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Abstract

It is well known that query-based attacks tend to have relatively higher success
rates in adversarial black-box attacks. While research on black-box attacks is ac-
tively being conducted, relatively few studies have focused on pixel attacks that
target only a limited number of pixels. In image classification, query-based pixel
attacks often rely on patches, which heavily depend on randomness and neglect
the fact that scattered pixels are more suitable for adversarial attacks. Moreover, to
the best of our knowledge, query-based pixel attacks have not been explored in the
field of object detection. To address these issues, we propose a novel pixel-based
black-box attack called Remember and Forget Pixel Attack using Reinforcement
Learning(RFPAR), consisting of two main components: the Remember and For-
get processes. RFPAR mitigates randomness and avoids patch dependency by
leveraging rewards generated through a one-step RL algorithm to perturb pixels.
RFPAR effectively creates perturbed images that minimize the confidence scores
while adhering to limited pixel constraints. Furthermore, we advance our pro-
posed attack beyond image classification to object detection, where RFPAR re-
duces the confidence scores of detected objects to avoid detection. Experiments
on the ImageNet-1K dataset for classification show that RFPAR outperformed
state-of-the-art query-based pixel attacks. For object detection, using the MS-
COCO dataset with YOLOv8 and DDQ, RFPAR demonstrates comparable mAP
reduction to state-of-the-art query-based attack while requiring fewer query. Fur-
ther experiments on the Argoverse dataset using YOLOv8 confirm that RFPAR
effectively removed objects on a larger scale dataset. Our code is available at
https://github.com/KAU-QuantumAILab/RFPAR.

1 Introduction

Deep learning models are susceptible to adversarial attacks, which involve subtle modifications of
input data that are imperceptible to humans but lead to incorrect predictions by the model[1]. As
deep learning technologies become commercialized in the real world, the issue of adversarial attacks
has garnered increasing attention.
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Figure 1: Adversarial examples generated by RFPAR. The first column represents images from
ImageNet (image classification), the second column from MS-COCO (object detection), and the
third column from Argoverse (object detection). Each row represents a different condition: the
first row shows clean images, the second row shows adversarially perturbed images, and the third
row shows the perturbation levels with the ratio of attacked pixels to total pixels. Labels in the
images indicate detected objects or classifications, such as "Cock" in ImageNet, "2 Objects" in MS-
COCO, and "5 Objects" in Argoverse. In the adversarial row, labels are altered due to perturbations,
resulting in misclassifications or undetected objects, such as "Coil" instead of "Cock" in ImageNet
and no objects detected in MS-COCO and Argoverse. The perturbation row indicates the percentage
of pixels attacked in the image. The percentages were 0.004% for ImageNet, 0.027% for MS-COCO,
and 0.114% for Argoverse.

Adversarial attacks can be broadly categorized into white-box attacks and black-box attacks[2]. In
white-box attacks[3, 4, 5], attackers devise attack strategies based on internal information about
deep learning models, such as training data, gradients of the outputs with respect to the weights, and
other details about the learning process for given samples. Conversely, in black-box attacks[6, 7],
attackers can access only limited information such as the probability of the correct prediction for
a given sample. Given that real-world attackers typically only possess limited information about
the model, black-box attacks are more realistic than white-box attacks. In other words, research
on black-box attacks and their defenses is crucial in order to develop robust and secure machine
learning systems.

Black-box attacks are also categorized into query-based methods[8, 9, 10, 11] and transfer-based
methods[12]. Query-based attacks are generating adversarial examples by repeatedly querying the
victim model with modified images[13]. Transfer-based attacks involve generating adversarial ex-
amples for a surrogate model that successfully deceive another model[14]. Transfer-based attacks
are highly efficient since they do not require knowledge of the victim model. However, the dis-
crepancies in model architecture, training data, and training methodologies between the surrogate
and victim models often result in a lower success rate for these attacks compared to query-based
attacks[13]. Conversely, although query-based attacks achieve higher success rates, they require a
significant number of queries to the victim model. Therefore, reducing the number of queries in
query-based attacks is a critical issue.
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Figure 2: The model architecture of RFPAR: the Remember and Forget process. During the Re-
member process, the RL model generates perturbed images and corresponding rewards. Memory
compares these with previously stored values and retains only the highest reward and its associated
image. Once the rewards converge to a certain value, the Forget process starts and resets the RL
agent and memory, then reintroduces the perturbed images that gained the highest reward to the
Remember process. The process continues until an adversarial image is generated or a predefined
number of cycles is reached, at which point it terminates.

The pioneering pixel attack method, OnePixel[8], employed Differential Evolution (DE) to generate
adversarial images. An advanced approach, ScratchThat[9], used DE to create curves and applied a
parametric model to perturbations, reducing parameters and improving performance. A more recent
study, PIXLE[11], enhanced query efficiency and attack success rate by using a simple algorithm
instead of DE. Briefly, PIXLE generates adversarial images by selecting arbitrary patches in a clean
image and applying the brightness of these pixels to others. Although this method improved perfor-
mance, it ignored the fact that pixels are independent of each other due to its reliance on patches
and exhibited inefficiencies stemming from randomness in brightness mapping. The previous study,
PatchAttack[15], utilized RL model to embed textures in specific regions of the clean image, dis-
covering vulnerable patches and reducing randomness, which significantly decreased the number of
queries and improved attack success rates. Unfortunately, this method still depended on patches,
requiring at least 3% of the image area to be attacked.

Query-based attacks in object detection are more challenging than those in image classification. The
first query-based attack in object detection, PRFA[16], generated adversarial images using a parallel
rectangle flipping strategy. Recent research, GARSDC[17], employed a genetic algorithm to create
adversarial images, improving optimization efficiency by using adversarial examples generated from
transfer-based attacks as the initial population. Query-based attacks on black-box models are inher-
ently challenging, and targeting only a few pixels is even more difficult to study. To the best of our
knowledge, pixel attacks have been limited to white-box or transfer attack methods[18, 19, 20, 21].
In this study, we extend our proposed attack from image classification to object detection, introduc-
ing the first query-based pixel attack. Experiments show that our method achieves a comparable
mAP reduction on YOLO[22] to state-of-the-art methods while significantly reducing the number
of queries, demonstrating its effectiveness in object detection.

In this study, we introduce a novel method called the Remember and Forget Pixel Attack using
Reinforcement Learning (RFPAR). Briefly, in the Remember process, the clean image is initially
taken as input by the RL agent, and the loss function is optimized. During this optimization, the
highest reward and its corresponding perturbed image are stored in memory. If the highest rewards
do not change for a while, we define this as the convergence of rewards. Once the rewards converge,
the Forget process is initiated, resetting the RL agent and memory to forget previous information.
After resetting, the stored image is fed as input to the RL agent, and the Remember process begins
again. Extensive experiments demonstrate that our attack is effective for image classification and
successfully extends to object detection.

In summary, our main contributions are:
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• We propose a novel query-based black-box pixel attack consisting of the Remember and
Forget processes. Our approach outperformed state-of-the-art attacks on the ImageNet-1K
classification task, achieving an average attack success rate improvement of 12.1%, while
reducing the number of queries by 26.0% and the modified L0 norm by 41.1%.

• We advance query-based pixel attacks from image classification to object detection, in-
troducing the query-based pixel attack. Our experiments demonstrate that our proposed
method effectively compromises object detection systems. It achieves an average mean
Average Precision (mAP) reduction of 0.29 in YOLO, comparable to state-of-the-art query-
based attacks, while reducing the number of queries by 52.8%. To the best of our knowl-
edge, the proposed method is the first black-box query-based pixel attack for object detec-
tion.

• To evaluate performance on a larger scale dataset, we conducted experiments using
YOLOv8 as the victim model on the Argoverse-1.1 validation dataset. We also achieved a
high removal rate of detected objects above 0.9 in Argoverse, similar to our results in MS-
COCO. The results demonstrate that our proposed method effectively reduces the number
of detected objects in images with a resolution of 1920×1200. Additionally, examining the
adversarial perturbation results of RFPAR on Argoverse and MS-COCO, we observe that it
successfully reduces the number of detected objects while attacking only very small areas
of 0.1% and 0.02%, respectively.

2 Remember and Forget Pixel Attack Using Reinforcement Learning

In this section, we introduce our proposed method. In Section 2.1, we define the problem math-
ematically. Section 2.2 details the Remember process, which is the internal iterative structure of
our algorithm, including agent, environment, and memory. Finally, we explain the Forget process,
which serves as the external iterative structure in Section 2.3.

2.1 The Problem Formalization

We consider an image classifier as f : RC×H×W → Rc, where C, H , and W represent the channel,
height, and width of a given sample x, respectively, and c denotes the number of classes. The
classifier f computes probabilities for each class for a sample x. Furthermore, fl(x) is defined as
the probability of a sample x being predicted as the l-th class. The prediction of the classifier can be
expressed as argmaxlfl(x). For an image classification attack, the objective is to minimize a pixel
perturbation δ such that the classifier’s prediction for an input x diverges from its true label y. This
problem can be formalized as:

min
δ

argmax
l

fl(x+ δ) ̸= y

s.t. ∥x− x∥0 = ∥δ∥0 ≤ ϵ, ϵ ∈ Z+.
(1)

Here, ϵ ∈ {1, 2, · · · } and ∥·∥0 denotes the attack level and the L0 norm. x is the perturbed image,
defined as x+δ. Notably, the attack levels are positive integers, which implies that the perturbations
are at the pixel level.

Similarly, the object detector is defined by the function f : RC×H×W → RB×6, where B represents
the maximum number of objects that can be detected by the model. The information about each
bounding box location, object’s class, and confidence score (indexed by l0) is encapsulated in 6-
dimensional vectors. To prevent the attack from targeting objects that are incorrectly predicted, we
establish a confidence threshold of 0.5. If n objects surpass this threshold from among B candidates,
then only these n objects are classified as detected. Furthermore, fo

l0
(x) indicates the confidence

score that the model identifies the o-th object as belonging to the predicted class from a sample x. In
this context, the number n(x) of detected objects from a sample x is

∑
o 1{ fo

l0
(x) > 0.5}, where

1 signifies the indicator function that takes the value one if the inequality holds and the value zero
otherwise.

The goal of the object detector attack is to reduce the number of detected objects by modifying the
minimum number of pixels, which is formally expressed as:
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min
δ

max (n(x)− n(x))

s.t. ∥δ∥0 ≤ ϵ, ϵ ∈ Z+.
(2)

where ϵ denotes the attack level and x denotes the perturbed image. Therefore, our objective is to
eliminate bounding boxes from the detection model by iteratively accumulating pixel attacks. We
address this problem by combining one-step REINFORCE[23] with our approach.

2.2 Remember Process

Agent. We construct an environment where an attacking agent interacts to generate adversarial
images. The agent’s policy utilizes a CNN-based architecture, where given a sample x ∈ RC×H×W ,
the agent observes the image and takes actions to determine the location (X, Y coordinates) and
brightness (R, G, B) to modify, then generates perturbed images. We define two types of actions
for brightness: "Write" and "Erase." The "Write" action overwrites the pixel with the maximum
brightness, while the "Erase" action sets the brightness to zero. This configuration is chosen because,
based on our experience, the attack success rate is higher when applying maximum changes to the
pixels. Figure 1 shows the adversarial images generated by the agent. The agent generates the
actions through random sampling of normal distributions, where the means and standard deviations
are trained by the neural networks. The set of actions At, where t represents the training epoch of RL,
contains N subsets corresponding to the number of attack pixels in each Remember process. These
subsets are composed of the X, Y coordinates, and brightness values for each channel. The set At

is defined as {a11, a12, a13, · · · , a1C+2, · · · , aN1 , aN2 , aN3 , · · · , aNC+2}, where a1 and a2 represent the X

and Y coordinates, respectively, and a3 to aC+2 represent the brightness values for each channel.
For the "Write" action, the brightness values are set to the maximum value, whereas for the "Erase"
action, they are set to 0. For each pixel, the perturbed image x is generated as follows:

xi,j,k =

{
adi+2 if j = ad1 and k = ad2,

xi,j,k otherwise
(3)

where i, j, and k are indices for channel, height, and width, respectively. In other words, xi,j,k

represents the brightness at position (j, k). Adding a pixel to the image is repeated for d from 1
to N . Hence, the image is perturbed by N pixels. The equation describes the generation of x by
repeatedly altering the brightness of each channel at the position (a1, a2) in the given sample x. The
agent trains by using the gradient of the reward and the log probability of the sampled actions.

Environment. The environment evaluates the image generated by the agent and assigns a reward.
The reward r is defined as:

r =

n∑
o=1

fo
l0(x)− fo

l0(x) + Ω(x), (4)

where n represents the number of detected objects in the image x for object detection, while Ω(x) =
(n(x) − n(x)) signifies the number of removed objects after the adversarial attack. l0 is the index
for the confidence score of the detected object. Hence, the reward is defined as the sum of the
differences in confidence scores for each object plus the number of objects removed.

For classification, l0 is the index for the correct class, and n is set to 1. Ω(x) is set to 1 if the
adversarial image generation is successful and 0 otherwise. In essence, the reward is calculated as
the sum of the differences in the probability of the correct class between the perturbed and original
image, along with an additional component indicating whether the model successfully created an
adversarial example.

Memory. The role of memory is to save the best reward value and its corresponding perturbed im-
ages. The stored information is also used to determine when the Forget process should start. Without
memory, RL models tend to identify universally shared vulnerabilities in the clean images provided
to the victim model. In contrast, our objective is to generate adversarial attacks regardless of these
common vulnerabilities. To minimize unnecessary queries that converge on such vulnerabilities, we
have incorporated memory concepts into the RL approach.

In our approach, memory stores the maximum reward values r∗ and their corresponding perturbed
images x∗ by selectively saving the higher reward as r∗ = max(r∗, rt), where rt denotes the rewards
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Table 1: The results of adversarial attacks on the ImageNet dataset. Each score represents the
mean success rate of the attack, mean L0 norm and mean the number of queries. In terms of the
success rate, a higher value signifies better performance, whereas for the L0 norm and the number
of queries, lower values are indicative of superior performance. The best method is highlighted in
bold.

Model Test accuracy Attack Succes rate ↑ L0 ↓ Query ↓

VIT-B[24] 81.07 %

OnePixel[8] 9.3 % 15 1453
ScratchThat[9] 40.9 % 420 9418

Pixle[11] 51.4 % 286 728
RFPAR(Ours) 64.1 % 211 613

ResNeXt50[25] 77.62 %

OnePixel[8] 8.1 % 15 5100
ScratchThat[9] 38.1 % 95 1400

Pixle[11] 89.1 % 538 663
RFPAR(Ours) 95.3 % 138 442

RegNetX-32GF[26] 80.62 %

OnePixel[8] 12.3 % 15 1358
ScratchThat[9] 60.6 % 427 8653

Pixle[11] 73.7 % 276 705
RFPAR(Ours) 88.4 % 164 484

DenseNet161[27] 77.14 %

OnePixel[8] 14.1 % 15 1248
ScratchThat[9] 60.6 % 425 8367

Pixle[11] 82.3 % 243 625
RFPAR(Ours) 91.7 % 152 464

MNASNet[28] 73.46 %

OnePixel[8] 14.2 % 15 1128
ScratchThat[9] 65.3 % 425 8828

Pixle[11] 83.7 % 240 607
RFPAR(Ours) 95.0 % 150 442

MobileNet-V3[29] 74.04 %

OnePixel[8] 8.1 % 15 1461
ScratchThat[9] 51.8 % 420 9293

Pixle[11] 69.6 % 306 769
RFPAR(Ours) 86.6 % 213 596

given by the environments during the t-th training epoch. After training each epoch of data, the
algorithm checks whether the reward values have bounded. We define the rewards as bounded if the
following condition is satisfied:

rt − r∗

r∗
< η (5)

where η signifies the bound threshold. This equation indicates that the rate of increase in the reward
stored in memory is less than η. The convergence of rewards is defined as the rewards being bounded
for a certain period, denoted as T . Both η and T are hyperparameters. If the reward converges, the
Remember process ceases and the Forget process starts.

2.3 Forget Process

The goal of the Forget process is to reset the trained RL model and its memory, and to feed the image
x∗ as a new input for the reset RL model. Additionally, the maximum L0 increase for the reset RL
model, as it is determined by the number of reward convergences, attack pixels, and channels. This
process is implemented to prevent the agent from overfitting, which can hinder effective exploration
of new inputs. The impact of memory and initialization is discussed in Section 3.5.

3 Experiments

Section 3.1 details the dataset, evaluation metrics, victim models, and hyperparameters used in our
experiments. In Section 3.2, we evaluate our proposed attack on image classification by comparing
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it with previous attack methods. Section 3.3 compares the performance of our method on object
detection, varying the attack dimension (α = 0.01 to 0.05), and compares the results with other
query-based attacks. In Section 3.4, we conduct experiments on the Argoverse dataset, which has
larger image dimensions, and discuss the findings. Finally, Section 3.5 presents an ablation study on
the memory and initialization components we introduced. Additional experimental results can be
found in Appendix C and D.

3.1 Experimental Details

Datasets, Metrics and Hardware. For image classification, we use the validation dataset from
ImageNet-1K[30]. To reduce computational costs, we extract one correctly classified image per
category from the victim model, resulting in a total dataset of 1000 images for adversarial attack
attempts. We evaluate our methods with respect to different victim models by calculating the success
rate, L0 norm, and the number of queries. The success rate represents the percentage of successful
adversarial attacks out of the 1000 images, with higher values indicating better performance. The L0

norm refers to the number of non-zero elements in perturbation δ, with lower values indicating better
performance. The number of queries indicates how often the victim model is queried to generate an
adversarial example, with fewer queries indicating better performance. The ATA (ATtacked Area)
refers to the proportion of pixels in the image that were attacked, a lower value indicates fewer
changes. For object detection, we use the 2017 validation set from the MS-COCO dataset[31] and
Argoverse-1.1 validation set[32]. To facilitate comparison with PRFA [16] and GARSDC [17], we
use mAP to evaluate the attacks. The mAP is calculated as the average over thresholds ranging from
IOU = 0.5 to 0.95. Additionally, RM indicates the average percentage of objects removed from the
clean image, while RD refers to the decrease in mAP. Both a lower mAP and a higher RM indicate
greater success. Lastly, we used an AMD Ryzen 9 5900X, RTX 3090TI, and 64.0GB of RAM,
running on Windows 11 with CUDA version 12.1.

Victim Models. For image classification, we select six pre-trained models on the PyTorch
platform as victim models: VIT[24], ResNeXt50[25], RegNetX-32GF[26], DenseNet161[27],
MNASNet[28], and MobileNet-V3[29]. We compare the performance of our attack with
OnePixel[8], ScratchThat[9], and Pixle[11]. For object detection, we use the pre-trained YOLOv8n
model from the YOLOv8[22] platform and the pre-trained DDQ DETR-4scale model[33] from the
MMDetection platform.

Hyperparameter. Our attack method utilizes four hyperparameters: the maximum number of
iterations, the pixel attack rate α, the bound threshold η, and the duration T for maintaining the
convergence condition. In the Remember process, α is a hyperparameter that determines the number
of pixels to attack, proportional to the image size. The number of pixels N to be attacked is defined
as (H +W )/2×α. By default, we set the maximum number of iterations to 100 and η to 0.05. For
image classification, we use T = 3 and α = 0.01. For object detection, we experiment with T = 20
and α values ranging from 0.01 to 0.05.

3.2 Evaluation of Classification Attacks

Table 1 presents a performance comparison of various adversarial attack methods on different victim
models for image classification. RFPAR consistently achieves the highest success rate, significantly
outperforming the other three attack methods. For instance, for the VIT model, RFPAR achieves
a success rate of 64.1%, compared to OnePixel’s 9.3%, ScratchThat’s 40.9%, and Pixle’s 51.4%.
The trend is similar for other models, with RFPAR showing substantial improvements in success
rate. Regarding the L0 norm, which measures the sparsity of the perturbations, RFPAR generally
achieves a lower L0 norm than ScratchThat and Pixle but higher than OnePixel. For example, in the
case of ResNeXt50, RFPAR has an L0 norm of 138, compared to OnePixel’s 15, ScratchThat’s 95,
and Pixle’s 538. While OnePixel has the lowest L0 norm, its success rate is significantly lower than
RFPAR’s, indicating a trade-off between perturbation sparsity and attack effectiveness. In terms of
the number of queries, RFPAR requires fewer queries than the other methods, except for OnePixel
in some cases. This demonstrates that RFPAR is more efficient in terms of query cost, which is
crucial for practical adversarial attacks. Overall, RFPAR exhibits superior performance across all
victim models in terms of success rate while maintaining competitive L0 norms and requiring fewer
queries compared to other methods, making it an effective and efficient approach.
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Table 2: Attack Results on Object Detection Models. The subscripts after RFPAR denote a pixel
attack rate, α. RM indicates the average percentage of objects removed from the clean image. L0

represents the average ∥δ∥0. Query denotes the average number of queries made to the victim model.
Higher RM, lower mAP, lower L0, and lower Query values indicate better performance.

Attacks YOLOv8[22] DDQ[33]

RM ↑ mAP ↓ L0 ↓ Query ↓ RM ↑ mAP ↓ L0 ↓ Query ↓
clean - 0.398 - - - 0.376 - -
RFPAR0.01 0.65 0.218 521 1403 0.60 0.125 391 1450
RFPAR0.02 0.70 0.187 955 1427 0.73 0.103 787 1690
RFPAR0.03 0.75 0.151 1459 1374 0.76 0.075 1074 1512
RFPAR0.04 0.76 0.150 1814 1348 0.80 0.061 1429 1457
RFPAR0.05 0.91 0.111 2043 1254 0.83 0.054 1780 1528

3.3 Evaluation of Object Detection Attacks

Table 3: Comparison to other meth-
ods. RD means reduction in mAP.

Attacks YOLO

RD ↑ Query ↓
PRFA[16] 0.21 2949
GARSDC[17] 0.29 2691
RFPAR 0.29 1270

Attacking object detection models is more challenging than
attacking image classification models because there are
more objects to consider in the object detection task. More
pixels need to be modified, adjusted by α from 0.01 to 0.05,
to deceive the victim models. Table 2 compares the per-
formance of different α values of the RFPAR method on
two object detection models, YOLOv8 and DDQ. The RM
rate for YOLOv8 increases from 0.65 (RFPAR0.01) to 0.91
(RFPAR0.05) and for DDQ from 0.60 to 0.83, indicating that
stronger attacks remove more detected objects. The mAP
also decreases from 0.218 to 0.111 for YOLOv8 and from
0.125 to 0.054 for DDQ. At α = 0.05, our attack success-
fully reduced the mAP by an average of 0.301 and achieved a RM of 0.87. The number of queries
remains relatively stable, ranging from 1254 to 1427 for YOLOv8 and from 1450 to 1690 for DDQ,
suggesting a consistent query cost despite increasing perturbation intensity. Overall, the results indi-
cate that the RFPAR method is highly effective in generating adversarial attacks on object detection
models, balancing perturbation sparsity, and attack effectiveness while maintaining query efficiency.

To demonstrate the effectiveness of our method, we compared it with other query-based black-box
attacks. Table 3 shows the performance of three different attack methods - PRFA, GARSDC, and
RFPAR - on the YOLO object detection model. In this table, RD refers to the decreased mAP value,
and Query indicates the average number of queries. The RFPAR method shows strong performance
by achieving the highest RD (tied with GARSDC) and requiring the fewest queries. This indicates
that RFPAR is not only effective in reducing the YOLO model’s performance but also efficient in
terms of the number of queries needed to achieve this reduction. GARSDC also demonstrates high
effectiveness with the same reduction as RFPAR but requires more than twice the number of queries.
Overall, RFPAR stands out as the most balanced and efficient attack method in this comparison.

3.4 Experiments on a Larger Scale Data

Table 4: Comparison on dataset. ATA means the
ratio of altered pixels to the image size.

Datasets YOLO

RM ↑ RD ↑ ATA ↓ Query ↓
MS-COCO 0.91 0.29 0.02 % 1270
Argoverse 0.94 0.05 0.10 % 1906

To verify the effectiveness of our proposed
method on larger dimensions 1920×1200,
we randomly selected one video sample
from the Argoverse dataset and conducted
experiments using YOLOv8. The experi-
mental results are presented in Table 4. The
RM achieved 0.94, indicating a successful
reduction in the number of detected objects.
Argoverse achieved a RM of 0.94, similar to
the RM observed for MS-COCO. The ATA
for these datasets was 0.1% and 0.02%, re-
spectively, indicating that only a very small portion of the image area was attacked. However, the
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mAP did not decrease as significantly as in previous experiments. This discrepancy can be explained
by considering that RFPAR primarily reduces the number of objects detected. If a particular class
has many objects, reducing their number may not significantly impact the overall mAP due to the
presence of other classes. In summary, while RFPAR successfully removes objects in the larger
Argoverse dataset, its effectiveness in reducing mAP is limited in datasets with a high density of
objects in specific classes.

3.5 Ablation study

Figure 3: Ablation study. The x and y axes show different victim models and the attack success rate,
respectively. The notation I signifies the inclusion of the initialization step in the Forget process, and
M denotes that the Remember process incorporates memory.

In this section, we analyze the impact of Initialization (I) and Memory (M) on our model’s perfor-
mance. If Initialization is ablated in the Forget process, the Agent is not reinitialized and retains
information from the previous Remember process. On the other hand, if Memory is ablated, the
Agent’s reward, instead of the reward stored in Memory, serves as a bound condition. We conduct ab-
lation experiments under similar query conditions and present the results in Appendix G. As shown
in Figure 3, RFPAR denotes the baseline state without I and M, while RFPAR∗ indicates the inclu-
sion of specific processes. Comparing RFPAR and RFPARM , it is evident that the introduction of
memory significantly enhances the attack success rate. This result suggests that the RL method ben-
efits from storing the highest-reward images of restricted pixels during each Forget process. When
comparing RFPARI and RFPARM+I , we observe that initialization prevents RL model from overfit-
ting to specific patterns and escaping local optima, thereby improving performance. Conversely, the
comparison between RFPAR and RFPARI indicates that Initialization alone, without memory, has
a negligible impact. This finding implies that RL model without memory fails to generate meaning-
ful adversarial attacks. In summary, memory supports RL model in generating effective adversarial
attacks, while Initialization prevents overfitting and enhances overall performance.

4 Conclusion

In this paper, we propose the Remember and Forget Pixel Attack using Reinforcement Learning (RF-
PAR) for attacking neural network models with limited pixels. Traditional pixel-based attacks have
been confined to image classification, but our method extends this approach to include object detec-
tion as well. For image classification, we compared the performance of RFPAR against OnePixel,
ScratchThat, and PIXLE across six victim models using the ImageNet-1K dataset, and RFPAR
demonstrated superior performance. In object detection, we evaluated RFPAR on the MS-COCO
dataset using YOLOv8 and DDQ models, comparing it with PRFA and GARSDC attacks. RFPAR
achieved performance comparable to the state-of-the-art query-based attack GARSDC, while reduc-
ing the number of queries by 52.8%, proving its efficiency. Additionally, we showed that RFPAR
is capable of performing pixel attacks on larger datasets, specifically the Argoverse dataset with di-
mensions, surpassing the sizes of the ImageNet and MS-COCO datasets. Our findings may enable
malicious individuals to compromise real-world AI systems. Consequently, research on defenses
against adversarial attacks is becoming increasingly important.

Broader Impacts. Defects in camera sensors, such as hot pixels or dead pixels, can impact im-
age quality and degrade the performance of neural network models. Our approach mimics these
camera defects. In this paper, RFPAR simulates real-world issues by replacing specific pixels with
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values of either zero or one, inducing incorrect predictions by the neural network. Since these types
of perturbations can occur in practice, it is crucial for neural networks to be robust against them.
However, research on pixel-based L0 attacks is limited compared to other types of attacks. Our
approach helps analyze model vulnerabilities with respect to both adversarial attacks and real-world
scenarios, contributing to the development of more robust neural networks that can withstand such
defects. Additionally, the phenomenon where the prediction changes with only a small number of
pixel modifications that do not alter the overall meaning can be considered an anomaly in artificial
neural networks. This type of attack provides important insights into understanding the limitations
of neural networks.

Limitations. In this work, the pixel values are either zero or one. While the meaning remains
unchanged, this can still make it noticeable in certain cases. Additionally, the Forget process is quite
simple. The time complexity of RFPAR is worse than that of other pixel attacks. However, at the
ImageNet scale, RFPAR outperforms others in speed. This result is presented in Appendix H. In
future work, we will apply meta-learning to the Forget process and aim to reduce not only L0, but
also L∞.

Negative Impacts. In applications like defective product detection [34] and disease prediction
systems [35], adversarial attacks could degrade product quality or lead to incorrect diagnoses, which
may have serious, or even fatal, consequences. Our proposed approach increases the effectiveness
of query-based black-box attacks, making them more applicable to real-world scenarios. As a result,
vision AI systems may face significant threats to their functionality and reliability. Therefore, it
is crucial for these systems to proactively identify potential vulnerabilities and implement robust
defenses.

Mitigation of Risks. Our method requires an average of over 1000 queries to successfully deceive
an object detection model. Similarly, as shown in Table 7 in the Appendix E, transformer-based
models also require an average of over 1000 queries to achieve a high success rate. If we limit the
number of queries to around 1000 in a short period of time, our method can easily defend the model.
For CNN-based models, since fewer queries are needed, limiting the queries to 400 can effectively
defend the model. Additionally, according to the attack results on adversarially trained models
shown in Table 8 in the Appendix F, adversarial training effectively reduces the attack success rate
and increases the number of queries needed. Therefore, by adversarially training the models and
appropriately limiting the queries, this attack can be defended against.
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A Related Work

Adversarial Attack. Adversarial attacks manipulate clean images with imperceptible modifica-
tions to fool Deep Neural Networks (DNNs) into making incorrect predictions. These attacks are
broadly divided into black-box and white-box attacks. White-box attacks leverage detailed informa-
tion about the target model, including training data and gradients, to craft adversarial images. In
contrast, black-box attacks, which do not rely on any internal information about the victim model,
are divided into transfer-based and query-based strategies. Transfer-based attacks create adversarial
images using a surrogate model, aiming for these examples to also be effective against the target
model. Query-based attacks iteratively modify clean images and query the victim model, using the
resulting confidence scores to refine the attack. Typically, attack strategies are evaluated using the
Lp norm to restrict the perturbation to remain imperceptible to humans[3, 4, 5, 36].

Black-box Pixel Attack in Image Classification. Unlike other metrics, the L0 norm, also known
as pixel norm, targets only a small subset of pixels in a clean image rather than attacking all of them.
The pioneering pixel attack method, OnePixel[8], employed Differential Evolution (DE) to generate
adversarial images. An advanced approach, ScratchThat[9], used DE to create curves and applied a
parametric model to perturbations, reducing parameters and improving performance. A more recent
study, PIXLE[11], enhanced query efficiency and attack success rate by using a simple algorithm
instead of DE. Briefly, PIXLE generates adversarial images by selecting arbitrary patches in a clean
image and applying the brightness of these pixels to others. Although this method improved per-
formance, it ignored pixel independence due to its reliance on patches and exhibited inefficiencies
stemming from randomness in brightness mapping. The previous study, PatchAttack[15], utilized
RL to embed textures in specific regions of the clean image, discovering vulnerable patches and
reducing randomness, which significantly decreased the number of queries and improved attack suc-
cess rates. Unfortunately, this method still depended on patches, requiring at least 3% of the image
area to be attacked. Our research focuses on eliminating patch dependency by attacking individual
pixels and reducing randomness through RL. Extensive experiments demonstrate that our proposed
attack outperforms the state-of-the-art methods in both query efficiency and attack success rate.

Query-based Adversarial Attack in Object Detection. Adversarial attacks in object detection
are more challenging than those in image classification. The first query-based attack in object de-
tection, PRFA[16], generates adversarial images using a parallel rectangle flipping strategy. Recent
research, GARSDC[17], employs a genetic algorithm to create adversarial images, improving opti-
mization efficiency by using adversarial examples generated from transfer-based attacks as the initial
population. We extend our proposed attack from image classification to object detection. Experi-
ments show that our method achieves a comparable mAP reduction on YOLO[22] to state-of-the-art
methods while significantly reducing the number of queries, demonstrating its effectiveness in object
detection.

B Theoretical Insight.

We initially used a multi-step REINFORCE approach but identified issues, leading us to propose
the Forget and Remember processes using one-step REINFORCE. Generating adversarial exam-
ples with multi-step REINFORCE involves the objective function U = E [

∑τ
0 γ

τ−tR[st, at|πθ]],
where γ is the discount factor, st is the image at step t, at is the action at st, and the reward is
R[st, at|πθ] = fθ,y(s0)− fθ,y(st+1), where fθ,y is the confidence score of the true label y. Here, at
is a single pixel perturbation. We find that significant oscillations can be observed in the objective
function. Let τ∗ be the minimum number of steps to create an adversarial example. The sequence
of pixels does not matter, leading to variations in the value of the objective function due to different
orderings of at. Thus, for it ∈ {0, 1, 2, · · · , τ∗} and ij ̸= ik, the optimal objective function value
is U∗ = E [

∑τ
0 γ

τ−tR[st, ait |πθ]], with τ∗! permutations. This complicates training and increases
the queries and L0. To address this, we proposed the Forget and Remember process using one-step
REINFORCE. Pixel perturbations at τ∗ are defined as Aτ∗ =

∑τ∗

0 at. By the intermediate value
theorem, there exists a C in [x, x+Aτ∗ ] such that fθ,y(x) > fθ,y(C) > fθ,y(x+Aτ∗). We propose
a Forget and Remember process using one-step REINFORCE to iteratively find this C, assuming
C ∈ {x + a0, x + a1, · · · , x + aτ∗}. This one-step approach avoids the fluctuations of multi-step
methods, offering better query efficiency and lower L0.
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C Experimental Results on Image Classification

In this section, we present experimental results that could not be included in the main text. The
results of attacking the ResNeXt50 model on the ImageNet-1K dataset are shown in Fig 4. The
parameters for the attack were set as follows: the maximum number of iterations was 100, α was
0.01, η was 0.05, and the duration T was 3.

Figure 4: Adversarial examples generated by RFPAR on the ImageNet dataset. The "Original
Image" is the original unaltered image, the "Delta" represents the difference between the Original
Image and the Adversarial Image, and the "Adversarial Image" is the image with the altered predic-
tion. The predicted labels are shown below the Original Image and the Adversarial Image.

15



D Experimental Results on Object Detection

In this section, we present the experimental results for Object Detection from the main text. The
results of attacking the YOLOv8n model on the MS-COCO dataset are shown, with the following
parameters: the maximum number of iterations was set to 100, α ranged from 0.01 to 0.05, η was
0.05, and the duration T was 20. These results can be reproduced using the provided code.

Figure 5: Adversarial examples generated by RFPAR on the MS-COCO dataset. The Original
Image represents the unaltered image, and the Delta shows the difference between the Original
Image and the Adversarial Image. The parameter is a hyperparameter that determines the attack
level; a higher value of α attacks more pixels. We conducted experiments with ranging from 0.01 to
0.05. The Delta Image resulting from α values of 0.01 to 0.05 is presented in columns 2 to 6, and the
Adversarial Image generated from the same α values is shown in columns 7 to 11. The Adversarial
Image typically indicates an image with a changed prediction, but in this context, it also includes
unsuccessful attacks. We present the results of Delta and Adversarial Images according to different
values of α.
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E Additional Experiments

In this section, we present additional experiments that were omitted due to page limitations. Table 5
shows the results on various transformer-based models (ViT-L [24], Swin-V2 [37], and Deit-B [38]).
These results demonstrate that RFPAR is effective on transformer-based models. Table 6 provides
the results for object detection models, ATSS [39] and Deformable DETR [40], showing that RFPAR
is also effective for object detection. Finally, Table 7 presents results for transformer-based models
(ViT-B, L, H, Swin-V2, and Deit-B) with iteration limits of 100 and 200. These results indicate
that RFPAR requires more queries to achieve a comparable attack success rate on transformer-based
models compared to CNN-based models.

Table 5: The results of transformer-based classifiers.

Attacks ViT-L Swin-V2 Deit

SR ↑ L0 ↓ Query ↓ SR ↑ L0 ↓ Query ↓ SR ↑ L0 ↓ Query ↓
OnePixel 8.9% 15 1654 5.0% 15 1686 8.4% 15 1137
Pixle 66.4% 531 1396 66.8% 1052 1509 71.0% 551 1473
RFPAR 78.0% 355 1042 69.4% 608 1096 84.3% 412 1161

Table 6: The results of object detection models.

Attacks Atss Deformable DETR

RM ↑ mAP ↓ L0 ↓ Query ↓ RM ↑ mAP ↓ L0 ↓ Query ↓
clean - 0.227 - - - 0.339 - -
RFPAR0.01 0.74 0.048 491 1530 0.61 0.170 333 1466
RFPAR0.02 0.88 0.026 1025 1633 0.69 0.134 512 1502
RFPAR0.03 0.90 0.026 1357 1504 0.72 0.135 869 1488
RFPAR0.04 0.91 0.008 1666 1243 0.76 0.110 1200 1488
RFPAR0.05 0.92 0.006 2074 1288 0.78 0.073 1274 1335

Table 7: The performance of RFPAR on transformer-based models with different iteration limits

Model maximum of Iteration = 100 maximum of Iteration = 200

Succes rate ↑ L0 ↓ Query ↓ Succes rate ↑ L0 ↓ Query ↓
ViT-B 64.1% 211 613 83.4% 352 995
ViT-L 59.9% 209 618 78.0% 355 1042
ViT-H 62.2% 166 582 73.5% 229 917
Swin-V2 46.2% 352 611 69.4% 608 1096
Deit-B 60.2% 249 676 84.3% 412 1161

F Experiments on Adversarially Trained Models

In this section, we present experiments on adversarially trained models (Adv. ViT [41] and Adv.
ResNeXt101 [42]). Table 8 shows that RFPAR is effective on these models, although its success
rate is lower compared to generally trained models. Proportional calculations indicate that RFPAR
reduced ViT’s performance from 69.10% to 37.11%, which, according to Appendix D of the Adv.
ViT paper [41], is more effective than CW20 (38.92%), PGD-20 (37.96%), and PGD-100 (37.52%),
but slightly less effective than AutoAttack (34.62%). This demonstrates that our black-box attack,
RFPAR, is nearly as effective as white-box attacks, despite having access to only limited informa-
tion.
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Table 8: The results of adversarial trained models.

Attacks Adv. ViT Adv. ResNeXt101

Succes rate ↑ L0 ↓ Query ↓ Succes rate ↑ L0 ↓ Query ↓
OnePixel 2.9% 15 2083 4.4% 15 1102
Pixle 34.0% 780 1912 42.5% 302 769
RFPAR 46.3% 547 1452 57.4% 243 626

G Query in Ablation study

In this section, we present Query regarding the ablation study and conduct experiments under similar
conditions to ensure a fair comparison of each process.

Table 9: Query for ablation study.
ViT-B ResNeXt RegNetX DenseNet MNASNet MobileNet-V3

RFPAR 614 529 623 534 461 548
RFPARI 662 404 444 404 364 348
RFPARM 712 889 820 723 726 659
RFPARM+I 613 442 484 464 442 596

H Time complexity

Given the input dimension size N and constants Ki: OnePixel has O(K1) complexity, ScratchThat
has O(N2), Pixle has O(K2), RFPAR has O(N), PRFAR has O(K3), and GARSDC has O(N).
For image classification tasks, RFPAR’s linear increase in time complexity with image size is more
favorable than ScratchThat’s exponential increase but less so than OnePixel and Pixle. In object
detection tasks, both RFPAR and GARSDC see linear increases in time complexity with larger
images, making them less advantageous than PRFAR.

The higher time complexity compared to most other studies is a limitation of our research. However,
RFPAR generates attacks using neural networks, similar to GARSDC, and benefits from the high
performance of GPUs, allowing for faster computations despite the increased time complexity. We
present the experimental times in Table 10.

To improve efficiency, we propose integrating our method with meta-learning. RFPAR involves the
agent learning afresh on the image multiple times, which can mitigate overfitting but also results in
unnecessary queries. Meta-learning could enable the agent to quickly adapt to new tasks, enhancing
efficiency by learning more rapidly.

Table 10: The experimental times in Table 1 of the main paper
ViT RegNetX-32GF MNASNet DenseNet161 MobileNet V3

OnePixel 3h 2m 4h 36m 50m 2h 52m 50m
ScratchThat 5d 12h 39m 11d 11h 27m 3d 19h 1m 7d 6h 43m 6d 11h 8m

Pixle 4h 48m 8h 16m 3h 3m 13h 33m 5h 14m
RFPAR 1h 20m 1h 20m 20m 47m 29m
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, ad-
dressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (12 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evalu-
ation. While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No]
" provided a proper justification is given (e.g., "error bars are not reported because it would be too
computationally expensive" or "we were unable to find the license for the dataset we used"). In
general, answering "[No] " or "[NA] " is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,
in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: we have summarized our contributions and specified the category to which
our method belongs in Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: In Section 4, we also describe the limitations of the proposed method.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We present only experimental results without providing any theoretical re-
sults.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have detailed our proposed method in Sections 2.2 and 2.3 to ensure
reproducibility.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have included the code and some of the data used in the experiments in
the supplemental material to ensure reproducibility.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Section 3.1, we have specified the key hyperparameters used in the experi-
ments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not provided due to the high computational cost.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Although we did not report the time of execution, the environment we used is
specified in Section 3.1.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, we conducted in the paper conforms, in every respect. Specifically, we
briefly discussed the potential negative impacts on society in Section 4.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We briefly discuss the negative societal impacts in Section 4.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: It is not yet applicable to real-world scenarios as it is still challenging to cause
significant disruption.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: This is explained in Section 3.1.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: This is shown in Fig 2 and Section 2.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: We did not conduct any research involving human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We did not conduct any research involving human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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