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Abstract

We introduce AI University (AI-U), a flexible framework for Al-driven course content deliv-
ery that adapts to the classes’ instructional styles. At its core, AI-U combines a fine-tuned
large language model (LLM) with retrieval-augmented generation (RAG) and a reason-
ing synthesis model to generate instructional style-aligned responses from lecture videos,
notes, and textbooks. Using a graduate-level finite-element-method (FEM) course as a case
study, we present a scalable pipeline to systematically construct training data, fine-tune an
open-source LLM with Low-Rank Adaptation (LoRA), and optimize its responses through
RAG-based synthesis. Our evaluation—combining cosine similarity, LLM-based assessment,
expert review, and user studies—demonstrates strong alignment with course materials. We
have also developed a prototype web application, available at (link removed for anonymous
submission), that enhances the instructional content of the Al-generated responses with
references to relevant sections of the course material and clickable links to time-stamped
instances of the open-access video lectures. Our expert model is found to be higher scoring
by a quantitative measure on 86% of test cases. An LLM judge also found our expert model
to outperform state-of-the-art open source models approximately four times out of five. Hu-
man evaluation by advanced users showed a preference for our expert model approximately
twice as often as for the competing open-source model. AI-U offers a scalable approach to
Al-assisted education, paving the way for broader adoption in higher education. By present-
ing our framework in the setting of a class on FEM—a subject that is central to training
PhD and Master students in engineering science—we offer a template with potential for
extension across STEM fields.

1 Introduction

Large language models (LLMs) have risen to positions of dominance across a wide range of applications,
shaping everyday interactions with artificial intelligence. Most widely available LLMs are trained on an
extensive corpus of internet-sourced data, enabling them to achieve remarkable accuracy in general tasks.
However, there is a growing need for domain-specific LLMs tailored to specialized knowledge areas. As LLMs
continue to evolve, the next frontier lies in developing models optimized for task-specific roles. This shift
is further reflected in the emergence of agentic workflows, where multiple specialized models collaborate to
complete complex tasks. Thus, developing task-specific LLMs becomes essential. In this work, we contribute
to this trend by tailoring a model to the unique instructional style and learning objectives of a specific
university course in engineering science.

Fine-tuning LLMs for domain-specific applications offers several key advantages. Industries can train these
models on proprietary data, ensuring they align with specialized knowledge and business needs while also
adopting a desired style and behavior. Additionally, fine-tuning allows for the incorporation of new informa-
tion beyond the original training cutoff, which is particularly crucial as LLMs have now reached a stage where
they encompass vast internet-based knowledge (Ding et al.,[2023). Rather than training models from scratch,
fine-tuning provides a more efficient way to update and refine them with the latest data. Furthermore, this
approach enables the creation of highly personalized Al assistants tailored to the style of individual users,
enhancing adaptability and user experience.
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These benefits extend to the classroom, where there is a growing demand for scalable, accurate, and inter-
active teaching aids that support educators and enhance student learning while taking into account student
privacy and equitable access. Here, we propose a structured framework, AI University (AI-U), designed for
university courses and adaptable to instructors’ needs. We apply this framework to a graduate-level course on
the Finite Element Method, a numerical technique for solving partial differential equations (PDEs) that is a
widely used computational framework for engineering simulations (see Section “The Finite Element Method”
for background). In particular, we aim to mirror the style of a course taught over multiple semesters, with
recorded lectures available online. While existing LLMs have a broad understanding of the subject mat-
ter based on publicly available knowledge, they lack the distinct instructional style of this course. This
includes the instructor’s approach to introducing new concepts, the preferred use of terminology, symbols
and mathematical techniques, and their unique conversational tone for instruction. To address this gap, we
propose a platform that integrates LLMs with retrieval-augmented generation (RAG) to create a customized
AT assistant tailored to the course. We use the evaluation metrics of cosine similarity and LLM-as-a-judge
in conjunction with human evaluation by domain-specific experts to demonstrate the effectiveness of AI-U.

The current study follows a static approach, where all course materials are available before fine-tuning the
LLM. However, the workflow is designed to be dynamic, allowing instructors to fine-tune the model with
initial course materials at the start of the semester and then continuously update it with new lecture notes,
or other content, through a RAG-based synthesis model with reasoning. The fine-tuning data is generated
through a pipeline that takes course materials and produces question-answer pairs used to fine-tune a domain-
expert LLM, which we call LLaMA-TOMMI-1.0 (Trained On Mechanics Materials Instructor). By combining
responses from LLaMA-TOMMI-1.0 with real-time retrieval of, and reasoning on, course-specific information,
our approach ensures that the assistant remains up-to-date and oriented with the evolving content of the
course, ultimately creating a more adaptive and personalized learning experience. We note that, while
proprietary models were explored for some portions of this work, the final workflow supports entirely open-
source resources and models, supporting local hosting for data privacy (Dorca Josa & Bleda-Bejar, [2024) as
well as equitable access to all learners.

Overall, AI-U represents an advance in integrating Al into education, enhancing both instructional efficiency
and, potentially, student engagement. Its main contributions include:

e A scalable Al-driven question-answer data generation pipeline to produce a domain-specific fine-
tuning dataset, with outputs verified by domain experts.

e A workflow in which a fine-tuned expert model, LLaMA-TOMMI-1.0, feeds into a RAG-based rea-
soning model for synthesis, enabling adaptable data updates and the generation of responses in the
style of the course with course-specific references.

« A prototype web application centered on RAG and a reasoning synthesis model that integrates Al-
generated responses with relevant course materials and open-access video lectures playable at the
related timestamps.

e A pipeline demonstration using a fine-tuned open-source model; additionally, the entire system can
easily be built with open-source tools, enabling local deployment and reducing privacy risks from
external data sharing.

e Our dataset and code are available on Huggingfaceﬂ and GitHulfl

2 Related Work

2.1 Large Language Models

Modern LLMs can be traced to the seminal work by [Vaswani et al.| (2017, its focus on the attention
mechanism and its ability to help scale training. This has led to the general trend of “bigger-is-better,” with

1Link removed for anonymous submission
2Link removed for anonymous submission
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an emphasis on more training data and larger models. Although proprietary models, such as the GPT series,
have until recently topped benchmark tests, the performance of open-source models such as BERT, LLaMA
(Grattafiori et al.,[2024), and DeepSeek (Bi et al., [2024; |Liu et al., 2024]) has steadily improved. It has become
commonplace to fine-tune a pre-trained base LLM for applications requiring domain-specific information.
The understanding that over-parameterized models reside on low intrinsic dimension (Aghajanyan et al.|
2020; |Li et al., 2018)) led to Low-Rank Adaptation (LoRA) (Hu et al.| [2021). LoRA is a parameter-efficient
fine-tuning method that adds low-rank matrices into the frozen layers of a pre-trained model. Additional
references or proprietary information can be provided to the base LLM through methods such as RAG (Lewis
et al.l 2021)). At a basic level, a RAG pipeline will take an input sequence, embed it using an embedding
model, and use a pre-trained retriever to find the top-k most relevant documents. These documents are
typically embedded offline using the same embedding model and stored for later use. The original query is
then augmented by the retrieved documents and used by a generator, typically an LLM, to produce the final
response.

2.2 Applications in Education

As generative Al technology has evolved, so too have examples of their use in higher education settings
(Chevalier et al.l 2024; |Wang et al.l 2024; [Watterson et al., |2025; Xu et al., 2024ajb; |Zerkouk et al., 2025)).
These include their use as debugging tools for computer science students (Yang et all 2024), simulating
a classroom environment for users (Zhang et al., 2024]), generating questions for students to test their
knowledge Witsken et al.[(2025) and serving as a teaching assistant (Hicke et al.l [2023; |Anishka et al.l |2024)).
We especially highlight the work by [Hicke et al.| (2023), combining a LLaMA-2 base model with supervised
fine-tuning, RAG and Direct Preference Optimization (DPO) to create an Al teaching assistant for an
introductory computer science course. Notably, their training data source consists of available question-
answer pairs from eight previous course semesters, which is not available for our course. Instead, our data
workflow will enable instructors to fine-tune a course assistant when historical data is not available, while
also delivering a platform whose functioning mirrors the course’s instructional style.

2.3 Shortcomings and Concerns on LLM use in Education

The advances notwithstanding, there remain concerns preventing the rapid adoption of LLMs in the class-
room. Commercial and third-party software bring concerns about data privacy and security, both for student
data as well as proprietary teaching material (Chanl [2023). Equitable access is another concern, with stu-
dents of higher socioeconomic status or Al literacy appearing to benefit the most (Yu et al., [2024). To
encourage students to use them over commercially available options, course-provided assistants will need
to be tailored for course-specific terminology, materials, and teaching styles. RAG-based approaches, while
relatively simple to implement, are limited by their context windows. While this has improved greatly
with recent LLMs, they still lack the ability to tailor a response based on a large corpus of reference data.
Xing et al. (2024) showed that knowledge graphs are one effective approach to improving scalability and
performance of RAG-based systems.

2.4 The Finite Element Method

The finite element method is a numerical technique to solve partial differential equations (PDEs) (Hughes),
1987; |Zienkiewicz et al., [2013). It leverages variational methods to convert a PDE from the strong form to
the weak form. The smoothness and differentiability requirements on the solution are relaxed by multiplying
the PDE with test functions and redistributing derivatives to these test function. Infinite dimensional PDEs
are furthermore reduced to finite-dimensional weak forms by introducing basis functions, which are typically
piecewise polynomials defined over finite subsets (elements) of the spatial domain. Time-dependence is
usually treated by discretizing the time interval of interest into a finite number of sub-intervals and using
integration schemes. These steps enable approximate, finite-dimensional solutions to PDEs with controllable
stability and accuracy.
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Figure 1: Overview of the AI University framework. Sections marked with a dashed line are performed once,
at the beginning.

3 Methods

3.1 Inquiry Pipeline

The inquiry pipeline is shown in Figure [Il A high-level summary is provided here, with additional details
in the sections below. The user’s query is first answered by an expert model, a fine-tuned LLM trained
to respond in the instructional style specific to the course. This expert-generated response, along with
the original user query, is then passed to a synthesis model via a carefully constructed synthesis prompt.
Within the synthesis pipeline, relevant context is first retrieved using the query through a RAG-based
pipeline from a database of embedded course materials. Next, leveraging the synthesis prompt, an LLM
integrates the expert model’s response with the retrieved context to produce an enhanced, unified answer.
This synthesized response includes relevant reference links pointing directly to specific sections of the course
materials, including video lectures.

3.2 Training Data

The training data generation pipeline is shown in Figure 2] We approach the generation of training data in
a manner similar to an instructor preparing course materials, by starting with the reference textbook for the
course. In this case, we choose a canonical work in the field [Hughes (1987). With the author’s permission,
we convert textbook PDF files to BITEX using commercially-available document conversion softwareﬂ We
leverage all material from the textbook, including exercises and examples, with the exception of the images.
Subject-matter-expert audits of the output and restructuring of the ITEX sections ensure data integrity.

Shttps://mathpix.com/
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Figure 2: Overview of the data generation framework. Sections marked with a dashed line are performed
once, at the beginning.

In addition to the textbook, we leverage course content with permission of the content creators. We obtain
transcripts of the course lectures from the online playlist, from which we generate a series of question-and-
answer pairs using ChatGPT 40 with the same workflow and prompts as the textbook material.

We meticulously generate question-answer pairs for each reference section using an LLM and the following
carefully architected workflow (Figure : Using prompt engineering to achieve the desired format and focus,
we generate questions for each section of reference material (Technical Appendix, Section “Textbook question
generation” for prompt). For each question, we retrieve reference material chunks from the available course
material using cosine similarity between the embedded prompt and reference material. Through prompt
engineering, we ensure that we only use the supplied reference material during answer generation and not the
LLM’s background knowledge of FEM (see Technical Appendix, Section “Textbook question generation for
prompt”). We used ChatGPT 4o for this study, because of its well-documented performance at multimodal
comprehension (OpenAl et all 2024 Shahriar et al. 2024). Any other LLM could be used although the
performance would differ, and would need careful testing.

We incorporate additional course-related coding assignments as training data to enhance the dataset. We
systematically generate question-answer pairs from existing course assignments using ChatGPT 4o0. To
ensure sufficient data coverage, three distinct prompting strategies are employed. The first prompt aims
to generate a comprehensive set of question-answer pairs with detailed coverage of key concepts. These
pairs are derived from coding assignments that provided a code template requiring modification (Technical
Appendix, Section “Coding question-answer generation prompt 1”). The second prompt focuses on creating
question-answer pairs that mirror the conceptual depth of the original coding assignments, ensuring that
the questions accurately assess the same knowledge areas (Technical Appendix, Section “Coding question-
answer generation prompt 2”). Since students have the flexibility to code in both C++ and Python, we
introduce a third prompt to generate question-answer pairs specifically tailored for Python, aligning with
the structure and intent of the C++ assignments (Technical Appendix, Section “Coding question-answer
generation prompt 37).

In total, 4648 question-answer pairs are generated from the data sources (textbook, 1053; coding examples,
286; online course transcripts, 3309). We conducted human expert reviews of 200 of these question-answer
pairs, evaluating them against two criteria, as follows. Criterion 1: The technical correctness of the question
and answer, their completeness, accuracy and scientific depth, followed by their relevance to this specific
FEM course. Criterion 2: The grammatical and semantic quality of the question and answer. Both criteria
were scored on scale of 0 - 3, where scores of 3 were perfect from all of the above perspectives. This resulted
in a mean score of 2.64 on Criterion 1 with a std dev = 0.175, and mean of 2.74 on Criterion 2 with a std
dev = 0.122. Of the 200 question-answer pairs, only 14 (7%) received a score of zero on one or both criteria.
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We believe this experiment shows that the question-answer pairs are of sufficient quality for training. We
reserve 10% of this data for testing, using the rest for training and hyperparameter optimization.

3.3 Fine-tuning Expert Model

To fine-tune an expert model, we select Llama-3.2-11B-Vision-Instruct (Grattafiori et al., [2024) as our base
model due to its balance between performance and computational efficiency. While larger models may
offer superior general knowledge, a medium-sized model like Llama-3.2-11B provides strong domain-specific
capabilities with reduced resource overhead.

We perform fine-tuning within the Hugging Face ecosystem using the Transformers library (Wolf et al.; 2020)).
This leverages PEFT (Parameter-Efficient Fine-Tuning) (Mangrulkar et al., 2022) to implement LoRA,
enabling efficient adaptation of the model without modifying all parameters. Chat templating is handled
using the PreTrainedTokenizerFast.apply_chat_template method. For domain adaptation, we employ the
system prompt outlined in the Technical Appendix, Section “Fine-tuning system prompt”. Model weights
are loaded in bfloat16 for half-precision computation. We utilize the Accelerate library (Gugger et al., [2022)
to distribute fine-tuning across two A40 GPUs, optimizing memory usage and training speed.

3.3.1 Hyperparameter optimization

We employ Optuna for hyperparameter optimization, to search for optimal configurations to enhance model
performance (Akiba et al.l |2019)). The following hyperparameter space is explored:

o Learning rate: varied in the range [le—5, le—3]
o Gradient accumulation steps: 2

e« Epochs: 5

e LoRA parameters:

— Rank: varied in the range [8, 64]

— Alpha: varied in the range [32, 128]

— Dropout: chosen from [0.05, 0.1]

— Target modules: {q, k, v, o, gate, up, down}

e Warmup steps: 100
e Max token length: 700

Optimization is conducted on two A40 GPUs, utilizing the full training dataset with cross-entropy loss. After
hyperparameter tuning, the optimal hyperparameters obtained are: LoRA Rank = 45, LoRA Alpha = 65,
LoRA Dropout = 0.05, and Learning rate = 5e—5. Training logs and experiment tracking are managed via
Weights and Biases (WANDB) to ensure reproducibility and analysis of model performance across trialsﬂ

3.4 RAG and Synthesis Model

We use a RAG-based pipeline to retrieve course-specific material. A user query is embedded into the same
space as the course content, and relevant chunks are identified using cosine similarity. The top-k reference
chunks are then returned to the synthesis LLM, along with the LLaMA-TOMMI-1.0 response (Figure. The
synthesis model operates under a detailed system prompt (Technical Appendix, Section “Synthesis model”),
which has been carefully refined to enforce a multi-step synthesis algorithm. Executing such a complex chain
of instructions reliably is challenging for standard LLMs of small/medium parameter size, which often excel
at fluency but struggle with strict logical constraints. To address this, we employ DeepSeek-R1-0528-Qwen3-
8B as our default synthesis model. The advantage of using a dedicated reasoning model like DeepSeek-R1

4link removed for anonymous submission
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over a general-purpose LLM of a similar size stems from its specialized training regimen. These models
are typically fine-tuned not just on vast web data, but on curated datasets rich with structured reasoning
paths, mathematical problem-solving, and code generation. This training encourages the model to internally
decompose complex prompts into a sequence of executable steps, akin to a program, rather than treating
them as a stylistic suggestion. For our application, this is critical. For instance, our prompt first mandates
a conditional check: the model must analyze the initial expert answer and retrieved context and, if the
information is collectively insufficient, halt and output a specific instruction to the user. We qualitatively
note that DeepSeek-R1 excels at this type of structured, procedural execution compared to Llama-3.2-11B-
Vision-Instruct or GPT-40-mini.

If the check passes, the model proceeds to a more nuanced reasoning task dictated by our guidelines: it
must evaluate the quality of the expert’s answer. If the answer is strong, it must be used as a foundation
and meticulously enriched with details and citations from the retrieved context. Conversely, if it is weak or
inaccurate, the model must pivot to rely more heavily on the retrieved material and construct an answer.
Throughout this process, it must strictly ground its response in the provided course-specific sources and
ignore its existing parametric knowledge. Additionally, it must meticulously apply formatting rules, such
as generating precise markdown formatting, including appropriate citations to retrieved data, and correctly
handling both inline and display I#TEX equations. This ability to faithfully execute a complex logical workflow
makes the reasoning model significantly more reliable and capable for our high-fidelity synthesis task, than
models without reasoning.

3.5 Evaluation by Cosine Similarity & LLM-as-a-Judge

We hold out 10% of the training data set in reserve for testing. The base model and LLaMA-TOMMI-1.0
are queried with the test questions, and their responses are recorded. Two approaches are presented here to
evaluate the effectiveness of our fine-tuning.

First, we embed the model responses and use cosine similarity to evaluate how semantically similar they
are against the embedded answers generated from the training data generation pipeline (defined as “ground
truth”):

Temb * Pemb (1)

cosine similarity = m
em em.

where 7¢,p is the embedded ground truth answer and 7., is the embedded model response. We report both
the average cosine similarity and win rate across all test data, where win rate is defined as the number of
times a given model has the higher cosine similarity when answering a test question.

Next, we use an independent “LLM-as-a-judge” to evaluate the effectiveness of fine-tuning for adopting the
course style. The ground truth reference embedded answers, base model response, and LLaMA-TOMMI-
1.0 response are provided to the judge with one of two system prompts. The first prompt evaluates lexical
matching, structural similarity, and example consistency, returning the winning response based on these form-
oriented criteria. The second prompt evaluates content accuracy, conceptual alignment, and completeness,
returning the winning response based on these accuracy-focused criteria. The full prompts are provided in
the Technical Appendix section “LLM-as-a-judge”. In both cases, the judge is instructed to return either the
base model as winner, LLaMA-TOMMI-1.0 as winner, both models if equally aligned, or neither model as
being aligned with the ground truth response. The results of this evaluation, reflecting the performance of
the fine-tuned model, are presented in Table

3.6 Human Evaluation of Framework Responses

Motivated by the intended classroom use of the AI-U framework, we also conducted human evaluations of
its responses. The base LLaMA-3.2-11B and LLaMA-TOMMI-1.0 models were evaluated by users who are
advanced (“advanced user”) in the subject. A small but representative cohort of four users was recruited
from the authors of this work. Three separate human evaluations were performed, each with the output
order randomized to preserve blinding. In the first, the two models were given the same set of 100 questions
that students had asked the instructor in a previous semester of the course. The second human evaluation
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featured a set of 80 questions also from students in a previous semester, but posed to the RAG and synthesis
pipeline with DeepSeek-R1 as the synthesis model. The advanced users rated the responses of the two LLMs
for technical correctness and usefulness in gaining a deep understanding of the course material both without
and with the synthesis platform (DeepSeek-R1 as the synthesis model). In a final evaluation of the base
LLaMA-3.2-11B and LLaMA-TOMMI-1.0 models, the FEM course instructor also evaluated the two LLMs’
performances on 60 questions on the RAG and synthesis pipeline with DeepSeek-R1 as the synthesis model.
This instructor evaluation was aimed at discerning the alignment of the two LLMs with the instructional
style of the course. Four choices were allowed for each evaluation: (1) Model 1 (randomly labeled) is better.
(2) Model 2 (randomly labeled) is better. (3) The models perform equally well. (4) The models are equally
wrong. After completion of all human evaluations by both groups of reviewers, the model identities were
decoded to tally the human evaluation results, which appear in Table 2]

Noting that our fine-tuning is of the open-source base LLaMA-3.2-11B model, we ran a comparison of (a)
OpenATl’s GPT-5 against (b) LLaMA-TOMMI-1.0 with the RAG and synthesis pipeline with DeepSeek-R1
as the synthesis model. Eighty questions were used in this study. Four advanced users from this paper’s
author list evaluated the responses for technical correctness and usefulness in gaining a deep understanding
of the course material. The course instructor also evaluated these responses to discern alignment with the
instructional style of the course. The advanced users and instructor were allowed the same four choices for
evaluation that are listed in the paragraph immediately above. These were blind evaluations in which the
identities of of ChatGPT 5.0 and LLaMA-TOMMI-1.0 with the RAG and synthesis pipeline using DeepSeek-
R1 were randomized and concealed from the reviewers.

3.7 Web Application

Figure [3| presents the user interface demonstration, available at (link removed for anonymous submission).
The current implementation uses the Streamlit aplﬂ and is hosted on the HuggingFace spaces platfornﬂ
Users can select the number of relevant video lectures and textbook sections to retrieve, along with the
maximum number of context tokens allowed per content. The platform’s architecture is modular, allowing
users to select different models for both the expert and synthesis roles. The default models represent our
recommended configuration, fine-tuned and adjusted via our system prompts to ensure that the platform
performs as designed. Alternate models are also available to accommodate user preferences and allow for
experimentation. For the expert model, the default is our fine-tuned LLaMA-TOMMI-1.0. Users have the
option to switch to the open-source LLaMA-3.2-11B or the commercial GPT-40-mini; these alternatives are
not fine-tuned and guided solely by prompt engineering. The expert model’s generation can be configured
by choosing a strategy (beam search or sampling) and setting parameters such as temperature, Top P, and
the maximum number of new tokens. For the synthesis model, the default is DeepSeek-R1-0528-Qwen3-8B.
This choice is intentional, as our system prompt is carefully optimized for this reasoning model’s specific
behaviors. Alternate synthesis models include GPT-40-mini and GPT-4.1-mini. Users can also adjust the
synthesis output by changing its temperature and Top P.

4 Experiments

4.1 Automated & Human Evaluation of Expert Model

To measure the direct effect of fine-tuning, we first compared the performance of the fine-tuned expert model
LLaMA-TOMMI-1.0 and its base model in a standalone setting on a test set of 465 question-answer pairs.

Automated evaluations are presented in Table [I] showing that LLaMA-TOMMI-1.0 consistently outper-
formed the base model. For cosine similarity, its average score was higher at 0.879 (compared to 0.818), and
its response was closer to the ground truth in 86.02% of cases. Using a GPT-40 LLM-as-a-Judge, LLaMA-
TOMMI-1.0 was again the preferred model for both Judge #1 (winning 43.44% vs. the base model’s 8.39%)
and Judge #2 (winning 43.23% vs. the base model’s 26.88%).

Shttps://streamlit.io/
Shttps://huggingface.co/spaces
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Figure 3: Demonstration of the web application, available at (link removed for anonymous submission).

These findings were consistent with human evaluations of the raw model outputs (Table [2| “Expert Model
only” column): For this, we conducted a study involving four advanced users familiar with the course
content, who evaluated model responses to real student questions using the AI-U framework. For each
question, users made a blind preference judgment, selecting either the LLaMA 3.2 base model, the fine-
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Table 1: Fine-tuning effectiveness, evaluated using cosine similarity and LLM-as-a-judge. For cosine sim-
ilarity, both the ground truth label and the model response are embedded using OpenAl’s latest vector
embedding model (text-embedding-3-large) and used to calculate the average cosine similarity across all
results (“Average Cos. Sim.”). When choosing which answer is best aligned using cosine similarity (“Winner
Cos. Sim.”), the results show an overwhelming preference for the LLaMA-TOMMI-1.0 model. Two prompts
were provided for the LLM-as-a-judge evaluations, (Technical Appendix, Section “LLM-as-a-judge”).

Expert Model Average Cos. Sim. Winner Cos. Sim. Judge #1 Judge #2
LLaMA 3.2 base model 0.818 13.97% 8.39% 26.88%
LLaMA-TOMMI-1.0 0.879 86.02% 43.44% 43.23%
Both models - - 2.80% 9.03%
Neither model - - 45.38% 20.86%

Table 2: Results of the human evaluation user study. Users could blindly select the LLaMA-3.2-11B base
model as preferred, the LLaMA-TOMMI-1.0 model response as preferred, “both models” if responses were
equally preferred, or “neither model” if both responses were poor. When considered as a stand-alone LLM
response (“Expert Model Only / Advanced User”), we see a significant preference towards the LLAMA-
TOMMI-1.0 model versus the LLaMA-3.2-11B base model. This preference is diminished when the combined
platform is used, with a significant uptick in equally good responses from both models. However, a final (also
blind) review by the FEM instructor reveals notably better course alignment when LLaMA-TOMMI-1.0 is
used as a part of the platform response.

Expert Model Only/ Platform Platform: Course Alignment
Expert Model Advanced User / Advanced/User Instructor /
LLaMA 3.2 base model 25% 30% 28%
LLaMA-TOMMI-1.0 47% 34% 55%
Both models 16% 32% 10%
Neither model 12% 4% 7%

tuned LLaMA-TOMMI-1.0 model, “both models” if responses were equally preferred, or “neither model” if
both were responses were unsatisfactory. The advanced users preferred LLaMA-TOMMI-1.0 in 47% of cases
and the base model in 25%. They found both answers to perform equally well 16% of the time and neither
to be acceptable in 12% of cases.

4.2 Human Evaluation of the Integrated Platform

Next, we assessed the practical performance of the models when integrated into our complete RAG and
synthesis platform using DeepSeek-R1-0528-Qwen3-8B (Figure [1f).

Table 3: Advanced users and the FEM course instructor weighed the strengths of GPT-5 (mathematical
sophistication, broad coverage of advanced computational techniques) against the characteristics of the
LLaMA-TOMMI-1.0 platform (alignment with the technical style, specific content and references to the
FEM course). While reviewers were blinded to the identity of the two models, this was undone by the sharp
difference in response style and content. We acknowledge that biases were probably introduced thereby.

Advanced User Course Alignment /

Instructor
OpenAl GPT-5 32.50% 17.50%
LLaMA-TOMMI-1.0 Platform 46.25% 37.50%
Both 18.75% 41.25%
Neither 2.50% 3.75%
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This human evaluation revealed a more nuanced picture. A key feature of the platform’s synthesis workflow
is within its system prompt instruction (Technical Appendix, Section “Synthesis model”)—it must evaluate
the expert model’s answer. If the answer is strong, it is used as a foundation and enriched with retrieved
context. Conversely, if it is weak or inaccurate, the synthesis model must pivot to rely more heavily on the
retrieved material to construct a new answer.

This compensation mechanism explains the results from advanced users, shown in Table [2] The preference
between models narrowed: LLaMA-TOMMI-1.0 was chosen 34% of the time and the base model 30%. The
rate of “equally good” responses increased to 32%, while only 4% of responses were deemed unacceptable.
This suggests that when the base model provided a weaker initial answer, the synthesis model successfully
compensated by relying on the retrieved context, raising the quality of the final output to be comparable to
that of the fine-tuned model.

However, the evaluation by the course instructor assessing correctness, tone, and overall alignment with the
course showed that the quality of the initial expert model response still matters. In this evaluation, the
platform output using fine-tuned expert model LLaMA-TOMMI-1.0 was preferred in 55% of cases, versus
28% for the base model; both outputs were deemed acceptable 10% of the time, and neither was acceptable
in the remaining 7%. This suggests that while the reasoning synthesis pipeline can improve weaker answers,
starting with the fine-tuned response yields a superior outcome in most cases. It underscores the ongoing
value of fine-tuning open-source LLMs for specialized educational applications.

Our comparison of OpenAT’s GPT-5 against LLaMA-TOMMI-1.0 with the RAG and synthesis pipeline with
DeepSeek-R1 as the synthesis model (LLaMA-TOMMI-1.0 platform) led to results with nuances and caveats.
Unsurprisingly, GPT-5 produced responses with high mathematical sophistication that exceeds the scope
of the entry-level graduate FEM course on which LLaMA-TOMMI-1.0 has been fine-tuned. While GPT-
5’s answers were scientifically correct, they used concepts and referred to mathematical and computational
techniques that would not be encountered by students in the chosen FEM course (or indeed most other
entry-level graduate FEM courses) and its pre-requisites. When faced with questions for which it lacks
context, GPT-5 switched from “Chat” to “Thinking” mode, provided multiple approaches to the question,
many of which were relevant, even if beyond the scientific scope of the course. Some of its responses also
asked for further information that experts trained beyond the course would recognize to be relevant in the
broader setting of research into computational science.

These “strengths” of GPT-5 were weighed against the “characteristics” of the LLaMA-TOMMI-1.0 platform
in responding to the same set of questions. These characteristics were typically good alignment with the
course content by context, technical style, and provision of direct references to instructional content in the
textbook and video lectures. Importantly, these sharp differences between the models rendered the blinded
responses and randomization of order irrelevant. The advanced reviewers and course instructor were able to
pinpoint with 100% accuracy the identity of the model producing a given response. The bias thus introduced
must be recognized as a strong caveat in reviewing the results in Table [3] The above-mentioned “strengths”
of GPT-5 were weighed against the “characteristics” of the LLaMA-TOMMI-1.0 platform to judge which
was more suited to learning the specific FEM course. The advanced users preferred the LLaMA-TOMMI-
1.0 platform over GPT-5 by a margin of 46.25% to 32.5%. The instructor, looking for alignment with the
course’s style, specific content and references preferred the LLaMA-TOMMI-1.0 platform over GPT-5 by a
margin of 37.5% to 17.5%, while finding the “characteristics” of the former and the “strengths” of the latter
to be in balance on 41.25% of the queries. We re-emphasize that biases entered these evaluations against
GPT-5 only, because the models’ identities were apparent from the style and content of their responses.

5 Conclusion

In this work, we present AI University (AI-U), a versatile and flexible framework designed to deliver bespoke
science course content. By fine-tuning an LLM and incorporating a RAG system, AI-U creates an interactive
learning environment that mirrors a course’s specific instructional style. By framing our work in the setting
of a graduate-level Finite Element Method class (FEM) as an example, we demonstrate the framework’s
ability to generate accurate and highly relevant responses to course content by learning from a diverse set
of course materials such as lecture video transcripts, notes, assignments, and textbooks.
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The LLaMA 3.2 11-billion-parameter model optimized with LoRA performs well after hyperparameter tun-
ing, and we validate its performance by cosine similarity and LLM-as-a-judge evaluations, with further
human evaluation of its functionality by advanced users for correctness and usefulness in learning, and by
the course instructor for correctness, tone and alignment with the instructional style of the course. Our
evaluations of the LLaMA-TOMMI-1.0 and base LLaMA-3.2-11B parameter models by cosine similarity
and LLM-as-a-judge showed a clear preference for the fine-tuned LLaMA-TOMMI-1.0 model. Notably, the
advanced users’ evaluations on the RAG and synthesis pipeline with reasoning suggested that this platform
narrowed the gaps in the LLaMA-3.2-11B parameter base model. However, the instructor’s evaluations for
correctness, tone and alignment with the course carried out on the RAG and synthesis pipeline with rea-
soning also pointed to a clear preference for LLaMA-TOMMI-1.0. While the human evaluation was by a
small cohort of advanced users and the instructor, our results present strong validation that the adaptation
of open-source LLMs to course-specific content can be successful with the approaches advanced here. We
have not performed a comparison with other LLMs fine-tuned for educational use. Our searches found no
other model that has been fine-tuned to specific course content on the FEM. Large commercial models such
as GPT-5 bring mathematical sophistication and broad coverage of computational techniques to answering
queries on FEM. However, there is room for considering whether the advanced technical level of these re-
sponses are less suitable for entry-level graduate learning of FEM than those well-aligned with the technical
style and specific content of a course, backed by references to the instructional material.

A key feature of AI-U is its web application prototype, which not only provides comprehensive responses, but
also enhances response credibility and traceability by linking to relevant course material. The framework is
designed to be dynamic, supporting the continuous updating of new lecture content through RAG, ensuring
that it remains consistent with the evolution of the course throughout the semester. This assistant extends
learning beyond the classroom and can support discussions on platforms like Canvas or Piazza, where stu-
dents often seek assistance outside of scheduled class hours. When instructors or teaching assistants are
unavailable, the AT assistant can provide timely and contextually relevant responses that are oriented to the
course’s instructional style when presented with student queries. This research marks an important advance-
ment in embedding Al into higher education, providing a scalable solution with the potential to enhance
teaching efficiency and student engagement. We note, however, that full-fledged user studies have not been
conducted by either student cohorts or instructors. This larger undertaking exceeds the scope of the current
communication. We envision AI-U as a foundational tool that can be widely applied across academic fields,
ultimately contributing to the construction of an integrated Al-enhanced university education system.

Finally, we note that our framework has been presented in the setting of a class on Finite Element Methods—
a subject that is central to training PhD and Masters students in engineering science. However, it could
have potential as a template in a broader context: fine-tuning LLMs to research content in science. In this
regard, our use of textbook, class notes and video lecture content could be supplemented by the broader
technical literature, recorded research talks and simulations in a multi-modal learning environment. RAG,
reasoning and multi-agentic inferencing would play important roles. Such a project could be addressed in
future work.

Broader Impact Statement

Al-Generated Responses: AI-U should be used responsibly. Answers are generated using Al and, while
thorough, may not always be 100% accurate. Please verify the information independently.

Content Ownership: All video content and lecture material referenced belong to their original creators.
The textbook The Finite Element Method: Linear Static and Dynamic Finite Element Analysis was used
with permission of the author. All other course material was used with permission of the content creators.
We encourage users to view the original material on verified platforms to ensure authenticity and accuracy.
To ensure privacy, no student data was processed as a part of the training data generation pipeline.

Review of Methods: Each query used for human evaluation of the models was developed by consensus of
anonymized groups of students who had consented to the use of their questions for instructional development.
These students were not subjects in the studies, which did not interact or intervene with the students, nor
include any access to identifiable private information. Advanced users were drawn from the authors of this
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work. The course instructor consented to and was fully aware of the methodological details and goals of this
work.

Educational Fair Use: This tool is intended solely for educational purposes and operates under the
principles of fair use. It is not authorized for commercial applications.

Data Awvailability: All code, study materials and results, and Q/A pairs will be made available
upon publication. A partial, anonymous repo is available at: https://anonymous.4open.science/r/
AT-U-2025-TMLR/
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Appendix

A Sample expert model responses

We present as a demonstration one sample test case, highlighting both the base model and LLaMA-TOMMI-
1.0 responses in comparison with the default label answer. Note how in this example, context-specific
variables ¢ and d specified by the user are interpreted incorrectly by the base model but correctly by LLaMA-
TOMMI-1.0, when compared with the Label/Default answer.

[User Query|: In the context of 3D elasticity , how are the degrees of freedom

? )

for each node represented in the global ’c¢c’ and ’d bar’ vectors?

[Base Model Response (truncated for brevity]: In the context of 3D elasticity ,
the degrees of freedom (DOFs) for each node are typically represented in
the global ’c’ and ’d’ vectors as follows:

Let’s consider a 3D elasticity problem with a mesh consisting of ’n’ nodes,
each with 3 DOFs (displacements in the x, y, and z directions). The global
‘¢’ vector represents the coefficients of the stiffness matrix, and the
global ’'d’ vector represents the forces applied to the system.

The global ’c’ vector can be partitioned into three sub—vectors, each
representing the coefficients of the stiffness matrix for a particular DOF

$$c=[c_x c_y c_z]$$
where $c_x$, $c_y$, and $c_z$ are sub—vectors of size 3nx3n representing the
coefficients of the stiffness matrix for the x, y, and z DOFs,
respectively .

Similarly , the global ’d’ vector can be partitioned into three sub—vectors,
each representing the forces applied to the system for a particular DOF:
$$d=[d_x d_y d_z]$$

where $d_x$, $d_y$, and $d_z$ are sub—vectors of size $3n$ representing the
forces applied to the system for the x, y, and z DOFs, respectively.

In the global stiffness matrix, the coefficients can be represented as...

[LLaMA-TOMMI—-1.0 Response]: In the context of 3D elasticity , the degrees of
freedom for each node are represented in the global ’c¢c’ and ’d bar’
vectors as follows:

— The global ’c’ vector, which is a row vector, contains the degrees of
freedom corresponding to the spatial dimensions (1, 2, and 3) for each
node. For a node with a total of $N_{sd}$ spatial dimensions, the ’c¢’
vector will have $N_{sd}$ entries for that node.

— The global ’d bar’ vector, which is a column vector, also contains the
degrees of freedom corresponding to the spatial dimensions (1, 2, and 3)
for each node. For a node with a total of $N_{sd}$ spatial dimensions, the

’d bar’ vector will have $N_{sd}$ entries for that node.
These vectors are constructed by considering the spatial dimensions for each

node and are used to represent the degrees of freedom in the global system
of equations.
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[Label/Default Answer]: In the context of 3D elasticity , the degrees of
freedom for each node are represented in the global ’'c¢’ and ’'d bar’

vectors as follows:

— xxGlobal ’c¢’ Vector*x: This vector is defined by following the global nodes.
For each global node, there are three degrees of freedom corresponding to
the three spatial dimensions. For example, for global node 1, the degrees
of freedom would be represented as $c_{11}$, $c_{12}$, and $c_{13}8$,
corresponding to spatial dimensions one, two, and three, respectively.
This pattern continues for each node, such that for a general node A, the
degrees of freedom are $c_ {A1}$, $c {A2}$, and $c {A3}$.

— **%Global ’d bar’ Vector*x: Similarly , the ’d bar’ vector is structured to
represent the displacement degrees of freedom for each node in the
respective coordinate directions. For example, for node 1, the degrees of
freedom are represented as $d_{11}$, $d {12}$, and $d {13}$. For a general
node A, the degrees of freedom are $d {A1}$, $d {A2}$, and $d {A3}$,
representing displacements in the directions one, two, and three,
respectively.

The ’d bar’ vector is typically larger than the ’c¢’ vector because it includes
all degrees of freedom before accounting for Dirichlet boundary
conditions , which may reduce the number of active degrees of freedom in
the ’c¢’ vector.

B Prompts

B.1 Textbook question generation

The following prompt is used to generate questions from the textbook and course transcripts.

You are an Al assistant specialized in creating educational content for
Finite Element Method (FEM) .

Generate comprehensive set of questions on topics related to FEM from the
input text. *xOnly questions, no answer is needed.xx Follow these
guidelines:

1. Questions:
— Focus on fundamental concepts, theories, and general applications of FEM

— Ensure that the questions are relevant to the input text, and can be at
least partially answered using the provided text.

— Emphasize broad understanding rather than niche knowledge.

— Questions can be of any length needed to fully express the concept being
tested .

— Complex questions involving multiple parts or mathematical derivations
are encouraged .

— Each question should have all the information needed such that it makes
sense without referencing the input text.

— Any variables that are used in the question must be defined in the
question .

— Provide enough information such that the question makes sense without
referencing a specific chapter or section.
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— Do not refer to the proof number in the question text when generating
questions about a proof.

— Add a description of any proofs used when generating questions about
proofs.

2. Coverage:

— For each question, include a "coverage" field.

— In this field , estimate the percentage of the possible answer that is
covered by the input text.

— Use your judgment to assign a realistic percentage in integer form,
considering the depth and specificity of the input text.

Note: Mathematical Notation:

— Use LaTeX formatting for mathematical expressions

— For inline equations, use single $ wrapper (e.g., "Calculate the strain
energy $U = \\frac{1}{2}\\int_V \\sigma\\epsilon dV$")

— For display equations, use double $$ wrapper, e.g.:
"Derive the stiffness matrix given the following stress—strain

relationship:

$$
\\begin{{bmatrix}}
\Wsigma {{ochh A\ \\sigma {{yy}} \\\\ \\tau {{xy}}
\\end{{bmatrix}} =
\\ begin{{bmatrix}}
D_{{11}} & D_{{12}}
D {{21}} & D {{22}}
0 & 0 & D {{33}}
\\end{{bmatrix}}
\\ begin{{bmatrix}}
\Wepsilon {{xx}} \\\\ \\epsilon {{yy}} \\\\ \\gamma {{xy}}
\\end{{bmatrix}}
$$"

el

0 A\
0 AN

Note: Your response format as JSON must adhere to the following structure:

[
{{

"question": "What are the shape functions and their role in accuracy
of approximations?",
"coverage': 95
}}7
{{
"question": "How are boundary conditions imposed? Explain elimination
approach.",
"coverage": 70

1
]

Do not include the word JSON at the start of the response.
Generate as many questions as needed to cover the input text, up to {k}
diverse questions, with Coverage 30—100 percentage.

B.2 Textbook answer generation

The following prompt is used to generate answers for the textbook and course transcript questions.
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You are an Al teaching assistant for a Finite Element Method (FEM) course.
Answer questions based EXCLUSIVELY on the provided context. If context is

insufficient for a very accurate answer, respond with: Answer: "NOT ENOUGH
INFO."

If context is sufficient:

1. Answer Guidelines:

— Use only information from the context

— Restrict your use of finite element method knowledge to what is provided
in the context provided. Do not use additional background finite
element method knowledge in generating the answer (you may use
background knowledge from other areas).

— Show step—by—step work for calculations

— For multiple valid interpretations, provide separate answers

2. Mathematical Notation:

— Use $ for inline equations (e.g., 8U = \\frac{{1}}{{2}} \\int_V \\sigma
\\epsilon dV$)

— Use $% for display equations, especially matrices:

$$

\begin{{bmatrix}}

\sigma_ {{xx}} & \sigma_{{xy}} \\

\sigma_{{yx}} & \sigma_{{yv}}

\end{{bmatrix}}

$$

Note: Focus on FEM fundamentals, theories, and applications as presented
in the context.

"o

user__prompt = """
Context:
{context}

Question:
{question}

Answer (based EXCLUSIVELY on the above context):

B.3 Fine-tuning system prompt

The following system prompt is provided to the LLM during fine-tuning of LLaMA-TOMMI-1.0.

You are an Al professor for a Finite Element Method (FEM) course. You are
asked a question by a student and return an appropriate answer based on
course material. Your response focuses on FEM fundamentals, theories, and
applications as presented in the course. Use standard latex notation when
replying with mathematical notation.

B.4 Coding question-answer generation prompt 1

The following prompt is one of three that was used to generate questions and answers from previous course
coding assignments.
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You are an expert in finite element methods (FEM), the deal.II library, and C
++4+. You are tasked with creating detailed question—answer pairs for a
coding assignment. The assignment description , along with the solution
files (‘main.cc‘ and ‘fem.h¢), is provided. Follow these detailed
instructions to generate the QYA pairs:

1.

xx Functions as Answers:xx Each answer must include the implementation
of individual functions or classes from the code files.

xxCover All Code Components:** Generate questions for every function,
constructor , destructor, and class definition in both ‘main.cc‘ and
fem.h‘. Ensure that no code component is left out.

‘

xx Detailed Question Context:x* FEach question must:

— Include a #*xgeneral problem statementxx derived from the assignment

description to provide a clear context.

Stand alone, without referencing the assignment, other questions, or

answers, so that it makes sense independently.

— Clearly ask for the specific function, constructor, destructor, or
class related to the problem context.

— Mention that the answer can use the open source library dealii

xx Variety in Questions:xx In addition to asking for individual

functions:

— Include questions that require the entire class implementation as an
answer (e.g., the ‘FEM‘ class).

— Include a question asking for the names of all functions required to
solve the assignment.

xx Formatting :xx Use the following format for the QXA pairs. Make sure
not to number them:

Q: <Insert detailed question here>

A: <Insert complete function/class implementation here>

xx Descriptive Questions:x* The questions should be long enough and
verbose so that they are standalone and cover all the descriptive
background from the original assignment without refering to the
assignment .

xxExample Question for Context:xx Use the style below as a reference
for detailing each question:
— Example Q:
Consider the following differential equation of elastostatics, in
strong form: \\ \\
Find $u$ satisfying
\begin{displaymath}
(E\aA\v U_{7X})—{7X} + f\vA - 07\quad \mbox{in}\; (OaL)a
\end{displaymath}
\noindent for the following sets of boundary conditions and forcing
function ($\bar{f}$ and $\hat{f}$ are constants):
\begin{itemize}
\setlength {\itemsep }{0pt}
\item [(\romannumeral 1)]$u(0) =g 13, $u(L) = g 2§, $f = \bar{f} x$,
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\item [(\romannumeral 2)]$u(0) = g 1%, $EAu_ {,x} = h$ at $x = L$, $f
= \bar{f} x$,
\end{itemize}

When writing a one—dimensional finite element code in G+ using the
deal.II FEM library framework to solve the given problem, what
will the class constructor look like?

— Example A:
Here is the class constructor to solve this problem:
template <int dim>
FEM<dim >::FEM (unsigned int order ,unsigned int problem)
¢ fe (FE Qxdim>(QIterated <1>(QTrapez<1>(),order)), dim),
dof handler (triangulation)

basisFunctionOrder = order;

prob = problem;

for (unsigned int i=0; i<dim; 4++i){
nodal solution_names.push_back("u") ;
nodal_data_component_interpretation.push_back(

DataComponentInterpretation :: componentiisipartiofivector) ;
}
}

Here are the files related to the coding assignment:

1. Assignment Description:
{assignment__description}

2. Contents of main.cc:
{main_ code}

3. Contents of fem.h:
{fem__code}

B.5 Coding question-answer generation prompt 2

The following prompt is one of three that was used to generate questions and answers from previous course
coding assignments.

You are an expert in finite element methods (FEM), the deal.II library, and C
++4. You are tasked with creating detailed question—answer pairs for a
coding assignment. The assignment description and the coding template file
, along with the solution files (‘main.cc‘ and ‘fem.h‘), are provided.
Follow these detailed instructions to generate the QXA pairs:

1. *xTest on identical material/information as the provided assignment
template:xx Question Answer pairs must be based on what the coding
assignment is targeting the student to understand. The student is
expected to use the template coding files and fill them to get the
solution coding files. Match the differences between the coding
template files and the coding solution and base your question—answers
on this. Essentially the QA pairs generated should quiz the student on
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the identical material tested by the coding assignment and the
provide coding template.

2. xxDetailed Question Context:** Each question must:
— Include a xxgeneral problem statement*x derived from the assignment

description to provide a clear context.

Stand alone, without referencing the assignment, other questions, or

answers, so that it makes sense independently.

— Clearly ask for the specific function, constructor, destructor, or
class related to the problem context as in the previous point.

— Mention that the answer can use the open source library dealii

— The questions should be long enough and verbose so that they are
standalone and cover all the descriptive background from the
original assignment without refering to the assignment.

— If the assignment asks for something particular to be implemented
such as the boundary condition (pde variables, mesh variables etc),
the question should list the boundary conditions to be implemented

3. xxGenerate as many questions:xx Cover all the assignment problem
specific implementations in the code even if they are already provided
in the template files.

4. xxFormatting:+«x Use the following format for the Q%A pairs. Make sure

not to number them:
[SN]

Q: <Insert detailed question here>
A: <Insert function/class implementation here>

Here are the files related to the coding assignment:

1. Assignment Description:
{assignment_description}

2. Contents of Template main.cc:
{templateMain }

3. Contents of template fem.h:
{templateFEM }

4. Contents of solution main.cc:
{main__code}

5. Contents of solution fem.h:
{fem__code}

B.6 Coding question-answer generation prompt 3

The following prompt is one of three that was used to generate questions and answers from previous course
coding assignments.

You are an expert in finite element methods (FEM), the fenics library , and

python. You are tasked with creating detailed question—answer pairs for a
coding assignment. The assignment description, along with the solution
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file (‘fem.h‘), is provided. Follow these detailed instructions to
generate the Q¥A pairs:

1. *xAnswers Based On Code:xx Answers should be based on code
implementation .

2. xxCover All Code Components:** Generate as many questions using ‘fem.h°®
ensuring no code component is left out. More the questions, the
better. It is ok if some questions are repeated/have some overlap.

3. xxDetailed Question Context:+*x Each question must:

— Include a #*xgeneral problem statementxx derived from the assignment
description to provide a clear context.

— Stand alone, without referencing the assignment, other questions, or
answers , so that it makes sense independently.

— Clearly ask for the specific code implementation related to the
problem context.

— Mention that the answer should be based on open source finite element
library fenics

— The questions should be long enough and verbose so that they are
standalone and cover all the descriptive background from the
original assignment without refering to the assignment.

— If the assignment asks for something particular to be implemented
such as the boundary condition (pde variables, mesh variables etc),
the question should list the boundary conditions to be implemented

— Make sure to not refer to the assignment.

4. xxFormatting:+xx Use the following format for the Q%A pairs. Make sure

not to number them:
[N ]

Q: <Insert detailed question here>
A: <Insert complete function/class implementation here>

[N Y

Here are the files related to the coding assignment:

1. Assignment Description:
{assignmentDescription}

2. Contents of fem.h:
{femCode}

B.7 Synthesis model
The following is the system prompt used by the synthesis model.

You are an Al teaching assistant for a {subject_matter} course. Your task
is to synthesize a final , high—quality answer to the student’s x*x
Question*x by intelligently integrating two sources: a preliminary =xx
Direct Answersx and the official *xRetrieved Contexts* from the course
materials.

By synthesizing we mean that your final answer must always be grounded xx
exclusively** in the provided #xDirect Answerxx and xxRetrieved
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Context *x. Therefore, never use any external knowledge including your
existing knowledge.

IMPORTANT INITIAL CHECK: Analyze the provided *xQuestion*x, *xxDirect
Answerxx, and sxRetrieved Context xx.
If the *xDirect Answerxx AND the *xxRetrieved Contextxx together lack

sufficient information to answer the #xQuestion**, respond EXACILY as
follows and then STOP:

"NOT_ENOUGH_INFO The provided context doesn’t contain enough information
to fully answer this question. You may want to increase the number of
relevant context passages or adjust the options and try again.'

Else continue with the remaining guidelines.

Guidelines:

1. Your primary synthesizing goal is to use the xxRetrieved Contextxx to
validate , improve, and expand upon the xxDirect Answerxx.

a. If the sxDirect Answerxx is accurate and relevant, use it as the
foundation for your response. Your task is then to enrich it by
weaving in specific details , examples, and citations from the sxx
Retrieved Contextxx to create a more comprehensive and well—
supported answer.

b. If the *xDirect Answerxx is poor, inaccurate, or irrelevant , you
should rely more heavily on the *xRetrieved Context*xx to construct
the correct answer from the ground up.

2. Referencing:

a. Always cite your sources by referencing the video number and the
given time in brackets and xxboldxx (e.g., [**xVideo 3, time
03:14%x]) after each piece of information you use in your answer.

b. You may cite multiple references if they discuss the same content (
e.g., [*xVideo 3, time 03:14; Video 1, time 12:04xx]). However,

try to reference them separately if they cover different aspects
of the answer.

3. Style and Formatting:

a. Provide the answer in markdown format. Any latex formating should
be converted to an equivalent markdown format.

b. Do not use any titles , sections, or subsections. Use mainly
paragraphs. Bold text, items, and bullet points if it helps.

¢. Symbols and equations within the text MUST be placed between $ and
$, e.g., $x=0% is the min of $\sigma (x)=x"28%.

d. For equations between paragraphs, use \\n\\n$ and $\\n\\n. For
example, in the following equation: \\n\\n$ E = mc™2 $\\n\\n, note
$c$ as the speed of light. Remove any equation number/tags in the
raw data.

4. Use technical language appropriate for a {subject_ matter} course, but
be prepared to explain complex terms if asked.

5. If the question involves calculations , show your work step—by—step,
citing the relevant formulas or methods from the context.

B.8 LLM-as-a-judge

The following prompts are used as a part of the LLM-as-a-Judge evaluation.

Judge 1:

Evaluate which model response better aligns with the professor ’s reference
answer to a question ONLY based on the following three key dimensions
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1. Lexical matching: Does the response use the same key terms, phrases,
and specific wording as the professor’s answer?

2. Structural similarity: Does the response follow the same order and
organization of ideas as the professor ’s answer?

3. Example consistency: Does the response use the same specific examples
as the professor’s answer?

Return your decision as a JSON object:

— "winner": "model 1", "model 2", "neither" (if both significantly diverge
), or "both" (if equally aligned)
— "justification": A brief explanation of your choice based on the three

dimensions above

Question: {question}

Professor ’s Answer (Reference): {prof ans}
Model 1 Response: {base_ model}

Model 2 Response: {fine_tuned}

Output only the JSON.

Judge 2:

Evaluate which model response better aligns with the professor ’s reference
answer to a question ONLY based on the following three key dimensions

1. *xContent Accuracy=*%: Does the response convey correct information
without factual errors or misconceptions?

2. xxConceptual Alignments*x: Does the response reflect the professor’s key
ideas and reasoning , even if phrased differently or in a different
order?

3. xxCompleteness*x*: Does the response fully address all parts of the
question that the professor addressed?

Return your decision as a JSON object:

— "winner": "model 1", "model 2", "neither" (if both responses contain
major issues), or "both" (if equally strong)
— "justification": A brief explanation of your choice based on the three

dimensions above
Question: {question}
Professor ’s Answer (Reference): {prof ans}
Model 1 Response: {base_ model}
Model 2 Response: {fine_tuned}

Output only the JSON.

C Platform evaluation

Please see Supplementary Material for screenshots of the output from the platform.
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