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Abstract

Leveraging the depth and flexibility of XLand as well as the rapid prototyping
features of the Unity engine, we present the United Unity Universe, an open-source
toolkit designed to accelerate the creation of innovative reinforcement learning
environments. This toolkit includes a robust implementation of OpenXLand, a
framework for meta-RL based on XLand 2.0 [23], complemented by a user-friendly
interface which allows users to modify the details of procedurally generated terrains
and task rules with ease. Along with a ready-to-use implementation of OpenXLand,
we provide a curated selection of terrains and rule sets, accompanied by implemen-
tations of reinforcement learning baselines to facilitate quick experimentation with
novel architectural designs for adaptive agents. Furthermore, we illustrate how the
United Unity Universe serves as a high-level language that enables researchers to
develop diverse and endlessly variable 3D environments within a unified framework.
This functionality establishes the United Unity Universe (U3) as an essential tool
for advancing the field of reinforcement learning, especially in the development of
adaptive and generalizable learning systems.

1 Introduction

Reinforcement learning (RL) and meta-reinforcement learning (meta-RL) foundation models have
shown potential as adaptive agents that quickly adapt to diverse tasks in open-ended settings [23].
However, open-source options for open-ended environment generation rarely go beyond constrained
subsets of scenarios, with limited control or open-endedness. The availability of frameworks for
diverse, controllable, and extendable environment generation would be a boon to the development of
generally adaptive agents and meta-RL in general.

Inspired by the use of the Unity Game Engine for reinforcement learning development [27, 24, 23],
we propose the United Unity Universe (U3), an open-source environment development ecosystem
based on the Unity game engine, which is freely available for personal use.1

∗Equal contribution.
†Equal contribution.
1https://unity.com/products/unity-personal
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Figure 1: United Unity Universe. U3 is a single open-sourced ecosystem with which the machine
learning community can easily construct novel 3D environments without sacrificing fine-grain control
over the task or the world. U3 provides a high level language to easily define rules and procedurally
generate new worlds layouts, resulting in effectively infinite variety, even within a single environment.
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Figure 2: An example of world generation with U3. We use U3 to create OpenXLand, our open-
source implementation of the XLand environment space for meta-reinforcement learning [24, 23].
Bottom left: tiles make up metatiles, which we can sample to procedurally generate 3D worlds,
within which an agent acts. Right: U3 can also procedurally generate tasks: we sample objects and
conditions on the objects that define the rules of a task, with a final goal state that rewards the agent.
In this environment, the agent receives reward when the orange sphere makes contact with the blue
pyramid. We see that the orange sphere is elevated, and therefore the agent must find it and use the
ramps to access it. As to the blue pyramid, we do not see it because it is not there: the agent must
first get the orange sphere near the black rounded cube to spawn the blue pyramid. This environment
also contains a grey pyramid that serves as a distraction. Importantly, if the agent brings the grey
pyramid near the orange sphere, both will disappear, making it impossible for the agent to spawn a
blue pyramid and subsequently obtain its reward. Top left: The agent’s perspective at initialization.
The agent does not see the orange sphere, and so will have to search for it. However, the grey pyramid,
which could lead to a dead end, is visible. As pointed out in [23], tasks in OpenXLand require
many skills such as navigation, exploration, experimentation, and avoiding irreversible transitions.
However, since the innumerable tasks are composed of a small number of components, the agent can
improve performance by learning to reuse previously acquired knowledge in new tasks.

U3 uses procedural generation in a controllable and extendable fashion, making available an endlessly
diverse set of environments for RL and meta-RL. U3 can also be scaled to many instances for efficient
training. We use the U3 ecosystem to implement OpenXLand, an open-source, open-ended RL
framework based on the XLand line on work [24, 23]. We make available six million pre-generated
and filtered terrains, along with six million pre-generated tasks as datasets of varying difficulty,
for a total 36 trillion unique combinations. We also include a pipeline between U3 and Python
based on the Unity ML-Agents Toolkit [14], with clean implementations of RL algorithms such as
Soft Actor-Critic (SAC) [11] and sidechannel support for dynamic readjustment of the generated
environments or their generation processes.
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Concretely, our main contributions are:

• United Unity Universe (U3), an open-source Unity-based environment development ecosystem.
– Extendable world and task generation processes for rich environmental dynamics, as well as

direct access to free Unity assets for building real-world environments.
– A two-way pipeline connecting U3 and Python for efficient training, agent evaluation and

runtime adaptive auto-curricula.
– Scalable environments that can be run on multiple CPUs simultaneously.

• OpenXLand, an XLand-style environment space of 3D environments in Unity with rich
dynamics and compositional tasks.

– A 3D world procedural generation system that makes an XLand-style environment space
available to the reinforcement learning community.

– A production rule procedural generation system that extends XLand 2.0 with conjunctions of
predicates, additional actions and additional objects.

– Six million OpenXLand datasets and production rules for easy comparison across models over
36 trillion possible environment combinations.

Section 2 contains related work for environment procedural generation, including the main line of
Unity-based meta-RL work inspiring U3 and OpenXLand. In Section 3, we cover the requisite
background, particularly on Unity-based environments for RL [27] and XLand [24, 23]. We then
go over U3 in Section 4, focusing on its use of procedural generation, scalability and extendability.
Section 5 describes our OpenXLand implementation, its datasets and implemented RL baselines.
Section 6 reviews current limitations, and we conclude in Section 7.

2 Related Work

2.1 Meta-Reinforcement Learning

The fast adaptation of foundation models has garnered attention recently as “in-context learning” [7].
Significant efforts have been directed toward creating environments to study fast adaptation in the
context of meta-RL. Training agents to continuously learn across an open-ended distribution of task
spaces requires such an open-ended collection of environments. Frameworks that generate collections
provide a tradeoff between collection size and diversity. Dennis et al. [6] put forward the formulation
of Unsupervised Environment Design, where underspecified RL environments can generate diverse
RL environments by instantiating unspecified parameters. For example, environment generation
frameworks that use procedural generation [19] can create large environment collections.

2.2 Procedural Generation in Reinforcement Learning Environments

The implementation of the procedural generation process determines the constraints on the en-
vironment collection’s diversity and the open-endedness of the tasks. The eponymous Procgen
benchmark [5] includes 16 different games with generated environments, enabling a controlled
diversity. Minihack procedurally generates environments based on NetHack’s pre-existing broad set
of gridworld assets [20]. The Avalon benchmark consists of 20 tasks in 3D procedurally generated
worlds [1]. Notably, these tasks can be composed. Malmo [13] creates an API for Minecraft to enable
RL training in its procedurally generated 3D worlds, while MineRL [10] expands the API to leverage
datasets of pre-existing content, an effort that Minedojo [8] considerably expands. A recent, closely
related work is XLand-minigrid [17], a framework similar to our OpenXLand implementation, but
constrained to the gridworld environments of minigrid. Another closely related work is Neural-MMO
2.0 [22], which includes a task generation system similar to that of [17] and Team et al. [23]. We also
mention MemoryMaze [18], a framework which generates random 3D mazes to evaluate the long-
term memory capabilities of agents, because we reimplement MemoryMaze with U3 to demonstrate
the framework’s extendability in Section 4.4.

2.3 The XLand Environment Spaces

The frameworks that we draw our inspiration from are the family of XLand-related works from
Deepmind on open-ended learning. Team et al. [24] first presents XLand, a Unity-based system
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to produce endless environments for open-ended learning. In XLand, agents must interact with
procedurally generated environments to move the state toward a "goal state" represented by a set of
conditions that depend on the environment. Alchemy [25] is another Unity-based RL suite, where the
agent must discover latent causal structures between stones and potions to compose state transitions
toward a goal state. Combining concepts found in both XLand and Alchemy, the Deepmind Team et al.
[23] introduces XLand 2.0, which leverages both diverse world and compositional task generation
to create rich environment dynamics. In particular, they use XLand 2.0 as a testbed to study RL
foundation models for agent adaptation and find that, with correct the learning design choices, RL
agents can adapt to new environments and tasks on a timescale similar to humans. Unfortunately,
neither XLand nor XLand 2.0 are open-source. The machine learning community can neither build
upon the work, nor validate their promising results.

3 Background

In this section, we go over the necessary concepts from the Unity-related work of Ward et al. [27]
and Team et al. [24, 23]. Existing foundation models depend on large datasets, but agents trained
for fast adaptation through meta-RL may provide an alternative path to general intelligence [23].
However, careful consideration is required when designing the environments for these agents. If
the environment is too simple, the agent will learn a direct mapping from the environment state
to action, destroying any chance of generalization [4]. If the environment is too complex, sparse
rewards may prevent the agent from learning any patterns [28]. The approach favored by XLand 2.0
is to employ procedural generation to create complex environments from a set of simple rules.Once
the agent learns these rules, it can compose them together to generalize what it has learned to new
environments.

In Ward et al. [27], agents rely on sensors to provide observations, such as a pixel rendering of their
line of sight or their current score. Agents use actuators to act in the environment, including moving,
jumping and grabbing objects. We act on the assumption that both Team et al. [24] and Team et al.
[23] use a similar system, and we include RL policies as components of agents.

Both XLand and XLand 2.0 procedurally generate the 3D world in which agents act, including the
floor topology, manipulable objects and agent spawn locations. XLand 2.0 has a second procedural
generation process that creates production rules, which act as a grammar for a subset of state
transitions. Specifically, production rules are made of 1) conditions on agents and objects, and 2)
actions, such as spawning or removing objects. To obtain rewards, agents must manipulate objects
according to production rules to reach a goal state, which is a boolean function on the environment
state. Although production rules in XLand do not allow conjunctions or disjunctions of multiple
conditions, “predicate” refers to both the goal state and the production rule conditions. Together, the
agents, the world, goal states and production rules for XLand 2.0 make up a task.

The environment in XLand is partially occluded, which forces the agent to learn to engage in
exploration and planning [15]. In XLand’s 3D world, this occlusion occurs when terrain tiles block
the agent’s line of sight. For production rules, this occlusion occurs because the rules active in each
environment are different. Thus, compositional generalization alone is insufficient for the agent to
solve the task. The agent must also learn across a number of trials, which are sequential repetitions
of the same task, in order to uncover the hidden information in the environment. The results from
XLand 2.0 [23] suggest that their agents learned to explore the environment in a reasoned manner
that took into account the underlying structure of the environment. For example, the agent would
systematically explore the world to find all production rule objects. It would also attempt to combine
production rule pairs in a systematic way and remember pairs that reacted to form new objects. In
this way, the agent was able to quickly learn the layout and rules of the environment, and adapt to the
new task on the same timescale as human participants.

A foundation model of adaptive agents, trained on a sufficiently complex procedurally generated
environment may be able to apply this type of systematic learning to meta-learn novel tasks even
beyond its original training domain. XLand 2.0 showed promise of out of domain learning in an
experiment in which the agent had to learn to push, and not pick up, an object. However, the extent
of the adaptive agent’s generalization capabilities can be studied further. U3 provides a potential
test bed in which such an agent can be tested not only on different configurations of the XLand 2.0
environment, but also on novel environments with different rules, graphics and mechanics.
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Figure 3: Scalability. We explore the scalability of U3 across 3 dimensions. The x-axis explores the
effect of increasing the number of Unity instances running in parallel. The plot coloring indicates the
number of CPUs available to the computation. Finally, the dotted vs dashed lines show the resolution
of the visual observation.

4 United Unity Universe (U3)

U3 uses procedural generation to create a large number of reinforcement learning environments
made of worlds and production rules in a fashion similar to XLand 2.0 [23]. A visual interface can
control the active world and production rules, as well as their procedural generation processes. Both
processes can also be extended with new components, enabling endlessly diverse environments.

4.1 Procedural generation in U3

We implement a world generation process that determines the static 3D floor plan. Inspired by
the Wave Function Collapse (WFC) [9] and Model Synthesis [16] algorithms, the process samples
environment components that are locally compatible with neighboring components until the world is
complete. The world is made up of voxels that tile the entire world in 3 dimensions. The width, length
and height of this voxel grid defines the size of the world. During the world procedural generation
process each voxel is populated by a single tile, the base unit of the U3environment. In order to
increase the amount of structure available to the procedural generation algorithm we do not place
tiles directly. Instead, we define metatiles which consists of multiple tiles grouped together to form
a pre-existing piece of the floor plan (e.g. “platform” or “ramp”). Each of the tile’s six faces has a
type, and we define legal adjacencies between face types such that, for any given step in the world
generation process, the set of permissible metatiles that can be sampled is clearly defined. We also
make it possible to dynamically reweight the probability distribution across permissible metatiles,
e.g. to favor the sampling of specific environment features or to encourage metatile diversity within
an environment.

Production rules are used to define a task on the generated world. We allow for statically defined
rules, as well as a production rule generation process that controls the scaffold for how tasks are
defined. We also offer an implementation to enable and disable rules during runtime, allowing for a
huge variety of different task definitions. We explore the details of OpenXLand’s production rule
procedural generation in section 5

The combination of the world and production rule generation processes makes available a large,
diverse set of environment dynamics. To facilitate access to these environments, U3 provides a direct
visual interface to not only control the world, production rules, and visual aspects, but also extend the
generation processes for the world and production rules. For example, users can modify the world
generation process by changing the set of metatiles or the size of the world. They can also expand
the production rule generation process with new conditions or actions. The fine-grained control and
extendability of U3 result in an ideal ecosystem for scalable RL methods (See Section 4.4).
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Figure 4: Implementation of MemoryMaze. A walk-through of the steps required to implement
MemoryMaze in U3. A) First step is to define the tile face palette. You can assign a name and color
to each face type for easy identification later. The face matching matrix defines what faces can be
adjacent to each other, and how likely that adjacency should be. B) The next step is to define a
weighted metatile pool. These pools are nestable, allowing for easy modification of weights across
categories. C) and D) Next we set up the metatiles that populate the pool. Tiles type is used to
calculate the permissible area of the generated terrain. Each face of the tile is assigned a face type.
These tiles make up the structure of a metatile. E) Final result of the U3 set up for MemoryMaze.
Note that the colored dots in the image are mushrooms that act as the goals.

4.2 U3 scales to multiple instances

In this section, we explore the scalability capabilities of our computational environment. The focus is
on evaluating the performance in terms of the number of steps per second (SPS) that can be executed
under varying configurations. Specifically, we assess the impact of the number of asynchronous
environment instances, the number of CPU cores, and the image size of the observations.

Figure 3 illustrates the relationship between the number of asynchronous environment instances and
the SPS. As expected, the SPS increases with the number of environments, but it saturates with a
high number of environments. However, the saturation point increases with the number of cores per
CPU, making the U3 scalable with the increase of compute capabilities. Finally, we tested the effect
of the image observation size, specifically varying the size among 64x64, 128x128, and 256x256
pixels. As expected, increasing the image size results in a marginal decrease in the SPS.

4.3 U3 is easily extendable

Although our primary contribution is a U3 implementation of OpenXLand, U3 is also a powerful
ecosystem for generating novel environments due to its extendability. Firstly, U3 can incorporate new
metatiles with novel assets, be they acquired from the Unity Assets Store [14] or made by the user. We
use only free assets on the Asset Store under the Asset Store’s standard End User License Agreement.
The world generation process can then be set up to construct novel environments with these new
assets. The production rule generation process can also integrate new production rule conditions,
actions and objects. Along with the fact that U3 enables production rules with conjunctions of
conditions, this results in an infinitely rich space of possible production rules. As both the world and
task generation processes are extendable, U3 can efficiently reimplement existing RL benchmarks.

We demonstrate the power and ease of use of U3’s interface by implementing MemoryMaze [18].
Figure 4 details the process and user interfaces involved in the process of setting up the world
generation. The task itself is set up by defining static production rules (one for each goal). The
condition of these rules is AGENT_NEAR and the action is a custom defined action that is a composite
of REWARD and TOGGLE_RULE. Note that by defining rules in terms of composites of existing
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Figure 5: Procedural generation in OpenXLand. Illustration of the building blocks that make up
U3’s procedural generation system. A) The primary building block of the world is a tile. Tiles have
faces that can be assigned face types. Metatiles allow the user to arrange tiles into distinct structures.
Here we have illustrated one of the ramp metatiles used in OpenXLand. Metatiles also allow the user
to define a payload, which is deposited into the scene after WFC. B) Production rules are generated
based on a set of initial production rule objects. A production rule is created by sampling a condition
and an action (from SPAWN or SWAP). The effect of these rules on the set of active production rule
objects is calculated and the process is repeated. At the end of the chain, a final production rule is
created by sampling a condition and applying the REWARD action.

rules U3 is able to create modular rules that can be reused by the community. Only one of the static
rules is active at a time, and the active rule is communicated to the agent through a simple UI widget.

The U3 implementation of MemoryMaze (see C) uses free assets from the "Free Low Poly Nature
Forest" asset pack under the Standard Unity Asset Store EULA.

4.4 U3 allows dynamic, adaptive control over the environment

U3 utilizes ML-Agents to provide a two-way communication channel between Unity and Python.
Specifically, U3 provides a protocol for high-level manipulation of the environment by defining
the parameters of the environment generation process, including the world generation process
and production rule generation process. For example, it is possible to dynamically reweight the
environment generation parameter distributions, enabling the possibility for agent-environment co-
evolution and runtime adaptive auto-curricula. It also allows Unity to send meta-data about the state
of the environment beyond the main training observations. This can be useful for designing repeatable
experiments in the environment for evaluating trained agents.

5 OpenXLand

To demonstrate the utility of U3, we use it to implement OpenXLand, a task space similar to that of
XLand [24] and XLand 2.0 [23]. We define XLand-style procedural generation processes for both
environments and production rules. We also make available datasets of world and production rules,
which can be used to build up to 36 trillion unique environments. In the simulated environment,
the agent perceives a first-person visual representation of its surroundings. The agent is capable
of executing both continuous and discrete actions. Continuous actions include moving forward
or backward and rotating its body left or right, with the ability to modulate the velocity of each
movement. Discrete actions encompass picking up objects, placing them down, TODO. The agent is
positively rewarded with a reward of +1 for each time step during which the predefined goal condition
is met. Each trial concludes after a user-specified number of steps, and the episode terminates
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following a user-defined number of trials. To bootstrap the development of adaptive agents based
on OpenXLand, we also provide clean implementations of common RL algorithms such as SAC, as
well as a training system that supports repeated iterations and sequences of environments. Details on
the metatiles, production objects, conditions, and actions used in OpenXLand can be found in the
Appendix.

5.1 Datasets

In an effort to reduce the computational load of procedural generation and filtering at run-time, we
provide a series of curated datasets for the U3 implementation of XLand. These datasets serve as
a community benchmark suite that researchers can use to test and compare reinforcement learning
algorithms and network architectures on a standardized set of XLand environments.

We provide 6 datasets of one million pre-generated worlds and 6 datasets of one million pre-generated
production rules for a total of 36 trillion possible environment combinations. Curriculum learning
has been shown to be important for task learning [2, 26]. Thus, we designed our datasets to facilitate
the construction of a smooth learning curve, while still providing quantifiable increases in difficulty
measures (Easy, Medium, and Hard). Datasets are drawn from a distribution of difficulties with some
overlap between each progressive increase (See Figure 6). Information on the amount of time it takes
to generate the datasets can be found in Table 5.

5.1.1 World datasets

The difficulty of the world datasets is given by two measures: world size, and world height. World
size is the primary difficulty metric that defines the Easy, Medium, and Hard datasets. Each world
was constructed by drawing a world width and length from a Gaussian distribution with parameters
defined by the dataset. We set the minimum size of the world to be 5x5, so that all dataset distributions
were truncated at that minimum bound. Details on the parameters used for each dataset can be found
in Table 3 in the Appendix.

World height serves to modulate the topological complexity of the worlds. Low heights lead to better
visibility, more simply connected terrain, and larger accessible areas. We provide two types of world
heights for each world size: Low and High. World height cannot be less than 1, so all distributions
are truncated appropriately. World height provides an orthogonal measure of complexity that can be
used to further enhance the curriculum of training.

5.1.2 Production rule datasets

Production rule datasets also include two measures of difficulty: chain length and distractor count.
Chain length is the number of SWAP or SPAWN rules that must be activated to reach the REWARD
rule. Similarly to the world datasets we have drawn chain lengths from Gaussian distributions with
parameters defined by the dataset difficulty. We also draw the number of initial objects from the same
Gaussian distribution as the chain length. We lock chain length and number of initial objects to the
same distribution to simplify the complexity of the datasets. All chains terminate in a REWARD
rule, so the minimum chain length is 1. Similarly, there must be at least 1 initial object, so all
distributions for chain length and initial objects were truncated at 1. Details can be found in Table 4
in the Appendix and in Figure 6.

To ensure a consistent set of production rules that allow for a valid solution, we first sample production
rules with mutually exclusive conditions, such that there is always a valid path to the reward. We
subsequently sample “distractors” rules that branch off from the main production rule. Distractor
count adds additional complexity by creating rules that act as distractors or potentially cause the
agent to become unable to achieve the reward. A distractor becomes a dead end when the production
rule removes an object from the environment such that the production rule chain can no longer be
completed. Thus, the severity of these distractors can be dependent on the progress of the agent
through the chain. We provide two levels of distractor counts: Low and High. We truncate all
distributions at a minimum value of 0 distractors.
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Figure 6: Dataset distributions. Histograms showing the distributions of key dataset metrics. Note
that all datasets have overlap. A) Distribution of width and lengths in the world datasets. Note that
the 6 datasets are split into "easy", "medium" and "hard" for this metric. B) Distribution of heights
in the world datasets. Note that now the 6 datasets are split into "low" and "high". C) Distribution
of the number of initial objects in the rule datasets. The 6 datasets are split into "short", "middle"
and "long". D) Distribution of the number of distractors in the rule datasets. Note that the "few"
datasets collapse to the same distribution. The "many" datasets all have unique distributions. We have
outlined the "many" datasets to make their overlap more clear.

5.1.3 Dataset deployment

All datasets are hosted on Huggingface for easy download and usage. Datasets are distributed as a
tar file of 1 million JSON files. The individual JSON files are labeled from 1 to 1 million, allowing
easy splitting of the dataset into train and test partitions. While the generation of novel environments
requires the user to download the Unity Editor and work directly with U3’s built-in UI and classes,
we provide Python scripts that allow the generation of new OpenXLand (or any existing environment)
datasets without the need to install the Unity Editor.

5.2 Evaluation protocol

To standardize future performance comparisons on U3 and OpenXLand, we propose an evaluation
protocol that assesses the agent’s ability to generalize to out-of-distribution tasks. We designate a
held-out set of production rule objects. Then, we filter each dataset for instances that contain at least
one of those elements. The remaining instances form the training set, while the testing set contains
the excluded elements. Therefore, the training split does not contain any instances with these specific
objects or conditions, ensuring that the rules and goals encountered during the testing phase are
entirely novel.

Following the methodology of previous works [23, 17], we evaluate the agent using the 20th percentile
of the normalized return for each environment instance, as this avoids simpler tasks dominating the
average performance of the agent. Furthermore, we propose restricting the method comparison to
within datasets, as opposed to across datasets, as this avoids the costly normalization by compute-
heavy fine-tuned baselines proposed in [23].

9



5.3 Results

We tested our environment using the Soft Actor-Critic (SAC) implementation available in
CleanRL[12]. Each episode consists of 8 trials, each having 481 steps, corresponding to 40 human
seconds. The procedurally generated world is loaded from the easy_low dataset at the start of an
episode and kept constant across all 8 trials. The production rules are loaded from the short_few
dataset. The initial positions of the production rules and the agent are randomized to locations in the
largest accessible area of the world at reset at the beginning of each trial. The agent’s context is kept
across trials but reset when the episode ends. Results of the training are available in the Appendix.

6 Limitations

One of the main obstacles to using Unity for RL is correctly setting up Unity. Despite U3 including
all relevant software files, hardware and platform differences can complicate installation. In the future,
we plan to implement a docker environment to ease installation considerations. Another obstacle
to using Unity as an RL environment can be the compute required to train an agent in Unity.2 We
expand on the efficiency of the current implementation of U3 in Appendix F. We also note that an
important line of future work involves optimizing the efficiency of the current implementation of U3
to make it more accessible, such as environments like [17] and [21, 22].

This initial release of U3 and OpenXLand is missing some features. Despite the current implemen-
tation of production rules generalizing Xland 2.0, certain conditions are missing (e.g. "seeing" for
agents and objects). Our implementation is also missing the ability to pass information about the
active production rules to the agent. Another feature we plan to implement in future work is the ability
to test human participants on U3 tasks using a web interface (This functionality was present in an
early version of U3 [3]). Finally, our training scripts currently lack teacher models and auto-curricula.
Future work should also include implementing features beyond the original XLand 2.0. Production
rules are a powerful system that we can generalize far beyond the simple chains of XLand 2.0.
Although the current production rule system already goes beyond that of XLand 2.0 with conjunctions
of conditions, enabling even more generality would require updating the implementation.

7 Conclusion

We present U3, an open-source ecosystem capable of implementing and defining procedurally
generated 3D environments with a simple user interface. U3 is scalable to many instances and
extendable with new assets for the generation of both environments and production rules. We also
provide OpenXLand, an open-source implementation in the style of XLand 2.0 [23], an open-ended
environment that has shown promise in training adaptive agents. As the science of foundation models
progresses, the adaptation capacities of AI agents in novel and open-ended environments stand out as
a key yardstick of general intelligence. We hope that U3 will facilitate the training and evaluation of
such foundation models in the open-source community.

Broader Impact

As far as we know, Unity has yet to solve intelligence [27]. However, XLand 2.0 [23] suggests a
promising new approach to general intelligence with adaptive agents that are able to actively explore
and meta-learn their environment. By improving the adaptive ability of agents, we can reduce the risk
of unintended consequences from agents in unfamiliar settings. We hope that U3 will bolster the study
of adaptive agents by the open-source community, and facilitate research on the strengths, limitations
and human correlates of such foundational models. An important limitation of U3 is its accessibility
due to the compute requirements of training agents such as Ada. Our commitment to open-source
ensures that any work stemming from the U3 ecosystem will be transparently assessable against
ethical guidelines, ensure robustness across many distinct tasks, be reproducible across research
groups and available to all researchers across the globe. However, since the code is open source and
users can create any assets they see fit, we have limited control and visibility over the downstream
uses of U3.

2Training an agent to completion in [23] took over 50000 TPU3 device hours.
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B OpenXLand Components

Figure 7: Left: An example OpenXLand environment. In this environment, the agent receives
reward when the orange sphere makes contact with the blue pyramid. We see that the orange sphere
is elevated, and therefore the agent must find it and use the ramps to access it. As to the blue pyramid,
we do not see it because it is not there: the agent must first get the orange sphere near the black
rounded cube first to spawn one. This environment also contains a grey pyramid that serves as a
distraction. Importantly, if the agent brings the grey pyramid near the black rounded cube, both will
disappear, making it impossible for the agent to spawn a blue pyramid and subsequently obtain its
reward. Right: The agent’s perspective at initialization. The agent does not see the orange sphere,
and so will have to search for it. However, the agent does see the grey pyramid, which could act
as a distraction. As pointed out in [23], solving tasks in OpenXLand requires many skill such as
navigation, exploration, experimentation, and avoiding irreversible transitions. However, since the
innumerable tasks are composed of a small number of components, the agent can learn to reuse
previously acquired knowledge to improve performance.

OpenXLand is an open-source implementation of the environment frameworks known as XLand [24]
and XLand 2.0 [23]. OpenXLand generates 3D worlds from building blocks known as metatiles. In
the world, agents are expected to solve tasks defined by production rules, which trigger based on the
state of the agent and objects in the environment. Figure 7 shows an example of such a world and
task.

Below, we go over specific details of the metatiles and the production rules.

B.1 Metatiles

The OpenXLand framework uses procedural generation to create diverse environments from sim-
ple building blocks we call metatiles. During generation, the environment is filled with metatiles.
These metatiles are designed to create interesting multi-level floor topologies: agents can use
ramps to access platforms (see Figure 8). Metatiles for OpenXLand can be found in the Re-
sources/GameObjects/XLand/MetaTiles subfolder of the Unity asset folder. There are 13 total
metatiles distributed across two pools: a medium pool with a weight of 10, and a small pool with
a weight of 1. This means that the procedural generation algorithm will attempt to place medium
metatiles much more frequently than small metatiles. A full list of metatiles and their relative weights
can be found in Table 1 However, the small metatiles still serve an important role as they can fill in
gaps where medium metatiles no longer fit. Note that AirHelper is meant to be used only when no
other tiles are available.
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Figure 8: Three examples of metatiles. On the left, we see a platform with a rounded corner. The
middle contains a square platform. The right contains a ramp, which the agent can use to traverse
multi-level floor topologies.

Table 1: Metatiles used in OpenXLand. The sampling weight is used to calculate how likely a tile is
to be sampled. U3 makes it possible to easily adjust these weights to enrich environment generation
dynamics.

Name Description Sampling Weight

RampInset 2 tile wide ramp with tiles on both sides 1500
Ramp1Edge 2 tile wide ramp with tiles on one side 750

RampNoEdge 2 tile wide ramp with no tiles the sides 750
Corner 4 tile platform with one corner rounded 1000

PlatformNoEdge 4 tile platform with no internal edges 100
Platform1Edge 4 tile platform with a single internal edge 100
Platform2Edge 4 tile platform with a two internal edges at the corner 100
Platform4Edge 4 tile platform with a four internal edges 100

AirPocket 4 empty tiles 100
SmallRamp A minimal 1 tile wide ramp 450

Air A empty tile 45
WhiteTile A single tile 4
AirHelper A tile that allows an empty tile to connect to internal edges 0.0004

B.1.1 The Face Matching Matrix

The logic for how metatiles fit together is defined by the face matching matrix. This adjacency matrix
allows users to define which faces can be placed next to other faces, and with what weight. U3 will
attempt to place metatiles at frequencies that respect both the face matching matrix frequencies and
the metatile pool weights, however, due to the complexity of the generation process there is a fair
amount of variance in the actual number of each metatile and face-face pairs placed.

OpenXLand uses 7 face types. Bedrock denotes the bottom of tiles, so Air and ramps cannot be
placed below it. Similarly, Surface denotes the top of a tile and can match with any type of face, but
attempts to avoid Air (0.05 weight). Air and Ground are generic face types of empty and solid faces
respectively. InsideEdge attempts to connect to other InsideEdge faces, to create larger platforms.
RampTop and RampBottom attempt to connect in a mutually exclusive manner to make sure that
multiple ramps can chain together in the correct way.

B.1.2 Wave Function Collapse Algorithm

U3 implements a 3D wave function collapse algorithm with a several optimizations. The original
wave function collapse algorithm tracks all possible configurations of each world voxel to calculate
the entropy of the voxels. We simplify this calculation by only considering whether a given voxel
is [Andrew: down restricted] to a single permissible metatile configuration. If this is the case, that
voxel is chosen [Andrew: to be placed next] as the next location to place a metatile. If no voxel has
only 1 remaining configuration, then the next voxel is chosen randomly from the current wavefront.

B.2 Production Rules

A key element of XLand 2.0 is production rules, which define compositional tasks that agents
are meant to complete. Agents 1) manipulate production rule objects 2) to satisfy production rule
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Figure 9: Left: The face matching matrix between face types in OpenXLand. Right: The face types
in the adjacency matrix. Each metatile is made of tiles, which have faces, and the adjacency matrix
determines which faces can be neighbors. The adjacency matrix constrains the set of permissible
metatiles that can be placed at a given location during the environment generation process.

conditions, which 3) trigger production rule actions that transition the state. The goal of the agent is to
trigger these production rules until the environment reaches a goal state and the agent receives reward.
In Table 2, we outline the production rule objects by shape and color, as well as the production
conditions and the production rule actions. Naturally, each set can be extended.

Table 2: A table containing the main components of OpenXLand’s production rule system. Our set of
objects, which is specified by shape and color, is similar in nature to that of XLand 2.0 [23], though
with 7 objects and over 20 colors. As for the conditions We extend those in Team et al. [23] with the
new conditions “drop”, “pickup” and “throw”. Also, whereas in XLand 2.0, objects that are part of
production rule conditions disappear when the condition is fulfilled, we include the possibility of
objects remaining in the environment. The “spawn” action creates a new object, the “swap” action
swaps the production rule condition’s subject, object or both for a new object, the “remove” action
simply removes an item from the environment, and the “reward” action gives reward to the agent.
Therefore, our production rules go beyond forcibly removing the condition’s objects or swapping
them for new ones.

Object Shapes Object Colors Conditions Actions
Cube red NEAR SPAWN

Sphere green CONTACT SWAP

Pyramid blue HOLD REMOVE

Cylinder purple PICKUP REWARD

Cone yellow THROW

Rounded Box grey DROP

Rounded Rectangle white

etc.

B.2.1 Production Rule Objects

Our production rule objects are quite similar to those of Team et al. [23]: as us, they use cubes,
spheres and pyramids (not counting walls), but we also include other objects such as cylinders, cones,
and rounded boxes and rectangles. Team et al. [23] uses three colors: black, purple and yellow. We

16



see no reason a priori why there shouldn’t be more colors, so we include over 20 colors, a few of
which can be found in 2. This raises the unique number of object-shape pairs from 9 to over 150.
Naturally, we can restrict or extend the set of colors. Furthermore, although OpenXLand’s objects are
identified with simple colors and shapes, it is possible to use U3 to identify objects with different
characteristics.

B.2.2 Production Rule Conditions

We implement the following conditions from Team et al. [23]: “near”, “contact” and “hold“. We plan
on implementing the final condition, “see” in future work. On top of this, we implement three new
conditions: “pickup”, “throw” and “drop”, which we implement as callback functions that trigger
based on the agent’s behaviour. The agent can only hold (and therefore pickup, throw and drop) one
object at a time.

B.2.3 Production Rule Actions

In Team et al. [23], production rules and goal states are represented as separate concepts. We find
it more amenable to represent them as instances of the same concept by turning goal states into
production rules that reward the agent as an action. This allows us to represent production rules
and goal states as part of the same language. We also include in our production rule actions the
possibility of preserving the objects present in the production rule conditions, which can allow for
distinct production rules that repeatedly depend on the same object.

C Implementing MemoryMaze: A Walkthrough

MemoryMaze [18] differs from OpenXLand in a few keys ways: First, the world is flat, so we only
need a height of 1. Second, production rules are not procedurally generated, but are instead attached
to "goal" objects spawned throughout the world. Third, only 1 "goal" is active at a time. Fourth, there
is a UI element that displays the current "goal".

To illustrate the ability of U3 to render more naturalistic worlds, we use a low polygon forest pack
from the Unity asset store. Thus, we modify the original MemoryMaze by replacing the walls with
rocks, and the goals with forest mushrooms of various colors.

Our MemoryMaze starts by procedurally generating the flat world using the same metatile system as
OpenXLand. We want goals to be spread out and only spawn in small clearings. Thus, we define a
new class (ProductionRuleSpawn) that defines locations where goals can spawn, and add it to the
Clearing metatile itself. By adding a script into the metatile we are able to use the existing procedural
generation system to add structured randomness to this new spawning logic. We also include custom
spawn logic in the script to spawn only up to 5 goals, and make sure that each goal is a minimum
distance from the previously spawned goals.

Further, we add logic to ProductionRuleSpawn such that a new production rule is created for each
spawned goal. These rules all use a new NEAR condition that triggers when the agent is near the
production rule’s subject (in this case, the goal object). Because of the modular design of U3, this
new condition can now be used in any newly generated OpenXLand environments as well. We also
create a new REWARD_TOGGLE action that is a compound action of a REWARD plus new logic
that deactivates the current production rule, and activates a different production rule at random. To
implement this logic we also add a new flag to production rules that allows them to be turned on and
off at run-time. In this way, as new environments are added to the U3 ecosystem, we expect that new
and more powerful features will also be added to the base OpenXLand environments.

The final missing piece of the MemoryMaze environment is the UI element that shows the current
goal. We adopt the same UI as the original with a colored border around the image. Unity is a
powerful 3D game engine with native support for 3D rendering, UI, sprites, materials, etc, so creating
this UI took only 1 function call into Unity’s API (GUI.DrawTexture).

17



Figure 10: MemoryMaze environment observation. Our version of MemoryMaze uses naturalistic
assets. We hope that harnessing the variety of assets available will help to increase agents’ overall
adaptability.

D Dataset Details

In this section, we go over the details of the datasets. We split the datasets into 6 world datasets (see
Table 3), and 6 production rule datasets (see Table 4). Each dataset contains 1 million environments
(see Table 5 for generation times). We design the datasets with overlapping parameters to facilitate
smooth curriculum learning. We filter the world datasets to include only those worlds that have a
largest accessible area of over 50% of the total number of tiles in the X-Z plane.

We find the largest accessible area by first constructing a local, directed connectivity graph using
the specific configuration of each voxel. For simplicity, we consider only the cardinal connections
between voxels, and only connections in the width-length plane (we ignore connections within a
single column of voxels). Two voxels are connected bi-directionally if they are at the same terrain
height and higher voxels are connected unidirectionally to lower tiles - representing the agent’s ability
to fall to the lower level. Ramps serve as the sole method for connections from a lower layer to the
next highest layer. Once the connectivity graph is constructed, the largest accessible area is found by
computing the largest strongly connected sub-component.

Distractors’ positions in the production rule chains heavily influence their impact. For example, if the
agent has already completed the step that requires a Yellow Cube, then removing the Yellow Cube is
merely a distraction. However, if the Yellow Cube is still required, then its removal creates a dead
end. Due to this complexity, we do not directly consider distractors vs dead ends in our difficulty
measure, but note that as more distractors are added the probability of dead ends also increases.

E Training Results

To demonstrate the learnability of our environment, we randomly select a task from the easy dataset
and applied the Soft Actor-Critic (SAC) [11] method. Image observations are processed using a
convolutional neural network for both the actor and Q networks, each comprising approximately 2
million parameters. The SAC agent is trained for 75 million environment steps, utilizing a replay
buffer that stored 1 million transitions. While these parameter choices may appear modest compared
to those in the Ada paper [23] and may not fully exploit emergent meta-learning capabilities, our
primary aim is to underscore the learnability of our environment, not to recreate their agent.

18



Table 3: World Datasets. These values were used to define Gaussian distributions used to sample
parameters during dataset construction. We note that the harder we consider environments to be, the
bigger they are.

Name Width and Length Height

x̄ σ x̄ σ

easy_low 5 2 1 1
easy_high 5 2 3 2

medium_low 10 3 1 1
medium_high 10 3 3 2

hard_low 15 5 1 1
hard_high 15 5 3 2

Table 4: Production Rule Datasets. These values were used to define the Gaussian distribution used
to sample parameters during dataset construction. Since we sample the production rule chain lengths
from distributions, the datasets of shorter chains will still contain long chains, although the dataset
will be dominated by shorter, less complicated tasks. As the average length of chains increases
throughout the datasets, the number of distractors also increases.

Name Chain Length and Initial Objects Distractors

x̄ σ x̄ σ

short_few 1 1 0 1
short_many 1 1 1 0.5
middle_few 3 1.5 0 1

middle_many 3 1.5 2 1.5
long_few 5 3 0 1

long_many 5 3 3 2.5

Table 5: Average time to generate an Environment in OpenXLand, by environment difficulty. Recall
that environment difficulty impacts the width, length and height of the environment (see Table 3). To
generate the datasets of 1 million environments, the Easy datasets took approximately 10 minutes per
dataset, the Medium, 2 hours, and the Hard, 2 days.

Difficulty Average Environment Generation Time
(ms)

Easy 0.6
Medium 7.2
Hard 172.8

Figure 11 illustrates that the episodic return of our learning agent increases throughout training,
surpassing a random agent baseline’s performance. We also extend our evaluation to the entire easy
dataset, conducting 8 trials per episode on different tasks. Interestingly, our learning agent exhibits
minimal improvement over random agents in this broader context, indicating the limitations of
conventional methods. We observe similar outcomes when applying the method to medium datasets,
where random agents fail to accrue any rewards, underscoring the challenge of reward collection
within these datasets.

F U3’s efficiency

G Resources

Most of the resources for this project were spent on implementing the baselines. The CPU compute
spent to generate the envs amounts to 200 hours. The GPU compute spent to train the baselines
amounts to around 140 hours of NVIDIA A100-SXM4-80GB.
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Figure 11: Episodic return during single environment training of the SAC agent compared to a
random agent. We train the SAC agent for 75 million environment steps. This required approximately
48 hours on a single A100 GPU, a small fraction of the 53760 TPUv3 device hours it took to
train Ada [23]. The episodic return for the SAC agent shows significant fluctuations but generally
demonstrates a higher return compared to the random agent baseline, represented by the red dashed
line.

Figure 12: Episodic return during training using SAC on the whole dataset with 8 trials per episode
and changing the task each episode. Collecting reward on the medium dataset is hard showing the
limitations of the conventional methods. Collecting reward on easy dataset is easier, but meta-learning
requires more advanced methodologies.
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Env size Prod objs Prod rules Script time (ms) σ
10x105 3 2 3.04 3.23

100x10x5 3 2 4.76 4.14
200x10x5 3 2 6.77 5.03
10x10x5 30 2 4.24 3.44
10x10x5 300 2 65.29 5.31
10x10x5 3 20 3.5 3.69
10x10x5 3 200 5.42 2.68
10x10x5 3 2000 10.44 4.24

Table 6: Performance scaling of Unity environment. We explore the effect of environment complexity on
U3’s performance. Note that due to time constraints we compare the runtime of the U3 scripts within the Unity
editor – not the true SPS of the headless Linux build. Note that the script runtime of the 10x10x5 environment is
∼3ms, or 300 SPS. Yet, the SPS of a single environment was ∼31, or 30ms per step, which suggests that the
U3 script runtime makes up only around 10% of the actual computation time. We test the complexity across
three different axes: Environment size (Env size), Number of production rule objects (Prod objs) and Number of
production rules (Prod rules). We vary each of these axes over ∼2 orders of magnitude and note that the only
time the runtime reaches over 30ms is in the 300 object environment. Note that the environment generation time
does scale super-linearly so that environments larger than 200x10x5 take prohibitively long to generate.

H URL to Dataset and Metadata

Datasets: https://huggingface.co/datasets/cerc-aai/u3_datasets

U3 source code: https://github.com/CERC-AAI/u3/

Croissant Metadata: https://huggingface.co/api/datasets/cerc-aai/u3_datasets/
croissant

We plan to fully open-source the code for U3, including the Unity environment framework, the
python training code and the pipeline. Using U3 still requires installing Unity, which impinges on
reproducibility. As stated in Section 7, we plan on containerizing the environment to democratize
access to U3.
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I Datasheet

I.1 Motivation

1. For what purpose was the dataset created? U3 and its associated OpenXLand datasets
were created to promote the open development of foundation models for RL and meta-RL.

2. Who created the dataset and on behalf of which entity? U3 and its datasets were created
by the researchers listed in the author list.

3. Who funded the creation of the dataset? The main funding bodies include the Canada
Excellence Research Chairs Program, as well as the resources of the INCITE program
award “Scalable Foundation Models for Transferable Generalist AI” provided by Oak
Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy under Contract No.
DE-AC05-00OR22725

I.2 Distribution

1. Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? The U3 framework
and its datasets will be publicly available.

2. How will the dataset be distributed (e.g., tarball on website, API, GitHub)? The datasets
will be distributed through Hugging Face, while the code will be made available on Github.

3. Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? No.

4. Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances? No.

I.3 Maintenance

1. Who will be supporting/hosting/maintaining the dataset? The CERC-AAI Lab at Univer-
sité de Montréal will maintain the U3 framework and its datasets.

2. How can the owner/curator/manager of the dataset be contacted (e.g., email ad-
dress)? The managers of the dataset can be contacted at connor.brennan@mila.quebec,
andrew.williams@mila.quebec and irina.rish@gmail.com

3. Is there an erratum? No. We will release one in the future if necessary.

4. Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete
instances)? Yes, the datasets will be updated if necessary.

5. If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were the individuals in question told that their data
would be retained for a fixed period of time and then deleted?) N/A

6. Will older versions of the dataset continue to be supported/hosted/maintained? N/A

7. If others want to extend/augment/build on/contribute to the dataset, is there a mecha-
nism for them to do so? U3 welcomes contributors on GitHub. Should the need arise to
extend the datasets on Hugging Face, we will establish a procedure for doing so.

I.4 Composition

1. What do the instances that comprise the dataset represent (e.g., documents, photos, people,
countries?) The instances that comprise the datasets are JSON datafiles that describe the
necessary information to instantiate RL environments in Unity.

2. How many instances are there in total (of each type, if appropriate)? Six files of one
million environment instances, six files of one million production rule instances, for a total
of twelve million instances spread across 12 files.

3. Does the dataset contain all possible instances or is it a sample of instances from a
larger set? Is it a subset of the effectively infinite number of instances that U3 can generate.
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4. Is there a label or target associated with each instance? Each instance contains the label
information necessary to instantiate a Unity environment.

5. Is any information missing from individual instances? No.

6. Are there recommended data splits (e.g., training, development/validation, testing)?
No.

7. Are there any errors, sources of noise, or redundancies in the dataset? The instances
are sampled with replacement from a procedural generation process, so yes there can be
redundancies.

8. Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? The datasets rely on access to a Unity instance

9. Does the dataset contain data that might be considered confidential? No.

10. Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? No.

I.5 Collection Process

1. How was the data associated with each instance acquired? We procedurally generated
environments in Unity and collected the necessary information to recreate them using the
U3 framework.

2. What mechanisms or procedures were used to collect the data (e.g., hardware apparatus
or sensor, manual human curation, software program, software API)? We used the
Unity Engine and Python, as well as GPUs for training RL baselines.

3. Who was involved in the data collection process (e.g., students, crowdworkers, con-
tractors) and how were they compensated (e.g., how much were crowdworkers paid)?
Students, paid through the funding sources described above.

4. Does the dataset relate to people? No.

5. Did you collect the data from the individuals in question directly, or obtain it via third
parties or other sources (e.g., websites)? N/A

I.6 Uses

1. Has the dataset been used for any tasks already? No, the data has not been used, other
than for running baselines.

2. What (other) tasks could the dataset be used for? The datasets could be used for
RL-related tasks as standalone or as part of a blended dataset

3. Is there anything about the composition of the dataset or the way it was collected and
preprocessed/cleaned/labeled that might impact future uses? The use of U3 and its
datasets relies on access to the Unity Engine.

4. Are there tasks for which the dataset should not be used? No.

J Author statement

We bear all responsibility in case of violation of rights.

We use the MIT License for our data.
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