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Figure 1: Results of motion sequence transfer (left) and shape variation generation (right) using
the proposed neural pose representation. On the left, poses from source shapes (first and third rows)
are transferred to target shapes (second and fourth rows), preserving intricate details like horns
and antlers. On the right, new poses sampled from a cascaded diffusion model, trained with shape
variations of the bunny (last column), are transferred to other animal shapes.

Abstract
We propose a novel method for learning representations of poses for 3D deformable
objects, which specializes in 1) disentangling pose information from the object’s
identity, 2) facilitating the learning of pose variations, and 3) transferring pose
information to other object identities. Based on these properties, our method en-
ables the generation of 3D deformable objects with diversity in both identities and
poses, using variations of a single object. It does not require explicit shape param-
eterization such as skeletons or joints, point-level or shape-level correspondence
supervision, or variations of the target object for pose transfer. We first design
the pose extractor to represent the pose as a keypoint-based hybrid representation
and the pose applier to learn an implicit deformation field. To better distill pose
information from the object’s geometry, we propose the implicit pose applier to
output an intrinsic mesh property, the face Jacobian. Once the extracted pose
information is transferred to the target object, the pose applier is fine-tuned in
a self-supervised manner to better describe the target object’s shapes with pose
variations. The extracted poses are also used to train a cascaded diffusion model to
enable the generation of novel poses. Our experiments with the DeformThings4D
and Human datasets demonstrate state-of-the-art performance in pose transfer and
the ability to generate diverse deformed shapes with various objects and poses.

1 Introduction
The recent great success of generative models [17, 39, 40, 38] has been made possible not only
due to advances in techniques but also due to the enormous scale of data that has become available,
such as LAION [35] for 2D image generation. For 3D data, the scale has been rapidly increasing,
as exemplified by ObjaverseXL [10]. However, it is still far from sufficient to cover all possible
3D shapes, particularly deformable, non-rigid 3D shapes such as humans, animals, and characters.
The challenge with deformable 3D shapes is especially pronounced due to the diversity in both
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the identities and poses of the objects. Additionally, for a new 3D character created by a designer,
information about possible variations of the creature does not even exist.

To remedy the requirement of a large-scale dataset for 3D deformable shape generation, we aim to
answer the following question: Given variations of a single deformable object with its different poses,
how can we effectively learn the pose variations while factoring out the object’s identity and also
make the pose information applicable to other objects? For instance, when we have a variety of poses
of a bear (Fig. 1 left, first row), our objective is to learn the space of poses without entangling them
with the geometric characteristics of the bears. Also, we aim to enable a sample from this space to
be applied to a new object, such as a bull, to generate a new shape (Fig. 1 left, second row). We
believe that such a technique, effectively separating pose from the object’s identity and enabling
the transfer of poses to other identities, can significantly reduce the need for collecting large-scale
datasets covering the diversity of both object identities and poses. This approach can even enable
creating variations of a new creature without having seen any possible poses of that specific object.

Transferring poses from one object to another has been extensively studied in computer graphics and
vision, with most methods requiring target shape supervision [42, 5, 51, 4, 12] or predefined pose
parameterization [14, 9, 22, 43, 3, 50, 33, 11, 45, 20, 25, 46, 8]. Without such additional supervision,
our key idea for extracting identity-agnostic pose information and learning their variations is to
introduce a novel pose representation along with associated encoding and decoding techniques. For
this, we consider the following three desiderata:

1. Pose Disentanglement: The representation should effectively represent the pose only without
resembling the source object’s identity when applied to the other object.

2. Compactness: The representation should be compact enough to effectively learn its variation
using a generative model, such as a diffusion model.

3. Transferability: The encoded pose information should be applicable to new target objects.

As a representation that meets the aforementioned criteria, we propose an autoencoding framework
and a latent diffusion model with three core components. Firstly, we design a pose extractor and a
pose applier to encode an implicit deformation field with a keypoint-based hybrid representation,
comprising 100 keypoints in the space, each associated with a latent feature. Learning the deformation
field enables disentangling the pose information from the object’s identity, while the keypoint-based
representation compactly encodes it and makes it transferable to other objects. However, simply
learning the deformation as a new position of the vertex is not sufficient to properly adapt the source
object’s pose information to others. Hence, secondly, we propose predicting an intrinsic property
of the deformed mesh, Jacobian fields [54, 26, 41, 2], which can successfully apply the pose while
preserving the identity of the target shape. To better preserve the target’s identity while applying the
pose variation from the source, thirdly, we propose a per-identity refinement step that fine-tunes the
decoder in a self-supervised way to adapt to the variations of target shapes, with poses transferred
from the source object. Thanks to the compact hybrid representation of pose, a pose generative model
can also be effectively learned using cascaded diffusion models [18, 21], enabling the generation of
varying poses of an object with an arbitrary identity different from the source object.

In our experiments, we compare our framework against state-of-the-art techniques for pose transfer
on animals (Sec. 4.2) and humans (Sec. 4.3). Both qualitative and quantitative analyses underscore
the key design factors of our framework, demonstrating its efficiency in capturing identity-agnostic
poses from exemplars and its superior performance compared to existing methods. Additionally, we
extend the proposed representation to the task of unconditional generation of shape variations. Our
representation serves as a compact encoding of poses that can be generated using diffusion models
(Sec. 4.6) and subsequently transferred to other shapes. This approach facilitates the generation of
various shapes, particularly in categories where exemplar collection is challenging.

2 Related Work
Due to space constraints, we focus on reviewing the literature on non-rigid shape pose transfer, includ-
ing methods that operate without parameterizations, those that rely on predefined parameterizations,
and recent learning-based techniques that derive parameterizations from data.
Parameterization-Free Pose Transfer. Early works [42, 49, 5, 51] focused on leveraging point-
wise correspondences between source and target shapes. A seminal work by Sumner and Popović
[42] transfers per-triangle affine transforms applied to the target shape by solving an optimization
problem. A follow-up work by Ben-Chen et al. [5] transfers deformation gradients by approximating
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Figure 2: Method overview. Our framework extracts keypoint-based hybrid pose representations
from Jacobian fields. These fields are mapped by the pose extractor g and mapped back by the
pose applier h. The pose applier, conditioned on the extracted pose, acts as an implicit deformation
field for various shapes, including those unseen during training. A refinement module α, positioned
between g and h, is trained in a self-supervised manner, leveraging the target’s template shape. The
compactness of our latent representations facilitates the training of a diffusion model, enabling diverse
pose variations through generative modeling in the latent space.

source deformations using harmonic bases. On the other hand, a technique proposed by Baran et
al. [4] instead employs pose-wise correspondences by learning shape spaces from given pairs of
poses shared across the source and target identities. The poses are transferred by blending existing
exemplars. While these techniques require point-wise or pose-wise correspondence supervision, our
method does not require such supervision during training or inference.

Skeleton- or Joint-Based Pose Transfer. Another line of work utilizes handcrafted skeletons,
which facilitate pose transfer via motion retargeting [14]. This approach has been extended by
incorporating physical constraints [9, 22, 43, 3] or generalizing the framework to arbitrary objects [50,
33]. Several learning-based methods [11, 45, 20, 25, 46] have also been proposed to predict joint
transformations involved in forward kinematics from examples. Recently, Chen et al. [8] proposed
a framework that does not require skeletons during test time by predicting keypoints at joints. The
method is trained to predict both relative transformations between corresponding keypoints in two
distinct kinematic trees and skinning weights. However, the tasks of rigging and skinning are labor-
intensive, and different characters and creatures often require distinct rigs with varying topologies.
Liao et al. [24] notably presented a representation that comprises character-agnostic deformation parts
and a semi-supervised network predicting skinning weights that link each vertex to these deformation
parts, although its performance hinges on accurate skinning weight prediction. In this work, we design
a more versatile framework that is applicable to various shapes and provides better performance.

Pose Transfer via Learned Parameterization. To bypass the need for correspondence or pa-
rameterization supervision, learning-based approaches [12, 53, 47, 57, 7, 2, 24, 48, 36, 37] explore
alternative parameterizations learned from exemplars. Yifan et al. [53] propose to predict source and
target cages and their offsets simultaneously, although their method still requires manual landmark
annotations. Gao et al. [12] introduce a VAE-GAN framework that takes unpaired source and target
shape sets, each containing its own set of pose variations. The network is trained without direct
pose-wise correspondences between samples from these sets, instead enforcing cycle consistency
between latent representations. Although this work relaxes the requirement for correspondence super-
vision, it still requires pose variations for both the source and target identities and individual training
for each new source-target pair. Numerous works [47, 7, 57, 2] lift the requirement for gathering
variations of target shapes by disentangling identities from poses, enforcing cycle consistency [57], or
adapting conditional normalization layers [47] from image style transfer [30]. Notably, Aigerman et
al. [2] train a network that regresses Jacobian fields from SMPL [28] pose parameters. The vertex
coordinates are computed by solving Poisson’s equation [54], effectively preserving the shapes’ local
details. Wang et al. [48] also train a neural implicit function and retrieve a shape latent from a template
mesh of an unseen identity via autodecoding [29]. This method models local deformations through a
coordinate-based network that learns continuous deformation fields. However, such methods struggle
to generalize to unseen identities due to their reliance on global latent embeddings encoding shapes.
We propose a representation that not only disentangles poses from identities but also allows for
implicit queries using the surface points, thereby improving generalization to new identities.
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3 Method
3.1 Problem Definition
Consider a source template mesh MS

= (V
S
,FS), given as a 2-manifold triangular mesh. The

mesh comprises vertices V
S

and faces FS . Suppose there exist N variations of the source template
mesh, {MS

1 , . . . ,MS
N}, where each MS

i = (VS
i ,F

S) is constructed with a different pose, altering
the vertex positions while sharing the same mesh connectivity FS .

Assume a target template mesh MT
= (V

T
,FT ) is given without any information about its

variations or existing pose parameterization (e.g.,, skeletons or joints). Our goal is to define functions
g and h that can transfer the pose variations from the source meshes to the target template mesh. For
each variation of the source shape MS

i , its corresponding mesh MT
i for the target is obtained as:

MT
i = (h(g(MS

i ),M
T
),FT ), for i = 1, 2, · · · , N. (1)

Specifically, we design g as a pose extractor that embeds a source object mesh MS
i into a pose

latent representation ZS
i = g(MS

i ). This representation disentangles the pose information from the
object’s identity in MS

i and facilitates transferring the pose to the target template mesh MT
. Given

this pose representation, the pose applier h then applies the pose to MT
, yielding the corresponding

variation of the target object MT
i = h(ZS

i ,M
T
). Note that our method is not limited to transferring

the pose of a given variation of the source object to the target mesh but can also apply a pose generated
by a diffusion model to the target mesh. In Sec. 3.5, we explain how a diffusion model can be trained
with the latent pose representation extracted from source object variations. In the following, we first
describe the key design factors of the functions g and h to tackle the problem.

3.2 Keypoint-Based Hybrid Pose Representation
To encode a source shape MS into a latent representation ZS , we consider its vertices VS as its
geometric representation and use them as input to the pose extractor g, which is designed as a sequence
of Point Transformer [56, 44] layers. These layers integrate vector attention mechanisms [55] with
progressive downsampling of input point clouds. The output of the pose extractor g is a set of
unordered tuples ZS =

{
(zSk ,h

S
k )
}K

k=1
where zSk ∈ R3 represents a 3D coordinate of a keypoint

subsampled from VS via farthest point sampling (FPS) and hS
k is a learned feature associated with

zSk . This set ZS forms a sparse point cloud of keypoints in 3D space, augmented with latent features.
We set K = 100 in our experiments.

This keypoint-based hybrid representation, visualized in Fig. 2, is designed to exclusively transfer
pose information from the source to the target while preventing leakage of the source shape’s identity
characteristics. Since the keypoints {zSk } are sampled from VS using FPS, they effectively capture
the overall pose structure of VS while also supporting geometric queries with the vertices of a new
mesh. This property is essential during the decoding phase, where the pose applier h predicts the
pose-applied mesh from the input template as an implicit deformation field.

The pose applier h is implemented with a neural network that takes the 3D coordinates of a vertex
from the input template mesh as a query, along with the hybrid pose latent representation Z , and
outputs the new position of the vertex in the pose-applied deformed mesh. Note that h indicates a
function that collectively maps all vertices in the input template mesh to their new positions using
the network. Like the pose extractor g, the implicit deformation network is also parameterized
as Point Transformer layers [56]. It integrates the pose information encoded in ZS by combining
vector attention mechanisms with nearest neighbor queries to aggregate features of the keypoints zSk
around each query point. The aggregated features are then decoded by an MLP to predict the vertex
coordinates of the deformed shape. (This is a base network, and we also introduce a better way to
design the implicit deformation network in Sec. 3.3.)

Given only the variations of the source object {MS
1 , . . . ,MS

N}, we jointly learn the functions g and
h by reconstructing the variations of the source object as a deformation of its template:

LV = ∥VS
i − h(g(MS

i ),M
S
)∥2. (2)

While g and h are trained using the known variations of the source object MS , the latent representation
ZS = g(MS), when queried and decoded with the target template mesh, effectively transfers the
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pose extracted by g from MS . However, we also observe that g and h, when trained using the loss
LV , often result in geometry with noticeable imperfections and noise on the surfaces. To address
this, we explore an alternative representation of a mesh that better captures and preserves geometric
details, which will be discussed in the following section.

3.3 Representing Shapes as Jacobian Fields
In this work, we advocate employing the differential properties of surfaces as dual representations
of a mesh. Of particular interest are Jacobian fields, a gradient-domain representation noted for
its efficacy in preserving local geometric details during deformations [2], while ensuring that the
resulting surfaces maintain smoothness [13].

Given a mesh M = (V,F), a Jacobian field J represents the spatial derivative of a scalar-valued
function ϕ : M → R defined over the surface. We discretize ϕ as ϕV ∈ R|V|, sampling its value at
each vertex v of the vertex set V. The spatial derivative of ϕ at each triangle f ∈ F is computed as
∇fϕV using the per-triangle gradient operator ∇f . Given that each dimension of vertex coordinates
V is such a function, we compute its spatial gradient at each triangle f as Jf = ∇fV. Iterating this
process for all triangles yields the Jacobian field J = {Jf |f ∈ F}.

To recover V from a given Jacobian field J, we solve a least-squares problem, referred to as Poisson’s
equation:

V∗ = argmin
V

∥LV −∇TAJ∥2, (3)

where L ∈ R|V|×|V| is the cotangent Laplacian of M, ∇ is the stack of gradient operators defined
at each f ∈ F, and A ∈ R3|F|×3|F| is the diagonal mass matrix, respectively. Since the rank of
L is at most |V| − 1, we can obtain the solution by fixing a single point, which is equivalent to
eliminating one row of the system in Eqn. 3. Since L in Eqn. 3 remains constant for a given shape
M, we can prefactorize the matrix (e.g.,using Cholesky decomposition) and quickly solve the system
for different Jacobian fields J’s. Furthermore, the upstream gradients can be propagated through the
solver since it involves only matrix multiplications [2].

Employing Jacobian fields as shape representations, we now modify the implicit deformation network
described in Sec. 3.2 to take face center coordinates as input instead of vertex coordinates and
to output a new face Jacobian for a query face instead of a new vertex position. This results in
decomposing h into two functions h = (ξ ◦ h′), where h′ is a function that collectively maps all the
faces in the input mesh to the new Jacobian, and ξ is a differentiable Poisson solver layer. Both g and
h′ are then trained by optimizing the following loss:

LJ = ∥VS
i − ξ(h′(g(MS

i ),M
S
))∥2. (4)

3.4 Per-Identity Refinement using Geometric Losses
While the latent pose representation Z learned by g and h exhibits promising generalization ca-
pabilities in transferring poses, the quality of the transferred shapes can be further improved by
incorporating a trainable, identity-specific refinement module into our system. This module is trained
in a self-supervised manner with the set of pose-applied target meshes. Similarly to techniques
for personalized image generation [19, 52], we introduce a shallow network α between g and h,
optimizing its parameters while keeping the rest of the pipeline frozen.

The optimization of α is driven by geometric losses, aiming to minimize the geometric discrepancies
in terms of the object’s identity between the target template mesh MT

and the pose-transferred
meshes MT

i . In particular, we first extract poses
{
ZS

1 , . . . ,ZS
N

}
corresponding to the known

shapes
{
MS

1 , . . . ,MS
N

}
of the source object. A transformer-based network α, which maps a latent

representation ZS to ZS′, is plugged in between the pose extractor g and the pose applier h :

VT
i = h(α(ZS

i ),M
T
). (5)

The parameters of α are updated by optimizing the following loss function:

Lref = λlapLlap(V
T
i ,V

T
) + λedgeLedge(V

T
i ,V

T
) + λreg(

∑
k

∥zSk − zS′
k ∥2 + ∥hS

k − hS′
k ∥2), (6)
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where Llap(·) is the mesh Laplacian loss [27], Ledge(·) is the edge length preservation loss [24], and
λlap, λedge, and λreg are the weights of the loss terms. The definitions of the losses are provided in the

appendix. Note that this refinement step leverages only the originally provided template shape MT

and does not require its given variations or any other additional supervision.

3.5 Learning Latent Diffusion via Cascaded Training
The use of the keypoint-based hybrid representation discussed in Sec. 3.2 offers a compact latent
space suitable for generative modeling using diffusion models [39, 17, 40, 38]. Unlike the Jacobian
fields with dimensionality |F| × 9, the keypoints and their feature vectors that comprise the pose
representation ZS lie in significantly lower dimensional space, facilitating generative modeling with
latent diffusion models [34].

We employ a cascaded diffusion framework [18, 21] to separately capture the layouts of keypoints and
the associated feature vectors. Given a set {ZS

1 , . . . ,ZS
N} of N latent embeddings extracted from the

known source shape variations
{
MS

1 , . . . ,MS
N

}
, we first learn the distribution over ZS =

{
zSk

}K

k=1
.

To handle unordered sets with small cardinality, we employ a transformer-based network to facilitate
interactions between each element within the noise prediction network ϵτ (Z

S
t , t) where t is a diffusion

timestep and ZS
t is a noisy 3D point cloud obtained by perturbing a clean keypoint set ZS

0

(
= ZS

)
via forward diffusion process [17]. We train the network by optimizing the denoising loss:

LZS = EZS ,ϵ ∼ N (0,I),t ∼ U(0,1)

[
∥ϵ− ϵτ (Z

S
t , t)∥2

]
. (7)

Likewise, the distribution of the set of latent features HS =
{
hS
k

}K

k=1
is modeled as a conditional

diffusion model ϵµ, which takes ZS as an additional input to capture the correlation between ZS and
HS . The network is trained using the same denoising loss:

LHS = EHS ,ϵ ∼ N (0,I),t ∼ U(0,1)

[
∥ϵ− ϵµ(H

S
t ,Z

S , t)∥2
]
. (8)

Once trained, the models can sample new pose representations through the reverse diffusion steps [17]:

ZS
t−1 =

1
√
αt

(
ZS

t − βt√
1− ᾱt

ϵτ
(
ZS

t , t
))

, (9)

HS
t−1 =

1
√
αt

(
HS

t − βt√
1− ᾱt

ϵµ
(
HS

t ,Z
S
0 , t

))
, (10)

where αt, ᾱt, and βt are the diffusion process coefficients.

4 Experiments
4.1 Experiment Setup
Datasets. In our experiments, we consider animal and human shapes that are widely used
in various applications. For the animal shapes, we utilize animation sequences from the
DeformingThings4D-Animals dataset [23]. Specifically, we extract 300 meshes from the anima-
tion sequences of each of 9 different animal identities, spanning diverse species such as bears, rabbits,
dogs, and moose. For humanoids, we use SMPL [28, 31], which facilitates easy generation of syn-
thetic data for both training and testing. We sample 300 random pose parameters from VPoser [31] to
generate variations of an unclothed human figure using the default body shape parameters, which are
used to train our networks. For testing, we keep the pose parameters constant and sample 40 different
body shapes from the parametric space covered by the unit Gaussian. This produces 40 different
identities, each in 300 poses. The generated meshes serve as the ground truth for pose transfer. To
assess the generalization capability to unusual identities that deviate significantly from the default
body shape, we increase the standard deviation to 2.5 when sampling SMPL body parameters for 30
of the 40 identities. Additionally, we collect 9 stylized character meshes from the Mixamo dataset [1]
to test the generalizability of different methods. For diffusion model training, the extracted keypoints
and their associated features from the given set of source meshes are used as the training data for our
cascaded diffusion model, which is trained separately for each identity.

Baselines. To assess the performance of pose transfer, we compare our method against Aigerman
et al. [2] (NJF), Liao et al. [24] (SPT), Wang et al. [48] (ZPT), and various modifications of our
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framework. For NJF [2], we use the official code from the Morphing Humans experiment, em-
ploying a PointNet [32] encoder to map input shapes to global latents, and we train the model on
our datasets. For SPT [24], we use the official code and pretrained model on humanoid shapes.
Since a pretrained model for animal shapes is not provided, the comparison with SPT on the
DeformingThings4D-Animals dataset is omitted. For ZPT [48], the official implementation is not
provided, so we implemented the model based on the description in the paper. In our ablation study,
we explore different variations of our method to assess their impact on performance, including: (1)
using vertex coordinates as shape representations (as described in Sec. 3.2), and (2) omitting the
per-identity refinement module (Sec. 3.4). All models (except for SPT [24], for which we employ a
pretrained model) are trained for each shape identity.

Evaluation Metrics. For pose transfer, when the corresponding shapes of the same pose are given
for both source and target shapes, in the SMPL case, we measure accuracy using Point-wise Mesh
Euclidean Distance (PMD) [57, 47], following our baselines[24, 48]. Note that this measurement
cannot be applied in the DeformingThings4D-Animals case since pose-wise correspondences are not
provided. For both pose transfer and shape generation (via pose generation), we measure the visual
plausibility of the output meshes using FID [16], KID [6], and ResNet classification accuracy with
images rendered from four viewpoints (front, back, left, and right) without texture. For the latter, we
train a ResNet-18 [15] network using 10,800 images rendered from the four viewpoints of all ground
truth shape variations of each animal.

4.2 Pose Transfer on DeformingThings4D-Animals
We begin our experiments by transferring pose variations across different animals, a challenging task
that necessitates strong generalization capabilities due to the diverse shapes of the animals involved.

DeformingThings4D-Animals [23] SMPL [28]
FID ↓ KID ↓ ResNet PMD ↓ FID ↓ KID ↓ ResNet

(×10−2) (×10−2) Acc. ↑ (%) (×10−3) (×10−2) (×10−2) Acc. ↑ (%)

NJF [2] 11.33 5.71 64.43 2.55 1.57 0.82 70.93
SPT [24] - - - 0.28 0.83 0.43 75.38
ZPT [48] 19.88 11.09 48.15 1.28 0.77 0.45 69.88

Ours 1.11 0.42 78.72 0.13 0.30 0.19 79.09

Table 1: Quantitative results on the experiments using the DeformingThings4D-Animals dataset [23]
and the human shape dataset populated using SMPL [28].
We summarize the quantitative metrics in Tab. 1 (left). Our method outperforms NJF [2] and ZPT [48],
both of which use global latent codes to encode shapes, while ours uses a keypoint-based hybrid
representation. Note that SPT [24] is not compared in this experiment since the pretrained model
is not provided for animal shapes. Qualitative results are also shown in Fig. 3, demonstrating the
transfer of poses from a source mesh MS (second and seventh column, red) to a target template mesh
MT

(first and sixth column, blue). Both NJF [2] and ZPT [48] introduce significant distortions to the
results and often fail to properly align the pose extracted from the source to the target. Our method,
on the other hand, effectively transfers poses to the targets while preserving local geometric details.
More results can be found in the appendix.

MT MS NJF [2] ZPT [48] Ours MT MS NJF [2] ZPT [48] Ours

Figure 3: Qualitative results of transferring poses of the source meshes MS’s (red) in the Deform-
ingThings4D animals [23] to target templates MT

’s (blue). Best viewed when zoomed in.
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4.3 Pose Transfer on SMPL and Mixamo
We further test our method and baselines using humanoid shapes ranging from SMPL to stylized
characters from the Mixamo [1] dataset. While we employ the parametric body shape and pose model
of SMPL [28, 31], it is important to note that this is only for evaluation purposes; our method does
not assume any parametric representations, such as skeletons, for either training or inference.

Tab. 1 (right) summarizes the evaluation metrics measured across the 40 target shapes. Notably, our
method achieves lower PMD than SPT [24], which is trained on a large-scale dataset consisting
of diverse characters and poses, while ours is trained using only 300 pose variations of the default
human body. This is further illustrated in the qualitative results in Fig. 4, where we demonstrate
pose transfer from source meshes (red) to target template meshes (blue) not seen during training.
As shown, the shapes transferred by our method accurately match the overall poses. Our method
benefits from combining a keypoint-based hybrid representation with Jacobian fields, outperforming
the baselines in preserving local details, especially in areas with intricate geometric features such as
the hands. See the zoomed-in views in Fig. 4. More results can be found in the appendix.

MT MS NJF [2] SPT [24] ZPT [48] Ours MT
GT

Figure 4: Qualitative results of transferring poses of the default human meshes MS’s (red) to
different target template meshes MT

’s (blue). The ground truth targets MT
GT’s (grey) are displayed

for reference. Best viewed when zoomed in.

Furthermore, we apply our model to a more challenging setup involving stylized characters. In Fig. 5,
we present qualitative results using shapes from the Mixamo [1] dataset. Despite being trained on a
single, unclothed SMPL body shape, our method generalizes well to stylized humanoid characters
with detailed geometry (first row) and even to a character missing one arm (second row).

MT MS NJF [2] SPT [24] ZPT [48] Ours

Figure 5: Qualitative results of transferring poses of the default human meshes MS’s (red) to target
template meshes MT

’s (blue) of Mixamo characters [1]. Best viewed when zoomed in.
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4.4 Ablation Study
Our framework design is further validated by comparisons against different variations of our frame-
work, as listed in Sec. 4.1, in the pose transfer experiment on animal shapes discussed in Sec. 4.2.
Tab. 2 (left) summarizes the image plausibility metrics measured using the results from our internal
baselines. Qualitative results are presented in Fig. 6. Our method, which extracts pose representations
from Jacobian fields and leverages the per-identity refinement module, achieves the best performance
among all the variations.

Poses from MS
i Generated Poses (Sec. 3.5)

Jacobian
(Sec. 3.3)

Refinement
(Sec. 3.4)

FID ↓ KID ↓ ResNet FID ↓ KID ↓ ResNet
(×10−2) (×10−2) Acc. ↑ (%) (×10−2) (×10−2) Acc. ↑ (%)

✗ ✗ 3.52 2.13 55.67 9.52 4.69 44.34
✓ ✗ 1.17 0.47 75.13 4.40 2.39 75.82
✓ ✓ 1.11 0.42 78.72 4.22 2.24 78.81

Table 2: Ablation study using the poses from the source shapes in DeformingThings4D-Animals [23]
dataset (left) and the poses generated from our cascaded diffusion model.

MT MS Vertex Only Jacobian Field Only Ours

Figure 6: Qualitative results from the ablation study where a pose of the source shape MS (red) in
the DeformingThings4D-Animals [23] is transferred to the target template shape MT

(blue).

4.5 Sensitivity to Number of Keypoints
We examine the sensitivity of our method to the number of keypoints by testing different variants
of our framework while varying the number of keypoints extracted by the pose extractor to 50, 25,
and 10, respectively. These variants are trained using the same SMPL [28] human body shapes
and animal shapes from the DeformingThings4D-Animals [23] dataset. Our per-identity refinement
stage (Sec. 3.4) is omitted to focus exclusively on the impact of keypoint counts on performance.
Tab. 3 summarizes FID and PMD measured using the DeformingThings4D-Animals and SMPL
dataset, respectively. We showcase qualitative results in Fig. 7 and Fig. 8. As reflected in both
quantitative and qualitative results, reducing the number of keypoints does not significantly affect
pose transfer accuracy.

DeformingThings4D-Animals [23] SMPL [28]
Method Ours–10 Ours-25 Ours-50 Ours-100 Method Ours–10 Ours-25 Ours-50 Ours-100

FID
(×10−2) 1.25 0.87 0.83 0.72 PMD

(×10−3) 0.20 0.17 0.17 0.13

Table 3: Quantitative results from the variants of our framework trained to extract different number
of keypoints. Ours-N denotes a variant of our network trained to extract N keypoints.

MT MS Ours-10 Ours-25 Ours-50 Ours-100

Figure 7: Qualitative results of transferring a pose of the source shape MS (red) in the
DeformingThings4D-Animals [23] to the target template shape MT

(blue) using variants of our
framework (Ours-N ), trained to extract N keypoints.

9



MT MS Ours-10 Ours-25 Ours-50 Ours-100 MT
GT

Figure 8: Qualitative results of transferring a pose of the default human mesh MS (red) to the target
template mesh MT

(blue) using variants of our framework (Ours-N ), trained to extract N keypoints.

4.6 Pose Variation Generation Using Diffusion Models
We evaluate the generation capabilities of our diffusion models trained using different pose represen-
tations. Since no existing generative model can learn pose representations transferable across various
shapes, we focus on analyzing the impact of using Jacobian fields on generation quality. We use
shapes obtained by applying 300 generated poses to both MS

’s (red) and various MT
’s (blue). The

quantitative and qualitative results are summarized in Tab. 2 (right) and Fig. 9, respectively. While
the poses are generated using the diffusion model, our model still achieves ResNet classification
accuracy comparable to the pose transfer experiment (Tab. 2, left). This tendency is also reflected
in the qualitative results shown in Fig. 9. These results validate that the latent space learned from
variations of Jacobian fields is more suitable for generating high-quality shape and pose variations
compared to the one based on vertices. More results can be found in the appendix.

MS

(Vertex)
MS

(Ours)
MT

(Vertex)
MT

(Ours)
MS

(Vertex)
MS

(Ours)
MT

(Vertex)
MT

(Ours)

Figure 9: Pose variation generation results. Each row illustrates the outcomes of applying a generated
pose to a source template mesh MS

(red) and a target template mesh MT
(blue).

5 Conclusion
We have presented a method for learning a novel neural representation of the pose of non-rigid 3D
shapes, which facilitates: 1) the disentanglement of pose and object identity, 2) the training of a
generative model due to its compactness, and 3) the transfer of poses to other objects’ meshes. In our
experiments, we demonstrated the state-of-the-art performance of our method in pose transfer, as
well as its ability to generate diverse shapes by applying the generated poses to different identities.

Limitations. Our method leverages differential operators to compute the Jacobian field of the given
template mesh, requiring additional preprocessing when dealing with meshes that have multiple
disconnected components or defects in the triangulation. Our framework also assumes that a template
mesh of the shape is known for pose transfer. We plan to extend our framework for transferring poses
between arbitrary shapes in future work.

Societal Impacts. Our generative model for poses and the pose transfer technique could potentially
be misused for deepfakes. Developing robust guidelines and techniques to prevent such misuse is an
important area for future research.
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Appendix

In the following appendix, we provide implementation details of our method, including dataset
processing, network architectures, training details, and hyperparameter selection in Sec. A. We also
present multi-view renderings of a pose transfer example showcased in Sec. 4.3 in Sec. B, the full list
of evaluation metrics reported in Tab. 2 in Sec. C, and additional qualitative results from our pose
transfer and generation experiments in Sec. D.

A Implementation Details
Data. We use nine animal shapes from the DeformingThings4D-Animals [23] dataset in our
experiments, specifically: BEAR, BUNNY, CANINE, DEER, DOG, ELK, FOX, MOOSE, and PUMA.
We employ the first frame of the first animation sequence (alphabetically ordered) as the template for
each animal, and the last frame of randomly sampled animation sequences for variations. Additionally,
we use T-posed humanoid shapes from both the SMPL [28] and Mixamo [1] datasets as template
meshes.

Networks. We utilize Point Transformer layers from Zhao et al.[56] and Tang et al.[44] for im-
plementing the pose extractor g and the pose applier h. The network architectures for our cascaded
diffusion models, as detailed in Sec. 4.6, are adapted from Koo et al. [21]. These models operate over
T = 1000 timesteps with a linear noise schedule ranging from β1 = 1× 10−4 to βT = 5× 10−2.
For model training, we employ the ADAM optimizer at a learning rate of 1 × 10−3 and standard
parameters. Our experiments are conducted on RTX 3090 GPUs (24 GB VRAM) and A6000 GPUs
(48 GB VRAM).

For per-identity refinement modules, we set λlap = 1.0, λedge = 1.0, and λreg = 5 × 10−2 during
training.

Loss Functions. We provide the definitions of the loss functions used to supervise the training of
our per-identity refinement module.

The Laplacian loss [27] is defined between two sets of vertices with the vertex-wise correspondences:

Llap

(
V,V

T
)
= LT

(
V −V

T
)
, (11)

where V is a set of new vertex coordinates, V
T

is a set of vertex coordinates of the target template
mesh MT

, and LT is the cotangent Laplacian of MT
.

Likewise, the edge length preservation loss [24] is defined as:

Ledge =
∑

{i,j}∈E

|∥Vi −Vj∥2 − ∥VT

i −V
T

j ∥2|, (12)

where E is a set of edges comprising the target shapes and Vi and V
T

i are the i-th vertex of a new set
of vertex coordinates and that of MT

.

B Multi-View Renderings of Qualitative Results

While Fig. 5 showcases only single-view images, our method produces high-fidelity 3D shapes after
pose transfer as shown in Fig. A10.

Ours (View 1) Ours (View 2) Ours (View 3) Ours (View 4)

Figure A10: A pose transfer example showcased in Fig. 5, rendered from 4 different viewpoints.
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C Full List of Quantitative Metrics Reported in Tab. 2

We report the full lists of evaluation metrics reported in Tab. 2 from the following page.

Table A4: Full list of FIDs reported in Tab. 2 (left)

Bear Bunny Canie Deer Dog Elk Fox Moose Puma

Vertices (Sec. 3.2)

Bear - 3.47 11.53 6.76 6.14 8.40 4.92 5.26 9.80
Bunny 4.43 - 7.71 4.03 6.07 5.94 4.62 4.88 8.11
Canie 2.47 3.46 - 2.95 2.83 5.43 2.62 2.39 4.24
Deer 2.39 2.37 4.80 - 3.32 3.00 3.12 1.45 6.53
Dog 1.82 2.74 5.49 2.09 - 3.99 2.80 1.61 3.01
Elk 2.35 1.74 9.04 3.13 2.79 - 2.58 2.83 5.02
Fox 0.54 0.97 1.28 0.37 0.67 0.69 - 0.71 1.40

Moose 3.38 2.12 8.31 4.25 3.76 6.13 3.63 - 6.74
Puma 1.92 3.54 6.33 2.90 2.72 5.58 2.78 2.10 -

Jacobians (Sec. 3.3)

Bear - 6.77 1.16 0.61 0.46 0.27 0.73 1.20 0.42
Bunny 3.36 - 6.08 2.16 4.94 3.87 2.12 1.41 4.37
Canie 0.45 1.40 - 0.41 0.78 0.92 0.62 0.35 0.64
Deer 0.49 1.94 2.44 - 1.25 1.68 0.34 0.27 0.98
Dog 0.21 3.70 0.48 0.42 - 0.17 0.47 0.62 0.16
Elk 0.44 5.23 0.99 0.63 0.46 - 0.49 1.03 0.51
Fox 0.99 0.98 1.74 0.74 1.47 1.37 - 0.53 1.27

Moose 0.39 2.49 1.69 0.25 0.82 1.16 0.48 - 0.69
Puma 0.39 2.80 0.46 0.46 0.36 0.35 0.24 0.47 -

Ours (Jacobians + Refinement (Sec. 3.4))

Bear - 3.83 1.10 0.60 0.56 0.30 0.58 0.92 0.41
Bunny 3.97 - 6.22 2.71 4.75 3.39 2.89 2.16 4.72
Canie 0.64 0.98 - 0.51 0.80 0.96 0.66 0.40 0.83
Deer 0.68 1.35 2.18 - 1.29 1.10 0.40 0.28 1.11
Dog 0.33 2.03 0.46 0.45 - 0.22 0.25 0.52 0.20
Elk 0.42 3.70 0.89 0.61 0.49 - 0.46 0.85 0.53
Fox 1.61 0.60 1.73 1.34 1.46 1.04 - 1.08 1.51

Moose 0.58 1.58 1.74 0.34 0.93 0.95 0.48 - 0.79
Puma 0.50 1.87 0.55 0.53 0.46 0.40 0.29 0.47 -
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Table A5: Full list of KIDs reported in Tab. 2 (left)

Bear Bunny Canie Deer Dog Elk Fox Moose Puma

Vertices (Sec. 3.2)

Bear - 2.56 8.87 4.95 4.46 6.15 3.65 3.61 6.95
Bunny 2.06 - 3.87 2.69 3.20 2.76 2.42 2.50 3.79
Canie 1.55 2.38 - 1.97 1.82 3.79 1.68 1.46 2.82
Deer 1.05 1.01 2.07 - 1.53 1.24 1.68 0.62 3.93
Dog 1.30 1.70 3.99 1.49 - 2.92 2.08 1.11 2.00
Elk 1.37 0.65 6.57 2.22 1.60 - 1.07 1.91 3.02
Fox 0.26 0.25 0.39 0.16 0.25 0.27 - 0.39 0.64

Moose 1.63 0.83 5.29 2.91 1.67 3.33 1.39 - 2.93
Puma 1.03 2.10 4.38 1.65 1.72 3.85 1.86 1.14 -

Jacobians (Sec. 3.3)

Bear - 2.36 0.29 0.21 0.20 0.01 0.17 0.27 0.03
Bunny 1.18 - 3.00 1.02 2.26 1.70 0.85 0.43 1.97
Canie 0.17 0.67 - 0.10 0.25 0.25 0.14 0.11 0.19
Deer 0.10 0.11 0.99 - 0.70 0.93 0.08 0.03 0.41
Dog 0.08 1.71 0.11 0.15 - 0.05 0.27 0.18 -0.00
Elk 0.02 1.97 0.09 0.15 0.05 - 0.06 0.17 0.05
Fox 0.62 0.27 0.99 0.74 1.04 0.84 - 0.32 0.79

Moose 0.22 1.18 0.72 0.13 0.45 0.46 0.09 - 0.20
Puma 0.15 0.77 0.08 0.29 0.15 0.15 0.03 0.22 -

Ours (Jacobians + Refinement (Sec. 3.4))

Bear - 1.26 0.29 0.23 0.20 0.01 0.08 0.27 0.07
Bunny 1.42 - 2.92 1.02 2.10 1.34 0.85 0.80 1.97
Canie 0.17 0.44 - 0.14 0.25 0.25 0.09 0.11 0.27
Deer 0.19 0.11 0.94 - 0.66 0.46 0.08 0.03 0.41
Dog 0.08 0.93 0.11 0.17 - 0.05 0.08 0.18 0.03
Elk 0.02 1.34 0.09 0.17 0.05 - 0.04 0.17 0.09
Fox 0.92 0.27 0.90 0.74 0.90 0.44 - 0.65 0.79

Moose 0.22 0.68 0.72 0.19 0.45 0.46 0.04 - 0.29
Puma 0.22 0.77 0.16 0.29 0.21 0.17 0.03 0.25 -

Table A6: Full list of ResNet classification accuracies reported in Tab. 2 (left)

Bear Bunny Canie Deer Dog Elk Fox Moose Puma

Vertices (Sec. 3.2)

Bear - 81.33 37.58 58.00 72.75 53.17 65.83 54.00 41.33
Bunny 57.25 - 26.83 51.25 41.33 35.58 52.83 49.75 15.33
Canie 77.67 69.92 - 74.25 78.75 63.75 77.75 76.17 57.58
Deer 95.08 90.42 70.33 - 93.50 85.33 97.58 98.08 67.42
Dog 67.50 45.42 17.58 51.08 - 38.00 69.17 64.00 18.58
Elk 92.08 81.58 72.25 86.25 92.50 - 84.92 90.08 81.17
Fox 78.92 58.08 34.25 81.58 68.75 46.42 - 84.42 17.17

Moose 44.33 22.33 9.83 74.33 40.17 33.67 25.08 - 6.42
Puma 82.25 73.92 71.00 69.00 81.08 71.50 81.00 77.92 -

Jacobians (Sec. 3.3)

Bear - 93.50 85.50 92.08 95.58 95.50 96.42 93.83 91.50
Bunny 86.67 - 60.00 72.83 69.00 66.75 85.33 79.08 63.08
Canie 77.83 80.25 - 83.92 81.33 76.17 92.83 81.17 80.08
Deer 98.17 93.00 97.25 - 100.00 97.67 99.58 99.17 99.83
Dog 85.50 58.58 60.58 82.92 - 75.92 85.50 76.75 65.33
Elk 86.67 73.17 86.75 81.42 89.00 - 91.17 85.67 91.00
Fox 86.83 62.33 64.17 82.67 74.08 72.25 - 84.58 76.50

Moose 94.08 92.92 69.33 92.83 89.42 69.17 80.83 - 78.75
Puma 90.75 78.08 87.58 87.17 89.75 88.83 88.25 88.25 -

Ours (Jacobians + Refinement (Sec. 3.4))

Bear - 91.67 92.50 93.00 96.58 95.75 97.42 94.42 94.67
Bunny 88.58 - 72.33 74.83 80.33 74.42 89.33 81.75 73.42
Canie 80.00 83.92 - 86.50 84.42 79.92 91.67 81.58 83.33
Deer 98.58 94.00 99.08 - 99.92 99.50 99.75 99.25 99.67
Dog 86.92 66.17 64.25 86.00 - 80.83 86.58 77.75 74.08
Elk 88.25 75.42 90.17 82.92 91.17 - 92.08 86.83 92.00
Fox 87.58 81.08 84.25 89.00 91.17 87.42 - 89.92 91.42

Moose 95.75 94.00 75.50 93.33 91.92 77.25 92.75 - 86.08
Puma 91.25 82.58 91.58 88.00 91.50 90.33 89.83 90.33 -
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Table A7: Full list of FIDs reported in Tab. 2 (right)

Bear Bunny Canie Deer Dog Elk Fox Moose Puma

Vertices (Sec. 3.2)

Bear - 6.48 30.77 12.79 12.01 20.99 10.43 24.06 12.48
Bunny 11.58 - 36.26 13.34 15.52 24.21 12.93 25.78 15.91
Canie 4.03 2.58 - 5.06 4.95 8.12 4.54 9.67 4.71
Deer 6.42 4.82 23.16 - 10.69 14.91 9.67 15.48 13.75
Dog 2.62 1.69 12.12 4.06 - 7.53 3.47 9.51 3.57
Elk 4.58 3.33 16.49 5.82 6.27 - 6.90 12.78 6.82
Fox 4.31 2.18 20.87 7.74 7.95 13.40 - 16.59 6.30

Moose 7.60 6.18 22.20 9.00 10.64 15.46 10.74 - 11.63
Puma 3.46 2.89 12.97 5.18 5.22 8.75 4.57 10.18 -

Jacobians (Sec. 3.3)

Bear - 2.33 9.66 2.12 4.62 14.47 1.82 0.80 2.74
Bunny 7.29 - 19.93 7.19 12.65 23.89 6.74 3.02 8.76
Canie 1.75 0.94 - 2.22 4.60 10.37 2.21 1.03 3.16
Deer 1.75 0.99 10.24 - 5.68 17.01 2.35 0.53 3.04
Dog 1.21 1.38 5.16 1.69 - 8.80 0.91 0.80 1.51
Elk 0.80 2.39 5.89 2.11 3.61 - 1.60 0.73 1.78
Fox 3.17 0.65 9.70 4.07 6.86 14.63 - 1.10 4.18

Moose 1.97 1.38 10.27 3.59 6.09 16.94 3.70 - 3.36
Puma 1.43 1.37 5.25 1.85 3.12 8.93 1.49 0.71 -

Ours (Jacobians + Refinement (Sec. 3.4))

Bear - 1.46 9.01 2.20 4.49 13.71 2.14 0.85 2.72
Bunny 8.03 - 17.47 7.42 11.33 21.57 7.42 3.79 8.62
Canie 2.05 1.04 - 2.23 4.37 9.95 2.33 1.20 3.21
Deer 2.18 1.04 8.96 - 5.45 14.57 2.53 0.78 3.11
Dog 1.58 1.03 4.81 1.83 - 8.42 1.18 0.98 1.62
Elk 0.99 1.84 5.57 2.09 3.58 - 1.65 0.79 1.79
Fox 3.91 1.61 7.59 3.85 5.53 12.00 - 2.14 3.79

Moose 2.36 1.25 9.65 3.72 5.98 16.01 3.46 - 3.50
Puma 1.66 1.23 5.09 1.94 3.16 8.59 1.60 0.84 -

Table A8: Full list of KIDs reported in Tab. 2 (right)

Bear Bunny Canie Deer Dog Elk Fox Moose Puma

Vertices (Sec. 3.2)

Bear - 3.53 15.17 7.02 5.90 10.50 5.51 10.86 6.91
Bunny 5.15 - 17.82 6.40 7.48 11.71 6.10 12.39 7.15
Canie 1.74 1.33 - 2.21 2.05 3.52 1.99 4.47 2.00
Deer 3.41 2.80 14.00 - 6.58 8.71 5.83 8.33 8.77
Dog 1.31 0.83 5.61 1.88 - 3.36 1.66 4.15 1.65
Elk 2.13 1.46 7.88 2.70 2.85 - 3.04 5.55 3.25
Fox 2.28 1.10 11.40 4.44 4.24 7.07 - 8.84 3.36

Moose 3.49 2.77 10.45 4.22 5.14 6.91 4.92 - 4.88
Puma 1.48 1.39 5.73 2.24 2.10 3.63 2.09 4.46 -

Jacobians (Sec. 3.3)

Bear - 0.66 5.20 1.35 2.61 7.83 0.95 0.23 1.37
Bunny 2.85 - 10.52 3.68 6.35 12.27 2.81 0.97 3.84
Canie 0.65 0.39 - 1.29 2.25 5.33 0.77 0.24 1.35
Deer 0.72 0.17 6.97 - 4.06 12.34 1.33 0.15 1.45
Dog 0.52 0.60 2.90 1.13 - 4.84 0.40 0.19 0.67
Elk 0.20 0.82 3.32 1.38 1.97 - 0.77 0.14 0.85
Fox 1.96 0.27 6.08 2.89 4.52 8.89 - 0.64 2.48

Moose 0.79 0.54 5.68 2.43 3.41 9.92 1.86 - 1.51
Puma 0.78 0.53 2.99 1.29 1.77 5.13 0.74 0.38 -

Ours (Jacobians + Refinement (Sec. 3.4))

Bear - 0.35 4.87 1.39 2.57 7.38 1.16 0.28 1.38
Bunny 3.12 - 9.03 3.84 5.52 10.76 3.11 1.30 3.71
Canie 0.79 0.41 - 1.26 2.11 5.04 0.83 0.33 1.39
Deer 0.93 0.35 5.93 - 3.74 10.15 1.40 0.28 1.45
Dog 0.71 0.42 2.67 1.20 - 4.54 0.55 0.28 0.72
Elk 0.29 0.59 3.12 1.39 1.97 - 0.77 0.18 0.86
Fox 2.23 0.84 4.52 2.46 3.47 6.96 - 1.19 2.11

Moose 0.97 0.44 5.31 2.52 3.35 9.27 1.68 - 1.61
Puma 0.91 0.48 2.91 1.34 1.81 4.91 0.80 0.46 -
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Table A9: Full list of ResNet classification accuracies reported in Tab. 2 (right)

Bear Bunny Canie Deer Dog Elk Fox Moose Puma

Vertices (Sec. 3.2)

Bear - 59.25 8.17 24.08 48.75 15.50 36.00 20.75 30.17
Bunny 38.50 - 0.83 15.00 21.25 9.75 24.33 13.83 5.17
Canie 72.58 78.42 - 56.67 71.92 39.50 61.50 35.67 66.58
Deer 92.42 84.83 65.58 - 88.25 75.58 82.00 85.00 73.83
Dog 66.75 45.00 6.17 28.08 - 13.92 51.17 24.25 14.75

dragonOLO 99.67 97.92 82.25 100.00 99.58 - 99.67 94.83 96.33
Elk 86.83 71.33 32.50 62.92 74.50 57.50 - 44.50 81.92
Fox 64.42 62.83 10.58 47.17 54.50 22.42 66.67 - 13.25

Moose 32.58 15.42 1.33 41.50 19.83 11.50 13.00 35.83 -

Jacobians (Sec. 3.3)

Bear - 91.58 77.75 90.33 93.92 82.67 94.92 94.83 90.67
Bunny 90.92 - 42.67 70.17 74.33 44.92 84.17 84.08 68.25
Canie 85.17 87.42 - 77.83 84.67 68.08 96.00 85.75 89.58
Deer 99.67 96.75 99.58 - 99.92 99.58 100.00 99.75 100.00
Dog 90.92 69.75 69.00 83.08 - 78.92 93.17 87.83 81.33
Elk 94.50 80.67 94.42 78.58 92.42 - 95.00 91.92 92.50
Fox 89.17 76.33 59.92 79.25 78.67 39.08 - 92.17 89.58

Moose 97.00 91.58 57.92 84.50 86.83 45.17 68.67 - 85.33
Puma 93.67 84.42 93.42 84.75 92.42 95.25 89.83 90.75 -

Ours (Jacobians + Refinement (Sec. 3.4))

Bear - 90.83 84.75 90.58 96.08 86.75 96.42 94.75 95.92
Bunny 91.08 - 56.00 72.33 81.67 53.17 88.17 86.00 77.42
Canie 87.75 89.08 - 79.33 85.92 69.08 95.25 86.50 90.75
Deer 99.83 98.00 99.92 - 100.00 100.00 100.00 99.67 99.83
Dog 91.83 73.50 76.92 84.50 - 85.67 93.58 89.17 87.08
Elk 95.00 81.92 95.00 81.75 92.50 - 95.00 93.17 93.75
Fox 88.17 85.58 78.58 82.92 91.25 61.33 - 90.50 94.75

Moose 97.08 92.00 67.08 84.92 91.08 55.83 86.92 - 89.75
Puma 93.75 87.08 94.50 86.75 92.08 95.50 91.17 92.75 -
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D Additional Qualitative Results

We showcase additional qualitative results from the pose transfer and pose generation experiments
below.

MT MS NJF [2] ZPT [48] Ours MT MS NJF [2] ZPT [48] Ours

Figure A11: Qualitative results of pose transfer across DeformingThings4D animals [23].
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MT MS NJF [2] SPT [24] ZPT [48] Ours

Figure A12: Qualitative results of pose transfer from a SMPL [28] mesh to Mixamo characters [1].
Best viewed when zoomed in.
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MT MS NJF [2] SPT [24] ZPT [48] Ours MT
GT

Figure A13: Qualitative results of pose transfer across different SMPL [28] human body shapes. Best
viewed when zoomed-in.
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Figure A14: Unconditional generation results. Each row illustrates the outcome of directly applying
the generated poses to the source shape MS and then transferring them to various target shapes MT .
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We fully discuss the claims made in the abstract and introduction throughout
the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: All results reported in the paper are obtained through experiments.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed descriptions for the implementation of our framework and
the data collection procedure.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

25



Answer: [No]
Justification: We will publicly release the code upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, we provide detailed descriptions of the data collection and split procedure.
Our texts also include important hyperparameters, such as the learning rates used for model
training.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Due to our limited computational resources, we were unable to report error
bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We indicates the GPU resources used for our experiments in our paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This work conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Yes, we are aware of potential impact on our work and discussed it in the
paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: We do not describe safeguards in our main paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite all resources.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not present any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We did not conduct any form of crowdsourcing or research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our research does not include experiments that require IRB approvals and
involving human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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