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ABSTRACT

A standard classification rule returns a single-valued prediction for any observa-
tion without a confidence guarantee, which may result in severe consequences
in many critical applications when the uncertainty is high. In contrast, set-
valued classification is a new paradigm to handle the uncertainty in classifica-
tion by reporting a set of plausible labels to observations in highly ambiguous re-
gions. In this article, we propose the Deep Generalized Prediction Set (DeepGPS)
method, a network-based set-valued classifier induced by acceptance region learn-
ing. DeepGPS is capable of identifying ambiguous observations and detecting
out-of-distribution (OOD) observations. It is the first set-valued classification of
this kind with a theoretical guarantee and scalable to large datasets. Our nontrivial
proof shows that the risk of DeepGPS, defined as the expected size of the predic-
tion set, attains the optimality within a neural network hypothesis class while si-
multaneously achieving the user-prescribed class-specific accuracy. Additionally,
by using a weighted loss, DeepGPS returns tighter acceptance regions, leading to
informative predictions and improved OOD detection performance. Empirically,
our method outperforms the baselines on several benchmark datasets.

1 INTRODUCTION

A standard classification method assigns only a single class label to each test observation, regardless
of its confidence toward this prediction. However, this approach might be problematic in critical do-
mains where even a single incorrect decision can lead to disastrous consequences, such as in medical
imaging-based diagnosis, autonomous driving systems, and military operations. Additionally, such
a paradigm falls short in effectively controlling class-specific outcomes, especially in scenarios of
imbalanced data. For instance, in medical diagnosis, it may incorrectly prioritize majority groups
that do not need immediate attention while overlooking minority groups with certain diseases that
demand urgent attention. This skewed prioritization results in delayed treatments, and ultimately,
compromised patient outcomes. Lastly, conventional classification approaches often assume there is
no distribution shift between the training and the test data, which is not the case in the open world.
If a new class emerges, e.g., a new variant of a virus in the pandemic, it is imperative to detect out-
of-distribution points. Therefore, there is a crucial need for novel methods that can simultaneously
address these issues and deliver a more reliable and risk-controllable decision in high-stake fields.
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Figure 1: Illustration for MNIST class
regions. Ambiguous points inside over-
lapped circles, OODs outside all circles.

To mitigate the risks associated with conventional single-
valued predictions, classifiers can first report multiple
plausible labels for ambiguous observations in over-
lapped class regions (see Fig. 1). This approach allows for
human intervention or secondary classification with addi-
tional features, ultimately reducing the risk of imprudent
predictions. This has motivated the development of set-
valued classification methods, which can be implemented
in various ways. Classification with Reject Option (CRO)
(Herbei & Wegkamp, 2006; Bartlett & Wegkamp, 2008;
Zhang et al., 2018; Charoenphakdee et al., 2021) inter-
prets a rejection of a difficult observation as assigning all class labels to it, and trains the classifier
by incorporating the rejection cost in the objective function. However, this method does not offer
controlled misclassification rates for classes of interest, and it pertains to the closed-world setting.
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To secure a trustworthy misclassification rate, Conformal Prediction (CP) (Vovk et al., 2005; Lei
et al., 2013; 2015), a popular model-free framework, is developed in the machine learning commu-
nity. With its theoretical guarantee on the prediction error rate, CP provides a safety solution in
critical applications by generating prediction sets that encompass multiple plausible labels. Alterna-
tively, Classification with Confidence (Lei, 2014; Sadinle et al., 2019; Wang & Qiao, 2018; 2022a)
further optimizes the prediction set from a different perspective, aiming to yield the smallest pre-
diction set while controlling the prescribed class-specific error rate. However, prediction sets based
on these approaches focusing on the closed world have limitations in generalizing their capability in
the open world on out-of-distribution detection, as they are not tailored to this task.

In practice, data distribution may evolve and observations outside of existing classes in the training
data may appear in the test data. To address this challenge, out-of-distribution (OOD) detection
or open-set recognition (OSR) techniques (Bendale & Boult, 2015; Vaze et al., 2022; Kim et al.,
2023) have been developed to detect the OOD class in addition to classification. Note that their
single-valued decision-making rules still suffer the aforementioned restrictions. To overcome these
limitations, researchers have proposed set-valued classifiers to detect OOD samples with controlled
misclassification rates on each existing class, namely, Cautious Deep Learning (CDL) (Hechtlinger
et al., 2018), Balanced and Conformal Optimized Prediction Set (BCOPS) (Guan & Tibshirani,
2022), and Generalized Prediction Set (GPS) (Wang & Qiao, 2022b). However, all three methods
are trained in a decoupled way, which may discard the underlying dependence among the learned
acceptance regions across all classes. Additionally, besides GPS relies on computationally intensive
quadratic programming, all three are shallow methods, making it challenging to scale the above
methods to large datasets. Moreover, as per empirical performances, the GPS results in conservative
acceptance regions due to the use of hinge loss, leading to sub-optimal finite-sample performances
on both prediction set size and OOD detection; the CDL and BCOPS lack optimality on the empirical
prediction set size, partially due to the fact that the prediction set size is not explicitly minimized.

In light of the limitations of current single-valued and set-valued prediction approaches, we propose
an end-to-end Deep Generalized Prediction Set (DeepGPS) classifier jointly learning acceptance re-
gions with several contributions. First, it generalizes and scales the set-valued classification to OOD
detection by using a hypothesis class induced by neural networks and a kernel. To avoid relying on
the expensive memory and quadratic programming for kernel machines, we add to the neural net-
work a layer that approximates the kernel by using Random Fourier Features. Second, we provide
nontrivial proof that shows the true accuracy of our classifier is bounded as the prescribed value, and
that the expected prediction set size converges to the minimum within the hypothesis class. Third,
we use an adaptive weighted hinge loss to address the issue of GPS where the surrogate hinge loss
potentially produces larger acceptance regions. The weighted loss yields tighter acceptance regions,
improving classification efficiency (defer to Section 2.1) and OOD detection performance.

2 RELATED WORK

In this section, we introduce the notion of acceptance regions and terminologies in set-valued classi-
fication, and briefly discuss some related works. Note that there is a distinction between set-valued
classification and multi-label classification (Zhang & Zhou, 2007). In set-valued classification, an
observation has only one true label, whereas, in multi-label classification, there are multiple ground
truths. Throughout the article, we use the notation [K] to denote 1, . . . ,K.

2.1 SET-VALUED CLASSIFICATION

Consider the multicategory classification with input space X = Rp and label space Y = {1, . . . ,K}.
Given a rule, the set of observations classified as class k, Ck ⊂ X , is called the acceptance region
for class k; all K acceptance regions collectively induce a set-valued classifier ϕ : X → 2Y with
ϕ(x) := {k ∈ [K] : x ∈ Ck}. Intuitively, there is a trade-off between the misclassification rate
P(Y ̸∈ ϕ(X)), i.e., the probability of a set not containing the true class label, and the expected
size of prediction set |ϕ(X)| := ∑K

k=1 1{X ∈ Ck}. A lower misclassification rate may require
a larger prediction set. While two set-valued classifiers may have the same misclassification rate,
the one with a smaller prediction size is more efficient/informative (the more efficient, the better the
prediction set). We interchangeably use efficiency (see the definition in Appendix C) and prediction
set size to denote the informativeness of a prediction set.
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In the method of Classification with Reject Option (CRO) (Herbei & Wegkamp, 2006; Bartlett &
Wegkamp, 2008; Charoenphakdee et al., 2021), the Bayes optimal rule under the 0-d-1 loss (where
d ∈ [0, 1 − 1/K] is the rejection cost and 1 is the misclassification cost) assigns an ambiguous
observation x all labels if maxk P(Y = k | x) ≤ 1 − d, but a single label corresponding that with
the largest probability score otherwise. Zhang et al. (2018) extended CRO with an additional refine
option, which can output a smaller prediction set with size 1 < |ϕ(x)| < K for those less difficult
observations. CRO controls how many observations are rejected by changing the rejection cost d (a
smaller d leads to more rejections). While this can improve the accuracy for those observations not
rejected, there is no direct control over the classification accuracy.

In contrast, the Conformal Prediction set (Vovk et al., 2005; Lei et al., 2013; 2015) theoretically
guarantees the accuracy P(Y ∈ ϕ(X)). However, Conformal Prediction does not aim to maximize
the efficiency of the classifier, i.e., there is no guidance on how to make the prediction set as small,
and hence as informative as possible. In particular, a classifier with prediction set size |ϕ(x)| ≡ K
for all x is useless even though its accuracy is 100%, while the single-valued prediction (|ϕ(x)| ≡ 1
for all x) might not be accurate albeit its 100% efficiency. To take into account the efficiency and ac-
curacy simultaneously, Lei (2014), Sadinle et al. (2019), and Wang & Qiao (2018; 2022a) minimize
the expected prediction set size E[|ϕ(X)|] while controlling the class-specific misclassification rate
P(Y ̸∈ ϕ(X) | Y = k) ≤ γ specified by the user. In duality, Denis & Hebiri (2017; 2020) proposed
to maximize the accuracy subject to a budget of prediction set size.

2.2 OUT-OF-DISTRIBUTION DETECTION AND SELECTIVE CLASSIFICATION

Anomaly detectors aim to identify anomaly points not from the existing/normal class. One-Class
Support Vector Machine (OCSVM) (Schölkopf et al., 2000) and Support Vector Data Description
(SVDD) (Tax & Duin, 2004) are shallow detectors whose detection performance is improved with
a kernel. To obtain better feature representations for large and complex data, Ruff et al. (2018) ex-
tended SVDD to Deep Support Vector Data Description by substituting neural networks for kernels.

Beyond the task of detecting/rejecting anomaly points not belonging to any of the normal classes,
Out-of-distribution (OOD) detection and Open-set recognition (OSR) (Yang et al., 2021; Bendale &
Boult, 2015; 2016) additionally conduct standard classification for normal observations. In contrast,
Selective Classification (El-Yaniv et al., 2010; Geifman & El-Yaniv, 2017; Granese et al., 2021) cen-
ters on rejecting difficult normal observations besides single-valued classification. Different from
CRO, it does not equate this type of rejection with assigning all labels to an observation. By allow-
ing rejecting OOD and difficult normal observations, Xia & Bouganis (2022); Kim et al. (2023);
Cen et al. (2023); Zhu et al. (2023) studied Selective Classification with OOD Detection (SCOD).
However, this unified rejection mixes up the OOD and normal observations, which may obstruct the
downstream task since one may impose different strategies on different types of rejections.

All the aforementioned classification methods with OOD detection still are attributed to the camp
of single-valued classification, and hence suffer some issues highlighted in Section 1. In contrast,
CDL, BCOPS, and GPS are set-valued approaches: they learn acceptance regions that collectively
induce a prediction set to cover the true label with an advertised accuracy for normal points and
reject potential OOD points. In particular, the prediction set ϕ(x) comprises all the classes k ∈ [K]
whose acceptance region Ck contains x; when ϕ(x) is empty, x is marked as an OOD point.

3 METHODOLOGY

In this section, we formulate the optimization problem of DeepGPS. Suppose that a distribution
P exclusively consists of K (known) normal classes, while a target distribution Q may contain an
(unknown) OOD component. To facilitate our analysis, we introduce two key assumptions.
Assumption 1. pP(x | Y = k) = pQ(x | Y = k) holds true for all normal classes k ∈ [K].

Assumption 2. We have access to labeled data from P and unlabeled data from Q.

The equal class-conditional density in Assumption 1 is commonly employed to characterize “seman-
tic shift” in the OOD detection literature (Yang et al., 2021; Garg et al., 2022) due to the emergence
of a novel class. For instance, in the sentiment analysis of product reviews, the established sen-
timents such as positive or negative exhibit consistent linguistic patterns between past and current
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data, including the choice of words and sentence structures. However, when a review expresses en-
tirely new sentiments, it represents an instance of OOD data. Assumption 1 is often accompanied by
the mild Assumption 2 dealing with the utilization of unlabeled data (Du Plessis et al., 2015; Guan
& Tibshirani, 2022; Garg et al., 2022; Katz-Samuels et al., 2022).
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Figure 2: Loss functions
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Let (X, Y ) ∈ X × Y come from the distribution Q, where X = Rp and Y = {OOD, 1, 2, . . . ,K}.
Let f(x) = (f1(x), . . . , fK(x))⊤ be a vector of decision functions for normal classes, which
induce the acceptance regions through Ck := {x : fk(x) ≥ 0}, k ∈ [K]. Then the set-valued
classifier is defined as ϕ : X → 2Y with a prediction ϕ(x) := {k ∈ [K] : x ∈ Ck} = {k ∈ [K] :
fk(x) ≥ 0} for a query x. The size of a prediction set ranges from 0 (OOD rejection), to 1 (single-
valued prediction), to somewhere in {2, . . . ,K − 1} (ambiguous observations), and ultimately to K
(ambiguity rejection). Unlike CRO, which only rejects normal observations, or SCOD, which mixes
rejections of normal and OOD observations, our unified decision rule not only rejects hard normal
observations but also effectively distinguishes them from OOD rejections.

Objective Function. In addition to the task of OOD detection, we aim to minimize the expected
size of prediction set EQ [|ϕ(X)|] =∑K

k=1 EQ[1{fk(X) ≥ 0}], subject to the class-specific error
EQ[1{fk(X) < 0} | Y = k] ≤ γ, k ∈ [K], where γ is prescribed by users due to the business
needs. Denote Gk, k ∈ [K] as the index set of labeled data from class k (with size mk) and Gu as
the index set of unlabeled data (with size n), we solve a data-driven optimization problem:

min
f∈FL

1

nK

∑

i∈Gu

K∑

k=1

ℓ1(fk(xi)) + C

K∑

k=1

∑

j∈Gk

ωk,j

mk
· ℓ2,γ(fk(xj)) + J(f), (1)

where f(x) := WLζ̂(x) − ρ comes from the neural networks hypothesis class FL with depth L.
Here WL is the weight matrix in the output layer of the network, ζ̂(x) is the embedding learned from
the penultimate layer, and ρ ∈ RK is the offset term. The regularization J(f) :=

∑L
l=1

λl

2 ∥Wl∥2F+∑K
k=1 λ

′
k(−ρk) is used to confine the hypothesis class with parameters λl, l ∈ [L] and λ′

k, k ∈ [K].

Instead of the 0-1 loss 1{u ≥ 0} in
∑K

k=1 EQ[1{fk(X) ≥ 0}], the first term in (1) measures the
empirical prediction set size under a surrogate hinge loss ℓ1(u) = [1 + u]+ = max{0, 1 + u}. The
second term in (1) aims to provide a non-negative upper bound of EQ[1{fk(X) < 0} | Y = k]−γ.
To this end, notice that 1{u < 0} − γ ≤ [1 − γ − u]+ (see Fig. 2). By choosing ℓ2,γ(u) =
[1−γ−u]+, minimizing the second term amounts to minimizing the excess empirical class-specific
error beyond γ. When the loss ℓ2,γ(·) in the second term goes to 0, the empirical error tends to
be less than γ. The tuning parameter C balances the risk between the prediction set size and the
misclassification rate. Due to the Assumption 1, we use the labeled data from P to quantify the
empirical misclassification rate in the second term initially measured under distribution Q. Lastly,
similar to OCSVM (Schölkopf et al., 2000), together with the Gaussian kernel, −ρk in the third
term J(f) in (1) penalizes the offset and often allows to exclude most atypical observations from
acceptance regions (see the intuition and discussion in Appendix A). To avoid negative values in the
optimization stage, one may use e−ρk instead of −ρk in the third term.

Gaussian Kernel and Its Approximation. OCSVM achieves anomaly detection by using the Gaus-
sian kernel with offset penalization (like the third term in (1)). Nonetheless, it is difficult to recover
the exact features after the kernel mapping in the context of neural networks as the resultant feature
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would be infinite-dimensional. Moreover, the Representer theorem (Kimeldorf & Wahba, 1971)
suggests that the decision function is a linear combination of the kernel function evaluated at all the
training data points. This can also be challenging in real business because each time we update the
model, we only use a mini-batch (subset) of training data to avoid computation and memory burden.

To overcome the above difficulties, in the penultimate layer of the network (see Fig. 3), we use finite
Random Fourier Features (Rahimi & Recht, 2007; Lu et al., 2016; Nguyen & Vien, 2018) to approx-
imate the infinite-dimensional Gaussian kernel features. More concretely, we sample D = mL−1/2
many independent frequencies ξj (j = 1, ..., D) from the Gaussian distribution N (0, ImL−2

), where
mL−2 and mL−1 are the widths of the (L− 2)- and (L− 1)-th layers, respectively. Then we let the
mapped feature fed to the output layer be

ζ̂(x) = ζ̂(zx;σ) := D−1/2
(
sin(σξ⊤1 zx), cos(σξ

⊤
1 zx), . . . , sin(σξ⊤Dzx), cos(σξ

⊤
Dzx)

)⊤
, (2)

where zx is the embedding of x output from the previous layer and the learnable parameter σ
relates the kernel’s flexibility. Bochner’s theorem (Rudin, 2017) shows that, for any zxi , zxj , the
inner product ζ̂(zxi

;σ)⊤ζ̂(zxj
;σ) is an unbiased estimator to the true Gaussian kernel similarity

exp
(
−σ2∥zxi

− zxj
∥2/2

)
, where σ2 plays a similar role as the bandwidth of Gaussian kernel in

OCSVM. With the above kernel approximation, one can incorporate it into the neural network and
use SGD optimization to efficiently update the model and hence scale the problem.

Adaptive Weighted Loss. The aforementioned loss function ℓ2,γ(u) aims to provide a convex
relaxation to 1{u < 0}− γ, whose expectation measures the class-specific error rate less a constant
γ. However, there is a gap between 1{u < 0} − γ and ℓ2,γ(u): an observation x from the class k
outside of and far away from the center of the acceptance region Ck may incur a large loss ℓ2,γ(·),
far larger than 1 − γ. Additionally, the loss ℓ2,γ(·) may be non-zero even if a point falls in the
correct acceptance region. In these cases, the loss ℓ2,γ(·) overestimates the true misclassification
rate; as a consequence, we tend to get large acceptance regions Ck, which inflates the prediction set
size and degrades the OOD detection performance. To alleviate this potential issue, we allocate a
weight to each observation to correct the overestimation. Specifically, we use a small weight for the
observations with a large loss ℓ2,γ(·), by defining the weight as

ωk,j :=
1− γ

1− γ − f̌k(xj)
· 1{f̌k(xj) < 0}+

(
1− f̌k(xj)

)q · 1{0 ≤ f̌k(xj) < 1− γ}, (3)

where q > 0. If f̌k(xj) in (3) is equal to fk(xj), then the weighted loss in (1) becomes

ωk,j · ℓ2,γ(fk(xj)) =

{
(1− fk(xj))

q · ℓ2,γ(fk(xj)), 0 ≤ fk(xj) < 1− γ[
1{fk(xj) < 0} − γ

]
+
, otherwise .

This is illustrated in Fig. 2. Except for the middle interval, the weighted loss approximates [1{u <
0}−γ]+. In the middle interval, a large value of the parameter q (we set q = 5) makes the weighted
loss closer to 0. Here we use the classifier f̌k from the last iteration to approximate fk.

4 LEARNING THEORY

In this section, we show the convergence rates of the kernel approximation, the boundness of the
true class-specific error rate, and the excess risk of the classification. We assume that ∥x∥2 ≤ c0.

Let Hl,κl
:= {hl : hl(z) = Sl(Wlz),Wl ∈ Rml×pl , ∥Wl∥F ≤ κl} be the hypothesis class with

bounded Frobenius norm in the l-th layer, where Sl is an (activation) function that is 1-Lipschitz
continuous, e.g., ReLU(·), cos(·), sin(·), or the identity function. The input z is returned from the
previous layer if l > 1 or equals x if l = 1. Let FL,κ := {f : hL ◦ · · · ◦ h1,ρ ≥ 0,hl ∈
Hl,κl

, l ∈ [L]} be a hypothesis class of deep dense neural networks (fused with a Gaussian kernel
approximation) with depth L (see Fig. 3) and κ = (κ1, . . . , κL)

⊤.
Theorem 1. For each pair of observations xi,xj , let zxi

and zxj
be their embeddings learned

at (L − 2)-th layer, respectively. Denote kσ(zxi
, zxj

) = exp
(
−σ2∥zxi

− zxj
∥22/2

)
. For ζ̂(·;σ)

defined in Eq. (2), with probability at least 1− δ over Gaussian frequency sampling, we have
∣∣∣ζ̂(zxi

;σ)⊤ζ̂(zxj
;σ)− kσ(zxi

, zxj
)
∣∣∣ ≤

√
4

mL−1
log

2

δ
for fixed zxi

and zxj
, (4)
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and sup
xi,xj

∣∣∣ζ̂(zxi
;σ)⊤ζ̂(zxj

;σ)− kσ(zxi
, zxj

)
∣∣∣ ≤ 4

√
2|σ|c0√
mL−1

L−2∏

l=1

κl +

√
4

mL−1
log

2

δ
. (5)

For fixed embeddings zxi and zxj output from (L−2)-th layer, (4) implies that the cosine similarity
between their mapped features in (L−1)-th layer converges to the true kernel similarity kσ(zxi , zxj )

at the rate of O(m
−1/2
L−1 ). For any pair of inputs xi,xj ∈ X , (5) shows that besides the error due to

the finite sampling of frequencies, the dissimilarity of two points propagated throughout the course
of the network also contributes to the kernel approximation error. If the input space X is compact,
eventually, the error uniformly vanishes as the width of the penultimate layer goes to infinity.

Let F+
L,κ(γ, ν) := {f ∈ FL,κ : EQ[ℓ2,γ(fk(X)) | Y = k] ≤ ν, k ∈ [K]} be a subspace where the

population class-specific surrogate loss is bounded, and its empirical counterpart be F̂+
L,κ(γ, ν) :=

{f ∈ FL,κ : 1
nk

∑
yi=k ℓ2,γ(fk(xi)) ≤ ν, k ∈ [K]}. Without loss of generality, we set the adaptive

weight in front of ℓ2,γ to be 1. By moving the second and third terms in Problem (1) to the constraint,
we consider the below problem

min
f∈F̂+

L,κ(γ,ν)

1

nK

n∑

i=1

K∑

k=1

ℓ1(fk(xi)). (6)

The below theorem gives an upper bound to the true class-specific misclassification rate less the
advertised value γ measured under ℓ2,γ loss.

Theorem 2. Let f̂ be a solution to Problem (6) and ϑnk
(δ) := 2Rnk

(FL,κ)+r
√

2
nk

log 2K
δ , where

the Rademacher complexity Rnk
(FL,κ) = O(

log(
√
nk)√

nk
) and r = c0

∏L
l=1 κl. With probability at

least 1− δ, simultaneously for all normal class k ∈ [K], we have

EQ
[
ℓ2,γ(f̂k(X)) | Y = k

]
≤ 1

nk

∑

yi=k

ℓ2,γ(f̂k(xi)) + ϑnk
(δ).

Together with the fact 1{u < 0} − γ ≤ ℓ2,γ(u) and f̂ ∈ F̂+
L,κ(γ, ν), the above theorem indicates

PQ[f̂k(X) < 0 | Y = k]− γ ≤ ν + ϑnk
(δ), which suggests a way to control true misclassification

rate. To bound the true misclassification rate by γ, one may use a more stringent tolerance, e.g.,
replace γ in the loss function ℓ2,γ by γ − θ where θ ≥ ν + ϑnk

(δ). This holds for a large enough
dataset and with a large value of C since a large value of C corresponds to the small value of ν, and
ϑnk

(δ) → 0 as nk → ∞.

Theorem 3 shows the classification risk, namely ℓ1-ambiguity, returned by an empirical minimizer
converges to the least in the hypothesis class when the sample size of each normal class increases.

Theorem 3. Let r, ϑnk
(δ) take the forms as in Theorem 2, and Rℓ1(f̂) :=

∑K
k=1 EQ[ℓ1(f̂k(X))]

be the ℓ1-ambiguity, where f̂ is an empirical minimizer of problem

min
f∈F̂+

L,κ(γ−ν−ϑ∗,ν)

1

nK

n∑

i=1

K∑

k=1

ℓ1(fk(xi)) (7)

and ϑ∗ = maxk ϑnk
(δ). With probability at least 1− 3δ, we have

(1) PQ[f̂k(X) < 0 | Y = k] ≤ γ for k ∈ [K]; and

(2) Rℓ1(f̂)− min
ν̃∈[0,γ−2ϑ∗]

min
f∈F+

L,κ(γ−ν̃,ν̃)
Rℓ1(f) ≤ 12

√
KRn(FL,κ) + 12

√
Kr
√

1
2n log 2

δ .

By using a more stringent error tolerance and fine-tuning the parameter C, statement (1) shows the
true misclassification rate of each normal class is below the advertised tolerance γ. Note that the
second term in the L.H.S. of the statement (2) denotes the best performance over all those classifiers
with the true misclassification rate bounded by γ (here the interval for ν̃ holds when ϑ∗ → 0 as
nk → ∞). Together with the fact that the Rademacher complexity Rn(FL,κ) = O(n−1/2 log(n))

vanishes as n → ∞, Statement (2) implies the prediction ϕ̂(x) returned by the DeepGPS approaches
to the least ℓ1-ambiguity within the hypothesis class as nk → ∞, k ∈ [K].
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5 EXPERIMENTS

Baselines. DeepGPS is compared with baselines (GPS, BCOPS, and CDL) tailored to the task of
set-valued classification with OOD detection. Since these baselines are shallow methods, to conduct
a fair comparison, we also use the learned features from DeepGPS as the inputs for the baselines
and refer to them as DeepGPS-based baselines, following the same regime in Ruff et al. (2020). We
also compare with two SCOD methods, namely SIRC (Xia & Bouganis, 2022) and OpenMix (Zhu
et al., 2023), which demonstrates the limitation of single-valued predictions in the current task.

Datasets. We deploy all methods on CIFAR-10, MNIST, and Fashion-MNIST datasets. In CIFAR-
10, the normal classes are {Bird, Cat, Deer, Dog, Frog, Horse} and the OOD class comes from
{Airplane, Car, Ship, Truck}. In MNIST, the normal classes are digits {1, 4, 6, 7, 9} and the
OOD class consists of digits {0, 2, 3, 5, 8}. In Fashion-MNIST, the normal classes are {Pullover,
Dress, Coat, Sandal, Ankle boot} and the OOD class is {T-shirt, Trouser, Shirt, Sneaker, Bag} .
The values of γ are prescribed as 0.05, 0.01, and 0.01 for CIFAR-10, MNIST, and Fashion-MNIST,
respectively (the latter two tasks are relatively easy, hence a smaller γ). We split each original
dataset into three sets: labeled set containing only normal classes to mimic distribution P , unlabeled
set mixing normal and OOD classes to mimic distribution Q, and the test set. The first two are used
to train the model, and the test set is to evaluate the performance.

Network Architectures. For backbone architectures, we use ResNet18 (He et al., 2016) on CIFAR-
10, and LeNet-type CNNs (Ruff et al., 2020) on grayscale images MNIST and Fashion-MNIST. On
top of the backbones, we add the head network (see Fig. 3) composed of 2 hidden layers with 500
units before the kernel approximation layer. Other hyper-parameters are discussed in Appendix B.

Metrics. We present the sample class-specific accuracy, the aligned OOD recall, and the aligned
efficiency (see Appendix C for the details of alignment). Additionally, we report the AURec (area
under the curve between the OOD recall and the accuracy) and AUEff (area under the curve between
the efficiency and accuracy) to see the overall performance of a set-valued classifier around the
neighborhood of 1 − γ (see the definitions in Appendix C). Intuitively, the higher the OOD recall
and the higher the efficiency, the better the classifier. The bold numbers in Table 1 denote the best
performances among all set-valued classifiers.

Table 1: Average performance metrics on CIFAR-10, MNIST, and Fashion-MNIST

DeepGPS
DeepGPS-based

GPS BCOPS CDL
SCOD

GPS BCOPS CDL SIRC OpenMix

Bird 96.7±0.33 96.2±0.4 94.3±0.39 95.2±0.79 96.5±0.5 95.3±0.3 94±0.43 76.8±0.7 75±1.48

Cat 94.6±0.46 93.3±1.27 94.4±0.41 94.7±0.51 94.5±0.68 94.8±0.59 95.7±0.03 62.6±1.35 65.1±1.07

Deer 97.1±0.43 95.1±0.56 95.5±0.6 95.8±0.56 96.4±0.72 94.5±0.28 96.2±0.3 80.5±1.07 75.9±1.8

Dog 96.1±0.5 94.8±0.63 95.2±0.48 94.8±0.21 95.2±0.77 95.9±0.22 94.6±0.51 69.2±0.71 67.6±0.99

Frog 95.8±0.11 96.3±0.45 95.6±0.4 95.4±0.23 94.7±0.32 96.9±0.26 95.6±0.53 86.2±0.54 84±1.55

Acc.

Horse 95.1±0.61 94.2±0.83 94.8±0.44 95.4±0.47 95.9±0.25 95.4±0.36 95.9±0.26 84.4±0.83 84.8±0.94

Aligned OOD Recall 66.9±1.83 66.8±1.33 63.7±1.87 20.3±4.55 19.8±0.44 16.5±0.24 0.2±0.03 12.9±0.49 14.4±0.91

Aligned Efficiency 72.6±0.9 60±1.85 67±0.36 20.5±2.55 16.8±0.24 25.3±0.09 10.3±0.09 100±0 100±0

AURec 56.7±3.1 57.8±2.26 59.8±2.21 19.4±4.38 18.4±0.31 15.6±0.33 0.2±0.02 ⧸ ⧸

C
IFA

R
-10

AUEff 65.1±0.9 55±1.02 61.1±0.29 19.8±2.4 16.3±0.18 23.9±0.18 9.9±0.1 ⧸ ⧸

Digit 1 99.7±0.1 99.1±0.33 99.5±0.04 99.2±0.07 99.6±0.02 99.4±0.07 99.1±0.12 99.3±0.23 99.2±0.16

Digit 4 99.2±0.18 99.3±0.28 99.2±0.17 99±0.22 99.3±0.26 99.5±0.07 99.1±0.12 98.5±0.14 98.6±0.13

Digit 6 99.1±0.04 98.6±0.05 98.7±0.15 98.4±0.13 99.2±0.23 98.6±0.06 98.7±0.17 99.1±0.07 99.2±0.1

Digit 7 99.1±0.18 99.4±0.11 98.8±0.21 98.8±0.2 98.6±0.14 98.3±0.11 98.7±0.16 98.6±0.32 98±0.11

Acc.

Digit 9 98.6±0.14 98.9±0.27 98.9±0.1 99.1±0.17 98.7±0.16 98.5±0.11 98.8±0.18 97.4±0.52 98.1±0.13

Aligned OOD Recall 90.4±1.27 75.8±1.9 79±1.59 59.2±4.34 74.1±3.46 73.3±0.88 8.8±0.55 23.8±3.05 39.1±2.31

Aligned Efficiency 99.7±0.06 96.2±0.47 96.8±0.56 85.7±1.45 88±2.19 90.4±0.4 37.4±1.2 100±0 100±0

AURec 83.1±2.47 67.2±2.84 72±1.67 54.1±4.09 66.5±2.28 67.1±0.89 8.1±0.45 ⧸ ⧸

M
N

IST

AUEff 97.5±0.43 92.3±1.52 94±0.66 82.8±1.55 84±1.68 87.8±0.47 35.3±0.95 ⧸ ⧸

Pullover 98.9±0.05 99±0.15 98.8±0.14 99.2±0.19 99.1±0.12 98.9±0.07 99.1±0.1 93.6±0.24 92.2±0.42

Dress 98.6±0.16 99.1±0.11 98.6±0.31 98.8±0.2 98.1±0.5 98.3±0.08 99.2±0.11 94±1.1 95.3±0.33

Coat 99.1±0.15 99.1±0.38 99.4±0.18 99.4±0.06 98.5±0.55 99.3±0.07 98.9±0.13 88.5±0.35 90.5±0.58

Sandal 99.7±0.08 99.3±0.29 99.2±0.12 99.5±0.06 98.7±0.44 98.7±0.11 98.8±0.1 99.2±0.09 99.4±0.1

Acc.

Ankle boot 99.3±0.12 99.2±0.24 98.9±0.12 98.9±0.2 98.9±0.18 99±0.1 99.2±0.16 99.4±0.1 99.3±0.07

Aligned OOD Recall 59.2±1.52 48.4±1.96 56.1±1.29 32.7±1.97 40.5±3.38 54±0.72 4.9±0.25 4.4±0.52 9.3±0.8

Aligned Efficiency 91.1±0.11 88.9±0.51 90±0.28 81.3±1.18 84.5±0.61 88±0.22 43±0.58 100±0 100±0

AURec 49.7±1.43 40.3±0.58 50.5±1 30.6±1.84 35.6±3.19 49.3±0.4 4.4±0.22 ⧸ ⧸

Fashion-M
N

IST

AUEff 86.8±0.32 83.9±1.81 86.8±0.39 78.2±1.16 80.8±0.7 85.6±0.09 41±0.41 ⧸ ⧸
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Results. The results of two SCOD methods are reported when the rate of incorrectly rejecting
normal observations is around γ by thresholding their score functions. As shown in Table 1, even
though they maintain the highest (100%) efficiency, the overly-confident single-valued classification
rule fails to guarantee the class-specific accuracy for normal classes. Contrastively, by providing
plausible labels for certain observations, set-valued classification controls the accuracy and return
cautious decision for those classes of interest. Without representation learning, three shallow set-
valued baselines exhibit inferior results on both OOD recall and efficiency (or their AUCs). With
the learned features from DeepGPS, the OOD recall and efficiency of the DeepGPS-based baselines
are significantly improved, but they are still not as good as DeepGPS overall. In contrast, besides
controlling the class-specific accuracy, the proposed end-to-end DeepGPS also exhibits high OOD
recall and the highest efficiency under the prescribed accuracy.

{Bird, Frog} {Bird, Deer} {Dog, Deer,

Cat, Horse}
{Deer, Horse,

Dog}
{Dog, Cat} {Frog, Bird}{Horse, Deer}

(a) Predictions on CIFAR-10

{Pullover,
{Coat}

{Coat,
{Pullover}

{Coat,
{Dress,

{Pullover}

{Coat,
{Pullover,
{Dress}

{Sandal,
{Ankle boot}

{Ankle boot,

{Sandal}

(b) Predictions on Fashion-MNIST

Figure 4: For each panel, images in the same column come from the same class (OOD class or a
certain normal class). The first row in each panel refers to OOD-rejected images; the second row
refers to ambiguous images with the predicted labels shown in the bracket. Note that the ground
truth class is shown in red. Images in the first column in each panel are from the OOD class.

Fig. 4 illustrates some examples of OOD-rejected images (|ϕ̂(x)| = 0) in the first row and ambigu-
ous images (1 < |ϕ̂(x)| < K) in the second row with the predicted labels shown in the bracket.
For instance, the ambiguous cat (row 2, col. 3 in Fig. 4a) is classified with the set {Dog, Deer, Cat,
Horse} (possibly due to its upright legs and hair color), while the cat (row 1, col. 3) is rejected as
an OOD point because of its rare posture. A plane from the OOD class is classified as {Bird, Frog}
since the shape and the green color confuse the classifier. A car in the first row is rightfully rejected
as an OOD point since its red profile is unlike any other normal class. These set-valued decisions
allow for further inspection in the presence of ambiguity to reduce the risk of misclassification.
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Figure 5: Acceptances regions for MNIST (top) and
Fashion-MNIST (bottom), without (left) and with
(right) the KAOP technique.

Ablation for Kernel Approximation with
Offset Penalization. As was discussed in
Section 3, the Gaussian Kernel Approxi-
mation in the penultimate layer allows us
to scale the computation. In addition, we
now conduct an ablation study for the Ker-
nel Approximation with Offset Penalization
(KAOP) technique to show its impact on the
acceptance regions. By setting the num-
ber of output neurons in the backbone net-
work to two, we can visualize the MNIST
and Fashion-MNIST datasets and the clo-
sure and tightness of the acceptance re-
gions. As shown in Fig. 5, DeepGPS with
the KAOP (right panel) outputs closed and
tighter acceptance regions than the one with-
out KAOP (left panel). Some acceptance re-
gions in the left panel are fairly large, possi-
bly not even closed. This means that poten-
tially more OOD points are wrongly accepted and decisions can be more ambiguous.

Fig. 6 exhibits the performance of DeepGPS with and without using the KAOP technique and us-
ing the weighted loss. When solely comparing Bar1 with Bar2 (or Bar3 with Bar4), we can see
that the method without KAOP either fails to balance the trade-off between OOD recalls and effi-
ciencies, or returns the lowest OOD recalls and efficiencies. In CIFAR-10, for example, DeepGPS
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Figure 6: Ablation studies for KAOP and weighted loss. ✓ denotes a technique is deployed, while
✗ denotes not. q = 5 or 10 denotes the parameter value in the weighted loss.

without KAOP yields an extremely low efficiency. For this dataset, the KAOP technique signifi-
cantly improves the efficiency at the cost of a slightly smaller OOD recall. For both MNIST and
Fashion-MNIST, KAOP improves both the efficiency and the OOD recall in general.

Ablation for Weighted Loss. Similar to the impact of KAOP, the weighted loss provides a trade-
off between prediction efficiency and OOD recall for the CIFAR-10; see the comparison between
Bar1 and Bar3 (or Bar2 and Bar4). For the MNIST and Fashion-MNIST data, both efficiency and
OOD recall are improved due to the use of the weighted loss. Different values of the parameter q in
the weighted loss lead to a similar effect on the efficiency and OOD recall, when compared to the
method without using the weighted loss (see Bar4 and Bar5 when compared to Bar2).

Overall, Fig. 6 shows that with both KAOP and weighted loss, we tend to obtain compact acceptance
regions that have high prediction efficiency and OOD recall.

Sensitivity for OOD Proportion. In addition, we include the sensitivity study (in Appendix D.2) to
explore DeepGPS with varying proportions of OOD data in the target distribution Q. The efficiency
remains relatively stable across different OOD proportions in all three datasets.

6 CONCLUSION

Conventional single-valued predictions make decisions without guaranteed confidence for any inter-
ested classes. Moreover, current set-valued classification methods have sub-optimal performances
on large and complex datasets. To address these limitations, we propose an end-to-end DeepGPS
method. Empirically, besides detecting OOD points, DeepGPS provides reliable control over class-
specific accuracy for normal classes, offering cautious yet informative decisions to mitigate risks.
Theoretically, we show that DeepGPS minimizes the prediction set size under the prescribed accu-
racy. These support the effectiveness of DeepGPS in scenarios where misclassification may have
severe consequences, and hence highly accurate predictions are desired.

The DeepGPS network provides scalable set-valued classification with OOD detection. The kernel
approximation allows Deep Neural Networks to tap into the good learning property of the kernels.
This, along with the offset penalization, facilitates the construction of closed acceptance regions.
The usage of weighted loss further renders more compact acceptance regions. As per the resulting
predictions, DeepGPS differentiates between OOD-rejected observations (i.e., |ϕ̂(x)| = 0), which
were not considered in the CRO method, from difficult observations (i.e., 2 ≤ |ϕ̂(x)| ≤ K). This
distinction has not been well-explicitly explored in the OOD detection and SCOD literature.

While the current implementation learns a shared σ value in Random Fourier Features, it is impor-
tant to note that this approach may overlook the heterogeneity among different classes, potentially
resulting in larger acceptance regions for certain classes and hence degrading the performance. Fu-
ture work could involve the design of a new architecture that enables the learning of class-specific σ
values. Additionally, our proposed method leverages unlabeled datasets. Expanding the framework
to operate in an online learning mode, allowing for incremental updates with limited data avail-
ability, presents an intriguing avenue for future exploration. Lastly, proposing a method that even
controls the OOD recall with a theoretical guarantee would be another intriguing topic. However,
to our best knowledge, this further relies on the assumption of the OOD data (Liu et al., 2018; Fang
et al., 2021), which might be challenging in practice.
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A THE INSIGHT BEHIND THE GAUSSIAN KERNEL (APPROXIMATION) WITH
OFFSET PENALIZATION
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Figure 7: Illustration of Gaussian kernel
(approximation) with offset penalization

The formulation of the decision function f(x) and the
penalization for −ρk, k ∈ [K] with Gaussian kernel are
commonly used in (shallow) SVM-based anomaly detec-
tion (Schölkopf et al., 2000; Jumutc & Suykens, 2014;
Shilton et al., 2020).

The term −ρk in fk(x) = WL,kζ̂(x)− ρk in f(x) typ-
ically comes with the term −ρk in J(f), where WL,k

denotes the k-th row of the matrix WL. Note that the
feature mapping/embedding ζ̂(·) involved with Gaussian
kernel approximation maps each input x to the sphere of
a ball because of ζ̂(x)⊤ζ̂(x) = 1. Under this context, as
shown in Fig. 7, penalizing −ρk during the optimization
contributes to an increased distance (Schölkopf et al.,
2000), ρk

∥WL,k∥2
, between the origin and the hyperplane

WL,kζ̂(x) = ρk in the feature space. This spatial shift effectively pushes the hyperplane outwards,
resulting in a narrower acceptance region on the feature space sphere dedicated to the normal class
k. It consequently creates more room for other classes (including the potential OOD class), possibly
leading to an informative prediction and an improved OOD detection performance.

B DETAILS OF EXPERIMENTS

All deep methods consistently use the same backbone and head network with the same dimension of
weight matrices in each layer. Experiments run over 150 epochs with batch size 512. The ResNet18
(He et al., 2016) architecture is the same as the one in PyTorch and LeNet-type CNNs are identical to
Ruff et al. (2020). The training set (labeled set and unlabeled set as mentioned in Section 5) is further
split with a ratio 9:1 into training data for learning f and validation data for tuning parameters. The
average and standard errors of performances are reported after 5 runs.

DeepGPS. We use the Adam optimizer (Kingma & Ba, 2014) with learning rate lr = 10−4

and (β1, β2) = (0.999, 0.999). Additionally, we set the weight decay in Adam as 10−4 and set
λl = 0, l ∈ [L] in the objective function Eq. (1) to implicitly regularize weight matrices instead of
explicitly imposing a penalty on the first term in J(f). In contrast, the parameter λ′

k = 1, k ∈ [K],
same as in OCSVM (Schölkopf et al., 2000), is to explicitly penalize the offset term in J(f). The
tuning parameter C is determined such that the prediction set is smallest on the unlabeled part in the
validation data when the misclassification rate is close to γ on the labeled part in the validation data.

For the below set-valued baselines (or DeepGPS-based variants), we conduct the split-conformal
(Vovk et al., 2005; Lei et al., 2015) and search for the optimal tuning parameters on the validation
data (Lei, 2014). In particular, let f̂k be the score function returned by a baseline and τ̂k be a
γ × 100% quantile of {fk(xj)}j∈Gval

k
, where Gval

k denotes the index set of the observations from
class k in the validation data. Then the optimal parameter is chosen when the prediction set size∑

j∈Gval
u

∑K
k=1 1{f̂k(xj) ≥ τ̂k} is minimized on the unlabeled points in the validation data, where

Gval
u denotes the index set of unlabeled observations in the validation data.

GPS. We search the value of penalty in the GPS method from the grid {0.1, 1, 10}, and use the
median of pairwise Euclidean distance among observations as the bandwidth in its Gaussian kernel.

BCOPS. The maximum depth of the tree is searched from {10, 30, 50}. Minimum samples to
split an internal node, minimum samples at a leaf node, and the number of trees are searched from
{5, 10}, {4, 6}, and {50, 100}, respectively.

CDL. We search the value of bandwidth in an even grid with length 5, starting from σ̂(1) ×
( 4
(p+2)n )

1/(p+4) to σ̂(p) × ( 4
(p+2)n )

1/(p+4), based on Silverman’s rule-of-thumb bandwidth esti-
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mator (Silverman, 2018), where n is the sample size, p is the dimension of the feature and σ̂(1) and
σ̂(p) are the minimum and maximum standard deviations across all dimension of features.

SIRC. By following Xia & Bouganis (2022), we use the score function consisting of maximum
softmax probability and the l1 norm of the embedding in the penultimate layer, where the former is
to separate easy normal observations from both difficult normal observations and OOD observations
while the latter is to distinguish normal observations from OOD observations.

OpenMix. This method requires OOD exposure data, where we use the Gaussian noise as men-
tioned in Zhu et al. (2023). In this method, the score function is the max logits returned from the
output layer.

C EVALUATION METRICS FOR SET-VALUED CLASSIFICATION

Note that the prediction performance is driven by the user-defined class-specific accuracy 1 − γ.
There exists a trade-off among accuracy, OOD detection performance, and efficiency. Intuitively, a
higher prescribed accuracy leads to lower OOD detection performance and efficiency.

In our evaluation, we report several key metrics for assessing the performance from different per-
spectives. Let Gte be the index set of the test set. We report the sample class-specific accuracy

∑
j∈Gte

1{Yj = k and Yj ∈ ϕ̂(Xj)}∑
j∈Gte

1{Yj = k} × 100%, k ∈ [K]

to measure the accuracy of class predictions for normal classes; the aligned OOD recall

Rec(1− γ) :=

∑
j∈Gte

1{Yj = OOD and |ϕ̂(Xj)| = 0}∑
j∈Gte

1{Yj = OOD} × 100%

to evaluate the ability to correctly identify OOD samples; and the aligned efficiency

Eff(1− γ) := 1− 1

K − 1
·
[∑

j∈Gte
1{Yj ̸= OOD} · |ϕ̂(Xj)|∑
j∈Gte

1{Yj ̸= OOD} − 1

]

+

× 100%

to show how the classifier distinguishes between normal observations. The first term in [·]+ in
Eff(1− γ) denotes the average prediction set size on the normal observations, ranging from 0 to K.

The above two aligned metrics are obtained by adjusting the thresholds in such a way that a set-
valued classifier exactly achieves the sample accuracy to be the prescribed value 1 − γ for each
class, regardless of the goodness of the original sample class-specific accuracy. This strategy helps
us to conduct a relatively fair comparison for set-valued classifiers since sample OOD recall and
sample efficiency are affected by the sample class-specific accuracy.

In SIRC and OpenMix methods, to obtain the aligned OOD recall, we set the threshold for the score
functions such that the error rate of incorrectly rejecting normal observations is γ. This strategy
results in both single-valued and set-valued rules exhibiting a similar overall error rate of rejecting
normal observations, mitigating potential disparities in our comparison. Notably, the single-valued
prediction has 100% efficiency.

To see the overall performances, one may consider two new metrics, namely, AURec (area under the
curve between OOD recall and accuracy) and AUEff (area under the curve between efficiency and
accuracy). These two metrics are defined near the neighborhood of the prescribed accuracy 1 − γ,
i.e., from 1− 2γ to 1:

AURec :=
1

2γ

∫ 1

1−2γ

Rec(t)dt, and AUEff :=
1

2γ

∫ 1

1−2γ

Eff(t)dt.

It is important to note that these overall performance metrics (even though defined near the neigh-
borhood of 1− γ) have limitations as they overlook the specific accuracy value the user prescribed.
Additionally, both AURec and AUEff are calculated when all normal classes attain every accuracy
value within the integral region, which alludes that these two metrics are not applicable for single-
valued classification, leaving them blank for both SIRC and OpenMix methods in our reports.
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D EXTRA EXPERIMENTS

D.1 CLASS-SPECIFIC ACCURACY CONTROL IN ABLATION STUDIES

Bird Cat Deer Dog Frog Horse
0.0

0.2

0.4

0.6

0.8

1.0
CIFAR-10

Digit 1 Digit 4 Digit 6 Digit 7 Digit 9

MNIST

Pullover Dress Coat Sandal Ankle boot

Fashion-MNIST

Bar1: KAOP ; wgh Bar2: KAOP ; wgh Bar3: KAOP ; wgh q=5 Bar4: KAOP ; wgh q=5 Bar5: KAOP ; wgh q=10

Figure 8: Accuracy control in ablation studies for KAOP and weighted loss. ✓ denotes a technique
is deployed, while ✗ denotes not. q = 5 or 10 denotes the parameter value in the weighted loss.

Fig. 8 exhibits the accuracy control in the ablation studies on three datasets, where the height of
each bar represents the average sample accuracy and the black vertical segment on the top of each
bar denotes the standard error. Additionally, red dashed horizontal lines denote the prescribed ac-
curacy level of 1 − γ. In this figure, we can see that the DeepGPS method effectively controls the
class-specific accuracy across various techniques employed in the ablation studies. The metrics of
prediction efficiency and OOD detection performances are displayed in Fig. 6.

D.2 SENSITIVITY FOR OOD PROPORTION

The results presented in Table 1 are based on OOD proportions of 4/10, 5/10, and 5/10 for CIFAR-10,
MNIST, and Fashion-MNIST, respectively (due to the number of sub-classes chosen for the OOD
class). In this section, we include the sensitivity study to explore the performance of DeepGPS
under another four different values, i.e., 0.2, 0.3, 0.8, and 0.9, of OOD proportion in three different
datasets. As shown in Tables 2 to 4, the class-specific accuracies are well-controlled. The metrics of
the efficiency, remain relatively stable across different OOD proportions in all three datasets. When
it comes to the OOD detection performance, in general, the higher OOD proportion helps to improve
the OOD detection performance.

Table 2: Sensitivity study for varied OOD proportions on CIFAR-10 (γ = 0.05)

Acc. Aligned
OOD Recall

Aligned
Efficiency AURec AUEff

Bird Cat Deer Dog Frog Horse

0.2 95.4±0.59 95.5±0.34 96.8±0.6 96.4±0.54 97±0.38 95.3±1.21 15.8±2.15 71.9±0.87 14.8±2.01 66.7±0.68
0.3 95±1.24 94.4±0.75 95.9±1.01 96.1±0.74 96±0.66 94.7±1.29 33.8±11.71 72.4±1.33 32.2±10.16 64.6±1.29
0.8 96±0.78 95.3±0.88 96.8±0.88 96±0.57 96.5±0.83 95.7±0.66 70.7±5.08 70.3±1.13 66±4.7 62.8±0.74
0.9 96.5±0.69 94.3±1.26 97±0.73 95.7±0.8 96.7±0.69 96±0.81 73.6±1.56 69.3±1.84 70.4±2.16 62±1.36

Table 3: Sensitivity study for varied OOD proportions on MNIST (γ = 0.01)

Acc. Aligned
OOD Recall

Aligned
Efficiency AURec AUEff

Digit 1 Digit 4 Digit 6 Digit 7 Digit 9

0.2 99.9±0.02 99.4±0.09 99.3±0.13 99.2±0.16 99.2±0.11 68.2±2.2 99.8±0.06 60.1±2.92 97.6±0.31
0.3 99.9±0.06 99.4±0.1 99.3±0.13 99.1±0.2 98.9±0.09 80.4±1.5 99.7±0.08 70.2±2.07 97.2±0.26
0.8 99.7±0.05 99.4±0.07 99.1±0.08 99.1±0.22 98.8±0.14 89.4±1.59 99.5±0.12 82.4±1.65 97.2±0.32
0.9 99.7±0.04 99.4±0.04 99±0.1 99.3±0.16 98.7±0.1 88.5±1.82 99.5±0.12 81.1±2.57 97±0.46

Table 4: Sensitivity study for varied OOD proportions on Fashion-MNIST (γ = 0.01)

Acc. Aligned
OOD Recall

Aligned
Efficiency AURec AUEff

Pullover Dress Coat Sandal Ankle boot

0.2 99.3±0.09 98.7±0.15 99.3±0.08 99.7±0.07 99.4±0.12 19.3±1.59 92.4±0.27 17.7±1.2 87.5±0.27
0.3 99±0.15 98.8±0.17 99±0.2 99.4±0.05 99.4±0.11 33.1±4.52 91.4±0.1 30±3.5 86.6±0.63
0.8 99.1±0.04 98.6±0.19 99.5±0.11 99.6±0.09 99.4±0.09 59.5±1.86 91.3±0.16 46.6±1 85.3±0.77
0.9 99±0.04 98.7±0.19 99.6±0.11 99.6±0.1 99.5±0.05 57.1±2.26 90.9±0.2 47.3±1.27 86.5±0.44

15



Under review as a conference paper at ICLR 2024

E PROOF OF THEOREMS

For a matrix Wl ∈ Rml×pl in l-th layer, l ∈ [L], if ∥Wℓ∥F ≤ κl, thus we have ∥Wl∥ ≤ κl and
∥W⊤

l ∥2,1 ≤ √
mlκl := bl, where ∥ · ∥ is the operator norm and ∥ · ∥2,1 is the sum of Euclidean

norms of the matrix columns.

Proof of Theorem 1: Inequality Eq. (4) can be obtained by using the Hoeffding’s inequality. To
show Eq. (5), let ∆z := zi − zj and

KD := sup
∆z

ζ̂(zi;σ)
⊤ζ̂(zj ;σ)− exp

(
−σ2∥zi − zj∥2

2

)

= sup
∆z

1

D

D∑

j=1

cos
(
σξ⊤j ∆z

)
− exp

(
−σ2∥∆z∥2

2

)
.

By McDiarmid’s inequality (the bounded difference is 2
D ), with the probability at least 1 − δ, we

have

KD ≤ E[KD] +

√
2

D
log

2

δ
≤ 2 ·RD({ξ 7→ cos(σξ⊤∆z)}) +

√
2

D
log

2

δ

≤ 2 ·RD({ξ 7→ σξ⊤∆z}) +
√

2

D
log

2

δ

≤ 2
|σ| · 2c0

∏L−2
l=1 κl√

D
+

√
2

D
log

2

δ
.

Lemma 1. Let H′
l,bl

= {z 7→ Wz : W ∈ Rml×pl , ∥W⊤∥2,1 ≤ bl} and ∥zi∥2 ≤ cl−1, i =
1, · · · , n. The metric entropy

logN
(
εl,H′

l,bl
, L2(Pn)

)
≤ b2l c

2
l−1

ε2l
ln(2mlpl).

Remark 1. Lemma 1 can immediately yield logN (εl,Hl,κl
, L2(Pn)) ≤ b2l c

2
l−1

ε2l
ln(2mlpl) with

bl =
√
mlκl.

Lemma 2. Assume the input zl−1 in l-th layer of the network architecture FL,κ satisfies
∥zl−1∥2 ≤ cl−1. If the metric entropy of the hypothesis class in l-th layer has an upper bound
logN (εl,Hl,κl

, L2(Pn)) ≤ g(εl, cl−1), where εl is the radius of covering balls for Hl,κl
, there

exists an ε-covering of FL,κ such that the metric entropy

logN (ε,FL,κ, L2(Pn)) ≤
L∑

l=1

g(εl, cl−1).

Theorem 4. Let r := c0 ·
L∏

l=1

κl. Under the assumptions in Lemma 2, the Rademacher complexity

of the hypothesis class FL,κ is

Rn(FL,κ) ≤
4√
n
+

12 · r log(r√n)√
n

·
[

L∑

l=1

(
√
ml ln(2mlpl))

2
3

] 3
2

.

Proof. By using Remark 1 and Lemma 2, we have

logN (ε,FL,κ, L2(Pn)) ≤
L∑

l=1

b2l c
2
l−1

ε2l
ln(2mlpl). (8)

16



Under review as a conference paper at ICLR 2024

Through Holder’s inequality, we have

L∑

l=1

(
blcl−1 ln(2mlpl)

L∏

j=l+1

κj

) 2
3

=

L∑

l=1

(
blcl−1

εl

√
ln(2mlpl)

) 2
3

·
(
εl
√
ln(2mlpl)

L∏

j=l+1

κj

) 2
3

≤
[

L∑

l=1

b2l c
2
l−1

ε2l
ln(2mlpl)

] 1
3

·
[ L∑

l=1

(
εl ln(2mlpl)

L∏

j=l+1

κj

)

︸ ︷︷ ︸
ε

] 2
3

⇒
[ L∑

l=1

(
blcl−1 ln(2mlpl)

L∏

j=l+1

κj

) 2
3
]3

1

ε2
≤

L∑

l=1

b2l c
2
l−1

ε2l
ln(2mlpl)

and equality can be achieved when we choose

εl =

(
b2l c

2
l−1

∏L
j=l+1 κ

−1
j

) 1
3

ε

L∑
l=1

(
blcl−1 ln(2mlpl)

∏L
j=l+1 κj

) 2
3

and hence
[ L∑

l=1

(
blcl−1 ln(2mlpl)

L∏

j=l+1

κj

) 2
3
]3

1

ε2
=

L∏

l=1

κ2
l

[ L∑

l=1

(
blcl−1 ln(2mlpl)

l∏

j=1

κ−1
j

) 2
3
]3

1

ε2

= c20

L∏

l=1

κ2
l

︸ ︷︷ ︸
r2

[ L∑

l=1

(
√
ml ln(2mlpl))

2
3

]3
1

ε2

due to cl = c0 ·
∏l

j=1 κj (composition of Lipschitz continuous functions) and bl =
√
mlκl. Thereby

Eq. (8) concludes

logN (ε,FL,κ, L2(Pn)) ≤
r2

ε2
·
[

L∑

l=1

(
√
ml ln(2mlpl))

2
3

]3
.

According to the Localized Dudley’s Theorem, we have

Rn(FL,κ) ≤ 4α+ 12

∫ r

α

√
log (ε,FL,κ, L2(Pn))

n
dε

≤ 4√
n
+

12 · r log(r√n)√
n

·
[

L∑

l=1

(
√
ml ln(2mlpl))

2
3

] 3
2

by choosing α = 1√
n

.

Proof of Theorem 2: Define Gnk
:= sup

f∈F̂+
L,κ(γ,ν)

E[ℓ2,γ(fk(X)) | Y = k]− 1
nk

∑
yi=k

ℓ2,γ(fk(xi)).

By the McDiarmid’s inequality (the bounded difference is 2r
nk

), with probability at least 1 − δ
K , we

have

Gnk
≤ E[Gnk

] + 2r

√
1

2nk
log

2K

δ

≤ 2 ·Rnk
(πk ◦ ℓ2,γ ◦ F̂+

L,κ(γ, ν)) + r

√
2

nk
log

2K

δ
,

(9)

where πk denotes the k-th coordinate projection.
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On the one hand, Rnk
(πk ◦ ℓ2,γ ◦ F̂+

L,κ(γ, ν)) ≤ Rnk
(FL,κ) since both πk and ℓ2,γ are Lipschitz

continuous with Lipschitz constant 1, and F̂+
L,κ(γ, ν) ⊂ FL,κ. Thereby,

E
[
ℓ2,γ(f̂k(X)) | Y = k

]
≤ 1

nk

∑

yi=k

ℓ2,γ(f̂k(xi)) + 2 ·Rnk
(FL,κ) + r

√
2

nk
log

2K

δ

:=
1

nk

∑

yi=k

ℓ2,γ(f̂k(xi)) + ϑnk
(δ).

(10)

Proof of Theorem 3: We skip the proof of Statement (1) since it can be immediately derived from
Eq. (10) with the hypothesis class F̂+

L,κ(γ − ν − ϑ∗, ν). Now let’s work on the proof of Statement
(2), which will be divided into 2 parts. We define f̂ , f̄ ∈ F̂+

L,κ(γ − ν − ϑ∗, ν) be the minimizer of

R̂ℓ1(f) :=
1
n

∑n
i=1

∑K
k=1 ℓ1(fk(xi)) and 1

K

∑K
k=1 E[ℓ1(fk(X))], respectively.

i) This part is to bound Rℓ1(f̂)− min
f∈F+

L,κ(γ−ν̃−2ϑ∗,ν̃)
Rℓ1(f), where ν̃ ∈ [0, γ − 2ϑ∗].

Let’s first prove the statement: with probability at least 1− δ,

F+
L,κ(γ − ν̃ − 2ϑ∗, ν̃) ⊂ F̂+

L,κ(γ − ν − ϑ∗, ν). (11)

Proof. On the one hand, for any f̃ ∈ F+
L,κ(γ − ν̃ − 2ϑ∗, ν̃), we have

P(f̃k(X) < 0 | Y = k)− (γ − ν̃ − 2ϑ∗) ≤ E[ℓγ−ν̃−2ϑ∗(f̃k(X)) | Y = k] ≤ ν̃

⇒ P(f̃k(X) < 0 | Y = k) ≤ γ − 2ϑ∗.

On the other hand, for any f̆ ∈ F̂+
L,κ(γ − ν − ϑ∗, ν), similar to the prove of Eq. (10), with low

probability at most δ, we have

E[ℓγ−ν−ϑ∗(f̆k(X)) | Y = k] ≤ 1

nk

∑

yi=k

ℓγ−ν−ϑ∗(f̆k(xi))− ϑnk
(δ)

≤ ν − ϑnk
(δ)

⇒ P(f̆k(X) < 0 | Y = k)− (γ − ν − ϑ∗) ≤ ν − ϑnk
(δ)

⇒ P(f̆k(X) < 0 | Y = k) ≤ γ − ϑ∗ − ϑnk
(δ),

thus with probability at least 1− δ, we have

P(f̆k(X) < 0 | Y = k) > γ − ϑ∗ − ϑnk
(δ) ≥ γ − 2ϑ∗ ≥ P(f̃k(X) < 0 | Y = k),

which implies F+
L,κ(γ − ν̃ − 2ϑ∗, ν̃) ⊂ F̂+

L,κ(γ − ν − ϑ∗, ν).

Therefore, with probability 1− δ, the following inequality holds

Rℓ1(f̂)− min
f∈F+

L,κ(γ−ν̃−2ϑ∗,ν̃)
Rℓ1(f) = Rℓ1(f̂)− R̂ℓ1(f̂) + R̂ℓ1(f̄)−Rℓ1(f̄)

+ R̂ℓ1(f̂)− R̂ℓ1(f̄) (12)

+Rℓ1(f̄)− min
f∈F+

L,κ(γ−ν̃−2ϑ∗,ν̃)
Rℓ1(f) (13)

≤ 2 sup
f∈FL,κ

|Rℓ1(f)− R̂ℓ1(f)|,

because Eq. (12) is non-positive (f̂ is an empirical minimizer), and Eq. (13) is non-positive with
probability 1− δ due to the fact of Eq. (11) and f̄ is a minimizer in F̂+

L,κ(γ − ν − ϑ∗, ν).

Let Fsum,ℓ1
L,κ := {x 7→ ∑K

k=1 ℓ1(fk(x)) : f = (f1, · · · , fK) ∈ FL,κ} be a space in which a
Lipschitz continuous function (the Lipschitz constant is

√
Kc) is applied on the function vector
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f ∈ FL,κ. Thus Rn(Fsum,ℓ1
L,κ ) ≤

√
Kc ·Rn(FL,κ). Following the similar proof for Eq. (9) (now

the bounded difference is 2
√
Kcr/n), with probability 1− δ we have

sup
f∈FL,κ

|Rℓ1(f)− R̂ℓ1(f)|

≤ 2Rn(Fsum,ℓ1
L,κ ) + 2

√
Kcr

√
1

2n
log

2

δ
≤ 2

√
KcRn(FL,κ) + 2

√
Kcr

√
1

2n
log

2

δ
,

(14)

and hence with probability at least 1− 2δ,

Rℓ1(f̂)− min
f∈F+

L,κ(γ−ν̃−2ϑ∗,ν̃)
Rℓ1(f) ≤ 4

√
KcRn(FL,κ) + 4

√
Kcr

√
1

2n
log

2

δ
. (15)

ii) This part is to bound min
f∈F+

L,κ(γ−ν̃−2ϑ∗,ν̃)
Rℓ1(f)− min

f∈F+
L,κ(γ−ν̃,ν̃)

Rℓ1(f).

Let f in = argmin
f∈F+

L,κ(γ−ν̃−2ϑ∗,ν̃)

Rℓ1(f) and fout = argmin
f∈F+

L,κ(γ−ν̃,ν̃)

Rℓ1(f). Note that f in,fout ∈

FL,κ. Thus

min
f∈F+

L,κ(γ−ν̃−2ϑ∗,ν̃)
Rℓ1(f)− min

f∈F+
L,κ(γ−ν̃,ν̃)

Rℓ1(f)

= Rℓ1(f
in)−Rℓ1(f

out)

= Rℓ1(f
in)− R̂ℓ1(f

in) + R̂ℓ1(f
out)−Rℓ1(f

out) + R̂ℓ1(f
in)− R̂ℓ1(f

out)

≤ 2 sup
f∈FL,κ

|Rℓ1(f)− R̂ℓ1(f)|+ R̂ℓ1(f
in)− R̂ℓ1(f

out)

(16)

Define R̃(f in,fout) := R̂ℓ1(f
in)− R̂ℓ1(f

out) = 1
n

n∑
i=1

K∑
k=1

ℓl(f
in
k (xi))− ℓ1(f

out
k (xi)). Since

∣∣∣∣∣
K∑

k=1

ℓl(f
in
k (xi))− ℓ1(f

out
k (xi))−

K∑

k=1

ℓl(f
in
k (x′

i))− ℓ1(f
out
k (x′

i))

∣∣∣∣∣

=

∣∣∣∣∣
K∑

k=1

ℓl(f
in
k (xi))− ℓ1(f

in
k (x′

i))−
K∑

k=1

ℓl(f
out
k (xi))− ℓ1(f

out
k (x′

i))

∣∣∣∣∣

≤
K∑

k=1

∣∣ℓl(f in
k (xi))− ℓ1(f

in
k (x′

i))
∣∣+

K∑

k=1

∣∣ℓl(fout
k (xi))− ℓ1(f

out
k (x′

i))
∣∣

≤ 2

K∑

k=1

|ℓl(fk(xi))− ℓ1(fk(x
′
i))| here f = (f1, . . . , fK)⊤ ∈ FL,κ

≤ 2

K∑

k=1

c|fk(xi)− fk(x
′
i)| ℓ1 is a c-Lipschitz continuous function

≤ 2c

K∑

k=1

∥(WL)k,·∥2 ·
(

L−1∏

l=1

κl

)
∥xi − x′

i∥2 (WL)k,· denotes k-th row of matrix WL

≤ 4c
√
Kc0

L∏

l=1

κl = 4
√
Kcr,
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by McDiarmid’s inequality (the bounded difference is 4
√
Kcr/n), with the probability at least 1−δ,

we have

R̃(f in,fout) ≤ E[R̃(f in,fout)] + 4
√
Kcr

√
1

2n
log

2

δ

≤ 2Rn

(
x 7→

K∑

k=1

ℓ1(f
in
k (x))− ℓ1(f

out
k (x))

)
+ 4

√
Kcr

√
1

2n
log

2

δ

≤ 4Rn(Fsum,ℓ1
L,κ ) + 4

√
Kcr

√
1

2n
log

2

δ

≤ 4
√
Kc ·Rn(FL,κ) + 4

√
Kcr

√
1

2n
log

2

δ
.

(17)

Therefore, together with Eq. (14) and Eq. (17), Eq. (16) can be bounded as follows:

min
f∈F+

L,κ(γ−ν̃−2ϑ∗,ν̃)
Rℓ1(f)− min

f∈F+
L,κ(γ−ν̃,ν̃)

Rℓ1(f)

≤ 2 sup
f∈FL,κ

|Rℓ1(f)− R̂ℓ1(f)|+ R̂ℓ1(f
in)− R̂ℓ1(f

out)

≤ 4
√
Kc ·Rn(FL,κ) + 4

√
Kcr

√
1

2n
log

2

δ
+ 4

√
KcRn(FL,κ) + 4

√
Kcr

√
1

2n
log

2

δ

= 8
√
Kc ·Rn(FL,κ) + 8

√
Kcr

√
1

2n
log

2

δ
.

(18)

Combining Eq. (15) in Part (i) and Eq. (18) in Part (ii), we conclude that, with probability at least
1− 3δ,

Rℓ1(f̂)− min
f∈F+

L,κ(γ−ν̃,ν̃)
Rℓ1(f)

≤ 4
√
Kc ·Rn(FL,κ) + 4

√
2cr

√
1

2n
log

K

δ
+ 8

√
Kc ·Rn(FL,κ) + 8

√
Kcr

√
1

2n
log

2

δ

≤ 12
√
Kc ·Rn(FL,κ) + 12

√
Kcr

√
1

2n
log

2

δ
.

(19)
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