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Abstract

Being able to solve a task in diverse ways makes agents more robust to task variations and
less prone to local optima. In this context, constrained diversity optimization has emerged
as a powerful reinforcement learning (RL) framework to train a diverse set of agents
in parallel. However, existing constrained-diversity RL methods often under-explore
in complex tasks such as robotic manipulation, leading to a lack in policy diversity. To
improve diversity optimization in RL, we therefore propose a two-stage curriculum for
diversity optimization. The key idea of our method is to leverage a structured spline-
based trajectory prior as an inductive bias to seed diverse, high-reward behaviors before
learning step-based policies. In our empirical evaluation, we provide novel insights into
the shortcomings of skill-based diversity optimization, and demonstrate empirically that
our curriculum improves the diversity of the learned skills.

1 Introduction

Reinforcement Learning (RL) has driven breakthroughs in robot locomotion (Hwangbo et al., 2019),
game-playing (Mnih et al., 2015; Silver et al., 2017), and foundation-model finetuning (Bai et al.,
2022). While effective, most RL methods assume a unimodal action distribution and produce
only a single policy. In contrast, humans and animals routinely solve the same task using multiple
qualitatively different strategies. Such variability is also desirable in RL, as strategy diversity increases
solution quality and robustness (Page, 2017; Hong & Page, 2004). Therefore, this work considers the
discovery of a policy set that maximizes the reward in diverse ways.

A number of previous works have investigated this problem from various perspectives. Notably, the
fields of Novelty Search (NS) and Quality-Diversity (QD) have proposed a multitude of algorithms
which populate an archive of solutions based on their novelty and performance (Lehman & Stanley,
2011a;b; Conti et al., 2018). Further, gradient-based RL approaches define intrinsic diversity rewards
that they combine with extrinsic task rewards using Lagrange multipliers (Zahavy et al., 2023), ban-
dits (Parker-Holder et al., 2020), or linear combinations (Kumar et al., 2020; Masood & Doshi-Velez,
2019; Gangwani et al., 2019). While effective, the above approaches are not without shortcomings.
QD may produce exceptional results, but often at the cost of sample efficiency and manual feature
design. Gradient-based diversity or entropy bonuses in RL may still collapse to a few modes and
remain under-evaluated in challenging contact-rich tasks (Rho et al., 2025; Emukpere et al., 2024), a
finding which we corroborate in this work.

Inductive biases such as hierarchical policy structures (Pateria et al., 2021), graph-based relational
representations (Battaglia et al., 2018), and physics-based priors (Ramesh & Ravindran, 2023)
have driven significant advances in RL. We argue that diversity optimization also benefits from
inductive biases We propose a new and simple trajectory-first curriculum for learning diverse policies
that explores at the level of smooth trajectories instead of neural network parameters (Section 5).
Concretely, the curriculum (i) uses an evolutionary search over open-loop action sequences to uncover
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Figure 1: Overview of the proposed diversity curriculum. We use a spline-based trajectory prior to
improve exploration. First, an evolution strategy explores in trajectory space to maximize novelty of
trajectory parameters ω ∈ Ω under performance constraints. Then, this data is used to warmstart the
online training of multiple RL agents π ∈ Π to solve the same optimization problem in policy space.

a diverse set of high-reward behaviors, and (ii) distills these behaviors into distinct, off-policy,
model-free policies. While prior work proposed similar formulations that first solve exploration and
then learning (Campos et al., 2020; Nair et al., 2018), we do not rely on human demonstrations and
propose an evolutionary approach to maximize diversity at trajectory level instead of optimizing
neural-network parameters, which can be inefficient. Based on our algorithm, we empirically highlight
shortcomings of existing diversity optimization methods in Section 5 and illustrate how the proposed
curriculum enables learning diverse sets of robot manipulation policies.

In short, we make three contributions with this work. First, we propose a novel curriculum for
diversity optimization under extrinsic task rewards (see Fig. 1). Second, we introduce Constrained
Novelty Search (CNS) to discover diverse trajectories in the first step of this curriculum (Section 3.1).
Finally, we investigate how diversity can be maintained during online training of control policies
from this data (Section 3.2).

2 Preliminaries

Markov Decision Process: We model each task as a discrete-time Markov Decision Process
M = (S,A, p, r, γ) (Puterman, 2014, MDP). At each time step t, the agent in state st ∈ S
selects action at ∈ A, transitions to st+1 with probability p(st+1 | st, at), and receives reward
rt ≜ r(st, at) ∈ [rmin, rmax]. The objective is to learn a policy πθ : S × A → R+, parameterized
by θ ∈ Rd, that maximizes the discounted return J(π) =

∑∞
t=ℓ E(st,at)∼π

[
γt−ℓr(st, at)

]
with

discount factor γ ∈ [0, 1). We denote by ρπ(s, a) the state–action occupancy measure and by ρπ(s)
its marginal over states following Haarnoja et al. (2018).

Constrained Diversity Optimization: While earlier works used scalars to balance diversity and
task rewards, Zahavy et al. (2023) introduced the following constrained MDP formulation:

max
Πn

Diversity(Πn) s.t. J(π) ≥ αv∗, ∀π ∈ Πn (1)

where Πn is the current set of policies, v∗ ≜ maxπ∈Π J(π) is the value of the optimal policy and
α ∈ [0, 1) is a hyperparameter controlling the optimality constraint. This constrained optimization
problem can then be solved efficiently using Lagrange multipliers that are tuned using dual ascent
(Altman, 2021; Borkar, 2005). Similar to subsequent work (Zheng et al., 2024), we adopt the same
problem formulation in this work. To quantify diversity, we will measure the distance to the nearest
neighbor, which shall be maximized:

Diversity(Πn) :=
1

n

n∑
i=1

min
πj ̸=πi

∥ E
s∼ρπi

[ϕ(s)]− E
s∼ρπj

[ϕ(s)]∥2, (2)
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where ϕ(·) : S → Rf are state-based features, which generally can be manually defined or learned,
for instance using the successor feature method (Barreto et al., 2017; Abbeel & Ng, 2004). To
optimize Eq. (1), the common framework is to employ one-hot skill encodings z(st) ∈ [0, 1]n as
conditioning for a single policy and Q-function when learning (Eysenbach et al., 2019; Zahavy et al.,
2023). We follow this approach in our work and slightly abuse notation in using z(st) to indicate the
skill of a state and z(τ) for the skill of a full trajectory.

Novelty Search: Most novelty-based approaches to skill learning maximize the entropy of the
policy set by using the entropy of the current policy set as an intrinsic reward (Conti et al., 2018;
Lehman & Stanley, 2011a; Liu & Abbeel, 2021). To quantify entropy, the particle-based entropy
estimator by Singh et al. (2003) is commonly employed which estimates the sparsity of the distribution
based on the distance between the datapoints {xi}ni=1 and their k-nearest neighbor: Hparticle(X) ∝∑

xi∈X log∥xi− x
(k)
i ∥. In practice, we choose k = 1. In other words, we measure the particle-based

entropy as distance to the nearest neighbor, and add a constant c = 1 for numerical stability:

Hparticle(X) :=
∑
xi∈X

log

(
c+ min

xj ̸=xi

∥xi − xj∥
)
. (3)

3 Evolutionary Exploration for Diverse Policy Discovery

Solving the problem in Eq. (1) requires an initialization that is sufficiently diverse to prevent the
diversity optimization from only occurring locally. Since the policies are initialized randomly at the
beginning, we find that the discovered policy set rarely covers the task space sufficiently and instead
focuses on a subset of greedy solutions. While shaping the extrinsic reward is an option to encourage
diverse interactions between agent and environment, tuning such reward functions is a tedious task.
We propose an alternative approach to this, which (i) uses an evolution strategy (ES) to explore in
the space of trajectories before (ii) learning a diverse set of policies from this data. We provide an
intuition for this approach in Fig. 1 and describe both stages of our curriculum in the following. For a
formal algorithmic description of the method, we refer to Appendix A.

3.1 Constrained Novelty Search for Spline-based Exploration

The first stage of our curriculum directly optimizes agent trajectories τ ∈ RT×u, where T denotes
the number of timesteps and u the robot’s degrees of freedom. We represent a trajectory as a B-spline
parameterized by a control point matrix ω ∈ Rm×u. Following the constrained diversity optimization
objective in Eq. (1), we optimize a set of trajectory parameters Ω = {ωi}ni=1 such that the resulting
trajectories τ(ω) are as diverse as possible under the constraint of near-optimality:

max
Ωn

Diversity(Ωn) s.t. J(τ(ω)) ≥ αv∗, ∀ω ∈ Ωn, (4)

where J(τ(ωi)) =
∑

t rext(s
i
t, a

i
t), and v∗ = maxω J(τ(ω)). Since the extrinsic task reward function

rext is generally non-differentiable we optimize this problem using a multi-population evolution
strategy (ES). Following Zahavy et al. (2023) we solve the dual optimization using gradient ascent
with bounded Lagrange multipliers {λi}ni=1, which yields the following trajectory reward that we
evaluate on the trajectory τi = τ(ωi):

r(τi) = (1− σ(λi)) rint(τi) + σ(λi) rext(τi) (5)

=
∑
st∈τi

(1− σ(λi))Hparticle(ϕ(st)) + σ(λi) rext(st) (6)

=
∑
sit∈τi

[
(1− σ(λi)) log

(
1 + min

τ(ωj)∈Ω
∥ϕ(sit)− ϕ(sjt )∥2

)
+ σ(λi) rext(st)

]
, (7)

where ϕ is a feature extraction function that projects the states to a lower dimension, λi is the i-th
Lagrange multiplier, and σ denotes the sigmoid function σ(x) = 1/(1 + exp(−x)). We note that
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Eq. (7) is a generalized version of the novelty search objective from Conti et al. (2018), but using
population-level Lagrange multipliers instead of a single heuristically selected scalar. Using Lagrange
multipliers permits not only to consider different weights for different populations, but also a dynamic
adaptation of these weightings. We denote this objective and its optimization as Constrained Novelty
Search (CNS) in the following. While Zahavy et al. (2023) derive the analytical gradient of Eq. (2)
for their intrinsic reward, CNS approximates this gradient by stochastic sampling from an ES, which
approximates natural gradient steps on the novelty objective (Akimoto et al., 2012; Glasmachers
et al., 2010; Hansen & Ostermeier, 2001).

Following prior work (Zahavy et al., 2023; Faldor et al., 2025), we introduce state features ϕ :
S → Rf to avoid relying on the manually defined descriptors that Conti et al. (2018) use. While
most of this prior work learn such feature mappings, we use a fixed random projection ϕ(x) = Qx
where qi ∼ N (0, I) are the basis vectors of the projection Q ∈ Rf×S that we sample from a
standard normal distribution. Using these representations comes with two benefits. First, the blackbox
optimization is stabilized since the intrinsic objective is defined on a stationary embedding. Second,
the approximation error of the feature distances is bounded following the Johnson-Lindenstrauss
lemma (Johnson et al., 1984).

Finally, we note again that we optimize in Rm×u instead of Rd at this step where d is the dimension
of policy parameters. Since typically m×u≪ d, we can optimize Eq. (7) with the CMA-ES (Hansen
& Ostermeier, 2001), which is empirically more sample efficient in moderately high dimensional
parameter spaces than using isotropic search distributions (Salimans et al., 2017; Conti et al., 2018) .

3.2 Efficient Online Diversity Optimization from Prior Data

Given a diverse dataset D = {(τi, zi, rext(τi))}ℓi=1 with skill labels zi ∈ {1, . . . , n} from CNS, our
second stage learns n reactive, skill-conditioned policies that preserve diversity while satisfying the
near-optimality constraint. We build on the off-policy Domino framework (Zahavy et al., 2023), and
augment it with three key modifications inspired by efficient offline-to-online RL (Ball et al., 2023).

Following Zahavy et al. (2023), we use the gradient of the diversity objective as intrinsic reward for
policy optimization, that is

rint(st, at | z) = ϕ(st)
⊤ (

ϕ̄z − ϕ̄j

)
, s.t. ϕ̄j = argmin

j ̸=z
∥ϕ̄z − ϕ̄j∥22, (8)

where ϕ̄z = Es∼ρπz
[ϕ(s)] are the expected features per skill. For consistency, the intrinsic term

measures novelty in the same projection space ϕ used in CNS. We balance extrinsic and intrinsic
rewards as in Eq. (7) using bounded Lagrange multipliers that we update via dual ascent to enforce the
near-optimality constraint. Similar to Domino, we track a running estimate of the expected features
per skill, which we initialize with the population means from CNS.

To efficiently incorporate the CNS data, we use symmetric sampling (Ball et al., 2023; Vecerik
et al., 2017; Ross & Bagnell, 2012), which means that each batch is composed of equal parts of
online and offline transitions. Unlike prior work, we do not use the full data, however, since we
found that trajectories from early iterations of CNS might fail to make meaningful interactions
with the environment. So we only keep those trajectories that are nearly optimal following Eq. (1).
To also exploit suboptimal data, we use a relaxed near-optimality criterion of α/4 and estimate
v∗ = maxτ∈D J(τ). Since this procedure rejects unequal numbers of trajectories per-skill, we adapt
the symmetric sampling by balancing offline and online data equally per-skill. Further, we use a
high number of learning steps per environment step (update-to-data ratio, UTD) to learn from the
diverse CNS data as efficiently as possible. This allows to propagate exploration data quickly through
the network, but requires extensive regularization to prevent overfitting. While multiple remedies to
this issue are known, we follow Ball et al. (2023) in using random ensemble distillation (Chen et al.,
2021), and observation and layer normalization.
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4 Related Work

Diversity-Driven Policy Discovery. Various methods to search diverse policies have been proposed.
Quality-Diversity (QD) and evolutionary methods search in a gradient-free manner, populating
archives of high-performing, behaviorally distinct solutions (Mouret & Clune, 2015; Cully et al.,
2015) or co-optimizing fitness and novelty across populations (Parker-Holder et al., 2020; Conti
et al., 2018; Vassiliades et al., 2017; Braun et al., 2025). In principle, these approaches could be
used in the first step of the proposed curriculum. However, most prior work focuses on optimizing in
policy parameter space before distilling policies (Faldor et al., 2023; Macé et al., 2023; Chalumeau
et al., 2023), a less effective process as we find in this work. Recently, gradient-based RL has
been reformulated to discover multiple policies via intrinsic diversity bonuses. Notably, Eysenbach
et al. (2019) maximize mutual information between skills and states, but focus on unsupervised
skill discovery, while we target task-driven diversity in this work. For environments with extrinsic
rewards, prior methods either learn policies sequentially (Fu et al., 2023; Masood & Doshi-Velez,
2019; Zhou et al., 2022; Chen et al., 2024), or in parallel for greater efficiency (Zahavy et al., 2023;
Gangwani et al., 2019; Chen et al., 2024; Celik et al., 2024). Further, the methods differ in the
employed optimization paradigm. While earlier works balance extrinsic and intrinsic rewards with
fixed scalars (Masood & Doshi-Velez, 2019; Liu et al., 2017), more recent works proposed adaptive
weighting schemes (Parker-Holder et al., 2020; Kumar et al., 2020). In particular, Zahavy et al. (2023)
proposed constrained optimization with Lagrange multipliers, which we adopt in this paper.

Exploration in RL. Exploration is a fundamental aspect of RL, enabling agents to effectively
sample the environment, avoid premature convergence to suboptimal policies, and enhance both
learning performance and generalization. Accordingly, numerous exploration strategies have been
proposed in the literature (Ladosz et al., 2022). A common strategy perturbs the agent’s actions
– often via Gaussian or temporally correlated noise processes (Fujimoto et al., 2018; Hollenstein
et al., 2022). Another line of work introduces parameter noise, where noise is applied directly to the
agent’s parameters rather than to its actions (Plappert et al., 2018; Fortunato et al., 2018). Beyond
pure noise, intrinsic-reward methods augment the extrinsic task reward with bonuses for novelty.
These approaches include techniques based on knowledge-based exploration, which maximizes pre-
diction error (Burda et al., 2019), competence-based exploration (Houthooft et al., 2016; Eysenbach
et al., 2019; Laskin et al., 2022; Zheng et al., 2024) and data-based exploration, which maximizes
entropy (Liu & Abbeel, 2021). While the above intrinsic exploration objectives or parameter noise
explore in the parameter space, we propose to perform intrinsically motivated exploration in the much
lower-dimensional trajectory space. By optimizing a novelty objective on trajectories using an ES,
we can explore over entire behaviors, much like temporally correlated action noise, but with a self-
optimizing noise distribution. While prior work investigated RL at trajectory level (Otto et al., 2023;
Klink et al., 2020; Celik et al., 2024) to improve exploration, these works do not learn step-based
reactive policies but predict full action sequences, which is a drawback in practical domains such
as robotics. Finally, unlike methods that rely on expert demonstrations to guide exploration (Nair
et al., 2018; Salimans & Chen, 2018), our approach does not require prior knowledge or external
supervision.

RL Finetuning from Datasets. Offline RL addresses the issue of data inefficiency inherent in
online RL by training solely on a fixed dataset of past interactions, but it often suffers from sub-
optimality due to limited or biased data (Liu et al., 2024). To overcome these problems, the paradigm
of offline-to-online RL has been proposed, where a policy is trained on offline and online data in
conjunction (Fang et al., 2022; Nakamoto et al., 2023; Zhou et al., 2025; Nakamoto et al., 2023; Feng
et al., 2024; Liu et al., 2024; Wang et al., 2023). The approaches broadly fall into two categories
based on whether the dataset from the replay buffer is discarded after a pretraining phase, or whether
it is retained (Zhou et al., 2025). Pretrain-and-discard methods first pretrain a policy or critic on
the dataset and then use the same networks for finetuning without retaining any prior data (Zhou
et al., 2022; Uchendu et al., 2023; Wolczyk et al., 2024). Data retention methods keep the dataset in
the replay buffer for at least a fraction of the training procedure. Many methods that fall into this
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(a) Cylinder Avoidance Task (b) No Exploration (Domino) (c) Online Exploration
(Domino + ϵ ∼ N )

(d) Curriculum Exploration
(Ours)

Figure 2: Qualitative results for the cylinder avoidance task. Each plot depicts xy trajectories around
black obstacles. Each of the 10 skills is plotted in a separate color. Curriculum exploration is the only
method that finds all collision free paths through the maze.

category first employ an offline pre-training phase but also retain the data during online training to
prevent catastrophic forgetting (Fang et al., 2022; Liu et al., 2024; Hu et al., 2023). Other works
instead directly train a policy online, mixing samples from the prior dataset and current rollouts (Ball
et al., 2023; Song et al., 2023; Nakamoto et al., 2023; Vecerik et al., 2017; Nair et al., 2018). We
adopt this mixing strategy for our CNS dataset finetuning but observe that none of these approaches
explicitly address the preservation or enhancement of policy diversity during online adaptation. In
this work, we close that gap by investigating how offline–online data selection and mixing influence
the retention and amplification of diverse behaviors.

5 Experiments

Our experiments are designed to provide insights into the shortcomings of naively applying diversity
constraints and how these can be mitigated. As such, we aim to answer the following questions: (a)
Does constrained diversity optimization sufficiently explore the environment? (b) Does a curriculum
with constrained novelty search increase policy diversity in skill learning? (c) Do we need diversity
objectives and performance constraints?

Environments. We conduct our experiments focusing on environments from robotics. We use
two environments for evaluation: (a) a cylinder avoidance task where a rod attached to a robot
gripper must be navigated through a maze without collisions (see Fig. 2). The agent is rewarded for
minimizing the distance to the goal line and penalized for touching obstacles. This task enables a
rich set of behaviors since many paths through the maze are possible. To avoid the trivial solution of
moving over the top of all obstacles, we fix the z-position of the rod and use xy-endeffector position
control. We train 10 different skills for this task. (b) Second, we use a cube pushing task in which a
3d-pointmass robot is tasked to push a cube as far away from the center of a table as possible. This
task enables a rich set of behaviors since there are no contact encouraging terms in the reward, so
any object manipulation is conceivable. We train 4 skills for this environment. For full environment
details, we refer to Appendix B.

Baselines. We compare our method to two baselines: First, we use plain diversity optimization with
optimality constraints, without additional exploration, to investigate how well these methods explore.
Second, we use Gaussian action noise ϵ ∼ N (0, I) as a non-diversity-specific exploration method.
We implement the baseline diversity optimization as described in Domino (Zahavy et al., 2023), and
base our code on the public implementation thereof (Grillotti et al., 2024). For both baselines, we do
not estimate successor features and use the ground truth observations as state features to guarantee
maximum possible performance (Zahavy et al., 2023; G Leon et al., 2024). As stated above, all code
is based on SAC (Haarnoja et al., 2018), and uses observation normalization, critic ensembling, and
layer norm. For further implementation details, we again refer to Appendix B. For evaluation we
report the mean return across all policies across 5 seeds as well as the mean diversity defined by
Eq. (2), but using ground truth states of the rollout instead of expected features for diversity metric



Trajectory First: A Curriculum for Discovering Diverse Policies

(a) Cube Pushing Task (b) No Exploration (c) Online Exploration (d) Curriculum Exploration
(Ours)

Figure 3: Qualitative results for the cube pushing task. Each plot depicts the rollouts of 4 skills that
were trained on this task. Curriculum exploration is the only method that maximizes diversity by
pushing the block to four different corners of the table.

computation.

Q1. Does constrained diversity optimization sufficiently explore the environment?

To answer this question, we look at the performance of running diversity optimization without any
additional exploration mechanism. We observe in Fig. 2 that the diversity optimization algorithm
Domino underexplores the domain, which leads to little behavioral diversity. While the method
successfully solves the problem, only a few behavioral modes are found. For the cube task, we see
that multiple distinct behaviors can be found, but some skills overlap (Fig. 3). This highlights that
learning a set of diverse skills requires the discovery of a sufficient number of behaviors in the first
place. Further, our quantitative results (Fig. 4) highlight that online exploration only partly resolves
this issue, as the overall diversity of the solutions is still limited, which is visible in Fig. 2.

Q2. Does a curriculum with constrained novelty search increase policy diversity?

To answer this question, we consider the results of training agents using the proposed curriculum.
As we can see in Fig. 2, using the curriculum enables to discover almost all paths though the maze.
Similarly, in Fig. 3, the curriculum exploration is the only method that finds pushes along four
different directions of the table. All other methods tend to explore more subtle variations such as the
final orientation of the cube once it is pushed off the table. These qualitative findings are corroborated
quantitatively in Fig. 4, which shows that the proposed curriculum clearly produces the most diverse
policies.

(a) Cylinder Avoidance Task (b) Cube Pushing Task

Figure 4: Quantitative evaluation. Curriculum exploration leads to higher policy diversity at high
performance. We report interquartile mean (IQM) and 95% confidence intervals across 5 seeds.
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Q3. What is the value of diversity objectives?

This question aims to investigate whether the diversity objective during RL is needed given diverse
data from the first stage of the curriculum. To answer this question, we run constraint-free population-
based training (Jaderberg et al., 2017, PBT) based on the CNS data, but only maximizing policy
return. Our results in Fig. 5a show that using the diversity objective indeed increases the policy
diversity. At the same time, we observe a slight decrease in task performance when optimizing for
diversity, which we explain by the objective from Eq. (1), which permits a certain amount of slack
α. We believe that these observations provide valuable insights into RL finetuning for diversity. As
stated above, prior finetuning literature neglected diversity, and we believe that the presented recipe
closes this gap. Further, we investigate whether the inclusion of the Lagrange multiplier in the CNS
formulation improves the evolutionary trajectory optimization in comparison to the scalarized novelty
search formulation from previous work (Conti et al., 2018). Fig. 5b displays the population entropy
and population reward across novelty search iterations. We observe that while there are no differences
in rewards, the population entropy is higher for the proposed CNS objective. This demonstrates that
the generalized formulation of novelty search may be a valuable tool for exploration and discovery in
the future.

6 Conclusion & Limitations

(a) RL Diversity Objective
Ablation

(b) Lagrangian Ablation

Figure 5: Ablation study on cube pushing task. We
compare performances for RL with diverse data
from CNS, but no diversity objective during train-
ing (PBT) against our proposed approach. Further,
we ablate the usage of Lagrange multipliers.

We introduced a two-stage, trajectory-first cur-
riculum that can discovering diverse skills in
challenging robotic domains. In the first phase,
we use a constrained novelty search evolution
strategy to explore trajectories. In the second
stage, we train a set of diverse reactive control
policies given the CNS data. We have shown
in our experiments that: (a) naïvely applying
constrained diversity objectives in policy space
leads to under-exploration and thus fails to dis-
cover truly diverse skills (Fig. 2). (b) By first
exploring diverse trajectories using constrained
novelty search, the diversity optimization can
be improved (Fig. 4). (c) Using proper perfor-
mance constraints during evolutionary novelty
search improves sample set entropy over scalar
formulations (Fig. 5a). (d) Using diverse data
for policy training alone does not guarantee truly
diverse policies, but diversity objectives are still
required to maintain full diversity (Fig. 5b).

Despite these advances, our approach is not without limitations. We observe a high variance in
task returns (Fig. 4), which we hope to alleviate in the future. For instance, it may be possible to
improve the data-based finetuning part of our pipeline, by simply increasing the number of seeds in
our evaluation. Moreover, despite providing valuable insights, we aim to further understand how
exploration can improve diversity optimization. We plan to compare to additional baselines such
as data-based exploration methods (Liu & Abbeel, 2021; Burda et al., 2019). Finally, our method
introduces new hyperparameters to the diversity optimization. In the future, we aim to conduct
sensitivity analyses to gain a more profound understanding of the approach’s hyperparameters.
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A Algorithm

Algorithm 1 Curriculum for discovering diverse policies.
Input: Environment env, Optimality ratio α, Num. skills n, Learning rates κλ, κξ, κV , κπ , Init. SAC
temperature ξ

1: // 1. Constrained Novelty Search
2: Initialize population parameters ωi for skills i = 1, . . . , n
3: Dcns ← {}
4: for iteration t = 1, . . . , T do
5: for Population i = 1 . . . n do
6: {τ i1, . . . τ im} ← env.rollout(ωi)
7: Update ωi given (1− σ(λcns

i )) rint({τ i1, . . . τ im}) + σ(λcns) rext({τ i1, . . . τ im}) (Eq. 4)
8: vi ← vi + κλ E[rext({τ i1, . . . τ im})] (Estimate population values)
9: if t % LAMBDADELAY then

10: λcns
i ← λcns

i − αλ∇(λcns(vi − v∗α))
11: end if
12: Dcns ← Dcns ∪ {τ i1, . . . τ im}
13: end for
14: end for
15:
16: // 2. Constrained RL Diversity Optimization
17: for iteration t = 1, . . . , I do
18: // Environment steps
19: z ∼ p(z)
20: at ∼ π(at | st, z)
21: st+1 ∼ p(st+1 | st, at, z) (Step environment)
22: Drl ← Drl ∪ {(st, at, r(st, at), ϕ(st, at), st+1, z)}
23: // Training steps
24: Dbatch ← D1 ∪ D2 with D1 ∼ Dcns,D2 ∼ Drl (Symmetric sampling)
25: ξ ← ξ − κξ∇Jξ(ξ) (Update SAC temperature)
26: λrl ← λrl − κλ∇Jλ(λrl) (Dual ascent on Eq. 1)
27: θV ← θV − κ∇JV (θV ) (Update critic)
28: θπ ← θπ + κπ∇Jπ(θπ) (Update policy)
29: end for

B Experimental Details

Each experiment is repeated across 5 different seeds. Where applicable, we report the interquartile
mean (IQM) across all 5 runs and bootstrapped 95% confidence intervals in our plots. In the following
we provide details about the environments and implementation that we used in this work. All the
experiments are performed on an internal cluster with eight NVIDIA A40 GPUs. We evaluate our
method on two robotics tasks, which are displayed in Fig. 6. Both environments requires reasoning
over objects in the scene, which is generally challenging.

B.1 Environments

Cylinder Avoidance Task. In this task, a robot must successfully navigate a rod that is attached
to its gripper around 6 cylinder obstacles without knocking them over. The agent is rewarded for
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minimizing the distance to the goal line and penalized for touching obstacles. To avoid the trivial
solution of moving over the top of all obstacles, we fix the z-position of the rod and use xy-endeffector
position control. Therefore, the action space is a ∈ [−1, 1]2, while the observation space are position
and velocity information, i.e., s ∈ R4. We train 10 different skills for this task. The reward function
that we use is the following:

r(s, a) = sx − targetx − β · 1collision(s) + xmax,

where sx denotes the x position of the rod, targetx is the coordinate of the goal line, while
1collision(s) is a collision checking function. Further xmax is the maximum x coordinate that
is admissible, which we use as offset to guarantee position rewards. We additionally clip the rewards
to be in [0, 2] to improve training stability. We choose β = 20 for our experiments. To further
simplify the task, we bound the xy-positions to [−4.5, 4.5]2, which we implement by clipping.

Cube Pushing Task In this task, a 3d-pointmass robot is tasked to push a cube as far away from
the center of a table as possible. The agent is only rewarded for maximizing the distance between
the cube’s center of mass and that of the table. This task is challenging because the reward is
spatially sparse as the robot must detect the cube by exploring the environment. The action space is
a ∈ [−1, 1]3, while the observation space are position and velocity information of robot and cube,
i.e., s ∈ R19. We train 4 skills for this environment. The reward function is defined as follows:

r(s, a) = q̇cube + β(∥xyzcube − xyztable∥).

Here ∥xyzcube − xyztable∥ denotes the position difference between cube and table center of mass.
We approximate q̇ by first order finite differences as q̇(x) ≈ xt+1 − xt, which we find to produce
better training results than using the velocities from the Mujoco simulator that we use (Todorov et al.,
2012). We choose β = 1/2.

B.2 Implementation

We implement all algorithms in JAX (Bradbury et al., 2018). We implement Constrained Novelty
Search based on the CMA-ES implementation from evosax (Lange, 2022). The code for all RL
agents is based on Domino (Zahavy et al., 2023), the public implementation thereof Grillotti et al.
(2024), and the STOIX ecosystem (Toledo, 2024). We follow Zahavy et al. (2023) in the choices of
all hyperparameters for Domino with exceptions detailed below. For all baselines, we use ground
truth observations as state features, since they are low-dimensional and should thus yield the best
performances (Zahavy et al., 2023; G Leon et al., 2024). For CNS, we use the aforementioned random
projections since they are an elementary part of the method. For a full list of hyperparameters, we
refer to Table 1.

Initialization Since we initialize Domino from prior data, we adapt the initialization. The running
estimates of the state features are not initialized with ϕavg = 1̄/f for features in Rf . Instead, we use
the mean of the maximum likelihood solutions from the CNS. In other words, for each CMA-ES
population that we run, we select the resulting trajectory parameters, roll out an additional trajectory
from them and use the expected features over this trajectory as initial estimate of the features per

Figure 6: Considered environments. Left: cylinder avoidance task. Right: cube pushing.
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skill. We find that this initialization is provides better results than the uniform initialization from
Domino. For the values however, we follow Domino in using a zero initialization for all skills instead
of using the expected reward from the final parameter rollouts. This is because such an initialization
would overestimate the capacities of the current policies and thus only optimize diversity from the
very beginning of training following Eq. 1.

Network Architectures As stated in Section 3.1 we follow design choices from prior work in
using layer normalization and observation normalization. We use the same architectures for actor and
critic networks, however we perform critic ensembling for regularization and use separate heads for
extrinsic and intrinsic values. Our MLP backbone resembles that of Lee et al. (2024), but we replace
the layer norm in between block by a dynamic tanh (Zhu et al., 2025). All networks are optimized
using Adam (Kingma & Ba, 2015).

Constrained Novelty Search. We implement CNS based on the CMA-ES implementation in
evosax. Before combining extrinsic and intrinsic fitness, we normalize both values within each
subpopulation. Further, we use simple gradient descent to update the Lagrange multipliers. For
higher optimization stability, we only update these parameters every iteration, but then perform 200
steps of gradient descent. To prevent gradient saturation due to the usage of sigmoids on the Lagrange
multipliers, we bound them to make sure that they remain in a reasonable range. Similar to Domino,
we also fix the first Lagrange multiplier to 1, so we can estimate v∗ based on this population. In
practice, we found it more stable, however, to choose v∗ = maxω∈Ω v(w). Note that we follow this
choice only during CNS.

C Additional Results

Sample Efficiency We now present additional experimental results evaluating the sample efficiency
of our method. To this end, we plot the learning curves with respect to the extrinsic task in Fig. 7. We
can see that on the simpler task of cylinder avoidance, the final task performance is similar, but is less
sample-efficient. In the cube task, however, in which it is more challenging to explore, there is no
difference in sample efficiency between the methods. This highlights the potential of the proposed
curriculum.

(a) Cylinder Avoidance Task (b) Cube Push Task

Figure 7: Sample efficiency comparison. While the ES-free method achieves higher performance
earlier on the simpler cylinder avoidance task, the sample efficiency on the cube push task is similar.

Full Results For completeness, we report the results of every seed for the obstacle avoidance task
in Fig. 8. We see that our method learns the most diverse policy set for each seed.
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Figure 8: Complete results for cylinder avoidance task. Each column is a different seed and each row
a different method. The first row depicts running Domino without additional exploration. The second
row uses action noise for improved online exploration. The third row shows our approach, which
learns the most diverse trajectory set for each seed. In the bottom row, we depict the data which we
obtain from the CNS optimization. For visibility reasons, we subsample the data by a factor of 10.
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Cylinder Avoidance Cube Pushing

Environment Details

Observation size 4 19
Action size 2 3
Episode length 100 200
Num. env. steps 800 000 2 500 000
Num. skills 10 4
Optimality ratio α 0.75 0.6

RL Parameters

Update-to-data ratio 10 10
Discount 0.95 0.99
Batch size 32 32
Htarget dimA dimA
Critic hidden depth 2 2
Critic hidden size 256 256
Actor hidden depth 2 2
Actor hidden size 256 256
Learn. Rate Critic 3e-4 3e-4
Learn. Rate Actor 3e-4 3e-4
Learn. Rate Temperature 3e-4 3e-4
Learn. Rate Lagrange 1e-3 1e-3
Optimizer Adam Adam
Polyak weight 0.005 0.005
Num. critics 8 8
Critic subset size 2 2

CNS Parameters

Num. iterations 100 100
Subpopulation size 4 8
Elite ratio 0.4 0.4
Init. σ 0.8 0.8
Random feature dim. 2 4
Lagrange range [-2, 2] [-2, 0]
Num. spline controls 10 8

Table 1: Full Hyperparameter Overview


