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ABSTRACT

Inspired by the remarkable reasoning capabilities of Deepseek-R1 in complex tex-
tual tasks, many works attempt to incentivize similar capabilities in Multimodal
Large Language Models (MLLMs). However, they still struggle to activate com-
plex reasoning. In this paper, rather than examining multimodal RL in isolation,
we delve into current training pipelines and identify three crucial phenomena: 1)
Effective cold start initialization is critical for enhancing MLLM reasoning. In-
triguingly, we observe that initializing with carefully selected text data alone can
lead to performance surpassing many recent multimodal reasoning models, even
before multimodal RL. 2) Standard GRPO applied to multimodal RL suffers from
gradient stagnation, which degrades both training stability and performance. 3)
A final text-only RL tuning stage, conducted after the multimodal RL phase, is
effective at further sharpening multimodal reasoning capabilities. Capitalizing on
these insights, we introduce ReVisual-R1, achieving a new state-of-the-art among
open-source 3B and 7B MLLMs on challenging benchmarks, including Math-
Verse, MathVision, WeMath, LogicVista, DynaMath, and challenging AIME2024
and AIME2025. This paradigm demonstrates robust scalability, proving effective
at both 7B and 3B scales. Our findings chart a new course for training pow-
erful multimodal reasoners, demonstrating that a carefully orchestrated, multi-
stage strategy is key to unlocking their full potential. Our code is available at
https://anonymous.4open.science/r/Revisual_R1-7375.

1 INTRODUCTION

Recently, the field of large language models (LLMs) has witnessed significant advancements in
complex cognitive reasoning (Zeng et al.; Yan et al., 2025; Zhang et al., 2025a), notably exemplified
by reasoning models like DeepSeek-R1 (Guo et al., 2025a). These models successfully leveraged
Reinforcement Learning (RL) to facilitate the self-emergence of intricate reasoning abilities in text-
only models. A natural and ambitious next step is to extend this RL paradigm to Multimodal Large
Language Models (MLLMs), with the goal of unlocking a similar leap in multimodal cognitive
abilities (Huang et al., 2025; Meng et al., 2025b; Xia et al.; Peng et al., 2025).

However, this ambition has been met with a formidable challenge. The direct application of text-
centric RL techniques to MLLMs has yielded diminishing returns, suggesting that the path to mul-
timodal reasoning is not a simple matter of architectural extension. A fundamental question arises:
how does one cultivate the abstract linguistic skill while simultaneously grounding it in the continu-
ous, high-dimensional space of visual perception? Naive co-training often results in a compromise,
where neither modality’s potential is fully realized. Motivated by this critical impasse, we undertake
a rigorous dissection of the MLLM training pipeline. Our investigation uncovers three foundational
insights that, when addressed in concert, chart a new and more effective course for developing pow-
erful multimodal reasoners.

First, we observe that sufficient cold start initialization is indispensable for effectively cultivating the
reasoning ability of MLLMs. Conventional cold-start phases for MLLMs often rely on simplistic
visual and textual pre-training corpora (Yang et al., 2025; Huang et al., 2025; Wang et al., 2025;
Deng et al., 2025; Chen et al., 2025b). This initial deficit critically hinders the subsequent RL
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stages from eliciting sophisticated, self-critical reasoning patterns. To unlock deeper deliberative
reasoning in MLLMs, an enriched cold-start initialization is therefore not merely beneficial but
indispensable. Specifically, initializing with carefully selected text data that instills foundational
reflective capabilities and the capacity for extended Chain-of-Thought (CoT) reasoning proves to be
a powerful strategy. Intriguingly, such targeted textual initialization allows our model to surpass the
multimodal reasoning performance of many recent multimodal reasoning models.

Second, we identify that the standard Group Relative Policy Optimization (GRPO) algorithm (Shao
et al., 2024), commonly applied for multimodal RL, suffers from a gradient stagnation problem.
This issue significantly degrades both the training stability and the ultimate performance of the multi-
modal RL phase. To address this fundamental limitation and improve the efficacy of multimodal RL,
we propose Prioritized Advantage Distillation (PAD). PAD is designed to mitigate gradient stagna-
tion by strategically filtering out zero-advantage samples and re-weighting informative trajectories,
thereby focusing the learning process on more impactful data and improving training stability.

Third, we discover that conducting further post-training using text RL after the multimodal RL
training phase can further enhance multimodal reasoning ability. This stage acts as a polishing
step, sharpening the model’s linguistic expression and logical consistency without eroding the newly
acquired visual grounding. It consolidates the model’s capabilities, leading to a synergistic whole
greater than the sum of its parts.

Synthesizing these insights, we propose a principled, three-stage training curriculum that strategi-
cally sequences these learning phases: (1) a text-centric cold-start to forge a powerful reasoning
engine, (2) a multimodal RL phase with PAD to ground this engine in vision, and (3) a text-only RL
refinement to consolidate and polish the integrated skills. The culmination of this methodology is
ReVisual-R1, the first 7B-parameter open-source MLLM architected around this curriculum. Exten-
sive experiments on a suite of challenging benchmarks, including MathVerse (Zhang et al., 2024b),
MathVision (Wang et al., 2024a), MathVista (Lu et al., 2023a), DynaMath (Zou et al., 2025), We-
Math (Qiao et al., 2024a), and LogicVista (Xiao et al., 2024), as well as the AIME24/25 (Li et al.,
2024), GPQA (Rein et al., 2024), MATH-500 (Hendrycks et al., 2021) benchmark, confirm that
ReVisual-R1 significantly outperforms much larger public models. We further validate the scalabil-
ity of our framework by demonstrating its effectiveness at the 3B model scale.

To summarize, our contributions are as follows:

• We challenge the conventional MLLM training paradigm by demonstrating that a text-centric,
high-difficulty cold-start is the crucial, and previously overlooked, foundation for unlocking elite
multimodal reasoning.

• We identify the fundamental problem of gradient stagnation in multimodal RL and propose Pri-
oritized Advantage Distillation (PAD), a novel and effective solution that stabilizes training and
enhances sample efficiency.

• We present ReVisual-R1, an open-source 7B MLLM developed through a principled three-stage
curriculum. This approach uniquely cultivates deep, self-reflective reasoning and robust visual
grounding, enabling ReVisual-R1 to achieve state-of-the-art performance on complex multimodal
reasoning tasks, rivaling even larger or proprietary models.

2 PRELIMINARIES

In this section, we first formulate the task setting and key concepts in the multimodal reasoning
problem. Then, we describe the base training algorithm framework used in our method.

2.1 MULTIMODAL REASONING FORMULATION

In multimodal reasoning tasks, the input can be represented as x = (v, q), where v denotes the visual
content, and q denotes the textual query. Our work aims to guide a MLLM to generate a multi-step,
self-reflective reasoning process t, which ultimately assists the model in producing a solution y that
correctly answers the query based on the multimodal input.

Formally, we aim to learn a policy πθ(y|x), parameterized by θ, which maps the input question
space X to the solution space Y . Our objective is to optimize the model parameters such that the
expected reward r(y, x) over the output distribution is maximized:
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Figure 1: (Top): the overview of our proposed ReVisual-R1 framework. After collecting and curating data,
ReVisual-R1 contains cold start and staged reinforcement learning. (Bottom): the process of our proposed
prioritized advantage distillation (PAD) for multimodal reinforcement learning.

θ∗ = argmax
θ

Ex∼DEy∼πθ(y|x)[r(y, x)] (1)

where D represents the distribution of multimodal reasoning tasks. Similar to Deepseek R1 (Guo
et al., 2025a), we mainly use rule-based reward, r(x, y) = 1 if y is correct, otherwise r(x, y) = 0.

2.2 GROUP RELATIVE POLICY OPTIMIZATION

Group Relative Policy Optimization (GRPO) extends traditional policy optimization methods by
organizing training samples into groups and optimizing policies relative to reference models within
each group, offering several advantages for training language models on complex reasoning tasks.

Formally, given a batch of samples B, GRPO divides them into K groups {G1,G2, . . . ,GK} based
on certain criteria. For each group Gi, we maintain both a policy model πθ and a reference model
πθref . The GRPO objective for each group is formulated as:

Ex∼Gi
Ey∼πθ(y|x)

[
min

(
πθ(y|x)
πθref(y|x)

Â(x, y), clip
(

πθ(y|x)
πθref(y|x)

, 1− ϵ, 1 + ϵ

)
Â(x, y)

)]
(2)

where ϵ is a hyperparameter controlling the size of the trust region, and Â(x, y) is the group-specific
advantage function. For each input x with G generated responses {y1, . . . , yG} within a group, the
advantage for response yi is defined as:

Â(x, yi) =
r(x, yi)− mean({r(x, y1), . . . , r(x, yG)})

std({r(x, y1), . . . , r(x, yG)}) + ϵ
(3)

where ϵ is a small constant for numerical stability. This relative advantage is then used within
a clipped surrogate objective function. r(x, yi) represents the reward for response yi to input x.
This advantage function measures how much better a specific response is compared to the average
performance within its group, normalized by the group’s reward variance.

3 OPTIMIZED COLD START FOR MULTIMODAL REASONING

In this section, we first show an intriguing finding in the cold start of multimodal reasoning in Section
3.1, paving the way for the strategy of our data curation pipeline in Section 3.2. As shown in Figure
1, our Revisual-R1 includes a cold start stage followed by staged reinforcement learning.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Textual and multimodal reasoning datasets source of our GRAMMAR.

Multimodal Text-only
Source Samples Source Samples Source Samples Source Samples
FigureQA (Kahou et al., 2018) 100K Super-CLEVR (Li et al., 2023) 30K Big-Math-RL (Albalak et al., 2025) 251K GAIR_LIMO (Ye et al., 2025) 0.8K
MAVIS (Zhang et al., 2025b) 218K TabMWP (Lu et al., 2023b) 38K Big-Math-RL-U 35K s1K-1.1 (Muennighoff et al., 2025) 1K
GeoQA (Chen et al., 2021) 5K UniGeo (Chen et al., 2022) 16K OpenThoughts (Team, 2025) 114K OpenMathR (Moshkov et al., 2025) 3,200K
Geometry3K (Lu et al., 2021a) 2.1K MultiMath (Peng et al., 2024) 300K DeepMath (He et al., 2025) 103K OrcaMath (Mitra et al., 2024a) 200K
IconQA (Lu et al., 2021b) 107K OpenR1-220k (Face, 2025) 220K NuminaMath-CoT (LI et al., 2024) 859K

3.1 PRELIMINARY STUDY OF COLD START
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Models
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Figure 2: Absolute performance improvement on
Qwen2.5-VL-7B-Instruct across textual and multi-
modal reasoning tasks. The purple and red dashed lines
represent the average absolute gains of VisionR1/R1-
One-Vision and DeepMath/OpenR1-Math over the
baseline, respectively, across four reasoning tasks.

To investigate the effectiveness of cold-start
training (Guo et al., 2025a), we first collect
two open-source cold-start multimodal datasets,
Vision-R1 (Huang et al., 2025) and R1-One-
Vision (Yang et al., 2025), along with two
cold-start textual datasets, DeepMath (He et al.,
2025) and OpenR1-Math (Face, 2025). Then
we randomly sample 40,000 instances from
these datasets to fine-tune Qwen2.5-VL-7B-
Instruct (Bai et al., 2025). The fine-tuned mod-
els are subsequently evaluated on multimodal
reasoning benchmarks (MathVerse and MathVi-
sion) as well as textual reasoning benchmarks
(AIME24 and Math500). The experimental
outcomes and average performance enhance-
ments from the multimodal and textual cold-
start datasets are illustrated in Figure 2.

The results in Figure 2 reveal that models
trained with text-only cold start data exhibit
substantial improvements in both textual and
multimodal reasoning tasks. In contrast, mod-
els trained solely on multimodal datasets, such as Vision-R1 and R1-One-Vision, show limited gains
in both multimodal and textual reasoning. This suggests that the complexity and patterns presented
by textual cold start data may better stimulate the models’ reasoning capabilities.

To further investigate this observation, we perform an analysis using a subset of 100 examples sam-
pled from the Vision-R1 (Huang et al., 2025) and DeepMath (He et al., 2025) datasets. Specifically,
we analyze the response lengths and pass rates of the doubao-1.5-thinking-pro-vision model (Seed
et al., 2025) on these samples. Responses to textual prompts from DeepMath averaged 8,207.76
tokens, which is substantially longer than the 821.48 tokens generated in response to multimodal
prompts from Vision-R1. Moreover, the pass rate for Vision-R1 is 96.00%, whereas DeepMath
achieves a pass rate of only 75.0%. These findings further indicate that current multimodal cold
start datasets may lack sufficient complexity to inspire advanced reasoning capabilities of reasoning
models. Therefore, in this paper, we adopt textual-only data for the cold start stage.

3.2 GRAMMAR: GENERALIZED MULTIMODAL REASONING DATASET

Informed by Section 3.1, in this paper, we develop the Generalized Multimodal Reasoning Dataset
(GRAMMAR) to enhance the generalization of reasoning capabilities in multimodal models. Specif-
ically, the GRAMMAR dataset consists of two components. For the cold-start stage, it includes
283K diverse and complex textual samples that feature explicit reasoning paths. For reinforcement
learning with a verifiable reward, it contains an additional 31K complex textual examples and 21K
multimodal questions, all of which are annotated with ground truths.

As shown in Figure 1, the construction of GRAMMAR involves a multi-stage curation pipeline.
We begin by amassing open-source reasoning datasets in Table 1, spanning various difficulty levels.
This initial collection underwent rule-based filtering to ensure answer verifiability, excluding items
like proof problems and those with difficult-to-verify ground truths. Subsequently, Qwen2.5-VL-
7B-Instruct is employed for initial pruning of overly simple or complex questions. Then, Qwen2.5-
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VL-32B-Instruct is used to assess the remaining samples to classify them into ten difficulty levels.
To maximize data diversity and minimize redundancy, we encoded questions using NV-Embedding-
V2 (Lee et al., 2024), applied HDBSCAN (Campello et al., 2013) for clustering, assigned topics to
clusters via Qwen2.5-7B-Instruct, and performed balanced sampling across both topics and difficulty
strata.

4 STAGED REINFORCEMENT OPTIMIZATION (SRO)

In Section 3, our data investigations and the curation of the GRAMMAR dataset highlight the ne-
cessity of high-quality, reasoning-focused data for developing advanced MLLM capabilities. In this
section, we introduce Staged Reinforcement Optimization (SRO) to systematically cultivate robust
reasoning and diverse competencies in MLLMs. Specifically, SRO contains two stages including
multimodal RL and subsequently textual RL.

4.1 STAGE 1: MULTIMODAL RL

After the cold start training, the SRO framework commences with a dedicated Multimodal Rein-
forcement Learning (MRL) phase. This initial stage is pivotal for enabling the MLLM to ground
textual concepts in visual information and execute cross-modal reasoning, primarily using the multi-
modal samples from our GRAMMAR dataset. We employ GRPO as the core RL algorithm for this
phase. To ensure stable and effective learning, particularly when dealing with complex tasks and po-
tentially sparse rewards common in multimodal settings, we propose a novel Prioritized Advantage
Distillation (PAD) to improve gradient quality by addressing specific GRPO limitations.

4.1.1 PRIORITIZED ADVANTAGE DISTILLATION (PAD)

During multimodal RL training, we discover a significant challenge when applying GRPO in com-
plex multimodal settings is “Gradient Stagnation”. This phenomenon refers to a reduction in learn-
ing efficacy due to a predominance of near-zero advantage estimates, which is particularly acute
when dealing with sparse binary rewards. Essentially, if entire groups of generated responses yield
uniform rewards (e.g., all correct or all incorrect), the resulting advantage signals become null, lead-
ing to zero policy gradients and thereby halting learning for those samples. This issue, also noted
in concurrent works (Wang et al., 2025; Yu et al., 2025), can severely impede training progress.
To specifically counteract gradient stagnation and enhance the efficiency of GRPO, we introduce
Prioritized Advantage Distillation (PAD). PAD refines the training process by strategically focusing
updates on the most informative samples within each batch, namely those exhibiting significant, non-
zero advantage signals. The PAD mechanism, detailed below, operates on each batch after initial
advantage estimation. It mainly contains the following three parts:

• Per-Sequence Advantage Calculation: Compute the absolute advantage |Âi| for each sequence
i in the original batch B, representing its learning signal magnitude.

• Effective Sample Filtering: Form an “effective set” E by selecting sequences i whose absolute
advantage |Âi| falls within a specified informative range [Tlow, Thigh]. Critically, Tlow > 0 filters
out stagnant (near-zero advantage) samples, ensuring that candidates for sub-sampling provide
potentially useful learning signals.

• Prioritized Sub-sampling from Effective Set: From this effective set E , k′ = min(ρ|B|, |E|)
sequences are drawn to form a distilled mini-batch. Selection is prioritized based on sequences’
absolute advantages (Âi for i ∈ E), with the probability for selecting sequence i determined by a
temperature-controlled Softmax distribution:

Pr(i is selected | i ∈ E) = exp(Âi/τ)∑
j∈E exp(Âj/τ)

(4)

The temperature τ governs sampling concentration and is typically decayed during training (e.g.,
linearly from 1.0 to 0.3) to shift from exploration towards exploitation. This enriches the mini-
batch with the most informative samples from E .

PAD thus directly counteracts gradient stagnation via a dual mechanism: first, by filtering out stag-
nant samples, and second, by prioritizing updates using informative, non-zero advantages from the

5
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remaining set. This selective optimization of the learning process ensures efficient computational
resource allocation towards high-value samples. Consequently, PAD leads to enhanced training sta-
bility, improved learning efficiency, and more effective acquisition of complex reasoning skills.

4.2 STAGE 2: TEXTUAL RL

While MRL is indispensable for grounding reasoning across visual and textual inputs, intensive
MRL training can inadvertently lead to a decline in purely textual capabilities. To further elevate the
model’s capacity for sophisticated abstract reasoning, we integrate a subsequent Textual Reinforce-
ment Learning (TRL) phase. This stage aims to achieve both robust linguistic fluency and advanced
reasoning. Linguistic fluency is restored and enhanced by fine-tuning on high-quality, text-only
corpora focused on instruction-following and conversational abilities. Simultaneously, to foster ad-
vanced reasoning, the TRL phase exposes the model to complex, text-centric problem-solving tasks.
This compels the model to refine and generalize intricate reasoning patterns, articulate multi-step
thought processes with greater clarity, and master linguistic nuances essential for higher-order cog-
nition. For policy optimization during this TRL phase, we employ GRPO, augmented with our
proposed PAD mechanism for efficient sample utilization.

5 EXPERIMENTS

5.1 EXPERIMENTS SETUP

Benchmarks To comprehensively evaluate our model’s performance, we selected a diverse suite
of benchmarks targeting a wide range of reasoning abilities. The evaluation suite is organized by
domain: (1) Multimodal mathematical reasoning, assessed using MathVerse (Zhang et al., 2024b),
MathVision (Wang et al., 2024a), MathVista (Lu et al., 2023a), DynaMath (Zou et al., 2025), and
WeMath (Qiao et al., 2024b); (2) General multimodal reasoning, evaluated with LogicVista (Xiao
et al., 2024), MMMU (Yue et al., 2024a), MMMU-Pro (Yue et al., 2024b), CMMMU (Zhang et al.,
2024a), and MMStar Chen et al. (2024); and (3) Text-based reasoning, measured on challenging
mathematical benchmarks like AIME24/25 (Li et al., 2024) and MATH-500 (Hendrycks et al., 2021),
as well as general reasoning benchmarks such as GPQA (Rein et al., 2024) and MMLU Pro (Wang
et al., 2024b). Performance is reported as pass@1 accuracy for all benchmarks, with the exception
of AIME24/25, for which we use average@32 accuracy.

Baselines As shown in Table 2, baselines include: (1) leading closed-source models doubao-1.5-
vision-pro-32k (Guo et al., 2025b), OpenAI-GPT-4o (Hurst et al., 2024), Claude-3.7-Sonnet (An-
thropic, 2024), Gemini-2.0-Flash (Gemini Team et al., 2023). (2) open-source general-purpose
MLLM Qwen2.5-VL-7B (Bai et al., 2025); and 3) specialized open-source reasoning MLLMs
VLAA-Thinker-7B (Chen et al., 2025a), OpenVLThinker-7B (Deng et al., 2025), MMR1-Math-v0
(Leng et al., 2025), MM-Eureka (Meng et al., 2025a), and VL-Rethinker-7B (Wang et al., 2025).

5.2 IMPLEMENTATION DETAILS

Our ReVisual-R1 models are based on the Qwen-2.5-VL-7B-Instruct and Qwen-2.5-VL-3B-Instruct
models. Its training comprised three distinct stages. The process begins with a cold-start phase
utilizing LLaMA Factory (Zheng et al., 2024) and pure text data to establish foundational language
understanding. Following this, Multimodal Reinforcement Learning (MRL) is implemented using
Easy R1 (Zheng et al., 2025). In this stage, the GRPO Kullback-Leibler (KL) divergence constraint
is omitted to encourage broader policy exploration. The final stage TRL is also conducted via Easy
R1. During TRL, the vision tower is frozen to concentrate learning on textual reasoning, and a
small KL penalty is incorporated alongside entropy annealing to enhance training stability. All
experiments are conducted on a setup of 8 NVIDIA A100-80G GPUs. Detailed prompt settings and
training hyperparameters are provided in the Appendix.

5.3 TRAINING DATASETS

The training of ReVisual-R1 follows our proposed three-stage methodology, utilizing carefully cu-
rated datasets for each phase. The cold-start phase employed approximately 283k pure text entries
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Table 2: Performance comparison on diverse benchmarks. The best scores are bold; the second best are
underlined (among open-source models). Scores in italics indicate that they are not reported in the original
work and are obtained using the VLMEvalKit (Duan et al., 2024) for evaluation. AIME24 and AIME25 results
are averaged over eight independent inference runs to reduce score variance. MathVerse-V, DynaMath-W
and WeMath-S denotes the vision-only, worst, and strict settings, respectively. ∆ (e.g., Ours-Open 3B Best)
denotes the improvement margin of the corresponding ReVisual-R1 model over the best-performing open-
source baseline model in the same scale across the respective column.

Multimodal Reasoning Benchmarks Textual Reasoning Benchmarks

Model MathVerse-V MathVision MathVista DynaMath-W WeMath-S LogicVista AIME24 AIME25 GPQA MATH500 Avg.

ClosedSource

doubao-1.5-vision-pro-32k 64.7 51.5 78.6 44.9 64.2 65.7 26.7 20.0 56.1 85.2 55.8

OpenAIGPT4o 40.6 31.1 59.9 34.5 42.9 64.4 9.3 8.3 49.9 74.6 41.6

Claude3.7Sonnet 52.0 41.3 66.8 39.7 58.2 49.3 20.0 13.3 61.1 80.4 48.2

Gemini2.0Flash 43.6 47.8 70.4 42.1 47.4 52.3 33.3 36.7 35.4 69.0 47.8

3B-scale MLLMs

Qwen2.5-VL-3B 33.0 22.7 60.0 9.0 17.9 28.8 6.7 0.0 22.2 57.2 25.8

FAST-3B 44.0 26.8 63.8 15.4 23.3 35.4 6.7 3.3 25.3 55.4 29.9

VLAA-Thinker-3B 36.4 24.4 61.0 18.2 33.8 38.5 3.3 0.0 27.8 61.4 30.5

ReVisual-R1-3B 46.2 46.0 64.8 24.6 39.6 45.4 40.0 36.7 37.4 84.2 46.5
∆ (Ours-Open 3B Best) +2.2 +19.2 +1.0 +6.4 +5.8 +6.9 +33.3 +33.4 +9.6 +22.8 +16.0

7B-scale Models

Qwen2.5VL7B 38.7 26.6 68.2 12.6 24.5 35.6 10.0 6.7 32.8 67.2 32.3

OpenVLThinker7B 38.1 25.9 72.3 16.8 35.2 44.5 5.0 1.7 28.3 51.0 31.9

MM-Eureka-Qwen-7B 45.4 26.9 73.0 23.0 21.8 46.3 6.7 3.3 34.3 66.6 34.7

MMR1-Math-v0 45.1 30.2 71.0 17.4 30.2 50.8 5.4 0.8 19.2 65.8 33.6

ThinkLite7BVL 42.9 24.6 71.6 16.5 41.8 42.7 8.8 27.9 24.8 61.4 36.3

VLAA-Thinker-7B 48.2 26.4 68.0 22.4 41.5 48.5 0.8 12.6 30.8 30.8 33.0

VL-Rethinker-7B 46.4 28.4 73.7 17.8 36.3 42.7 2.9 2.9 37.4 47.0 33.6

ReVisual-R1-7B 53.6 48.8 73.1 27.5 42.0 52.3 53.3 43.3 47.5 89.2 53.1
∆ (Ours-Open 7B Best) +5.4 +18.6 -0.6 +4.5 +0.2 +1.5 +43.3 +15.4 +10.1 +22.0 +16.8

focused on establishing foundational language understanding. Subsequently, the Multimodal Re-
inforcement Learning (MRL) phase used approximately 26k diverse multimodal entries from our
GRAMMAR dataset to develop multimodal reasoning. Finally, the TRL phase consists of approxi-
mately 30k text entries designed to refine nuanced understanding and generation capabilities.

5.4 MAIN RESULTS

As shown in Table 2, our model demonstrates superior performance on math-related benchmarks
compared to other open-source reasoning models and even outperforms some commercial MLLMs.

Specifically, on the 7B model scale, ReVisual-R1-7B achieves an impressive average score of 53.1%,
a significant improvement of +16.8 percentage points over the baselines in Tabel 2 on textual and
multimodal benchmarks. Notably, ReVisual-R1 secures the top position among open-source con-
tenders in nine out of ten individual benchmarks: MathVerse (+5.4% ∆), MathVision (+18.6% ∆),
DynaMath (+4.5% ∆), WeMath (+0.2% ∆), LogicVista (+1.5% ∆), AIME24 (+43.3% ∆), AIME25
(+15.4% ∆), GPQA (+10.1% ∆), and MATH500 (+22.0% ∆). All these results present the superior
performance of our Revisual-R1 on both multimodal benchmarks as well as textual benchmarks.

When compared to closed-source commercial models, ReVisual-R1 also exhibits highly competitive
performance. For instance, its average score (53.1%) surpasses that of OpenAI-GPT-4o (41.6%). On
specific demanding benchmarks such as MATH500, ReVisual-R1 (89.2%) outperforms both doubao-
1.5-vision-pro-32k (85.2%) and OpenAI-GPT-4o (74.6%). Similarly, on AIME24 and AIME25,
ReVisual-R1 demonstrates substantial leads over these commercial offerings. While some closed-
source models like doubao-1.5-vision-pro-32k show a higher overall average (55.8%), ReVisual-
R1’s ability to outperform them on several key reasoning tasks highlights its specialized strengths.

To further demonstrate the effectiveness of our training framework, we conduct experiments on 3B
model scale, leading to Revisual-R1-3B. As demonstrated in Table 2, our model also demonstrates
superior performance on this model size. Specifically, our model outperforms VLAA-Thinker-3B

7
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Table 3: Ablation study of different training stage combinations applied to the ReVisual-R1 model, building
upon a Cold Start. Best results per column are bold and second-best are underlined. Mixed-RL denotes that
the model is jointly optimized with both MRL and TRL objectives in a mixed training stage.

Training Strategies MathVerse-V MathVision MathVista DynaMath-W WeMath-S LogicVista Avg

Cold Start (CS) only 51.9 47.9 70.5 26.5 35.8 50.1 47.1
CS + MRL 50.9 47.6 71.9 25.7 38.8 51.2 47.7
CS + TRL 47.3 47.3 71.0 25.2 33.7 44.7 44.9
CS + MRL + TRL 53.6 48.8 73.1 27.5 42.0 52.3 49.6
CS + TRL + MRL 47.5 48.0 70.3 24.2 35.0 48.2 45.5
CS + Mixed-RL 49.3 48.2 72.1 25.7 38.8 51.2 47.6

Table 4: Ablation results demonstrating the impact of Prioritized Advantage Distillation (PAD) and its core
components. Best results per column are bold and second-best are underlined.

Model Configuration Strategy MathVerse MathVision MathVista DynaMath WeMath LogicVista Avg

ReVisual-R1 (CS + MRL) PAD 50.9 47.6 71.9 25.7 38.8 51.2 47.7

w/o PAD Components:

- Full PAD (Baseline) GRPO-Baseline 47.6 45.8 68.8 25.2 34.8 48.6 45.1
- No Prioritized Sub-sampling GRPO-Filter 47.7 46.7 71.2 25.5 35.1 49.7 46.0
- No Effective Sample Filtering Random-Sampling 47.9 46.4 70.7 26.1 37.1 49.3 46.2

Other Strategy DAPO 48.3 46.3 69.2 25.4 38.3 49.2 46.1

across all benchmarks and obtains an average 16.0% improvement. These results further verify the
generalization of our Revisual-R1.

Collectively, these results validate the efficacy of our proposed training method, including the struc-
tured three-stage curriculum and enhancements like Prioritized Advantage Distillation.

5.5 ABLATION STUDY

5.5.1 ABLATION ON SRO

To validate the effectiveness of our Staged Reinforcement Optimization (SRO) framework, we con-
duct ablation studies on different combinations of Multimodal RL (MRL) and Textual RL (TRL)
phases, all building upon our optimized text-centric cold-start (CS). As shown in Table 3, the empir-
ical results verify that our proposed CS + MRL + TRL (ReVisual-R1-MTR) sequence consistently
yields the highest average performance (49.6 Avg). This outcome affirms our core hypothesis: an
initial MRL phase establishes strong visual grounding, followed by a TRL phase to refine textual
fluency and abstract reasoning, is crucial for developing superior multimodal capabilities.

In a more detailed analysis, the CS + MRL only model (47.7 Avg), while performing well on visually
intensive tasks such as MathVista (71.9), does not reach the overall performance of the full MTR
sequence. This further highlights the importance of the subsequent TRL stage. The alternative SRO
ordering, CS + TRL + MRL (45.5 Avg), also proved less effective than our MTR approach. This
finding indicates that establishing strong visual grounding before intensive textual refinement allows
for more synergistic learning.

In addition, we perform a mixed-RL strategy to investigate the necessity of our staged reinforcement
learning. In this setting, we train the cold-start model on a mixture of multimodal and textual data.
However, as shown in Table 3, we observe that this mixed setting can only get an average 47.6 score,
which is significantly lower than the performance of our staged RL. It shows that our MRL-then-
TRL ordering within our SRO framework is a more effective strategy than simultaneously training
on mixed-modality data in the RLVR stage.

5.5.2 ABLATION STUDY ON PAD

In this section, we conduct ablation studies to verify the effectiveness of our proposed Prioritized
Advantage Distillation (PAD), examining its overall efficacy, the contribution of its components, and
its sensitivity to key hyperparameters.
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Figure 4: Ablation of training dynamics of our PAD.

To assess PAD’s impact, its full implementation is compared against GRPO-Baseline, GRPO-Filter-
only, and Random-Sampling strategies. Table 4 demonstrates that full PAD achieved superior perfor-
mance on mathematical reasoning benchmarks, highlighting the importance of its core components:
effective sample filtering and prioritized sub-sampling. Meanwhile, we compare our method with
DAPO and observe that our PAD can also present significantly better performance than DAPO. To
further demonstrate the effectiveness of our Training dynamics (Figure 4) further corroborate PAD’s
effectiveness, with its sampling strategy yielding higher reward accuracy and faster convergence.

5.5.3 GENERALIZATION OF REVISUAL-R1

To further evaluate the generalization capacity of our method, we test the model on several
knowledge-intensive benchmarks, including MMMU, MMMU-Pro, and CMMMU, as well as on
general-purpose multimodal perception (MMStar) and textual understanding (MMLU). The results,
presented in Figure 3, show that our method consistently performs superior across these benchmarks.
The more detailed performance is shown in Table 6. It further indicates that the generality of our ap-
proach on general tasks and provides further evidence that textual reasoning capabilities can benefit
on general multimodal and textual tasks.

6 RELATED WORK

6.1 MULTIMODAL LARGE LANGUAGE MODEL

Multimodal Large Language Model (MLLM) is a key research area. While leading closed-source
models (e.g., GPT-o3 (OpenAI, 2025), Kimi-VL (Kimi Team, 2025)) excel at long Chain-of-
Thought (CoT) reasoning, open-source contributions have focused on CoT adaptations (Liu et al.,
2023; Guo et al., 2024; Su et al., 2024) and Supervised Fine-Tuning (SFT) with reasoning traces (Mi-
tra et al., 2024b; Zhang et al., 2024c) (Gao et al., 2024). DeepSeek-R1 (Guo et al., 2025a) has further
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spurred Reinforcement Learning (RL) applications for visual reasoning (Huang et al., 2025) (Dong
et al., 2024) and specialized domains like mathematical reasoning. Nevertheless, many MLLM rea-
soning models (Wang et al., 2025) (Deng et al., 2025) (Yang et al., 2025) (Chen et al., 2025b) are
limited by generating relatively short responses, which often curtail genuine reflection, thorough
visual exploration, and consequently, deep multimodal reasoning. Our work, in contrast, introduces
a novel framework to enable MLLMs to generate significantly longer, reflective responses, thereby
facilitating long CoT reasoning to unlock more comprehensive multimodal reasoning capabilities.

6.2 REINFORCEMENT LEARNING IN REASONING

Current LLM research explores direct RL fine-tuning, specialized cold-start datasets for long-form
reasoning, and advanced algorithms like Group Relative Policy Optimization (GRPO) (Shao et al.,
2024) and its refinements (e.g., DAPO (Yu et al., 2025), DR.GRPO (Liu et al., 2025), GPG (Chu
et al., 2025)) to elicit deeper reasoning. However, RL application to multimodal reasoning in
MLLMs is nascent. Initial MLLMs efforts focus on subdomains like math reasoning (Meng et al.,
2025b; Peng et al., 2025) or generative reward models (Gao et al., 2025), often utilizing data from
commercial models. Nonetheless, successes such as DeepSeek-R1’s (Guo et al., 2025a) rule-based
RL are spurring similar MLLMs investigations, indicating growing interest in RL for unlocking
sophisticated multimodal reasoning.

6.3 LIMITATIONS AND FUTURE WORK

Despite the strong empirical gains demonstrated by ReVisual-R1, our study has several limitations
that point toward crucial directions for future work. While we justify the efficacy of the optimized
cold start, staged multimodal and text-only RL, and PAD through substantial empirical gains and
ablations, we currently lack a rigorous theoretical foundation. Specifically, a deeper theoretical
account is needed to explain why these text-centric optimization strategies, such as the cold start,
effectively enhance model reasoning capabilities, and to provide a more principled explanation for
the staged RL methodology. Furthermore, our scalability evidence is limited to mid-sized models.
We demonstrated that training on complex, high-difficulty textual reasoning data transfers benefits
to both the textual and multimodal reasoning performance of 3B and 7B models. However, we
have not yet validated these advantages across larger-scale architectures, such as MoE models, or
generalized them to other foundational model families and larger size regimes. Finally, we will
systematically investigate the interplay between data type and training stage. We will extensively
explore the impact of the ratio and quality of multimodal versus textual data utilized during both the
cold start and RL phases. The ultimate goal of this exploration is to determine an optimal curriculum
recipe that jointly maximizes performance across diverse skill clusters, notably in STEM reasoning,
perceptual grounding, and general domains.

7 CONCLUSION

This paper introduces ReVisual-R1, a 3B and 7B open-source MLLM designed to address prevalent
challenges in cultivating sophisticated multimodal reasoning. By systematically integrating a strate-
gic, high-difficulty text-only cold-start phase for foundational reasoning, a Multimodal RL stage
employing GRPO stabilized by our novel Prioritized Advantage Distillation (PAD) mechanism, and
a final TextRL refinement phase, our structured three-stage curriculum demonstrates that thought-
ful data strategy and targeted algorithmic optimizations are pivotal. ReVisual-R1 achieves superior
performance among open-source 7B models on a suite of challenging multimodal, textual reasoning
and generalization benchmarks. This work underscores that careful curriculum design and algo-
rithmic enhancements, rather than sheer model scale, can unlock robust, self-reflective multimodal
reasoning.
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To ensure the reproducibility of our work, we provide an anonymous code repository in the supple-
mentary materials containing the full implementation of our Revisual-R1 algorithm. All datasets
used for training and evaluation are publicly available, and a comprehensive breakdown of our ex-
perimental setup, including all key hyperparameters, is detailed in Appendix.
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Table 5: Key Hyperparameters for Training Stages.

Component Hyperparameter Component Hyperparameter

Cold Start

Learning Rate = 2.0× 10−5

Actor

Global Batch Size = 128
Gradient Accumulation = 8 Micro Batch Rollout = 4
Number of Epochs = 5 Max Grad Norm = 1.0
LR Scheduler = Cosine Learning Rate (lr) = 1× 10−6

Warmup Ratio = 0.05 Weight Decay = 1× 10−2

Max Sequence Length = 32768 Entropy Coef Init (β0) = 0.02
Precision = BF16 Entropy Coef Min (βmin) = 0.0
DeepSpeed = Zero2 Entropy Decay Rate (λ) = 0.985 (exp)

Entropy Warmup Steps (τw) = 140
Total Updates = 200000

GRPO

Adv Estimator = grpo
KL Penalty Type = low var kl
KL Coef = 2× 10−3

τ = 0.3

Model Settings

Max Prompt Length = 8192
Max Response Length = 8192
Rollout Batch Size = 512
Generation Temperature = 1.0
Generation Top P = 0.95

APPENDIX

APPENDIX CONTENTS

A LLM Usage Statement 17

B Training settings 17

C Algorithm in Prioritized Advantage Distillation (PAD) 17

D Reasoning Example 18

A LLM USAGE STATEMENT

In this paper, we employed a Large Language Model (LLM) in an assistive capacity for this
manuscript. Its use was strictly limited for grammatical accuracy and refining sentence structure
to improve clarity and readability. All intellectual contributions, including the formulation of ideas,
data analysis, and the composition of the manuscript, are entirely the work of the authors.

B TRAINING SETTINGS

The training process can be divided into three distinct phases: cold start, multimodal reinforcement
learning, and text-only reinforcement learning. Key hyperparameters for each training phase are
detailed in Table 5.

C ALGORITHM IN PRIORITIZED ADVANTAGE DISTILLATION (PAD)

The PAD mechanism, introduced conceptually in the main text, is detailed in Algorithm 1 to clarify
its step-by-step operation in refining training batches for more effective learning.

Initially, PAD filters the original batch B to create an “effective set” E of sample indices and a
corresponding map ÂE for their advantages (Lines 2-10 in Algorithm 1). For each sequence i in
B, its absolute advantage |Ãi| is computed. If this value falls within a specified informative range
[Tlow, Thigh], where Tlow > 0 is crucial for excluding stagnant (near-zero advantage) samples, the
index i is added to E , and its absolute advantage Âi,abs is stored in ÂE .
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Table 6: Performance comparison on general textual and multimodal benchmarks. Best results per group (3B
or 7B) are bold, and second-best per group (3B or 7B) are underlined.

Model MMMU MMMU-PRO CMMMU MMStar MMLU-Pro Avg.

3B Models

Qwen2.5-VL-3B-Instruct 49.78 32.64 45.93 51.61 41.24 44.64
FAST-3B 52.00 34.61 44.58 55.15 44.06 46.48
VLAA-Thinker-3B 49.67 33.34 44.92 53.35 42.35 44.33
Revisual-R1-3B 64.78 44.47 51.19 53.76 51.82 53.60

7B Models

Qwen2.5-VL-7B-Instruct 52.00 42.52 51.69 61.71 51.80 51.94
ThinkLite-7B-VL 53.00 41.01 50.51 64.73 52.74 52.34
VL-Rethinker-7B 59.78 45.59 52.54 63.92 53.31 55.03
MM-Eureka-Qwen-7B 56.22 43.50 52.20 64.16 54.03 54.17
Revisual-R1-7B 67.00 54.35 56.95 63.86 62.38 60.91

If this effective set E is non-empty, prioritized sub-sampling is performed (Lines 12-29). This multi-
step process involves: (a) Calculating sampling probabilities Pj for each sequence index j ∈ E via a
temperature-controlled Softmax distribution over their stored absolute advantages ÂE [j] (Lines 14-
21). A uniform probability distribution across E serves as a fallback mechanism should the Softmax
normalization term Z be zero. (b) Determining the sub-sample size k′ as min(⌈ρN⌉, |E|), where ρ
is the sub-sampling ratio and N is the original batch size (Line 23). (c) Sampling k′ indices from
E according to the calculated probabilities Pdist (Line 25). (d) Constructing the final distilled mini-
batch Bdistilled by retrieving the original sequences corresponding to these k′ sampled indices (Lines
27-29). If E is void, an empty batch is returned. This entire procedure ensures that training batches
are enriched by systematically filtering out uninformative data and prioritizing samples anticipated
to yield more substantial learning signals.

D REASONING EXAMPLE
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Question: 

Which of the boxes comes next 
in the sequence? 
Select answers from A-E

Ours Revisual-R1 7B Model: 
<think>  
Okay, let's try to figure out the sequence here. So there are five options labeled A to E, each with some black squares in different positions. 
The problem is asking which one comes next in the sequence.
First, I need to look at the given figures and see if there's a pattern. Let me list them out again to make sure I have them right, Top row:
1. A: A square divided by a diagonal, with a black square in the bottom right corner.
2. B: Two vertical stripes, each with a black square on the right side.
3. C: A square with a diagonal from top left to bottom right, and a black square in the top left quadrant.
4. D: Two vertical stripes, with a black square in the right stripe's upper part.
5. E: A square split into two vertical parts, with a black square in the left part.
[Reflection]Wait, maybe I should number them as per their order in the problem. The first row is options 1 to 5, then the second row is A to 
E. Wait, the problem shows the first row as the original five, then the next row labeled A to E. 
[Revisit Image]Wait, looking back:The user presented the problem with two rows. The first row has five images (probably labeled 1 to 5), 
but the user then labels the second row as A to E. Wait, the actual question's options are A to E, each in the second row. 
The sequence seems to involve the placement of the black squares relative to the diagonals or divisions of the square. Let me analyze each 
option:
Original top row (before the line):……
Then the next row is labeled A to E: A: Square split vertically, left third has a black square.……
[Self-Critic]Wait, perhaps the original problem's figures are arranged as follows:
First row (top): ……
Second row (labeled A to E): A: Vertical division, left part has a black square.……
[Logic]Now, trying to see the pattern. Let's look at the original figures (before the line) and then the options A-E. The task is to 
determine which comes next.Looking at the first row's figures (original positions):……
[Self-Critic]Wait, maybe the pattern alternates between diagonal and vertical splits. Let's check:
Original sequence (top row):1. Diagonal, lower right.……
Then the next row (A-E): A: Vertical split (three parts?), left part black.……
If the pattern is alternating between diagonal and vertical splits, then after figure 5 (diagonal), the next would be a vertical split. 
[Hypothesis] Looking at the original vertical splits: figures 2, 4, and then maybe A, D, E. 
Let's see: Original vertical splits (two parts) are figures 2 (lower right), 4 (upper right). Then after figure 5 (diagonal), next could be another 
vertical split. Among options A-E, which are vertical splits: A: vertical split into three columns? Or two columns? The image for A is a 
square split vertically into left and right, with a black square in the left part. D is vertical split into two, with black in the right upper. E is 
vertical split into two, black in left lower.
So after figure 5 (diagonal), the next might be a vertical split. The last vertical split in the original sequence (figure 4) has the black square in 
the upper right. Then the next vertical split could be in the lower left (E) or upper left (A?), but need to check the order.
[Hypothesis & Analysis] Alternatively, looking at the positions:\n\nOriginal vertical splits:\n\nFigure 2: right lower.\n\nFigure 4: right 
upper.\n\nSo if the pattern for vertical splits is alternating between lower and upper in the right section, then next could be lower 
right again? But figure 2 is right lower, figure 4 is right upper. So maybe the next vertical split would be right lower again. Then option E 
is left lower. Hmm, not sure.
Alternatively, maybe the sequence is moving in a certain direction. Let's think of the figures as arranged in rows. The first row has five 
figures, and the second row has A-E. The correct answer is among A-E, which are the second row.
[Hypothesis] Alternatively, the sequence might be based on rotation or the position of the black square. For example, starting with 
diagonal, then vertical splits. Let's see:…… Wait, the options A-E are all vertical splits except B and C, which have diagonals. Wait, 
original figures 1-5 have a mix: 1,3,5 have diagonals; 2,4 have vertical splits. The options A-E: A is vertical split left; B is diagonal with 
black in upper right; C is diagonal upper left; D is vertical split right upper; E is vertical split left lower.
So after figure 5 (diagonal lower right), the next figure is likely a vertical split. Now, in the original vertical splits (figures 2 and 4), figure 2 
is right lower, figure 4 is right upper. So maybe the next vertical split alternates. If figure 4 was right upper, then next could be right lower 
again (figure 2's position). 
[Reflection] But option E is left lower. Hmm. Alternatively, the vertical splits in the original sequence go from right lower to right 
upper. If the next vertical split is right lower again, but that's figure 2. But E is left lower. 
[Hypothesis] Alternatively, maybe the direction is moving left.
Wait, maybe the pattern is that after two diagonal figures (1,3,5), the vertical splits alternate between right and left. Let's see:\n\nOriginal 
vertical splits: figure 2 (right lower), figure 4 (right upper). Then the next vertical split might be left lower (E) or left upper (A). But figure A 
is left black square, which is a vertical split left. If the pattern is moving from right to left, then after figure 4 (right upper), next would be 
left lower (E). 
[Self-Critic] But I need to check. Alternatively, looking at the positions of the black squares in the vertical splits:\n\nFigure 2: right third, 
lower part.\n\nFigure 4: right third, upper part.
So the vertical split's black square moves from lower to upper in the same right third. Then, if the next vertical split is in the left third, 
maybe lower part (E). So after moving right upper, next is left lower. That would make the pattern: right lower, right upper, left lower. So 
E. Alternatively, the answer is E.
[Self-Critic] Let's check the options: Original sequence: diagonal, vertical split (right lower), diagonal, vertical split (right upper), 
diagonal. Then next is vertical split (left lower, E). That seems plausible.Another way: looking at the positions of the black squares in the 
vertical splits. The vertical splits in figures 2 and 4 have the black square in the right third. Figure 2's black square is at the lower part of the 
right third, figure 4's is at the upper part. 
So if we follow that pattern, the next vertical split would be in the left third, perhaps at the lower part (E). So the answer is E.\n
</think>
<summary>
 The sequence involves alternating between diagonal and vertical split figures. After the diagonal figure (5), the next is a vertical split. The 
vertical splits in the original sequence (figures 2 and 4) have black squares in the right third, moving from lower to upper. The next vertical 
split follows this pattern but in the left third, at the lower part. 
Answer: \boxed{E}

</summary>

Figure 5: Our Revisual-R1 model reasoning case, showcasing its exceptional reasoning ability. The model
generates long responses, continuously hypothesizing, reflecting, verifying, and correcting to arrive at the final
answer, while also providing a summary answer. 19
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Algorithm 1 Prioritized Advantage Distillation (PAD)

Require: Original batch B = {seq1, . . . , seqN} with N = |B|; advantage estimates Aest = {Ã1, . . . , ÃN};
thresholds Tlow, Thigh; temperature τ ; subsampling ratio ρ

Ensure: Distilled minibatch Bdistilled

▷ Steps 1 & 2: Per-Sequence Advantage Calculation and Effective Sample Filtering
1: E ← ∅ ▷ Set of indices for effective samples
2: ÂE ← {} ▷ Map: original index i ∈ E → its absolute advantage Âi

3: for i← 1 to N do
4: Âi,abs ← |Ãi| ▷ Absolute advantage of current sequence i

5: if Tlow ≤ Âi,abs ≤ Thigh then
6: E ← E ∪ {i} ▷ Add index to effective set
7: ÂE [i]← Âi,abs ▷ Store absolute advantage for effective sample i
8: end if
9: end for

10: Bdistilled ← ∅
11: if |E| > 0 then

▷ Step 3: Prioritized Sub-sampling from the Effective Set
▷ a. Calculate sampling probabilities Pj for each j ∈ E

12: Z ←
∑
j∈E

exp(ÂE [j]/τ) ▷ Normalization term (Softmax denominator over E)

13: Pdist ← {} ▷ Map: original index j ∈ E → its sampling probability Pj

14: for all j ∈ E do
15: if Z > 0 then
16: Pdist[j]← exp(ÂE [j]/τ)/Z
17: else
18: Pdist[j]← 1/|E| ▷ Uniform fallback if Z = 0
19: end if
20: end for

▷ b. Determine actual sub-sample size k′

21: k′ ← min
(
⌈ρN⌉, |E|

)
▷ c. Sample k′ indices from E according to probabilities Pdist

22: Ssampled_indices ← SAMPLE(E , Pdist, k
′) ▷ Ssampled_indices is a list of k′ indices from E

▷ d. Form the distilled mini-batch
23: for all idx ∈ Ssampled_indices do
24: Bdistilled ← Bdistilled ∪ {seqidx}
25: end for
26: end if
27: return Bdistilled

20
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