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Abstract

Clinical and regulatory discussions about trustworthy therapeutic Al speak in ethical and legal terms, while technical work
reports performance through AUC, F1, PPV, or survival concordance. The mapping between these numerical summaries and the
social norms they support is implicit and often incoherent. This gap is acute for therapeutic Al systems built on spatially resolved
data—such as digital pathology, radiology, and spatial omics—where models guide target selection, biomarker discovery, and
responder prediction.

We provide a technical-normative analysis of common evaluation metrics. We formalize metric families by their aggregation
operations: expectation-based (expected loss; AUC as a U-statistic over pairs), quantile/tail-based (median, upper quantiles,
CVaR), supremum-type (worst-group risk, minimax regret), thresholded confusion-matrix ratios (PPV/precision, sensitivity,
F1), and ranking metrics (top-k, average precision). For each family we identify the implicit social norm: maximizing average
benefit, protecting typical patients, guarding against worst-case harms, or prioritizing top-predicted benefit.

We prove an incompatibility result showing that high AUC can coexist with very low worst-group sensitivity under
deployment-relevant thresholding, and we illustrate further incompatibilities via clinical examples. We then propose a met-
ric design framework: (i) explicit normative declarations, (ii) multi-objective evaluation with subgroup and tail-risk constraints,
and (iii) deployment checklists tying thresholds to institutional responsibilities. The goal is not to replace ethical debate with

formulas, but to make explicit and auditable the value judgments encoded by metric choices.

1 Introduction

liability ambiguity when failures occur (36). The problem is
acute in therapeutic contexts, where spatially resolved data

Therapeutic Al systems support clinical decisions from biomarker introduce heterogeneity and where deployment decisions di-

discovery in digital pathology to stratifying treatment response

in radiology and spatial omics. These systems are typically
evaluated using area under the ROC curve (AUC), F1, posi-
tive predictive value (PPV), sensitivity/specificity, or survival
concordance indices (C-index). The survival C-index is a pair-

wise concordance measure over comparable time-to-event pairs,

with censoring-specific nuances such as comparable-pair def-
initions and inverse probability of censoring weighting (19; 3;
44).

Meanwhile, regulatory frameworks and clinical institu-
tions discuss trustworthy Al in the language of ethics, ac-
countability, and patient safety (16; 28; 11). The mapping be-
tween these two registers—scalar performance metrics and
social norms—is usually left implicit. A system with AUC
> 0.90 may be declared “clinically acceptable,” yet the nor-
mative work such a threshold performs is rarely made ex-
plicit.

This gap creates predictable failures: systems with strong
average metrics can exhibit unacceptable subgroup perfor-
mance (35), violate implicit standards of care (45), or create

rectly affect treatment selection and patient stratification.

Our contribution. We formalize the normative implica-
tions of standard evaluation metrics for therapeutic AI. We
show that metric families encode distinct social norms about
acceptable risk, benefit distribution, and subgroup protection;
we include a formal construction demonstrating incompati-
bility between high AUC and worst-group sensitivity at plau-
sible deployment thresholds; and we propose a metric design
and reporting framework that ties evaluation to institutional
accountability.

Scope. We focus on supervised prediction in therapeutic
contexts using spatial/high-content data. We briefly relate the
survival C-index to pairwise concordance but do not develop
censoring-specific theory. Our analysis applies when deploy-
ment affects individual care or population-level therapeutic
strategies.



2 Metric Families: Formal Definitions

We formalize aggregation operations underlying common met-
rics and note their mathematical properties. Let (X,Y, G) ~
P denote the population distribution over features, labels, and
subgroup G € G = {G4,...,Gy}. Let P denote the empiri-
cal distribution induced by a test dataset D = { (4, Y, 9:) }7 -
Let f : X — [0,1] be apredictorand ¢ : [0,1]x{0,1} — Ry
aloss (e.g., absolute error or log loss). We use Ep[-] and E 5[]
to denote population and empirical expectations, respectively.
We present population definitions for conceptual clarity and
report empirical U-statistic/plug-in estimators in practice; un-
less noted, examples refer to empirical estimates.

2.1 Expectation-Based Aggregation

Expected loss (mean risk). The population and empirical risks
are

R (f) = Epl(f(X),Y)],
Riean () = Ep[t(f(X), Y)].

Under 0-1 loss this is error rate; under log loss, cross-entropy.
AUC as a U-statistic over pairs. The population AUC can
be written as

AUC(f) =Pp[f(XT) > f(X7)]+3Pp[f(XT) = F(X7)],

with independent draws X ~ P(- | Y=1), X~ ~ P(- |
Y'=0). The empirical U-statistic estimator is

LY Y (W) > fa)

N N— Y, =1j:Y;=0
+ 31 (@) = F(@)})

where ny and n_ are the numbers of positives and nega-
tives. AUC is non-decomposable over i.i.d. examples even
though it is expectation-based (17). For survival analysis, the
C-index analogously computes concordance over comparable
pairs with corrections for censoring (19; 3; 44).

Subgroup decomposition. Let AUC(f | g, h) denote the
concordance for positive examples from group g versus neg-
ative examples from group h. Then

AUC(f) = > wyn AUC(f | g, h),

g,heg
. _ P(G=g,Y=1)P(G=h,Y=0)
9:h = P(Y=1)P(Y =0)

AUC(f) =

Weights depend on subgroup prevalences P(G=g, Y =y).
Calibration error. Idealized integrated calibration error (ICE)
with L1 norm is

ICE(f) = Ep[|f(X) —Ep[Y'| f(X)][].

Empirical estimates such as expected calibration error (ECE)
and its adaptive variants are binned plug-in estimators; their

magnitudes depend on binning and can be biased (often down-
ward), so values are not directly comparable across binning
schemes (15; 34). Post-hoc methods (isotonic regression, beta
calibration) estimate a calibration mapping on held-out data;
they are not themselves calibration error estimators (30; 25).
The Brier score E[(Y — f(X))?] admits a calibration—refinement
decomposition (29).

2.2 Quantile and Tail-Risk Aggregation

Quantiles. For o € (0, 1), the a-quantile of the loss £(f(X),Y)
under P is

Qu(f) = inf{t € R: Pp[l(f(X),Y) < 1] > a}.

Quantiles (VaR) are not coherent risk measures (they fail sub-
additivity) and are non-convex in distributions, which affects
robustness and constrained optimization.

CVaR. Conditional Value-at-Risk at level « is the expected
loss in the (1—«) upper tail; we adopt the Rockafellar-Uryasev
formulation (39):

CVaRa(f) = min {T + ﬁ Ep[(6(f(X),Y) - 7)s] } ,

TER

where (z)4+ = max(0, z). CVaR is coherent and convex.

2.3 Supremum-Type Aggregation

Worst-group risk and minimax regret. For subgroups G,
Rsup(f) = I;leagx EP(»\G:g) [E(f(X)a Y)]

Minimax regret compares to the subgroup-optimal predictor
in a hypothesis class H:

Brcgea(f) = max (Ep( ) [6(/(X), V)]~ jnf,
Both Ry, and CVaR are coherent risk measures (monotone,

subadditive, positive homogeneous, translation invariant). This
mathematical structure aligns with “safety-first” reasoning;

normative guarantees (e.g., anti-discrimination) require that

subgroups align with protected classes and that constraints be

enforced.

2.4 Thresholded Confusion-Matrix Ratios

Ratios such as PPV (precision), sensitivity (TPR), specificity
(TNR), F1, and Jaccard are functions of confusion-matrix
counts at a threshold and are non-decomposable; some are
conditional means (e.g., TPR is an average over Y =1) but all
are threshold-dependent and induce trade-offs (31; 32). PPV’s
dependence on prevalence is salient clinically. For complete-
ness, F1 = 2-%’%; under certain score-distribution
assumptions, the F1-optimal threshold approximately equal-
izes precision and recall.

inf B =) [£(f'(X), V)]



3.3 Supremum Metrics: Guard the Worst-Off

AUC (pairwise U-stat; non-decON¥st-group or minimax criteria encode: every identifiable

Family Aggregation Examples

Expectation  E[] Error, cross-entropy;
Quantile/tail  Q., CVaR Median, 95th pct., CVaR
Supremum maxgeg E[- | G=g] Worst-group risk, regret
Conf.-ratio Thresholded ratios PPV, TPR/TNR, F1, Jaccard
Ranking Weighted by rank Precision@k, AP

subgroup must meet a minimum standard; no group may be
systematically disadvantaged. CVaR and worst-group risk are
coherent risk measures (4), aligning with safety-first norms;
when subgroups align with protected classes and constraints

Table 1: Metric families and aggregation operations.

2.5 Ranking-Based Aggregation

Top-k and average precision (AP). Let (x;),
corresponding to the ¢th highest score. Then

k
Z e =1,

where Pos is the number of positives (9). In practice, ties are
handled by consistent tie-breaking or credit sharing; imple-
mentation choices can affect AP.

Summary and bridge. Table 1 summarizes these fam-
ilies. We now use these aggregation operators as the orga-
nizing principle for explicating the social norms each metric
family operationalizes.

Y(i)) be the pair

Precision@k =

??‘\»—t

7 y(z) 1

3 Implicit Social Norms

Each metric family encodes an implicit social norm about risk
distribution and benefit allocation.

3.1 Expectation-Based Metrics: Average Ben-
efit

Minimizing E[¢] or maximizing AUC operationalizes a utili-
tarian norm: maximize aggregate benefit. AUC is invariant to
any strictly monotone transform of scores; thus it ignores ab-
solute risk calibration and any loss asymmetries tied to clin-
ical thresholds. Its threshold-agnostic nature can conflict with
context-specific decision thresholds and asymmetric costs (46).
For survival tasks, the C-index shares the pairwise concor-
dance view over comparable pairs, and—like AUC—can be
insensitive to systematic subgroup mis-ranking (19; 44).

3.2 Quantile/Tail Metrics: Protect the Typical

Minimizing the median or constraining upper-tail quantiles
encodes: the typical patient (or, e.g., 95%) should receive ac-
ceptable care, even if a small tail experiences higher loss.
Quantile constraints protect most patients but can still sacri-
fice small, identifiable minorities; for anti-discrimination aims,

supremum-type constraints are more appropriate. CVaR strength-

ens tail protection by focusing on the severity of worst cases.

E Precisi

are enforced, they operationalize anti-discrimination require-
ments.

3.4 Thresholded Ratios: Operating-Point Guar-
antees

Confusion-matrix ratios (PPV, TPR, F1) encode: performance

at a chosen operating threshold matters, with explicit preci-

s10n—reca11 trade-offs. Optimizing F1 can increase false posi-
Otn Ve in low- -prevalence settings and may be misaligned with

clinical utility (22). Decision curve analysis links a risk-threshold

to utilities via net benefit, mapping TPR and FPR to clinical

value at that threshold (46).

3.5 Ranking Metrics: Prioritize Scarce Bene-
fits

Maximizing Precision@k or AP encodes: correctly identify-
ing top-ranked cases is prioritized (e.g., scarce trial slots),
even if lower-ranked performance is modest.

4 Incompatibilities with Clinical and Le-
gal Norms

We formalize and illustrate incompatibilities between stan-
dard metrics and explicit clinical/legal expectations. In de-
ployment, a single global operating threshold (and absten-
tion/deferral policy) is typically used across groups; incom-
patibilities should be demonstrated under such rules.

4.1 A Formal Incompatibility

Proposition 1 (High AUC with low worst-group sensitivity).
Fix 6 € (0,1) and e € (0,1). There exists a binary classifica-
tion problem with two groups G € {A, B}, P(G=B) = ¢,
equal class prevalence across groups P(Y=1 | G=A) =
P(Y=1| G=B) € (0,1), and a scoring function f such that
AUC(f) > 1 — 6 (indeed 1 — § + 162) while the sensitivity
(TPR) for group B at some fixed global deployment threshold
satisfies TPRp < e.

Proof sketch. AUC decomposition. Let AUC(f | g, h) be the
concordance for positives from g versus negatives from h.
Then

AUC(f) = wyn AUC(f | g, h),

g,h

P(G=g,Y=1)P(G=h,Y=0)
P(Y=1)P(Y=0)

Wg h =



Under equal class prevalence across groups, wa a = (1—6)2,
WA,B = (1 — 5)5, WR,A = (5(1 — (5), and WRB,B = (52.

Score construction. Let group A be perfectly separated:
f(X) € [2,3] for Y=1 and f(X) € [1,2) for Y=0. Let
group B be uninformative: f(X) ~ UJ0, 1] independent of
Y. Then AUC(f | A,A) = 1, AUC(f | A,B) =1 (any A
positive scores above any B negative), AUC(f | B,A) =0
(any B positive scores below any A negative), and AUC(f |
B, B) = 0.5. Therefore

AUC(f)=(1—6)* -1+ (1—=6)35-1+6(1—-6)-0+5%-0.5

=1-6+1>1-3.

Global threshold and group-B TPR. For any threshold
7 € [0,1], TPRg = P[U(0,1) > 7] = 1 — 7. Choosing a
single global threshold 7 = 1 —¢ yields TPR z = €. For clin-
ically plausible global thresholds maximizing discrimination
on pooled data (see Corollary 1), we obtain TPRp =0. O

Corollary 1 (Plausible global selection rules). In the setting
of Proposition 1, any single global threshold T that maxi-
mizes Youden’s J = TPR — FPR on pooled data satisfies
7 € [2, 3], yielding TPRp = 0. Likewise, any rule that sets
a global threshold to achieve an overall PPV target or over-
all FPR < 0 for some n < 1 — § selects 7™ > 2, implying
TPRp = 0.

Proof sketch. For 7 € [2,3], TPR4 = 1, FPR4 = 0, and
TPRp = FPRp = 0; hence J = 1 — §, which is maximal
compared to 7 < 2 (where J < 1—4)or7 < 1 (where J =0
due to equal increases in pooled TPR and FPR). Any overall
PPV or FPR target below that achievable with 7 < 2 requires
T > 2, which forces TPRg = 0. ]

The construction shows that very high AUC can coexist

with vanishing subgroup sensitivity under deployment-relevant,

single-threshold rules.

4.2 Minimum Standard Violations

Clinical norm. No patient should fall below a minimum stan-
dard given the care context.

Metric conflict. Expectation-based metrics permit arbi-
trarily poor performance on subsets if the average remains
high.

Example 1 (Spatial pathology bias). A tumor detection model
performs with sensitivity 0.98 on 90% well-stained slides but
only 0.40 on 10% poorly stained slides from under-resourced
sites; the average sensitivity is 0.922. This appears strong,
yet 10% of patients receive systematically substandard care.
Overall AUC can remain high while worst-group sensitivity is
low; subgroup AUC and worst-group constraints are needed
(17; 40). A single threshold chosen on pooled validation to
meet a global sensitivity or PPV target can mask these gaps
because mixture weighting over-represents the majority site’s
distribution. Empirically, stain and site variability are well
documented (43; 5).

Legal implication. Consistent failures in identifiable con-
texts (e.g., poor staining) can constitute negligence regardless
of strong averages (14; 27).

4.3 Subgroup Fairness Failures

Clinical norm. Identifiable demographic or clinical subgroups
should not be systematically disadvantaged solely due to al-
gorithmic design (28; 6; 37).

Metric conflict. AUC or F1 can remain strong despite large
disparities across subgroups.

Example 2 (Responder prediction heterogeneity (PPV dis-
parity)). Suppose 1000 patients: 700 White, 300 Black. At a
single deployment threshold, the model predicts positive for
400 White patients with 300 true positives (PPVy,=0.75) and
for 200 Black patients with 90 true positives (PPVp=0.45).
Overall PPV is 390/600 = 0.65. This strong overall PPV
masks a large subgroup disparity. PPV depends on base rates;
disparities can arise from true prevalence differences even
when TPR/FPR are equal. Report both threshold-invariant
metrics (e.g., AUC, subgroup AUC) and threshold-dependent
metrics (e.g., TPR, PPV) by subgroup.

Training under imbalance can worsen minority perfor-
mance if minority data are noisier or underrepresented (35;
20).

4.4 High Average, Catastrophic Tail

Clinical norm. Rare but severe failures can be unacceptable if
preventable (16).

Metric conflict. Mean-based metrics are insensitive to tails.
Consider ¢ with /=0 for correct care, /=10 for missing ag-
gressive cancers. Model fi: P[¢=10] = 0.5%; model fo:
P[¢=10] = 2.5%; both tuned so E[¢] = 0.25. Mean risk is
identical, but CVaRg 95(f2) > CVaRg.95(f1), revealing the
clinically worse tail (39).

4.5 Systematic Bias in Ranking

With equal prevalence and similar average TPR, under-representation

at top-k can arise from score distribution shifts or miscalibra-
tion.

Example 3 (Ranking bias in treatment prioritization). A model
ranks candidates for a scarce trial; groups A and B have
equal prevalence. The top-100 list includes 80 from A and 20
from B. High AUC is compatible with such disparity when
scores are miscalibrated or variances differ across groups.
Under exchangeability (e.g., if, conditional on'Y, score dis-
tributions are identical across groups), the expected top-k
composition is proportional to group share; deviations then
suggest potential allocation disparity. We recommend cau-
tious two-sample proportion tests, complemented by calibra-
tion and subgroup audits (41).



S Framework for Normative Alignment 5.3 Deployment Checklists and Responsibilities

* Override and escalation. If subgroup sensitivity falls

below a clinical threshold (e.g., < 0.80), deploy only
Pair each reported metric with the norm it operationalizes: with mandatory human review for affected subgroups
and documented mitigation plans.

5.1 Explicit Normative Declaration

* AUC: average discriminative ability across pairwise com-

parisons; threshold-agnostic; not a clinical utility. * Liability allocation. Deploying with known subgroup
failures shifts responsibility to the institution; strong
average AUC does not excuse foreseeable subgroup harms
threshold . (36; 27; 14). Regulatory frameworks (e.g., FDA/IMDRF
GMLP for SaMD; EU MDR) locate responsibility for
known failure modes and mandate postmarket surveil-
lance (21; 13).

* Worst-group error: ensures no subgroup exceeds error

* Precision@k: prioritizes correct identification of top k
patients for scarce interventions.

* Decision curves: link thresholds to utilities via net ben- L . . . .
efit, relating TPR/FPR to net clinical benefit at a speci- * Monitoring and drift. Continuously monitor group-specific
fied risk threshold (46) and intersectional metrics with predefined triggers for

retraining or rollback; publish periodic reports.

5.2 Multi-Objective Evaluation

Definition 1 (Constrained evaluation). A model f is clini- 6 Discussion

cally acceptable if, under a single global operating point (and
a single abstention/deferral policy) applied across all sub-
groups,

Expectation-based metrics (AUC, cross-entropy) dominate be-

cause they enable scalable stochastic optimization; quantile,

supremum, and non-decomposable objectives are harder to

Ep[t(f(X),Y)] < Tave, ) Sptimize and .audit (40; 31). Ye.t spatial/hig.h-content. moda}li-

ies (whole-slide pathology, radiology, spatial transcriptomics)

P Ep(ja=gll(f(X),Y)] < Tgroup, () exhibit preparation artifacts, site shifts, anatomical variabil-

ity, and rare morphologies. Average metrics can obscure these

Qo.95(f) < Tiait,  CVaRo.o5(f) < Tcgar' taBills; subgroup gd tai%—risk const%aints surface them and bet-

3) ter align with safety requirements (43; 5). Ethical frameworks

are not interchangeable: utilitarian, maximin, and allocation-

focused norms correspond to distinct metric families (expec-

tation, suprema/CVaR, rankings). Scalarizing objectives can

aid optimization, but for governance it risks hiding trade-offs
(24;7; 18).

Setting (Tavg, Teroups Ttail, Tovar) Fequires deliberation among
clinicians, patients, ethicists, and regulators, and should be
documented in the governance plan.

Implementation (concise guide).

e Audit. Pre-specify subgroups (including salient inter-
sections) and primary/secondary endpoints. Enforce min- .
imum N for reporting; suppress or flag metrics below 7 Conclusion

this N.
Standard evaluation metrics for therapeutic Al encode spe-

* Training. If constraints fail, retrain under group-robust/tail- cific social norms about acceptable risk, benefit distribution,
robust objectives (Group DRO; CVaR minimization) and subgroup protection. These implicit norms can conflict
(40; 47); reductions approaches and subgroup fairness with clinical and legal expectations that no patient falls be-
auditing can help (1; 23). low minimum standards, high-risk subgroups receive protec-

tion, and systematic bias is unacceptable regardless of aver-
ages. Our incompatibility construction (Proposition 1) illus-
trates why average-discrimination metrics alone are insuffi-
cient; explicit subgroup and tail-risk constraints are necessary
for accountable deployment.

We proposed an auditable framework that combines ex-
plicit normative declarations with multi-objective evaluation
(average, subgroup, and tail constraints including quantiles
and CVaR) and deployment checklists tying thresholds to in-
stitutional responsibilities. The goal is not to replace ethical
debate with formulas, but to ensure that what is measured
matches what clinical practice claims to value.

* Statistics. Report uncertainty via DelL.ong intervals/tests
for AUCs and subgroup AUC comparisons (10); Wil-
son or Newcombe intervals for proportions (Clopper—
Pearson is conservative) (48; 33); use stratified boot-
strap for complex metrics; control multiplicity in sub-
group audits.

 Safeguards. Implement abstention/deferral triggered by
uncertainty or OOD scores (e.g., calibrated confidence
thresholds, conformal p-values (2)). Set thresholds to
satisfy subgroup constraints on the non-abstained set;
log deferrals and outcomes for monitoring.
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