ϵ

3 . (E.45)

When R is larger than 8 ln(3/2 · B0Gϵ)/(3δ2), we have

∑
η∈η1

exp
(

R(v⊤
η Z̃ − ∥vη∥2

2
2 )

)
α(Z) ∥f(ṽη) − f(Z)∥∞ ≤

∑
η∈η1

exp
(

R(v⊤
η Z̃ − ∥vη∥2

2
2 )

)
α(Z) · 2B0(

By that f is bounded
)

≤ 2B0

∑
η∈η1

exp
(

R(v⊤
η Z̃ − ∥vη∥2

2
2 )

)
α(Z)

< 2B0

∑
η∈η1

exp
(

R(v⊤
η Z̃ − ∥vη∥2

2
2 )

)
exp
(

R(v⊤
ηm

Z̃ − ∥vηm ∥2
2

2 )
)

(
α(Z) is the sum of all exp

(
R(v⊤

η Z̃ − ∥vη∥2
2

2 )
)

, larger than any element in the sum
)

= 2B0
∑
η∈η1

exp
(

R

2 (∥vηm
− Z∥2

2 − ∥vη − Z∥2
2)
)

≤ 2B0∥η1∥ exp
(

R

2

[
(δ

2)2 − δ2
])

< 2B0G exp
(

−3Rδ2

8

)

= 2B0G exp

−3δ2 · 8 ln( 2
3 B0Gϵ)
3δ2

8


= ϵ

3 . (E.46)
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Combing (E.44) and (E.45) yields

∑
η∈η0∪{ηm}

exp
(

R(v⊤
η Z̃ − ∥vη∥2

2
2 )

)
α(Z) ∥f(ṽη) − f(Z)∥∞

≤
∑
η∈η0

exp
(

R(v⊤
η Z̃ − ∥vη∥2

2
2 )

)
α(Z) · 2ϵ

3 +
exp
(

R(v⊤
ηm

Z̃ − ∥vηm ∥2
2

2 )
)

α(Z) · ϵ

3
(

By (E.44) and (E.45)
)

≤
∑

η∈η0∪{ηm}

exp
(

R(v⊤
η Z̃ − ∥vη∥2

2
2 )

)
α(Z) · 2ϵ

3

≤ 2ϵ

3 , (E.47)

where the last line is by
∑

η∈E0∪{ηm}

exp
(

R(v⊤
η Z̃−

∥vη∥2
2

2 )
)

α(Z) ≤ 1.

By (E.47) and (E.46), we have

∥Attn ◦ Linear(Z) − f(Z)∥∞ ≤
exp
(

R(v⊤
ηm

Z̃ − ∥vηm ∥2
2

2 )
)

α(Z) ∥f(ṽηm) − f(Z)∥∞

+
∑

η∈E0

exp
(

R(v⊤
η Z̃ − ∥vη∥2

2
2 )

)
α(Z) ∥f(ṽη) − f(Z)∥∞

+
∑

η∈E1

exp
(

R(v⊤
η Z̃ − ∥vη∥2

2
2 )

)
α(Z) ∥f(ṽη) − f(Z)∥∞

≤ 2ϵ

3 + ϵ

3
= ϵ.

This completes the proof.

Theorem 4.2 can be easily extended to Lebesgue integrable functions in Lp norm in the following
result.

Corollary E.2.1 (Lp-Norm Universal Approximation). Let f : UK × UQ → Rd×n denote any
Lebesgue integrable function on a compact domain UK × UQ and let ϵ be any positive real number.
Here UK , UQ ∈ Rd×n stands for the compact domain of the two input sequences of cross-attention.
Then, there exists a cross-attention Attn prepended with a Linear layer such that

∥f − Attn ◦ Linear∥Lp
≤ ϵ.

Proof. Without loss of generality, assume UK = UQ = [−D, D]d×n for a D ∈ R+.

Since f is Lebesgue integrable on a compact set, f is bounded almost every where. Let Bp denote
the bound of ∥f∥p.

By Lusin’s theorem, for f on a compact domain U , there exists a continuous function g which is
equal to f in U except for a region Dδ such that µ(Dδ) ≤ ∆. This can be written as

Dδ = {Z|f(Z) ̸= g(Z)}, (E.48)
µ(Dδ) ≤ ∆, (E.49)

where µ stands for the Lebesgue measure of a set.
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By Theorem 4.2, there exists a network Attn ◦ Linear, consists of a cross-attention Attn and a layer
of sum of linear transformation Linear such that

∥Attn ◦ Linear − g∥L∞ ≤ ϵ0,

for any ϵ0 > 0.

This denote that for any Z ∈ U × U

∥Attn ◦ Linear(Z) − g(Z)∥p ≤ (dn · ϵp)
1
p = ϵ0(dn)

1
p .

Combing this with (E.48) and (E.49), we get

µ({Z|∥Attn ◦ Linear(Z) − g(Z)∥∞ > ϵ0}) ≤ µ({f(Z) ̸= g(Z)}) ≤ ∆, (E.50)

since if f(Z) = g(Z), ∥Attn ◦ Linear(Z) − g(Z)∥ = ∥Attn ◦ Linear(Z) − f(Z)∥ ≤ ϵ0

This yields

∥f − Attn ◦ Linear∥Lp
= (
∫

Z∈U×U

∥f − Attn ◦ Linear∥p
p dx)

1
p

≤ (
∫

Z∈U×U\Dδ

∥f − Attn ◦ Linear∥p
p dx +

∫
Z∈Dδ

∥f − Attn ◦ Linear∥p
p dx)

1
p

= (
∫

Z∈U×U\Dδ

∥g − Attn ◦ Linear∥p
p dx +

∫
Z∈Dδ

∥f − Attn ◦ Linear∥p
p dx)

1
p

≤ (µ(U × U\Dδ)(ϵ0(dn)
1
p )p + ∆ · Bp

p)
1
p

≤ ϵ0(dnµ(U × U))
1
p + ∆

1
p Bp.

Set

ϵ0 ≤ ϵ

2(dnµ(U × U))
1
p

∆ ≤ ϵp

Bp · 2p
.

We have

∥f − Attn ◦ Linear∥Lp ≤ ϵ0(dnµ(U × U))
1
p + ∆

1
p Bp

≤ (dnµ(U × U))
1
p · ϵ

2(dnµ(U × U))
1
p

+ ( ϵp

Bp · 2p
)

1
p Bp

= ϵ

2 + ϵ

2
= ϵ.

This completes the proof.
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F Proof of Results in Appendix A

F.1 Proof of Theorem A.1

Theorem F.1 (Theorem A.1 Restated). Let f : Rd×n → Rd×n denote an L-Lipschitz function (in
terms of 2-norm) whose input domain is X . For any ϵ > 0, assume X is contained in Nx sphere by
the radius of ϵ/(3L) in 2-norm. Then, there exists a Linear layer and a Attn layer such that:

∥Attn ◦ Linear − f∥∞ ≤ ϵ.

Furthermore, Attn and Linear have a total number of O(dnNx) trainable parameters.

Proof sketch. This proof is identical with Theorem 4.1, except for an alteration on the set of vi.

Proof. We follow the proof of Theorem 4.1.

Notation of Sphere Centers. Let Z = [z1, z2, · · · , zn] ∈ Rd×n denote the input to Linear. Define
Z̃ := [z⊤

1 , z⊤
2 , · · · , z⊤

n ]⊤. P ∈ N+ is a parameter that controls the size of the attention block and the
error of our approximation.

Let vi, i ∈ [Nx] denote the centers of the Nx spheres that covers X . Let V := {vi|i ∈ [Nx]} denote
the set of all vi.

For every v ∈ V , we define ṽ := [v⊤
1:d, v⊤

d+1:2d, · · · , v⊤
(n−1)d+1:nd]⊤.

Construction of f Related Functions. Because f is continuous within a closed region, its output
value is bounded in ∞-norm. Let B0 denote this bound, we now construct two functions that. For
any a ∈ Rd×n, we define E(a) := 1d×n − f(a)/B0 and T (a) = 1d×n + f(a)/B0. We define
(E + T )(a) = E(a) + T (a). By the definition of E and T , (E + T )(a) ≡ 2d×n for any a ∈ Rd×n.

Construction of the Layer of Sum of Linear Transformations. We now construct the Linear
layer to be

Linear(Z) :=
Nx−1∑
j=0

(n−1)∑
k=0

(Ze
(n)
k+1)⊤(vj)kd+1:kd+d

 e
(2dNx+1)
1

d−1∑
s=0

(
e

(2dNx)
j+s+1 + e

(2dNx)
j+s+dNx+1

)⊤
+
[
01×2dNx

I2dNx

]
,

where Nx = P dn.

We now express the output of Linear in a simpler form in the following discussion. First, we show
that

(n−1)∑
k=0

(Ze
(n)
k+1)⊤(vj)kd+1:kd+d =

(n−1)∑
k=0

z⊤
k+1(vj)kd+1:kd+d

= [z⊤
1 , z⊤

2 , · · · , z⊤
n ]vj

= v⊤
j Z̃ ∈ R, j ∈ {0, 1, 2, · · · , Nx − 1}.

This yields

Linear(Z) =
Nx−1∑
j=0

v⊤
j Z̃

d−1∑
s=0

(
e

(2dNx)
j+s+1 + e

(2dNx)
j+s+dNx+1

)⊤
e

(2dNx+1)
1 +

[
01×2dNx

I2dNx

]

=
[

X0 X0
IdNx

0dNx×dNx

0dNx×dNx
IdNx

]
,
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in which X0 is defined as follows

X0 :=
[
v⊤

0 Z̃11×d v⊤
1 Z̃11×d v⊤

2 Z̃11×d · · · v⊤
Nx−1Z̃11×d

]
.

Construction of K and Q Matrices. We now construct the Wk and WQ matrices in the self-
attention block and calculate the output of Softmax

(
K⊤Q

)
.

We define WK as follows:

WK :=

1 01×d · · · 01×d 01×d · · · 01×d

0 − ∥v0∥2
2

2 11×d · · · − ∥vNx−1∥2
2

2 11×d − ∥v0∥2
2

2 11×d · · · − ∥vNx−1∥2
2

2 11×d

0 ln(T (ṽ0))⊤ · · · ln(T (ṽNx−1))⊤ ln(E(ṽ0))⊤ · · · ln(E(ṽNx−1))⊤

 .

The definition of WK yields

K := WKLinear(Z)

=

1 01×d · · · 01×d 01×d · · · 01×d

0 − ∥v0∥2
2

2 11×d · · · − ∥vNx−1∥2
2

2 11×d − ∥v0∥2
2

2 11×d · · · − ∥vNx−1∥2
2

2 11×d

0 ln(T (ṽ0))⊤ · · · ln(T (ṽNx−1))⊤ ln(E(ṽ0))⊤ · · · ln(E(ṽNx−1))⊤

 ·

[
X0 X0

IdNx
0dNx×dNx

0dNx×dNx
IdNx

]

=

 v⊤
0 Z̃11×d · · · v⊤

Nx−1Z̃11×d v⊤
0 Z̃11×d · · · v⊤

Nx−1Z̃11×d

− ∥v0∥2
2

2 11×d · · · − ∥vNx−1∥2
2

2 11×d − ∥v0∥2
2

2 11×d · · · − ∥vNx−1∥2
2

2 11×d

ln(T (ṽ0))⊤ · · · ln(T (ṽNx−1))⊤ ln(E(ṽ0))⊤ · · · ln(E(ṽNx−1))⊤

 .

Next, we construct WQ to be

WQ :=

 0 R11×n 01×(2dNx−n)
0 R11×n 01×(2dNx−n)
0n In 0n×(2dNx−n)

 .

This yields that

Q = WQLinear(Z)

=

 0 R11×n 01×(2dNx−n)
0 R11×n 01×(2dNx−n)
0n In 0n×(2dNx−n)

 ·

[
X0 X0

IdNx
0dNx×dNx

0dNx×dNx
IdNx

]

=

R11×n 01×(2dNx−n)
R11×n 01×(2dNx−n)

In 0n×(2dNx−n)

 .

We now calculate the attention matrix Softmax
(
K⊤Q

)
.
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Calculation of Softmax(K⊤Q). First, K⊤Q can be expressed as follows

K⊤Q =



v⊤
0 Z̃1d

∥v0∥2
2

2 1d ln(T (ṽ0))
v⊤

1 Z̃1d
∥v1∥2

2
2 1d ln(T (ṽ1))

...
v⊤

Nx−1Z̃1d
∥v1∥2

2
2 1d ln(T (ṽNx−1))

v⊤
0 Z̃1d

∥v0∥2
2

2 1d ln(E(ṽ0))
v⊤

1 Z̃1d
∥v1∥2

2
2 1d ln(E(ṽ1))

...
v⊤

Nx−1Z̃1d
∥v1∥2

2
2 1d ln(E(ṽNx−1))


·

R11×n 01×(2dNx−n)
R11×n 01×(2dNx−n)

In 0n×(2dNx−n)



=



R(v⊤
0 Z̃ − ∥v0∥2

2
2 )1d×n + ln(T (ṽ0)) 0d×(2dNx−n)

R(v⊤
1 Z̃ − ∥v1∥2

2
2 )1d×n + ln(T (ṽ1)) 0d×(2dNx−n)

...
...

R(v⊤
Nx−1Z̃ − ∥vNx−1∥2

2
2 )1d×n + ln(T (ṽNx−1)) 0d×(2dNx−n)

R(v⊤
0 Z̃ − ∥v0∥2

2
2 )1d×n + ln(E(ṽ0)) 0d×(2dNx−n)

R(v⊤
1 Z̃ − ∥v1∥2

2
2 )1d×n + ln(E(ṽ1)) 0d×(2dNx−n)

...
...

R(v⊤
Nx−1Z̃ − ∥vNx−1∥2

2
2 )1d×n + ln(E(ṽNx−1)) 0d×(2dNx−n)


.

Now, we divide the calculation of Softmax
(
K⊤Q

)
into two counterparts, the calculation of

exp
(
K⊤Q

)
and the calculation of the denominator of every column of Softmax

(
K⊤Q

)
, as in

the expression of Softmax, explicitly written out as
∑2dNx

j=1 exp
(
K⊤Q

)
ij

for each i ∈ [2dNx].

For exp
(
K⊤Q

)
, we have

exp
(
K⊤Q

)
=



exp
(

R(v⊤
0 Z̃ − ∥v0∥2

2
2 )

)
T (ṽ0) 1d×(2dNx−n)

exp
(

R(v⊤
1 Z̃ − ∥v1∥2

2
2 )

)
T (ṽ1) 1d×(2dNx−n)

...
exp
(

R(v⊤
Nx−1Z̃ − ∥vNx−1∥2

2
2 )

)
T (ṽNx−1) 1d×(2dNx−n)

exp
(

R(v⊤
0 Z̃ − ∥v0∥2

2
2 )

)
E(ṽ0) 1d×(2dNx−n)

exp
(

R(v⊤
1 Z̃ − ∥v1∥2

2
2 )

)
E(ṽ1) 1d×(2dNx−n)

...
exp
(

R(v⊤
Nx−1Z̃ − ∥vNx−1∥2

2
2 )

)
E(ṽNx−1) 1d×(2dNx−n)



(F.1)
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=



exp
(

R(v⊤
0 Z̃ − ∥v0∥2

2
2 )

)
T (ṽ0) 1d×(2dNx−n)

exp
(

R(v⊤
1 Z̃ − ∥v1∥2

2
2 )

)
T (ṽ1) 1d×(2dNx−n)

...
exp
(

R(v⊤
Nx−1Z̃ − ∥vNx−1∥2

2
2 )

)
T (ṽNx−1) 1d×(2dNx−n)

exp
(

R(v⊤
0 Z̃ − ∥v0∥2

2
2 )

)
E(ṽ0) 1d×(2dNx−n)

exp
(

R(v⊤
1 Z̃ − ∥v1∥2

2
2 )

)
E(ṽ1) 1d×(2dNx−n)

...
exp
(

R(v⊤
Nx−1Z̃ − ∥vNx−1∥2

2
2 )

)
E(ṽNx−1) 1d×(2dNx−n)



. (F.2)

For the denominator, we calculate it in columns. Let i denote the column which we calculate the
denominator in Softmax. When i ∈ {n + 1, n + 2, · · · , 2dNx}, it obviously equals to 1 · 2dNx =
2dNx. And when i ∈ [n], we denote that

2dNx∑
j=1

exp
(
K⊤Q

)
ij

=
Nx∑
j=1

[
(11×dT (ṽj−1):,i + 11×dE(ṽj−1):,i) · exp

(
R

(
v⊤

j−1Z̃ − ∥vj−1∥2
2

2

))]

=
Nx∑
j=1

[
(11×d(E + T )(vj−1):,i) · exp

(
R

(
v⊤

j−1Z̃ − ∥vj−1∥2
2

2

))]

=
Nx∑
j=1

[
(11×d(2d×n):,i) · exp

(
R

(
v⊤

j−1Z̃ − ∥vj−1∥2
2

2

))]

=
Nx∑
j=1

2d · exp
(

R

(
v⊤

j−1Z̃ − ∥vj−1∥2
2

2

))
, i ∈ [n]. (F.3)

We observe from (F.3), that
∑2dNx

j=1 exp
(
K⊤Q

)
ij

is invariant of i for i ∈ [n]. In this case, we define

α(Z) := 1
2d

2dNx∑
j=1

exp
(
K⊤Q

)
ij

=
Nx∑
j=1

exp
(

R

(
v⊤

j−1Z̃ − ∥vj−1∥2
2

2

))
∈ R, i ∈ [n].

From (F.1) and (F.3) we have

Softmax
(
K⊤Q

)
= exp

(
K⊤Q

)
⊙
[ 1∑2dNx

j=1
exp(K⊤Q)1j

12dNx×n
1

2dNx
12dNx×(2dNx−n)

]
(

By 1/
∑2dNx

j=1 exp
(
K⊤Q

)
i,j

is invariant of i for i ∈ [n]
)

=



exp
(

R(v⊤
0 Z̃ − ∥v0∥2

2
2 )

)
T (ṽ0) 1d×(2dNx−n)

exp
(

R(v⊤
1 Z̃ − ∥v1∥2

2
2 )

)
T (ṽ1) 1d×(2dNx−n)

· · ·
exp
(

R(v⊤
Nx−1Z̃ − ∥vNx−1∥2

2
2 )

)
T (ṽNx−1) 1d×(2dNx−n)

exp
(

R(v⊤
0 Z̃ − ∥v0∥2

2
2 )

)
E(ṽ0) 1d×(2dNx−n)

exp
(

R(v⊤
1 Z̃ − ∥v1∥2

2
2 )

)
E(ṽ1) 1d×(2dNx−n)

· · ·
exp
(

R(v⊤
Nx−1Z̃ − ∥vNx−1∥2

2
2 )

)
E(ṽNx−1) 1d×(2dNx−n)


⊙
[

1
2dα(Z) 12dNx×n

1
2dNx

12dNx×(2dNx−n)
]
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= 1
2d



exp
(

R(v⊤
0 Z̃−

∥v0∥2
2

2 )
)

α(Z) T (ṽ0) 1
Nx

1d×(2dNx−n)

exp
(

R(v⊤
1 Z̃−

∥v1∥2
2

2 )
)

α(Z) T (ṽ1) 1
Nx

1d×(2dNx−n)
· · ·

exp
(

R(v⊤
Nx−1Z̃−

∥vNx−1∥2
2

2 )
)

α(Z) T (ṽNx−1) 1
Nx

1d×(2dNx−n)

exp
(

R(v⊤
0 Z̃−

∥v0∥2
2

2 )
)

α(Z) E(ṽ0) 1
Nx

1d×(2dNx−n)

exp
(

R(v⊤
1 Z̃−

∥v1∥2
2

2 )
)

α(Z) E(ṽ1) 1
Nx

1d×(2dNx−n)
· · ·

exp
(

R(v⊤
Nx−1Z̃−

∥vNx−1∥2
2

2 )
)

α(Z) E(ṽNx−1) 1
Nx

1d×(2dNx−n)



.

Construction of WV and WO. We now construct the WV matrix and calculate the V matrix of the
self-attention.

We define WV as

WV := [0d X1 −X1] ,

where

X1 := [Id Id · · · Id]d×dNx
,

is a matrix formed by stacking Nx Id matrices horizontally.

In this definition, V matrix can be calculated as follows:

V := WV Linear(Z)

= [0d X1 −X1]
[

X0 X0
IdNx

0dNx×dNx

0dNx×dNx
IdNx

]
= [X1 −X1] .

After the construction and calculation of V , we go on to construct WO as

WO =
[

dB0In

0(2dNx−n)×n

]
.

The sole purpose of WO is to extract the non-zero entries of the final output.

Calculation of the Output of Attn ◦ Linear. We now calculate the final output of the self-attention
block.
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Attn ◦ Linear(Z) = 1
2d

[X1 −X1]



exp
(

R(v⊤
0 Z̃−

∥v0∥2
2

2 )
)

α(Z) T (ṽ0) 1
Nx

1d×(2dNx−n)

exp
(

R(v⊤
1 Z̃−

∥v1∥2
2

2 )
)

α(Z) T (ṽ1) 1
Nx

1d×(2dNx−n)
· · ·

exp
(

R(v⊤
Nx−1Z̃−

∥vNx−1∥2
2

2 )
)

α(Z) T (ṽNx−1) 1
Nx

1d×(2dNx−n)

exp
(

R(v⊤
0 Z̃−

∥v0∥2
2

2 )
)

α(Z) E(ṽ0) 1
Nx

1d×(2dNx−n)

exp
(

R(v⊤
1 Z̃−

∥v1∥2
2

2 )
)

α(Z) E(ṽ1) 1
Nx

1d×(2dNx−n)
· · ·

exp
(

R(v⊤
Nx−1Z̃−

∥vNx−1∥2
2

2 )
)

α(Z) E(ṽNx−1) 1
Nx

1d×(2dNx−n)



WO

= 1
2d

X1



exp
(

R(v⊤
0 Z̃−

∥v0∥2
2

2 )
)

α(Z) (T (ṽ0) − E(ṽ0)) 0d×(2dNx−n)

exp
(

R(v⊤
1 Z̃−

∥v1∥2
2

2 )
)

α(Z) (T (ṽ1) − E(ṽ1)) 0d×(2dNx−n)
· · ·

exp
(

R(v⊤
Nx−1Z̃−

∥vNx−1∥2
2

2 )
)

α(Z) (T (ṽNx−1) − E(ṽNx−1)) 0d×(2dNx−n)


WO

= 1
2d

X1



exp
(

R(v⊤
0 Z̃−

∥v0∥2
2

2 )
)

α(Z)
2f(ṽ0)

B0
0d×(2dNx−n)

exp
(

R(v⊤
1 Z̃−

∥v1∥2
2

2 )
)

α(Z)
2f(ṽ1)

B0
0d×(2dNx−n)

· · ·
exp
(

R(v⊤
Nx−1Z̃−

∥vNx−1∥2
2

2 )
)

α(Z)
2f(ṽNx−1)

B0
0d×(2dNx−n)


WO.

We have

X1



exp
(

R(v⊤
0 Z̃−

∥v0∥2
2

2 )
)

α(Z)
2f(ṽ0)

B0

exp
(

R(v⊤
1 Z̃−

∥v1∥2
2

2 )
)

α(Z)
2f(ṽ1)

B0
· · ·

exp
(

R(v⊤
Nx−1Z̃−

∥vNx−1∥2
2

2 )
)

α(Z)
2f(ṽNx−1)

B0


= [Id Id · · · Id]d×dNx

·



exp
(

R(v⊤
0 Z̃−

∥v0∥2
2

2 )
)

α(Z)
2f(ṽ0)

B0

exp
(

R(v⊤
1 Z̃−

∥v1∥2
2

2 )
)

α(Z)
2f(ṽ1)

B0
· · ·

exp
(

R(v⊤
Nx−1Z̃−

∥vNx−1∥2
2

2 )
)

α(Z)
2f(ṽNx−1)

B0


=

Nx−1∑
j=0

Id ·
exp
(

R(v⊤
j Z̃ − ∥vj−1∥2

2
2 )

)
α(Z)

2f(ṽj)
B0

=
Nx−1∑
j=0

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z)

2f(ṽj)
B0

.

This yields

Attn ◦ Linear(Z) =
[∑Nx−1

j=0

exp
(

R(v⊤
j Z̃−

∥vj ∥2
2

2 )
)

α(Z)
2f(ṽj)

B0
0d×(2dNx−n)

]
WO
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=
[∑Nx−1

j=0

exp
(

R(v⊤
j Z̃−

∥vj ∥2
2

2 )
)

α(Z)
2f(ṽj)

B0
0d×(2dNx−n)

] [
dB0In

0(2dNx−n)×n

]

=
Nx−1∑
j=0

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z) f(ṽj). (F.4)

Estimation of the Error between Attn ◦ Linear(Z) and f(Z). After the above calculations of
the output of the network, we can now demonstrate how this output approximates our target function.

Definition F.1 (Max-Affine Function on Z̃). Let Affj ∈ Rdn → R, j ∈ {0, 1, 2, · · · , Nx −1} denote
a group of affine functions defined as

Affj(Z̃) = v⊤
j Z̃ − ∥vj∥2

2
2 , j ∈ {0, 1, 2, · · · , Nx − 1}.

Then let MaxAff ∈ Rdn → R denote a max affine function whose affine components are {Affj |
j ∈ {0, 1, 2, · · · , Nx − 1}}. Explicitly defined as

MaxAff(Z̃) = max
j∈{0,1,2,··· ,Nx−1}

{Affj(Z̃)}.

Because the target function f is a continuous function on a closed domain, the function f is uniformly
continuous. Thus for ϵ, there exists a δ > 0 such that for any Z1, Z2, as long as ∥Z̃1 − Z̃2∥∞ ≤ δ,
we have ∥f(Z1) − f(Z2)∥∞ ≤ ϵ/3.

According to this δ, we divide the affine components of MaxAff into three parts, the maximal
component(and also with the smallest label), whose label is denoted as jm, the group of affine
components equal to the maximal component or smaller than it by no more than δ, and finally, the
other Affj , j ∈ {0, 1, 2, · · · , Nx − 1}. We write out the labels of these groups of components as
follows

jm := min
j∈{0,1,2,··· ,Nx−1}

{Affj(Z̃) = MaxAff(Z̃)},

J0 := {j | MaxAff(Z̃) − Affj(Z̃) ≤ δ},

J1 := {j | MaxAff(Z̃) − Affj(Z̃) > δ}.

For any pair of i, j ∈ {0, 1, · · · , Nx − 1}, we have

Affi(Z̃) − Affj(Z̃) = v⊤
i Z̃ − ∥vi∥2

2
2 −

(
v⊤

j Z̃ − ∥vj∥2
2

2

)
= − ∥Z̃∥2

2
2 + v⊤

i Z̃ − ∥vi∥2
2

2 −

(
−∥Z̃∥2

2
2 + v⊤

j Z̃ − ∥vj∥2
2

2

)

= − 1
2∥Z̃ − vi∥2

2 + 1
2∥Z̃ − vj∥2

2.

This denotes jm is also the label of the closest vi to Z̃ among all vi, i ∈ {0, 1, · · · , Nx − 1}. Thus
we have

∥vjm
− Z̃∥2 = min

i∈{0,1,··· ,Nx−1}
{∥vi − Z̃∥2}. (F.5)

Thus, when considering the Z in the input domain of f , which by definition is contained in Nx

spheres, the closest center to Z is the sphere containing Z. This gives

∥Z − ṽjm
∥2 ≤ ϵ

3L
. (F.6)
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Then, with the L Lipschitzness of L we have

∥f(Z) − f(ṽjm)∥∞ ≤ ϵ

3L
· L = ϵ

3 . (F.7)

Difference between Attn ◦ Linear and f . We now calculate the difference between the output in
(F.4) and target function f

∥Attn ◦ Linear(Z) − f(Z)∥∞

= ∥
Nx−1∑
j=0

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z) f(ṽj) − f(Z)∥∞

= ∥
Nx−1∑
j=0

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z) (f(ṽj) − f(Z))∥

(∑Nx−1
j=0

exp
(

R(v⊤
j Z̃−

∥vj ∥2
2

2 )
)

α(Z) = 1
)

≤
Nx−1∑
j=0

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z) ∥f(ṽj) − f(Z)∥∞

(
property of infinite norm

)

=
exp
(

R(v⊤
jm

Z̃ − ∥vjm ∥2
2

2 )
)

α(Z) ∥f(ṽjm
) − f(Z)∥∞

+
∑
j∈J0

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z) ∥f(ṽj) − f(Z)∥∞

+
∑
j∈J1

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z) ∥f(ṽj) − f(Z)∥∞. (F.8)

We now calculate each part in (F.8).

For the L-Lipschitzness of f , for any Z1, Z2, as long as ∥Z̃1 − Z̃2∥∞ ≤ ϵ
3L , we have ∥f(Z1) −

f(Z2)∥∞ ≤ ϵ/3. Thus when we designate Z1 = vj for any j ∈ J0 and Z2 = vjm , along with (F.7)
we have:

∑
j∈J0

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z) ∥f(ṽj) − f(Z)∥∞ (F.9)

≤
∑
j∈J0

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z) (∥f(ṽj) − f(ṽjm

)∥∞ + ∥f(ṽjm
) − f(Z)∥∞)

≤
∑
j∈J0

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z) · ( ϵ

3 + ϵ

3)

=
∑
j∈J0

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z) · 2ϵ

3 . (F.10)

For jm, we have

exp
(

R(v⊤
jm

Z̃ − ∥vjm ∥2
2

2 )
)

α(Z) ∥f(ṽjm) − f(Z)∥∞ ≤
exp
(

R(v⊤
jm

Z̃ − ∥vjm ∥2
2

2 )
)

α(Z) · ϵ

3 . (F.11)
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When R is larger than 8
3δ2 ln

( 3
2 · B0Nxϵ

)
, we have:

∑
j∈J1

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z) ∥f(ṽj) − f(Z)∥∞

≤
∑
j∈J1

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z) · 2B0

(
by the bounded nature of f

)

≤ 2B0

∑
j∈J1

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z)

< 2B0

∑
j∈J1

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
exp
(

R(v⊤
jm

Z̃ − ∥vjm ∥2
2

2 )
)

(
α(Z) is the sum of all exp

(
R(v⊤

j Z̃ − ∥vj ∥2
2

2 )
)

, thus larger than any element within the summation
)

= 2B0
∑
j∈J1

exp
(

R

2 (∥vjm
− Z∥2

2 − ∥vj − Z∥2
2)
)

≤ 2B0∥J1∥ exp
(

R

2

[
(δ

2)2 − δ2
])

< 2B0Nx exp
(

−3Rδ2

8

)

= 2B0Nx exp

−3δ2 · 8 ln( 2
3 B0Nxϵ)
3δ2

8


= ϵ

3 . (F.12)

Combing (F.10) and (F.11) yields

∑
j∈J0∪{jm}

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z) ∥f(ṽj) − f(Z)∥∞

≤
∑
j∈J0

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z) · 2ϵ

3 +
exp
(

R(v⊤
jm

Z̃ − ∥vjm ∥2
2

2 )
)

α(Z) · ϵ

3
(

By (F.10) and (F.11)
)

≤
∑

j∈J0∪{jm}

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z) · 2ϵ

3

≤ 2ϵ

3 , (F.13)

where the last line is by
∑

j∈J0∪{jm}

exp
(

R(v⊤
j Z̃−

∥vj ∥2
2

2 )
)

α(Z) ≤ 1.

We plug (F.12) and (F.13) to (F.8) and get

∥Attn ◦ Linear(Z) − f(Z)∥∞ ≤
exp
(

R(v⊤
jm

Z̃ − ∥vjm ∥2
2

2 )
)

α(Z) ∥f(ṽjm) − f(Z)∥∞
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+
∑
j∈J0

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z) ∥f(ṽj) − f(Z)∥∞

+
∑
j∈J1

exp
(

R(v⊤
j Z̃ − ∥vj∥2

2
2 )

)
α(Z) ∥f(ṽj) − f(Z)∥∞

≤ 2ϵ

3 + ϵ

3
= ϵ.

This concludes our result on the approximation error.

Estimation of the Number of Trainable Parameters. We now estimate the number of trainable
parameter in the network we constructed to verify our claim on number of trainable parameters in the
main text of this theorem.

Remark F.1 (Meaning of Trainable Parameters). By trainable parameters we denote the parameters
that differs according to f . This includes the parameters related to the input domain of X , and
excludes the constants (i.e., 0 and 1) in the network.

We estimate the number of trainable parameters by each layer in the network.

First, we do the estimation for the Linear layer. It consists of a sum over Nx v⊤
j Z̃, j ∈ [Nx], and

thus contain dn · Nx trainable parameters.

Then we do the estimation for WK and WQ. We restate the construction of WK and WQ:

WK :=

R 01×d · · · 01×d 01×d · · · 01×d

0 −R
∥v0∥2

2
2 11×d · · · −R

∥vNx−1∥2
2

2 11×d −R
∥v0∥2

2
2 11×d · · · −R

∥vNx−1∥2
2

2 11×d

0 ln(T (ṽ0))⊤ · · · ln(T (ṽNx−1))⊤ ln(E(ṽ0))⊤ · · · ln(E(ṽNx−1))⊤

 ,

WQ :=

 0 R11×n 01×(2dNx−n)
0 R11×n 01×(2dNx−n)
0n In 0n×(2dNx−n)

 .

From this, we observe they combined together have 2d · Nx + 2dn · Nx trainable parameters.

Finally, For WV and WO, we restate their definition:

WV := [0d X1 −X1] ,

WO :=
[

dB0In

0(2dG−n)×n

]
,

where

X1 := [Id Id · · · Id]d×dG .

WO contains n trainable parameters (dB0).

In conclusion, the whole network contains a total of

dnNx + 2dNx + 2dnNx + n = 4dnNx + 2dNx + n,

trainable parameters, which is of O(dnNx) level.

This completes the proof.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the relevant

information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: The Abstract and Introduction explicitly list the three main contributions — Max-
Affine interpretation, self-attention universality, and cross-attention universality — and no addi-
tional claims are made elsewhere.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made in the

paper.
• The abstract and/or introduction should clearly state the claims made, including the contribu-

tions made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: Sec 5 “Concluding Remarks”, paragraph “Limitations” (lines 336–350) details
assumptions on partition granularity, boundary effects, training difficulty, and distribution shift.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that the

paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [Yes]
Justification: All assumptions are stated next to each theorem in Section 3-4; complete formal
proofs are given in Appendices C–D (pp. 16–48).
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear

in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Appendix B specifies datasets, noise-injection protocol, model size, and training
procedure; code will be released anonymously with the supplementary material.
Guidelines:
• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived well by
the reviewers: Making the paper reproducible is important, regardless of whether the code and
data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions to
provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: All datasets (MNIST, CIFAR-10, Fashion-MNIST) are public; an anonymized
PyTorch implementation and run scripts will be included in the supplemental ZIP.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code,
unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
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Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: Appendix B lists optimizer, batch size, epochs, and random-seed protocol for each
dataset.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Figure 2 (page 14) shows mean ± 1s.d.v. over five random seeds for each noise
ratio; the caption clarifies what the shaded region represents.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?
Answer: [No]
Justification: The proof-of-concept experiments run on a single commodity GPU, but exact
hardware specifications and wall-clock times are not reported.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experi-

mental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).
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9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The work is purely theoretical/empirical on public data; no ethical concerns were
identified (Impact Statement, line 361).
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [Yes]
Justification: The Impact Statement (lines 361–363) argues that the work is foundational and
poses no immediate societal risk.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?
Answer: [NA]
Justification: No high-risk models or new datasets are released; only small proof-of-concept code
is provided.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [Yes]
Justification: Standard datasets are cited in Appendix B; each dataset carries a permissive academic
license.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The work does not introduce new datasets, models, or benchmarks.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: No human subjects or crowdsourcing involved.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: No human-subject study carried out.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may be

required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No LLMs are used in the method, only in standard writing support tools.
Guidelines:
• The answer NA means that the core method development in this research does not involve

LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what

should or should not be described.
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