SCD-MMPSR: Semi-Supervised Cross-Domain Learning Framework for Multitask Multimodal Psychological States Recognition

Anonymous authorsPaper under double-blind review

000

001

002

004 005 006

007

008 009 010

011

013

014

016

017

018

019

021

023

025

026

027

028

029

031

034

037

040

041

042

043

044

045

047

048

052

ABSTRACT

Modern human-computer interaction interfaces demand robust recognition of complex psychological states in real-world, unconstrained settings. However, existing multimodal corpora are typically limited to single tasks with narrow annotation scopes, hindering the development of general-purpose models capable of multitask learning and cross-domain adaptation. To address this, we introduce SCD-MMPSR (Semi-supervised Cross-Domain Multitask Multimodal Psychological States Recognition), a novel framework that unifies heterogeneous corpora via GradNorm-based adaptive task weighting in multitask semi-supervised learning (SSL) to jointly train models across diverse psychological prediction tasks. At the architectural core, we propose two innovations within a graph-attention backbone: (1) Task-Specific Projectors, which transform shared multimodal representations into task-conditioned logits and re-embed them into a unified hidden space, enabling iterative refinement through graph message passing while preserving modality alignment; and (2) a Guide Bank, a learnable set of taskspecific semantic prototypes that anchor predictions, injecting structured priors to stabilize training and enhance generalization. We evaluate SCD-MMPSR on three distinct psychological state recognition tasks, emotion recognition (MO-SEI), personality trait recognition (FIv2), and ambivalence/hesitancy recognition (BAH), demonstrating consistent improvements in multitask performance and cross-domain robustness over strong baselines. We also evaluate the generalization of SCD-MMPSR on unseen data using MELD. Multitask SSL improves generalization on MELD by macro F1-score of 7.5% (35.0 vs. 27.5) over singletask SSL. Our results highlight the potential of semi-supervised, cross-task representation learning for scalable affective computing. The code is available at https://github.com/Anonymous-user-2026/ICLR 2026.

1 Introduction

Effective human-computer interaction increasingly requires automated systems that recognize rich, interacting psychological states (e.g., emotions, personality traits, ambivalence/hesitancy) from multimodal, in-the-wild data. Despite mounting studies of cross-task correlations (Li et al., 2022; Wang et al., 2023), such as personality-guided Emotion Recognition (ER) (Wen et al., 2024) or emotion-informed personality modeling (Bao et al., 2025), the field predominantly deploys singletask, single-corpus architectures (Li et al., 2023; Kong et al., 2025). Recent advances in psychological states recognition (see detailed related work in Appendix A.1) have largely progressed in isolation: State-of-the-Art (SOTA) methods for Personality Traits Recognition (PTR) benefit from attention-based modeling of Big Five traits (Agrawal et al., 2023; Masumura et al., 2025). Ambivalence/Hesitancy Recognition (AHR) relies on temporal modeling via Temporal Convolutional Networks (TCNs) and Long Short-Term Memorys (LSTMs) (Kollias et al., 2025; Hallmen et al., 2025). Moreover, ER increasingly leverage Transformer and Mamba architectures for multimodal fusion (Goncalves et al., 2023; Zhang et al., 2025a). It is known that the correlation between various tasks of affective computing can enhance the model's performance. For instance, personality traits such as Neuroticism demonstrably modulate emotional reactivity to negative stimuli (Mohammadi & Vuilleumier, 2022), while ambivalence serves as a critical indicator of internal conflict, revealing

055

060

061

062

063

064

065

066 067

068 069

071

072

073

074

075

076

077

078

079

081

082

083

084

087

090

091

092

094

095

096

098 099

100

102

103

105

106

107

Figure 1: Pipeline of the proposed multitask multimodal psychological states recognition method.

whether an expressed emotion is genuine or socially masked, or whether self-reported personality aligns with behavioral cues (Hallmen et al., 2025). However, although multitask methods are emerging, particularly in emotion-sentiment or personality-emotion settings (Wen et al., 2024; Bao et al., 2025), they remain constrained to single corpora or homogeneous annotations. Meanwhile, Semi-Supervised Learning (SSL) has gained traction as a solution to annotation scarcity, with successful applications in unimodal ER, PTR (Hosseini & Caragea, 2023; Zhu et al., 2024) and multimodal methods (Fan et al., 2024; Lian et al., 2024).

Thus, nearly all effective methods remain task- and corpus-specific. These methods are trained using single-task corpora with narrow annotation scopes, inconsistent recording conditions, and different labeling protocols. This fragmentation imposes severe problems: (1) computational inefficiency, as deploying separate models for task-specific recognition multiplies inference overhead; and (2) poor generalization, as models trained on narrow, task-specific corpora suffer from domain overfitting and fail to transfer to unseen contexts. However, the lack of a general multitask solution stems from the fact that manual annotation at large-scale data is prohibitively expensive and often infeasible due to the complexity of the tasks and inter-annotator disagreement (Kollias et al., 2025; Sun et al., 2025; Mendelman & Talmon, 2025). Consequently, joint modeling of these states has remained largely unexplored, and the field lacks a practical, principled method to exploit many single-task, heterogeneous corpora jointly to learn shared multimodal representations that transfer across various affective behavior understanding tasks.

To fill this gap, we introduce SCD-MMPSR (Semi-supervised Cross-Domain Multitask Multimodal Psychological States Recognition), a unified framework (Figure 1) that enables joint training across heterogeneous, single-task corpora without requiring joint annotations. We rigorously evaluate SCD-MMPSR on three benchmark corpora (CMU Multimodal Opinion Sentiment and Emotion Intensity (MOSEI) (Bagher Zadeh et al., 2018) annotated for ER, ChaLearn First Impressions v2 (FIv2) (Escalante et al., 2020) annotated for PTR, and Behavioural Ambivalence/Hesitancy (BAH) (González-González et al., 2025)annotated for AHR) under standard protocols, and further test its zero-shot generalization on the unseen Multimodal EmotionLines Dataset (MELD) corpus (Poria et al., 2019). The results demonstrate high generalization due to multitask SSL, validating the framework's capacity for cross-domain and cross-task transfer learning.

The main contributions of the article are as follows:

- SCD-MMPSR, an open-source semi-supervised cross-domain learning framework that jointly models ER, PTR, and AHR from heterogeneous, single-task corpora by using a GradNorm-based adaptive task weighting in multitask SSL.
- A Multimodal Cross-Domain Model (MCDM) with novel layers to learn cross-modal and cross-task interaction, called (1) Task-Specific Projectors for iterative feature-prediction refinement and (2) Guide Banks for structuring semantic task-specific embedding prototypes.
- Empirical evidence that our semi-supervised cross-domain training improves multitask performance and generalization across various corpora, supported by ablations that isolate the benefits of the proposed modules.

2 Proposed Method

The proposed multitask multimodal psychological states recognition (Figure 1) is a unified framework designed to predict ambivalence/hesitancy jointly, Personality Traits (PTs), and emotions from video sequences. Each video is divided into four modalities: video, audio, text, and behavior, which are then processed separately through specific pre-processing pipelines. Each modality is encoded using specialized pre-trained models to capture domain-specific features. These unimodal embeddings are then combined in a multimodal fusion architecture called the Multimodal Cross-Domain Model (MCDM). This model enhances cross-modal alignment and improves cross-domain generalization by utilizing task-specific corpora simultaneously. A key advantage of the proposed method is its unified architecture for multitask learning. This allows for joint optimization across different tasks. Training is performed in a cross-domain setting, where each task uses its own corpus to create robust and transferable representations. A pseudo-labeling technique is used to leverage unlabeled data, which involves applying a confidence threshold to high-confidence predictions and integrating them into the training process in a semi-supervised manner. This enhances generalization without requiring additional annotation effort.

2.1 Pre-trained Embeddings

In this study, we investigate the generalization of pre-trained encoders across different modalities and tasks using a unified multimodal framework. Instead of developing new encoders from scratch, we utilize existing models that have demonstrated effectiveness in affective and behavioral analysis (Appendix A.1). Systematically replacing one encoder at a time, while keeping the rest fixed allows us to assess each component's contribution to cross-modal and cross-task performance in a controlled manner. The evaluation is conducted in a multitask setting to assess the robustness of the encoders beyond the limitations of single-task scenarios.

We examine a range of encoders across four modalities: audio, video, and text/behavior. For audio, we use CLAP (Wu et al., 2023), Whisper (Radford et al., 2023), AST (Gong et al., 2021), and Wav2Vec2 (Baevski et al., 2020) models, including emotion-fine-tuned versions, as well as EmoEx-HuBERT (Amiriparian et al., 2024) and EmoWav2Vec2 (Wagner et al., 2023). Text and behavior encodings use both general-purpose models such as Jina (V3 / V4) (Sturua et al., 2024; Günther et al., 2025), BGE (Xiao et al., 2024a), CLAP (Wu et al., 2023), CLIP (Radford et al., 2021), and RoBERTa (Liu et al., 2019), as well as its modifications such as XLM RoBERTa (Conneau et al., 2019) and the affective models, such as EmoDistilRoBERTa (Sanh et al., 2019) and EmoRoBERTa¹. For video, we study Dino v2 (Oquab et al., 2024), CLIP (Radford et al., 2021) and ViT (Wu et al., 2020), ResNet-50 (He et al., 2016), and emotion-specific models such as EmotiEffLib (Savchenko, 2023), EmoAffectNet (Ryumina et al., 2022), and two EmoViT models.

Preprocessing is applied to all modalities before encoding. For videos, the BlazeFace model (Bazarevsky et al., 2019) is used to detect face regions for accurate long-range tracking. This is followed by alignment and background removal using the FaceMesh model (Kartynnik et al., 2019). Both models are available in the MediaPipe library (Lugaresi et al., 2019), and their combined use allows eliminating each other's limitations. Audio signals are encoded directly with the selected pre-trained models, without any additional normalization. Text transcription is extracted using the Whisper Turbo model (Radford et al., 2023) and is fed to the encoder.

2.2 LLM-based Behavior Description

In recent research, the use of Large Visual Language Models (VLLMs) to describe human behavior in videos has been shown to enhance affect recognition performance (Zhang et al., 2024a; Lu et al., 2025). In our work, we use the Qwen2.5-VL model (Bai et al., 2025) to generate video behavior descriptions, as it provides robust fine-grained visual comprehension, long-term video reasoning, and adaptive resolution. The prompt design for our experiments is based on the following idea. Instead of listing specific categories, the prompt encourages the model to generate continuous natural language narratives of observed behavior. It focuses on non-verbal cues, such as eye gaze, body posture and microexpressions, and it avoids making assumptions about the context that cannot be verified. This narrative-based prompting ensures consistency across emotional, personality-related,

https://huggingface.co/michellejieli/emotion_text_classifier

Figure 2: Multimodal Cross-Domain Model Architecture.

and ambiguous states, aligning with established psychological theories while leveraging the generative capabilities of VLLMs. The proposed prompt is presented in Appendix A.2. To confirm the effectiveness of the proposed prompt, we compare it with prompts specifically designed for ER (Cheng et al., 2024; Zhang et al., 2025b).

2.3 MULTIMODAL FUSION MODEL ARCHITECTURE

Since no existing corpus is jointly annotated for all three target tasks, we use multiple corpora from different domains. These differ in their recording conditions, annotation protocols, and label distributions. Importantly, the informativeness of modalities varies significantly across these corpora. To address this, we have designed a unified architecture that dynamically allocates attention across modalities within each task domain, while enabling cross-modal feature refinement to capture complementary signals. The architecture of the proposed MCDM is shown in Figure 2. MCDM addresses multimodal fusion across heterogeneous inputs by combining Modality- and Task-Specific Projectors, graph attention, and task-specific query-based cross-attention fusions, and task-guided embedding banks. Each model component has its own purpose. The model therefore maps unimodal features $\{X^{(m)}\}_{m\in\mathbb{M}}$ to task-specific predictions $\{\hat{y}^{(t)}\}_{t\in\mathbb{T}}$ via a unified architecture. Let \mathbb{M} denote the set of active modalities, and $\mathbb{T}=\{\text{EMO},\text{PT},\text{AH}\}$ the set of recognition tasks. For each modality $m \in \mathbb{M}$, the input is a tensor $X^{(m)} \in \mathbb{R}^{B \times d_m}$, where B is the batch size and d_m is the input feature dimension. These input tensors are statistical functionals (mean and standard deviation) calculated from contextual embeddings extracted using unimodal encoders. Each modality is then mapped into a shared hidden dimension space H via a modality projector. The modality projector ensures that heterogeneous unimodal embeddings are mapped into a unified latent space while retaining modality-specific inductive bias. It is calculated as:

$$\boldsymbol{z}^{(m)} = \phi_m(\boldsymbol{X}^{(m)}) \in \mathbb{R}^{B \times H},\tag{1}$$

where $\phi_m(\cdot)$ consists of a Fully Connected Layer (FCL), a Rectified Linear Unit (ReLU) activation function, a dropout layer, and a residual adaptation, which is calculated using the formula:

$$\tilde{z}^{(m)} = \text{LayerNorm}(z^{(m)} + \text{Adapter}(z^{(m)}))$$
 (2)

where Adapter(·) consists of a downsampling FCL (with weight tensor $W_{down} \in \mathbb{R}^{H \times H/2}$), ReLU, a dropout layer, and an upsampling FCL ($W_{up} \in \mathbb{R}^{H/2 \times H}$).

Concatenating across modalities yields the fused tensor:

$$Z = \operatorname{stack}(\tilde{z}^{(m)})_{m \in \mathbb{M}} \in \mathbb{R}^{B \times N \times H},$$
 (3)

where $N = |\mathbb{M}|$ denotes the number of active modalities.

The graph attention fusion, $GAF(\cdot)$, is then applied to both modality features and Task-Specific Projectors. The graph attention fusion over modality features captures higher-order dependencies

between modalities, while the graph attention fusion over task predictions enables information exchange across task-specific projections. Given an adjacency $\mathbf{A} \in \{0,1\}^{B \times N \times N}$, the graph attention operator updates node embeddings as follows:

$$GAF(\boldsymbol{Z}, \boldsymbol{A})_{b,i,:} = \sum_{j=1}^{N} \alpha_{b,ij} \, \boldsymbol{W} \boldsymbol{Z}_{b,j,:} \in \mathbb{R}^{B \times N \times H}, \tag{4}$$

with attention coefficients:

$$\alpha_{b,ij} = \frac{\exp\left(\text{LeakyReLU}\left(\boldsymbol{a}^{\top}[\boldsymbol{W}\boldsymbol{Z}_{b,i,:} \parallel \boldsymbol{W}\boldsymbol{Z}_{b,j,:}]\right)\right) \mathbf{1}_{\{\boldsymbol{A}_{b,ij}>0\}}}{\sum_{j'} \exp\left(\text{LeakyReLU}\left(\boldsymbol{a}^{\top}[\boldsymbol{W}\boldsymbol{Z}_{b,i,:} \parallel \boldsymbol{W}\boldsymbol{Z}_{b,j,:}]\right)\right) \mathbf{1}_{\{\boldsymbol{A}_{b,ij'}>0\}}},$$
(5)

where $a \in \mathbb{R}^{2H}$ is a learnable parameter and $\|\cdot\|$ denotes concatenation; $b \in B$ is a batch index; $W \in \mathbb{R}^{H \times H}$ is a weight tensor. When graph connections are disabled, the identity operator is used instead.

Task-Specific Projectors functional. For each task $t \in \mathbb{T}$, per-modality predictions are obtained as follows:

$$\boldsymbol{L}^{(t)} = \phi_t(\boldsymbol{Z}) \in \mathbb{R}^{B \times N \times C_t},\tag{6}$$

with C_t task-specific output dimension. These predictions are projected back to the hidden space:

$$\mathbf{P}^{(t)} = \phi_t(\mathbf{L}^{(t)}) \in \mathbb{R}^{B \times N \times H},\tag{7}$$

and refined with a second graph operator:

$$\boldsymbol{C}_{\text{preds}}^{(t)} = \text{GAF}^{(t)}(\boldsymbol{P}^{(t)}, \boldsymbol{A}^{(t)}), \tag{8}$$

where $C_{\text{preds}}^{(t)}$ are the contextualized prediction embeddings; both tensors, $L^{(t)}$ and $P^{(t)}$, pass through a task-specific projector, ϕ_t , similar to a multimodal projector, ϕ_m . The Task-Specific Projectors map shared multimodal embeddings into task-conditioned logits and re-embed them into the hidden space. This allows predictions to be refined through graph message passing and aligned with modality features via cross-attention.

Contextualized modality features are obtained analogously as $C_{\text{mods}} = \text{GAF}(Z, A^{\text{feat}})$. Task-specific query-based cross-attention fusion, $AF(\cdot)$, integrates the two: with $C_{\text{preds}}^{(t)}$ as queries and C_{mods} as keys / values, we compute:

$$T^{(t)} = AF(C_{\text{nreds}}^{(t)}, C_{\text{mods}}, C_{\text{mods}}), \tag{9}$$

These task-specific representations are averaged across modalities:

$$\mathbf{r}^{(t)} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{T}_{:,i,:}^{(t)} \in \mathbb{R}^{B \times H}.$$
 (10)

The final logs are produced through the task heads $h_t(\cdot)$:

$$\hat{\mathbf{y}}_{\text{head}}^{(t)} = h_t(\mathbf{r}^{(t)}) \in \mathbb{R}^{B \times C_t}. \tag{11}$$

Guide Bank functional. In the Guide Banks, each task t maintains embeddings $G^{(t)} \in \mathbb{R}^{C_t \times H}$, and cosine similarity is computed as:

$$\operatorname{sim}_{b,c} = \cos(\boldsymbol{r}_{b}^{(t)}, \boldsymbol{G}_{c}^{(t)}). \tag{12}$$

The Guide Banks introduce a structured semantic prior by anchoring predictions to task-specific embedding prototypes. This stabilizes learning and improves generalization. The final prediction is a combination of the head outputs and guide similarities:

$$\hat{\boldsymbol{y}}^{(t)} = \begin{cases} \frac{1}{2} \left(\hat{\boldsymbol{y}}_{\text{head}}^{(t)} + \text{sim} \right), & t \neq \text{PT}, \\ \frac{1}{2} \left(\sigma(\hat{\boldsymbol{y}}_{\text{head}}^{(t)}) + \sigma(\text{sim}) \right), & t = \text{PT}, \end{cases}$$
(13)

 where $\sigma(\cdot)$ is the logistic sigmoid function, which is only applicable to PTR, as the values of the PTs scores range from 0 to 1. In our work, we compare the performance of various Graph Neural Network (GNN), including vanilla GNN (Veličković et al., 2018), Non-Convolutional GNN (NCGNN) (Wang & Cho, 2024), Unitary Convolutions GNN (UCGNN) (Kiani et al., 2024), Edge Directions GNN (EDGNN) (Pahng & Hormoz, 2025), Hyperbolic GNN (HGNN) (Yue et al., 2025) and attention mechanisms, including Multi-Head Attention (MHA) (Vaswani et al., 2017), Bidirectional Cross Attention (BiCA) (Hiller et al., 2024), Cross-attention Message-Passing Transformer (CrossMPT) (Park et al., 2025), Multi-Token Attention (MTA) (Golovneva et al., 2025), Forgetting Attention (FA) (Lin et al., 2025) to determine the optimal model configuration.

2.4 Semi-Supervised Cross-Domain Learning

We use three task-specific corpora, each of which is annotated exclusively for one task: ER, PTR, or AHR. Each corpus provides labels only for its own task, while the remaining labels are set to None. During training, a batch is constructed by randomly sampling from all corpora. Let n_1, n_2, n_3 be the randomly selected samples drawn from the three corpora, with batch size $B = n_1 + n_2 + n_3$.

We use a hybrid loss with adaptive task weighting, based on an extended GradNorm method (Chen et al., 2018). For each task, we define a supervised loss (\mathcal{L}_s) applied only to labeled samples, while unlabeled samples are masked out:

$$\mathcal{L}_{s} = w_{\text{EMO}}^{s} \mathcal{L}_{\text{EMO}}^{s} + w_{\text{PT}}^{s} \mathcal{L}_{\text{PT}}^{s} + w_{\text{AH}}^{s} \mathcal{L}_{\text{AH}}^{s}, \tag{14}$$

where $\mathcal{L}_{\text{EMO}}^{\text{s}}$ is Cross-Entropy (CE) loss for ER, $\mathcal{L}_{\text{PT}}^{\text{s}}$ is Mean Absolute Error (MAE) loss for PTR, and $\mathcal{L}_{\text{AH}}^{\text{s}}$ is CE loss for AHR. The weights $\{w_t^{\text{s}}\}_{t\in\mathbb{T}}$ are not fixed hyperparameters, but are dynamically optimized during training to balance gradient magnitudes across tasks.

To exploit unlabeled samples, we use pseudo-labeling with confidence thresholds. For ER and AHR, pseudo-labels are assigned from the softmax probabilities if the maximum confidence exceeds $\tau_{\text{EMO/AH}}$. For PTR, logits are binarized at 0.5 (as a threshold value for the PTs polarity) and accepted as pseudo-labels if they fall outside the uncertainty margin, i.e., if they are above τ_{PT} or below $1-\tau_{\text{PT}}$. The semi-supervised loss (\mathcal{L}_{ss}) is then computed as:

$$\mathcal{L}_{ss} = w_{EMO}^{ss} \mathcal{L}_{EMO}^{ss} + w_{PT}^{ss} \mathcal{L}_{PT}^{ss} + w_{AH}^{ss} \mathcal{L}_{AH}^{ss}, \tag{15}$$

where $\mathcal{L}_{\text{EMO}}^{\text{ss}}$ is CE loss for ER, $\mathcal{L}_{\text{PT}}^{\text{ss}}$ is Binary CE (BCE) loss for PTR, and $\mathcal{L}_{\text{AH}}^{\text{ss}}$ is CE loss for AHR. The total hybrid loss combines both components $\mathcal{L} = \mathcal{L}_{\text{s}} + \mathcal{L}_{\text{ss}}$. Task weights w_t^{s} and w_t^{ss} are updated online through two independent GradNorm branches, which minimize auxiliary balancing losses:

$$\mathcal{L}_{\text{GradNorm}}^{\text{s}} = \sum_{t \in \mathbb{T}} \left| G_t^{\text{s}} - \overline{G}^{\text{s}} \cdot (r_t^{\text{s}})^{\alpha^{\text{s}}} \right|, \quad \mathcal{L}_{\text{GradNorm}}^{\text{ss}} = \sum_{t \in \mathbb{T}} \left| G_t^{\text{ss}} - \overline{G}^{\text{ss}} \cdot (r_t^{\text{ss}})^{\alpha^{\text{ss}}} \right|,$$

where for each task t and branch (supervised or semi-supervised). $G_t = \|\nabla_{\theta_{\text{shared}}}(w_t \cdot \mathcal{L}_t)\|_2$ is the $\underline{\ell}_2$ -norm of the gradient of the weighted task loss with respect to shared model parameters θ_{shared} . $\overline{G} = \frac{1}{|\mathbb{T}|} \sum_{j \in \mathbb{T}} G_j$ is the mean gradient norm across all tasks \mathbb{T} in the current branch (supervised

or SSL). $r_t = \frac{\mathcal{L}_t/\mathcal{L}_t^{(0)}}{\frac{1}{|\mathbb{T}|}\sum_{j\in\mathbb{T}}\mathcal{L}_j/\mathcal{L}_j^{(0)}}$ is the relative inverse training rate, comparing the normalized loss of task t to the branch-wide average. Here, \mathcal{L}_t denotes the raw, unweighted loss for task t (with \mathcal{L}_t being supervised (\mathcal{L}_t^s) or semi-supervised (\mathcal{L}_t^s), depending on the branch), and $\mathcal{L}_t^{(0)}$ is its value recorded at the first training step where it became finite and valid – serving as a per-task initialization baseline. α^s and α^{ss} control the aggressiveness of balancing, with larger α penalizing faster-learning tasks more strongly. The task weights are then updated via gradient descent on $\mathcal{L}_{\text{GradNorm}}$ with task-type-specific learning rates:

$$w_t^{\text{s}} \leftarrow \max\left(w_{\text{floor}}, \ w_t^{\text{s}} - \eta_w^{\text{s}} \cdot \nabla_{w_t^{\text{s}}} \mathcal{L}_{\text{GradNorm}}^{\text{s}}\right), \quad w_t^{\text{ss}} \leftarrow \max\left(w_{\text{floor}}, \ w_t^{\text{ss}} - \eta_w^{\text{ss}} \cdot \nabla_{w_t^{\text{ss}}} \mathcal{L}_{\text{GradNorm}}^{\text{ss}}\right),$$

where separate learning rates (η_w^s, η_w^{ss}) with w_{floor} preventing any task from being deactivated. After each update, weights are renormalized to budgets to enforce interpretable task prioritization:

$$w_t^{\mathrm{s}} \leftarrow S^{\mathrm{s}} \cdot \frac{w_t^{\mathrm{s}}}{\sum_{j \in \mathbb{T}} w_j^{\mathrm{s}}}, \quad w_t^{\mathrm{ss}} \leftarrow S^{\mathrm{ss}} \cdot \frac{w_t^{\mathrm{ss}}}{\sum_{j \in \mathbb{T}} w_j^{\mathrm{ss}}},$$

with budgets $S^{\rm s}=3.0$ and $S^{\rm ss}=3.0\times\lambda$, reflecting higher initial priority for supervised signals.

In contrast to standard GradNorm, our extension: (1) decouples supervised and SSL optimization to account for differing noise levels; (2) delays weight initialization until valid losses appear, to handle missing labels; and (3) enforces explicit budget constraints for interpretable prioritization. The thresholds $\{\tau_t\}_{t\in\mathbb{T}}$ and other coefficients $(\alpha^{\rm s}, \alpha^{\rm ss}, \eta_w^{\rm s}, \eta_w^{\rm ss}, w_{\rm floor}, {\rm and}\ \lambda)$ remain hyperparameters tuned on validation data, while the task contribution coefficients $(w_t^{\rm s}, w_t^{\rm ss})$ are now fully adaptive, eliminating manual tuning and improving robustness to dynamic label imbalance.

This hybrid loss function SSL across single-task corpora by combining supervised objectives with pseudo-labeled consistency. This alleviates task-wise label sparsity and improves cross-task generalization. The function is further stabilized by gradient-aware adaptive weighting.

3 EXPERIMENTS

3.1 CORPORA

We use three task-specific corpora, each of which is annotated for a single objective. For ER, we use the MOSEI corpus (Bagher Zadeh et al., 2018), the largest multimodal corpus for affect analysis. This contains over 23,500 YouTube videos at the utterance-level from more than 1,000 speakers, which have been annotated for six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Each video may have multiple labels, with no labels indicating a neutral state. For PTR, we use the FIv2 corpus (Escalante et al., 2020), which comprises 10,000 short vlogs (15 seconds each) from approximately 3,000 speakers. Each clip is annotated for the Big Five PTs (Openness, Conscientiousness, Extraversion, Agreeableness, Non-Neuroticism), with continuous scores between 0 and 1 obtained via pairwise comparisons. Finally, for AHR, we adopt the recently introduced BAH corpus (González-González et al., 2025), comprising 1,118 video recordings from 224 participants across nine Canadian provinces. The corpus is annotated for two categories: Absence or Presence of ambivalence/hesitancy. The corpora are split into Train, Development, and Test subsets. In Appendix A.3, we present the distribution of classes in subsets. Each corpus provides supervision only for its designated task, creating a heterogeneous setup in which cross-task generalization is enabled by SSL with pseudo-labels. To evaluate the generalizability of SCD-MMPSR to unseen data, we use MELD (Poria et al., 2019), which contains video recordings from the TV series "Friends". The corpus has been annotated for six basic emotions and a neutral state. We only use the fixed Test subset from this corpus. Performing model generalization assessment is difficult for other tasks due to the lack of corpora with a similar annotation protocol.

3.2 EXPERIMENTAL SETUP

We design a multi-stage experimental protocol to assess the proposed framework systematically. First, we identify the most effective unimodal encoders within a unified multimodal system (see Appendix A.4). As base extractors, we employ CLIP (Radford et al., 2021) (for video and scene descriptions) and CLAP (Wu et al., 2023) (for audio and transcripts), preserving semantic alignment across modalities as demonstrated in (Gan et al., 2023). We evaluate different model configurations with fixed encoders by replacing the graph layers and attention mechanisms (see Appendix A.5). The baseline model (MCDM-1) adopts the vanilla GNN (Veličković et al., 2018) and MHA (Vaswani et al., 2017). For video, we compare different numbers of frames, while for behavior, we compare our prompt with two alternatives (Cheng et al., 2024; Zhang et al., 2025b) (see Appendix A.2).

Second, we construct two enhanced model configurations: MCDM-2 with a modified best-performing UCGNN (Kiani et al., 2024) and MCDM-3 with a modified best-performing UCGNN and MTA (Golovneva et al., 2025). At this stage, we tune model-level hyperparameters (learning rate, optimizer, dropout, hidden dimensions, output feature size, and number of attention heads) alongside SSL parameters (loss coefficients and pseudo-label thresholds). This stage determines the optimal architecture (see Appendix A.6) and SSL configuration (see Appendix A.7).

Third, we conduct ablation studies by selectively disabling model components, modalities, and tasks (see Table 1). To compare with SOTA methods, we also run single-task settings with and without SSL, varying the probability of incorporating unlabeled data (see Table 2). This stage establishes the contribution of each component of a model and the advantage of our framework over SOTA results. Finally, we conduct an inter-task correlation study and an error analysis to assess the effectiveness of joint multitask learning under semi-supervised conditions (see Appendix A.8).

Table 1: Experimental results of ablation studies. MCDM means the proposed Multimodal Cross-Domain Model. MCDM-1 based on vanilla GNN and MHA. MCDM-2 based on Unitary Convolutions GNN (UCGNN) and MHA. MCDM-3 based on Unitary Convolutions GNN (UCGNN) and Multi-Token Attention (MTA). V, A, T, and B stand for Video, Audio, Text, and Behavior. Rank is calculated using Friedman's test (Demšar, 2006). Best and second-best results are highlighted

Exp ID	Extractors	Model	Me	OSEI	FI	v2	BA	ΛH	ME	LD	Rank
ExpID	Extractors	Model	mMF1	mWACC	mACC	mCCC	MF1	UAR	MF1	WF1	Kank
1	V+CLIP, A+CLAP, T+CLAP, B+CLIP	MCDM-1	61.50	61.87	91.46	66.10	65.66	65.36	30.91	38.56	13.13
2	V+CLIP, A+CLAP, T+EmoRoBERTa, B+EmoRoBERTa	MCDM-1	63.40	64.00	91.44	66.68	69.29	69.07	33.66	40.04	8.38
3	V+CLIP, A+CLAP, T+EmoRoBERTa, B+EmoRoBERTa	MCDM-2	63.35	63.99	91.67	69.38	69.14	69.12	34.06	42.53	6.75
4	V+CLIP, A+CLAP, T+EmoRoBERTa, B+EmoRoBERTa	MCDM-3	63.63	64.42	91.42	66.84	67.52	68.44	34.36	40.06	8.13
5	Exp-3 and best hyperparameters (Appendix A.6)	MCDM-2	63.06	63.62	91.77	69.51	70.38	70.28	36.26	42.51	5.25
6	Exp-5 and best SSL parameters (Appendix A.7)	MCDM-2	63.14	63.61	91.93	71.98	71.70	71.42	35.04	44.08	3.25
7	Exp-6 w/o Task-Specific Projectors	MCDM-2	62.05	63.47	91.81	71.11	70.20	70.60	34.17	42.45	6.38
8	Exp-6 w/o Graph Layers	MCDM-2	61.92	62.24	91.87	73.03	71.12	71.17	32.99	39.48	7.38
9	Exp-6 w/o Attention Layers	MCDM-2	60.02	61.71	91.51	69.30	37.88	50.00	23.22	33.65	13.88
10	Exp-6 w/o Guide Bank Layers	MCDM-2	62.35	62.88	91.97	73.21	70.12	70.74	31.87	39.88	6.13
11	Exp-6 w/o Video Modality	MCDM-2	61.91	62.69	90.32	57.87	67.73	68.01	20.64	19.13	13.75
12	Exp-6 w/o Audio Modality	MCDM-2	62.02	62.74	91.61	70.44	69.08	69.41	34.54	45.41	7.63
13	Exp-6 w/o Text Modality	MCDM-2	57.62	58.69	91.95	73.35	62.47	63.43	15.11	23.57	12.00
14	Exp-6 w/o Behavior Modality	MCDM-2	61.95	62.08	91.76	72.62	71.49	71.62	27.97	32.52	8.50
15	Exp-6 w/o ER task	MCDM-2	_	-	91.76	71.88	69.14	69.53	-	-	9.25
16	Exp-6 w/o PTR task	MCDM-2	62.92	63.61	-	_	70.46	69.95	29.40	35.95	7.83
17	Exp-6 w/o AHR task	MCDM-2	62.10	62.46	91.88	73.05	-	-	33.78	41.49	6.67

We applied several performance measures to evaluate SCD-MMPSR. mean Accuracy (mACC) (Escalante et al., 2020), and mean Concordance Correlation Coefficient (mCCC) (Lin, 1989) are used for PTR on FIv2 as a regression task. mean Weighted Accuracy (mWACC) (Bagher Zadeh et al., 2018) and mean Marco F1-score (mMF1) (Bagher Zadeh et al., 2018) are applied for multi-label ER on the MOSEI corpus. Classical classification recognition measures (Marco F1-score (MF1), Weighted F1-score (WF1), and Unweighted Average Recall (UAR) are unitized for single-label ER and AHR on MELD and BAH, respectively.

3.3 RESULTS

The experimental results are presented in Table 1. Optimization of the encoders (Exp-2, details in Appendix A.4) improves performance compared to the baseline model (Exp-1). Extending the baseline model with the UCGNN (Kiani et al., 2024) (Exp-3) improves performance. However, modifying the model with a MTA (Golovneva et al., 2025) (Exp-4) leads to decreased performance, indicating sensitivity to the choice of attention scheme. Overall, the performance improvement of Exp-3 is mainly due to the PTR. Further optimization of the model hyperparameters (details in Appendix A.6) and SSL parameters (details in Appendix A.7) positively affects the performance. While this comes at a slight cost to the ER performance, it improves one on other tasks.

The component-level ablation study (Exp 7-10) reveals that the attention mechanism is the most crucial component, while graph attention plays a secondary role. The proposed layers, Task-Specific Projectors, and Guide Banks are also essential, as they help with effective task alignment and information sharing across modalities. The modality-level ablation study (Exp 11-14) emphasizes the importance of video and text modalities in psychological states recognition, highlighting the significance of both verbal and non-verbal communication. The task-level ablation study (Exp 15-17) shows that confidence estimation benefits from the presence of AHR, while removing the task improves performance on other tasks. Overall, the ablation study shows that all proposed framework components significantly improve the model's performance. The results on MELD show high generalization ability, achieving MF1 = 35.04 and WFI = 44.08.

Table 2 compares the single-task versions of the SCD-MMPSR framework with SOTA methods. In supervised and single-domain settings, SCD-MMPSR tends to underperform compared to the SOTA methods. However, there is a significant improvement when the model is applied in SSL and cross-domain learning settings, leveraging unlabeled data from non-target corpora. Bootstrap confidence intervals confirm that improvements obtained by SCD-MMPSR over the SOTA are statistically significant, as its upper bounds are higher than the SOTA results. Although our model does not outperform SOTA performance in ER, our results show that using unlabeled data, including cor-

Table 2: Comparison with single-task SOTA methods. The confidence intervals of SCD-MMPSR are calculated using the bootstrap resampling method (Tibshirani & Efron, 1993)

Method	Modality	Learning type	Learning domain	Performan	ce measure
	MOSEI			mWACC	mMF1
Zhang et al. (2022)	Video, Audio, Text	Supervised	Single-domain	51.2	_
Peng et al. (2024)	Video, Audio, Text	Supervised	Single-domain	66.4	-
Ryumina et al. (2025)	Video, Audio, Text	Supervised	Single-domain	69.3	-
SCD-MMPSR w/o SSL and multitask	Video, Audio, Text, Behavior	Supervised	Single-domain	63.6 [62.9, 64.3]	63.3 [62.7, 64.0]
SCD-MMPSR w/o multitask	Video, Audio, Text, Behavior	Semi-supervised	Cross-domain	68.9 [68.2, 69.6]	69.3 [68.5, 70.0]
	MELD (testing only)			WF1	MF1
SCD-MMPSR w/o SSL and multitask	Video, Audio, Text, Behavior	Supervised	Single-domain	27.0 [25.1, 28.9]	22.8 [21.1, 24.7]
SCD-MMPSR w/o multitask	Video, Audio, Text, Behavior	Semi-supervised	Cross-domain	30.4 [28.7, 32.4]	27.5 [25.6, 29.9]
	FIv2			mACC	mCCC
Zhao et al. (2023)	Video, Audio	Supervised	Single-domain	91.7	_
Wang et al. (2025)	Video, Audio, Text	Supervised	Single-domain	92.1	-
Gan et al. (2023)	Video, Text	Supervised	Single-domain	92.6	-
SCD-MMPSR w/o SSL and multitask	Video, Audio, Text, Behavior	Supervised	Single-domain	91.8 [91.7, 92.0]	74.0 [72.6, 75.2]
SCD-MMPSR w/o multitask	Video, Audio, Text, Behavior	Semi-supervised	Cross-domain	92.6 [92.5, 92.8]	77.2 [75.8, 78.5]
	BAH			WF1	MF1
Kollias et al. (2025)	Video, Audio, Text, Gesture	Supervised	Single-domain	70.0	_
Hallmen et al. (2025)	Video, Audio, Text	Supervised	Single-domain	70.2	-
Savchenko & Savchenko (2025)	Video, Audio, Text	Supervised	Single-domain	71.0	-
SCD-MMPSR w/o SSL and multitask	Video, Audio, Text, Behavior	Supervised	Single-domain	72.9 [68.5, 77.2]	71.5 [66.6, 76.0]
SCD-MMPSR w/o multitask	Video, Audio, Text, Behavior	Semi-supervised	Cross-domain	73.2 [68.9, 77.8]	72.1 [67.6, 76.4]

pora annotated for other paralinguistic tasks, improves model performance. This improvement is achieved without task-specific fine-tuning of encoders or additional annotation.

For MELD, although performance is improved under single-task SSL, it did not achieve the level of models trained jointly across all three tasks. The reduction in measure MF1 was 7.5% (27.5 vs. 35.0). The relative decrease in measure WF1 was 13.7% (30.4 vs. 44.1). These results indicate that single-task models are prone to overfitting and have limited generalization to unseen data. In contrast, our proposed framework significantly improves model generalization, leading to robust performance on new data.

Speaking about the computational cost of SCD-MMPSR, the real-time factor for processing 1 sec of multimodal data using MediaPipe, Qwen2.5-VL, Whisper, CLIP, CLAP, EmoRoBERTa, and MCDM is 1.11 sec on an NVIDIA A100 GPU. Of this, 0.69 sec is consumed by Qwen2.5-VL, which limits inference of SCD-MMPSR to CPU only. The parameter count of MCDM grows quadratically with the number of tasks; the full model occupies 38.2 MB. Thus, while our framework demonstrates strong generalizability to unseen data, its main limitation is its reliance on VLLMs. However, if there are resource constraints, we suggest omitting the behavior modality. This may result in a model performance decrease of approximately 2% (depending on the task, see Table 1), but it will also reduce inference time by approximately 1.5 times.

4 Conclusion

This paper presented SCD-MMPSR, a compact semi-supervised framework for joint multimodal recognition of psychological states that bridges heterogeneous, single-task corpora. SCD-MMPSR combines pre-trained unimodal encoders with a graph-attention fusion backbone and three improvements: (1) Task-Specific Projectors for iterative feature-prediction refinement; (2) Guide Banks for structuring semantic task-specific embedding prototypes; and (3) the dual-branch GradNorm method to adaptive task weighting in multitask SSL. We evaluate our framework on three task-specific corpora (MOSEI, FIv2, and BAH) under standard train-dev-test protocols, and demonstrate its generalization capability on MELD in a zero-shot cross-domain setup. Results show that joint multitask training improves generalization over single-task baselines. This confirms that our framework enables effective cross-domain learning without requiring full annotation across tasks, leveraging instead pseudo-labels and SSL. In future work, we plan to scale the framework to additional tasks and integrate contrastive learning to enhance cross-task generalization by explicitly aligning task-invariant representations.

REFERENCES

- Tanay Agrawal, Michal Balazia, Philipp Müller, and François Brémond. Multimodal vision transformers with forced attention for behavior analysis. In *IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, pp. 3392–3402, 2023. doi: 10.1109/WACV56688.2023.00339.
- Hawraa Razzaq Abed Alameer, Pedram Salehpour, Seyyed Hadi Aghdasi, and Mohammad-Reza Feizi-Derakhshi. Integrating deep metric learning, semi supervised learning, and domain adaptation for cross-dataset eeg-based emotion recognition. *IEEE Access*, pp. 38914–38924, 2025.
- Shahin Amiriparian, Filip Packań, Maurice Gerczuk, and Björn W. Schuller. Exhubert: Enhancing hubert through block extension and fine-tuning on 37 emotion datasets. In *Interspeech*, pp. 2635–2639, 2024. doi: 10.21437/Interspeech.2024-280.
- Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A framework for self-supervised learning of speech representations. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 12449–12460, 2020.
- AmirAli Bagher Zadeh, Paul Pu Liang, Soujanya Poria, Erik Cambria, and Louis-Philippe Morency. Multimodal language analysis in the wild: CMU-MOSEI dataset and interpretable dynamic fusion graph. In *Annual Meeting of the Association for Computational Linguistics (ACL)*, pp. 2236–2246, 2018. doi: 10.18653/v1/P18-1208.
- Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. *ArXiv*, pp. 1–14, 2018. doi: 10.48550/arXiv.1803. 01271.
- Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *ArXiv*, pp. 1–23, 2025. doi: 10.48550/arXiv.2502.13923.
- Yongtang Bao, Yuzhen Wang, Yutong Qi, Qing Yang, Ruijun Liu, and Liping Feng. Emotion-assisted multi-modal personality recognition using adversarial contrastive learning. *Knowledge-Based Systems*, 317:1–13, 2025. doi: https://doi.org/10.1016/j.knosys.2025.113504.
- Valentin Bazarevsky, Yury Kartynnik, Andrey Vakunov, Karthik Raveendran, and Matthias Grundmann. Blazeface: Sub-millisecond neural face detection on mobile gpus. ArXiv, 2019. doi: 10.48550/arXiv.1907.05047.
- Enguerrand Boitel, Alaa Mohasseb, and Ella Haig. MIST: Multimodal emotion recognition using deberta for text, semi-cnn for speech, resnet-50 for facial, and 3d-cnn for motion analysis. *Expert Systems with Applications*, 270:1–12, 2025. doi: 10.1016/j.eswa.2024.126236.
- Omkumar Chandraumakantham, N. Gowtham, Mohammed Zakariah, and Abdulaziz Almazyad. Multimodal emotion recognition using feature fusion: An llm-based approach. *IEEE Access*, 12: 108052–108071, 2024. doi: 10.1109/ACCESS.2024.3425953.
- Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient normalization for adaptive loss balancing in deep multitask networks. In *International Conference on Machine Learning (ICML)*, pp. 794–803, 2018.
- Zebang Cheng, Zhi-Qi Cheng, Jun-Yan He, Kai Wang, Yuxiang Lin, Zheng Lian, Xiaojiang Peng, and Alexander Hauptmann. Emotion-llama: Multimodal emotion recognition and reasoning with instruction tuning. *Advances in Neural Information Processing Systems (NeurIPS)*, 37:110805–110853, 2024.
- Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Unsupervised cross-lingual representation learning at scale. *ArXiv*, pp. 1–12, 2019. doi: 10.48550/arXiv.1911.02116.
- Janez Demšar. Statistical comparisons of classifiers over multiple data sets. *Journal of Machine learning research*, 7(Jan):1–30, 2006.

- Lujuan Deng, Boyi Liu, and Zuhe Li. Multimodal sentiment analysis based on a cross-modal multihead attention mechanism. *Computers, Materials and Continua*, 78(1):1157–1170, 2024. doi: 10.32604/cmc.2023.042150.
 - Yicheng Deng, Hideaki Hayashi, and Hajime Nagahara. Gaussian-based instance-adaptive intensity modeling for point-supervised facial expression spotting. In *International Conference on Learning Representations (ICLR)*, pp. 1–13, 2025.
 - Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. In *ICLR*, pp. 1–22, 2021.
 - Hugo Jair Escalante, Heysem Kaya, Albert Salah, Sergio Escalera, Yagmur Gucluturk, Umut Guclu, Xavier Baró, Isabelle Guyon, Julio Junior, Meysam Madadi, Stephane Ayache, Evelyne Viegas, Furkan Gürpınar, Achmadnoer Wicaksana, Cynthia Liem, Marcel Gerven, and Rob Lier. Explaining first impressions: Modeling, recognizing, and explaining apparent personality from videos. *IEEE Transactions on Affective Computing*, PP:1–19, 02 2020. doi: 10.1109/TAFFC.2020.2973984.
 - Qi Fan, Yutong Li, Yi Xin, Xinyu Cheng, Guanglai Gao, and Miao Ma. Leveraging contrastive learning and self-training for multimodal emotion recognition with limited labeled samples. In *International Workshop on Multimodal and Responsible Affective Computing*, pp. 72–77, 2024.
 - Aref Farhadipour, Hossein Ranjbar, Masoumeh Chapariniya, Teodora Vukovic, Sarah Ebling, and Volker Dellwo. Multimodal emotion recognition and sentiment analysis in multi-party conversation contexts. *ArXiv*, pp. 1–5, 03 2025. doi: 10.48550/arXiv.2503.06805.
 - Peter Gan, Arcot Sowmya, and Gelareh Mohammadi. Clip-based model for effective and explainable apparent personality perception. In *International Workshop on Multimodal and Responsible Affective Computing*, pp. 29–37, 10 2023. doi: 10.1145/3607865.3613178.
 - Yuan Gao, Hao Shi, Chenhui Chu, and Tatsuya Kawahara. Speech emotion recognition with multi-level acoustic and semantic information extraction and interaction. In *Interspeech*, pp. 1060–1064, 2024. doi: 10.21437/Interspeech.2024-2385.
 - Olga Golovneva, Tianlu Wang, Jason E Weston, and Sainbayar Sukhbaatar. Multi-token attention. In *Conference on Language Modeling (COLM)*, 2025.
 - Lucas Goncalves, Seong-Gyun Leem, Wei-Cheng Lin, Berrak Sisman, and Carlos Busso. Versatile audio-visual learning for handling single and multi modalities in emotion regression and classification tasks. *IEEE Transactions on Affective Computing*, pp. 1–18, 05 2023. doi: 10.48550/arXiv.2305.07216.
 - Yuan Gong, Yu-An Chung, and James Glass. AST: Audio Spectrogram Transformer. In *Interspeech*, pp. 571–575, 2021. doi: 10.21437/Interspeech.2021-698.
 - Manuela González-González, Soufiane Belharbi, Muhammad Osama Zeeshan, Masoumeh Sharafi, Muhammad Haseeb Aslam, Marco Pedersoli, Alessandro Lameiras Koerich, Simon L Bacon, and Eric Granger. BAH dataset for ambivalence/hesitancy recognition in videos for behavioural change. *ArXiv*, pp. 1–41, 2025. doi: 10.48550/arXiv.2505.19328.
 - Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *ArXiv*, pp. 1–36, 2023. doi: 10.48550/arXiv.2312.00752.
- Michael Günther, Saba Sturua, Mohammad Kalim Akram, Isabelle Mohr, Andrei Ungureanu, Bo Wang, Sedigheh Eslami, Scott Martens, Maximilian Werk, Nan Wang, et al. jina-embeddings-v4: Universal embeddings for multimodal multilingual retrieval. *ArXiv*, 2025. doi: 10.48550/arXiv.2506.18902.
 - Tobias Hallmen, Robin-Nico Kampa, Fabian Deuser, Norbert Oswald, and Elisabeth André. Semantic matters: Multimodal features for affective analysis. In *Computer Vision and Pattern Recognition Conference Workshops (CVPRW)*, pp. 5724–5733, June 2025.

- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 770–778, 2016.
 - Markus Hiller, Krista A Ehinger, and Tom Drummond. Perceiving longer sequences with bidirectional cross-attention transformers. In *Advances in Neural Information Processing Systems* (*NeurIPS*), pp. 94097–94129, 2024.
 - Mahshid Hosseini and Cornelia Caragea. Semi-supervised domain adaptation for emotion-related tasks. In *Findings of the Association for Computational Linguistics (ACL)*, pp. 5402–5410, 2023.
 - Mohammad Hosseini, Mohammad Firoozabadi, Kambiz Badie, and Parviz Fallah. Electroencephalograph emotion classification using a novel adaptive ensemble classifier considering personality traits. *Basic and Clinical Neuroscience Journal*, 14:687–700, 09 2023. doi: 10.32598/bcn.2022.3830.2.
 - Seyed Sadegh Hosseini, Mohammad Reza Yamaghani, and Soodabeh Poorzaker Arabani. Multimodal modelling of human emotion using sound, image and text fusion. *Signal, Image and Video Processing*, 18:71–79, 2024. doi: 10.1007/s11760-023-02707-8.
 - Abhinav Joshi, Ashwani Bhat, Ayush Jain, Atin Singh, and Ashutosh Modi. Cogmen: Contextualized gnn based multimodal emotion recognition. In *Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pp. 4148–4164, 2022. doi: 10.18653/v1/2022.naacl-main.306.
 - Yury Kartynnik, Artsiom Ablavatski, Ivan Grishchenko, and Matthias Grundmann. Real-time facial surface geometry from monocular video on mobile gpus. *ArXiv*, 2019. doi: 10.48550/arXiv.1907. 06724.
 - Bobak Kiani, Lukas Fesser, and Melanie Weber. Unitary convolutions for learning on graphs and groups. In *Annual Conference on Neural Information Processing Systems (NeurIPS)*, 2024.
 - Dimitrios Kollias, Panagiotis Tzirakis, Alan Cowen, Stefanos Zafeiriou, Irene Kotsia, Eric Granger, Marco Pedersoli, Simon Bacon, Alice Baird, Chris Gagne, Chunchang Shao, Guanyu Hu, Soufiane Belharbi, and Muhammad Haseeb Aslam. Advancements in affective and behavior analysis: The 8th abaw workshop and competition. In *Computer Vision and Pattern Recognition Conference (CVPR)*, pp. 5572–5583, 2025.
 - Weixuan Kong, Jinpeng Yu, Zijun Li, Hanwei Liu, Jiqing Qu, Hui Xiao, and Xuefeng Li. Multimodal expressive personality recognition in data non-ideal audiovisual based on multi-scale feature enhancement and modal augment. *ArXiv*, pp. 1–11, 03 2025. doi: 10.48550/arXiv.2503. 06108.
 - Yang Li, Amirmohammad Kazemeini, Yash Mehta, and Erik Cambria. Multitask learning for emotion and personality traits detection. *Neurocomputing*, 493:340–350, 04 2022. doi: https://doi.org/10.1016/j.neucom.2022.04.049.
 - Yong Li, Yuanzhi Wang, and Zhen Cui. Decoupled multimodal distilling for emotion recognition. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)*, pp. 6631–6640, 2023. doi: 10.1109/CVPR52729.2023.00641.
 - Zheng Lian, Haiyang Sun, Licai Sun, Kang Chen, Mngyu Xu, Kexin Wang, Ke Xu, Yu He, Ying Li, Jinming Zhao, et al. Mer 2023: Multi-label learning, modality robustness, and semi-supervised learning. In *ACM International Conference on Multimedia*, pp. 9610–9614, 2023.
 - Zheng Lian, Haiyang Sun, Licai Sun, Zhuofan Wen, Siyuan Zhang, Shun Chen, Hao Gu, Jinming Zhao, Ziyang Ma, Xie Chen, et al. MER 2024: Semi-supervised learning, noise robustness, and open-vocabulary multimodal emotion recognition. In *International Workshop on Multimodal and Responsible Affective Computing*, pp. 41–48, 2024.
 - Lawrence I-Kuei Lin. A concordance correlation coefficient to evaluate reproducibility. *Biometrics*, pp. 255–268, 1989. doi: 10.2307/2532051.

- Zhixuan Lin, Evgenii Nikishin, Xu Owen He, and Aaron Courville. Forgetting transformer: Softmax attention with a forget gate. In *International Conference on Learning Representations (ICLR)*, 2025.
 - Xiaofang Liu, Guotian He, Shuge Li, Fan Yang, Songxiying He, and Lin Chen. Multi-level feature decomposition and fusion model for video-based multimodal emotion recognition. *Engineering Applications of Artificial Intelligence*, 152:110744, 2025. doi: 10.1016/j.engappai.2025.110744.
 - Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. *ArXiv*, 2019. doi: 10.48550/arXiv.1907.11692.
 - Xilong Lu, Jun Yu, Yunxiang Zhang, Lingsi Zhu, Yang Zheng, Yongqi Wang, and Qiang Ling. Robust stage-wise lvlm adaptation: Multi-phase prompt lora fine-tuning for compound expression recognition. In *IEEE Conf. Comput. Vis. Pattern Recog. Worksh.* (CVPRW), pp. 5770–5777, 2025.
 - Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris McClanahan, Esha Uboweja, Michael Hays, Fan Zhang, Chuo-Ling Chang, Ming Guang Yong, Juhyun Lee, et al. Mediapipe: A framework for building perception pipelines. *ArXiv*, 2019. doi: 10.48550/arXiv.1906.08172.
 - Maxim Markitantov, Elena Ryumina, Heysem Kaya, and Alexey Karpov. Multi-modal multi-task affective states recognition based on label encoder fusion. In *Interspeech*, pp. 3010–3014, 2025. doi: 10.21437/Interspeech.2025-2060.
 - Iñigo Martin-Melero, Ana Serrano-Mamolar, and Juan J Rodríguez-Diez. Evaluation of semisupervised machine learning applied to affective state detection. In *IEEE International Con*ference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops), pp. 320–325, 2024.
 - Ryo Masumura, Shota Orihashi, Mana Ihori, Tomohiro Tanaka, Naoki Makishima, Satoshi Suzuki, Saki Mizuno, and Nobukatsu Hojo. Multimodal fine-grained apparent personality trait recognition: joint modeling of big five and questionnaire item-level scores. In AAAI Conference on Artificial Intelligence and Conference on Innovative Applications of Artificial Intelligence and Symposium on Educational Advances in Artificial Intelligence, pp. 1456–1464, 2025. doi: 10.1609/aaai.v39i2.32136.
 - Robert R McCrae. The five-factor model of personality: Consensus and controversy. *The Cambridge handbook of personality psychology*, 2:129–141, 2020.
 - Harel Mendelman and Ronen Talmon. Supervised and semi-supervised diffusion maps with labeldriven diffusion. In *International Conference on Learning Representations (ICLR)*, pp. 1–13, 2025.
 - Gelareh Mohammadi and Patrik Vuilleumier. A multi-componential approach to emotion recognition and the effect of personality. *IEEE Transactions on Affective Computing*, 13:1127–1139, 2022. doi: 10.1109/TAFFC.2020.3028109.
 - Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning robust visual features without supervision. *Transactions on Machine Learning Research Journal*, pp. 1–31, 2024.
 - Seong Ho Pahng and Sahand Hormoz. Improving graph neural networks by learning continuous edge directions. In *International Conference on Learning Representations (ICLR)*, 2025.
 - Sudarshan Pant, Hyung-Jeong Yang, Eunchae Lim, Soo-Hyung Kim, and Seok-Bong Yoo. Phymer: Physiological dataset for multimodal emotion recognition with personality as a context. *IEEE Access*, 11:107638–107656, 2023. doi: 10.1109/ACCESS.2023.3320053.
 - Seong-Joon Park, Hee-Youl Kwak, Sang-Hyo Kim, Yongjune Kim, and Jong-Seon No. CrossMPT: Cross-attention message-passing transformer for error correcting codes. In *International Conference on Learning Representations (ICLR)*, 2025.

- Cheng Peng, Ke Chen, Lidan Shou, and Gang Chen. Carat: Contrastive feature reconstruction and aggregation for multi-modal multi-label emotion recognition. *AAAI Conference on Artificial Intelligence*, 38:14581–14589, 03 2024. doi: 10.1609/aaai.v38i13.29374.
 - Soujanya Poria, Devamanyu Hazarika, Navonil Majumder, Gautam Naik, Erik Cambria, and Rada Mihalcea. MELD: A multimodal multi-party dataset for emotion recognition in conversations. In *Annual Meeting of the Association for Computational Linguistics (ACL)*, pp. 527–536, 2019. doi: 10.18653/v1/P19-1050.
 - Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning (ICML)*, pp. 8748–8763, 2021.
 - Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever. Robust speech recognition via large-scale weak supervision. In *International conference on machine learning (ICML)*, pp. 28492–28518, 2023.
 - Elena Ryumina, Denis Dresvyanskiy, and Alexey Karpov. In search of a robust facial expressions recognition model: A large-scale visual cross-corpus study. *Neurocomputing*, 2022. doi: 10. 1016/j.neucom.2022.10.013.
 - Elena Ryumina, Maxim Markitantov, Dmitry Ryumin, and Alexey Karpov. Gated siamese fusion network based on multimodal deep and hand-crafted features for personality traits assessment. *Pattern Recognition Letters*, 185:45–51, 2024. doi: https://doi.org/10.1016/j.patrec.2024.07.004.
 - Elena Ryumina, Dmitry Ryumin, Alexandr Axyonov, Denis Ivanko, and Alexey Karpov. Multi-corpus emotion recognition method based on cross-modal gated attention fusion. *Pattern Recognition Letters*, pp. 192–200, 2025. doi: 10.1016/j.patrec.2025.02.024.
 - Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. *ArXiv*, 2019. doi: 10.48550/arXiv.1910.01108.
 - Andrey Savchenko. Facial expression recognition with adaptive frame rate based on multiple testing correction. In *International Conference on Machine Learning (ICML)*, pp. 30119–30129, 2023.
 - Andrey Savchenko and Lyudmila Savchenko. Leveraging lightweight facial models and textual modality in audio-visual emotional understanding in-the-wild. In *Computer Vision and Pattern Recognition Conference Workshops (CVPRW)*, pp. 5787–5797, June 2025.
 - Harald Vilhelm Skat-Rørdam, Mia Hang Knudsen, Simon Nørby Knudsen, Sneha Das, and Line Clemmensen. Data augmentations and transfer learning for physiological time series. In *International Conference on Learning Representations (ICLR) Workshop on Learning from Time Series For Health*, pp. 1–10, 2024.
 - Saba Sturua, Isabelle Mohr, Mohammad Kalim Akram, Michael Günther, Bo Wang, Markus Krimmel, Feng Wang, Georgios Mastrapas, Andreas Koukounas, Nan Wang, et al. jina-embeddings-v3: Multilingual embeddings with task lora. *ArXiv*, 2024. doi: 10.48550/arXiv.2409.10173.
 - Rui Sun, Huayu Mai, Wangkai Li, and Tianzhu Zhang. Towards unbiased learning in semi-supervised semantic segmentation. In *International Conference on Learning Representations* (*ICLR*), pp. 1–18, 2025.
 - Soh Takahashi, Masaru Sasaki, Ken Takeda, and Masafumi Oizumi. Self-supervised learning facilitates neural representation structures that can be unsupervisedly aligned to human behaviors. In *International Conference on Learning Representations (ICLR) Workshop on Representational Alignment*, pp. 1–12, 2024.
 - Jianwen Tao, Liangda Yan, and Tao He. Domain-invariant adaptive graph regularized label propagation for eeg-based emotion recognition. *IEEE Access*, pp. 126774–126792, 2024.
 - Robert J Tibshirani and Bradley Efron. An introduction to the bootstrap. *Monographs on statistics and applied probability*, 57(1):1–436, 1993.

- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Annual Conference on Neural Information Processing Systems (NeurIPS)*, pp. 1–11, 2017. doi: 10.48550/arXiv.1706.03762.
 - Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph attention networks. In *International Conference on Learning Representations* (*ICLR*), pp. 1–12, 2018.
 - Johannes Wagner, Andreas Triantafyllopoulos, Hagen Wierstorf, Maximilian Schmitt, Felix Burkhardt, Florian Eyben, and Björn W Schuller. Dawn of the transformer era in speech emotion recognition: closing the valence gap. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(9):10745–10759, 2023.
 - Rongquan Wang, Xianyu Xu, Hao Yang, Lin Wei, and Huimin Ma. A novel multimodal personality prediction method based on pretrained models and graph relational transformer network. In *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5, 04 2025. doi: 10.1109/ICASSP49660.2025.10888163.
 - Yuanqing Wang and Kyunghyun Cho. Non-convolutional graph neural networks. In *Annual Conference on Neural Information Processing Systems (NeurIPS)*, pp. 136922–136961, 2024.
 - Yusong Wang, Dongyuan Li, Kotaro Funakoshi, and Manabu Okumura. Emp: Emotion-guided multi-modal fusion and contrastive learning for personality traits recognition. In *International Conference on Multimedia Retrieval (ICMR)*, 2023. doi: 10.1145/3591106.3592243.
 - Zhiyuan Wen, Jiannong Cao, Jiaxing Shen, Ruosong Yang, Shuaiqi Liu, and Maosong Sun. Personality-affected emotion generation in dialog systems. *ACM Transactions on Information Systems*, 42(5), 2024. doi: 10.1145/3655616.
 - Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng Yan, Masayoshi Tomizuka, Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. Visual transformers: Token-based image representation and processing for computer vision. *ArXiv*, 2020. doi: 10.48550/arXiv. 2006.03677.
 - Xuecheng Wu, Heli Sun, Yifan Wang, Jiayu Nie, Jie Zhang, Yabing Wang, Junxiao Xue, and Liang He. AVF-MAE++: Scaling affective video facial masked autoencoders via efficient audio-visual self-supervised learning. In *Computer Vision and Pattern Recognition Conference (CVPR)*, pp. 9142–9153, 2025.
 - Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, and Shlomo Dubnov. Large-scale contrastive language-audio pretraining with feature fusion and keyword-to-caption augmentation. In *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5, 2023. doi: 10.1109/ICASSP49357.2023.10095969.
 - Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and Jian-Yun Nie. C-pack: Packed resources for general chinese embeddings. In *International ACM SIGIR conference on research and development in information retrieval*, pp. 641–649, 2024a.
 - Xiongye Xiao, Gengshuo Liu, Gaurav Gupta, Defu Cao, Shixuan Li, Yaxing Li, Tianqing Fang, Mingxi Cheng, and Paul Bogdan. Neuro-inspired information-theoretic hierarchical perception for multimodal learning. In *International Conference on Learning Representations (ICLR)*, 2024b. doi: 10.48550/arXiv.2404.09403.
 - Li Yuanchao, Bell Peter, and Lai Catherine. Transfer learning for personality perception via speech emotion recognition. In *Interspeech*, pp. 5197–5201, 2023. doi: 10.21437/Interspeech. 2023-2061.
 - Juwei Yue, Haikuo Li, Jiawei Sheng, Xiaodong Li, Taoyu Su, Tingwen Liu, and Li Guo. Hyperbolic-PDE GNN: Spectral graph neural networks in the perspective of a system of hyperbolic partial differential equations. In *International Conference on Learning Representations (ICLR)*, 2025.

Qixuan Zhang, Zhifeng Wang, Dylan Zhang, Wenjia Niu, Sabrina Caldwell, Tom Gedeon, Yang Liu, and Zhenyue Qin. Visual prompting in LLMs for enhancing emotion recognition. In *Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 4484–4499. Association for Computational Linguistics, 2024a. doi: 10.18653/v1/2024.emnlp-main.257.

Rui Zhang, Huifeng Guo, Zongxin Xu, Yuxia Hu, Mingming Chen, and Lipeng Zhang. Mgfkd: A semi-supervised multi-source domain adaptation algorithm for cross-subject eeg emotion recognition. *Brain Research Bulletin*, 208:110901, 2024b.

- TaoZheng Zhang, Zhaoyang Chen, and Jiantao Du. Multimodal mamba model for emotion recognition in conversations. In *International Conference on Machine Learning and Computing (ICMLC)*, pp. 262–273, 2025a. doi: 10.1007/978-3-031-94898-5_20.
- Yazhou Zhang, Mengyao Wang, Youxi Wu, Prayag Tiwari, Qiuchi Li, Benyou Wang, and Jing Qin. DialogueLLM: Context and emotion knowledge-tuned large language models for emotion recognition in conversations. *Neural Networks*, 192:107901, 2025b. doi: https://doi.org/10.1016/j.neunet.2025.107901.
- Yi Zhang, Mingyuan Chen, Jundong Shen, and Chongjun Wang. Tailor versatile multi-modal learning for multi-label emotion recognition. *Conference on Artificial Intelligence (AAAI)*, pp. 1–9, 01 2022. doi: 10.48550/arXiv.2201.05834.
- Xiaoming Zhao, Yuehui Liao, Zhiwei Tang, Yicheng Xu, Xin Tao, Dandan Wang, Guoyu Wang, and Hongsheng Lu. Integrating audio and visual modalities for multimodal personality trait recognition via hybrid deep learning. *Frontiers in Neuroscience*, 16:1–11, 01 2023. doi: 10.3389/fnins.2022.1107284.
- Yangfu Zhu, Yue Xia, Meiling Li, Tingting Zhang, and Bin Wu. Data augmented graph neural networks for personality detection. In *AAAI Conference on Artificial Intelligence*, pp. 664–672, 2024. doi: 10.1609/aaai.v38i1.27823.

A APPENDIX

A.1 RELATED WORK

A.1.1 STATE-OF-THE-ART PSYCHOLOGICAL STATES RECOGNITION METHOD

In this brief review, we consider methods for ER, PTR, and AHR. Emotions reflect transient reactions, while PTs reflects stable dispositions. Ambivalence reveals the uncertainty that may influence both states, providing critical insight into human intentions and decisions. These tasks enable creating more nuanced and context-sensitive human-machine interaction systems that cover only one specific task beyond classical affective recognition methods.

Emotion Recognition Methods. Multimodal Emotion Recognition (MER) is a crucial part of research related to analyzing human emotional state. Recent studies have noted that Deep Neural Networks (DNNs) provide robust results from integrating different modalities (Deng et al., 2024). Different types of Transformer architectures are used in multimodal feature extraction. For instance, Goncalves et al. (2023) presented an audio-visual framework in which conformer layers are used instead of ordinary Transformers. Liu et al. (2025) leveraged a multilevel method based on a spatio-temporal vision Transformer to extract facial and body features. Mamba is another deep learning architecture outperforming conventional Transformers (Gu & Dao, 2023). Experiments proved that Mamba-based models capture inter-modal interactions through a cross-modal mechanism to achieve better modal representations (Zhang et al., 2025a).

Several widely known methods, including graph-based (Joshi et al., 2022; Li et al., 2023), and hybrid methods based on Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) (Gao et al., 2024; Xiao et al., 2024b), are used for ER. For instance, Joshi et al. (2022) proposed a contextualized GNN-based method aimed to capture information via both inner and outer context. Hosseini et al. (2024) showed that the combination of the network of Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) and Bidirectional Long Short-Term Memory (BiLSTM) achieves a high performance when learning the features of the fusion. Farhadipour et al.

(2025) used CNN along with Transformer architecture for extracting visual features. In contrast, Boitel et al. (2025) leveraged advanced Deep Learning techniques combining Semi-CNN and 3D-CNN to enhance the robustness of data and comprehensively improve the performance of various modalities.

Personality Traits Recognition Methods. In addition to ER, recognizing persons' PTs has gained popularity over the past few years. PTR is often based on the scores of a psychological model named Big Five or the OCEAN model (McCrae, 2020). Deep learning algorithms such as CNN, LSTM and the Transformer model are broadly applicable in PTR (Zhao et al., 2023). For pairwise and simultaneous comparison of Personality Traits Assessment (PTA) Ryumina et al. (2024) proposed the Gated Siamese Fusion Network (GSFN), which enables the fusion of both hand-crafted and deep features across text, audio, and video-face modalities. Kong et al. (2025) used a cross-attention mechanism to improve both the proposed model's robustness and the audiovisual modality's performance. In particular, Masumura et al. (2025) proposed SOTA Transformer-based methods that address two tasks: assessing people's PT scores along with questionnaire-based item-level scores. Agrawal et al. (2023) highlighted the significance of the Transformer architecture, presenting the Forced Attention Transformer for tackling tasks related to PTR.

Ambivalence/Hesitancy Recognition Methods. The AHR task was first introduced in the 8th Affective Behavior Analysis in-the-Wild (ABAW) competition (Kollias et al., 2025). To solve this task, the BAH corpus (González-González et al., 2025) was collected and annotated. The baseline method (Kollias et al., 2025) combined TCN (Bai et al., 2018) with acoustic, linguistic, and visual features and used a co-attention block to aggregate multimodal features and to create a single embedding for each frame. Hallmen et al. (2025) proposed a method that integrated text, audio, and visual modalities, modeling temporal dependencies in audio and vision with LSTMs and applying a convolution-like temporal windowing mechanism for frame-level prediction. All modalities were fused through a Multi-Layer Perceptron (MLP). Savchenko & Savchenko (2025) developed a multimodal method that emphasized efficient facial models, applied early fusion across modalities, and refined predictions with blending and temporal smoothing.

Multitask Recognition Methods. Several recent studies are devoted to SOTA multitask unimodal or multimodal methods, exploring various affective states. For instance, Markitantov et al. (2025) explored the multitask method based on Label Encoder Fusion Strategy for both ER and Sentiment Recognition (SR). However, it is important to note that only a limited number of studies focus on the conjunction between ER, PTR, or AHR. Several works have been devoted to studying emotional state via PTR (Hosseini et al., 2023; Wen et al., 2024). Wen et al. (2024) studied emotions based on PTR in dialogue systems and investigated the personality-affected mood transition afterward. PTR guided by emotional analysis has also been widely investigated (Yuanchao et al., 2023; Bao et al., 2025). Bao et al. (2025) was the first to employ contrastive learning to increase precision and predictability in multimodal PTR. Transfer learning using Transformer-based architecture is another effective way to study the correlation between personality and emotions (Yuanchao et al., 2023) Some recent research is focused on the correlation between ER and PTR within the scope of physiological signals (Hosseini et al., 2023; Pant et al., 2023). For instance, Hosseini et al. (2023) presented a SOTA method applied to ER based on the level of bioelectric activity of the brain.

A.1.2 STATE-OF-THE-ART METHODS BASED ON SEMI-SUPERVISED LEARNING

SSL has emerged as a crucial strategy for addressing the significant challenge of limited labeled data in machine learning (Mendelman & Talmon, 2025; Sun et al., 2025). This strategy leverages small amounts of labeled data and larger pools of unlabeled data to improve model performance, mitigating the high cost and difficulty associated with extensive manual annotation. Recent research demonstrates the application of SSL in diverse areas of human behavior modeling, including ER (Hosseini & Caragea, 2023; Wu et al., 2025; Deng et al., 2025; Alameer et al., 2025), PTR (Zhu et al., 2024), and other psychological states recognition (Takahashi et al., 2024; Skat-Rørdam et al., 2024). These studies primarily focus on unimodal methods, including text (Hosseini & Caragea, 2023; Zhu et al., 2024), video (Takahashi et al., 2024; Deng et al., 2025), and physiological signals (such as Electroencephalogram (EEG)) (Tao et al., 2024; Martin-Melero et al., 2024; Alameer et al., 2025). Several works presented at the MER workshops (Lian et al., 2023; 2024) explicitly focus on multimodal SSL, highlighting its importance, relevance, and complexity (Fan et al., 2024). A common strategy in such studies involves combining corpora to create a larger, unified corpus for

remains unknown.

Table 3: Overview of SOTA methods

Method	Linguistic Features	Acoustic Features	Visual Features	Modality Fusion	Task	Learning Type	Learning Domain
Joshi et al. (2022)	sBERT	openSMILE, CNN	OpenFace 2.0, Multi- Comp OpenFace	GNN	ER	Supervised	Single-domain
Goncalves et al. (2023)	-	Wav2Vec2-large-robust	EfficientNet-B2	Cross-Modal Transformer	ER	Supervised	Single-domain
Li et al. (2023)	GloVe, BERT	COVAREP	Facet	Graph-based Knowledge Dis- tillation	ER	Supervised	Single-domain
Deng et al. (2024)	Transformer	Transformer	-	Cross-Modal Attention, Multi- head Attention	ER	Supervised	Single-domain
Chandraumakantham et al. (2024)	DistilRoBERTa	openSMILE	PyFeat	LLM	ER	Supervised	Single-domain
Hosseini et al. (2024)	BiLSTM	CNN-LSTM	Inception-ResNet-v2	DNN, decision-level fusion using regression softmax	ER	Supervised	Single-domain
Boitel et al. (2025)	DeBERTa	Semi-CNN	ResNet-50, 3D-CNN	MIST framework	ER	Supervised	Single-domain
Farhadipour et al. (2025)	RoBERTa	Wav2Vec2	FacialNet, BiLSTM, CNN, Transformer	CNN, Transformer	ER	Supervised	Single-domain
Liu et al. (2025)	-	-	Spatio-Temporal vi- sion Transformer	Dynamic Feature Fusion	ER	Supervised	Single-domain
Zhang et al. (2025a)	Deberta	openSMILE	DenseNet	Cross-modal Transformer, Mamba	ER	Supervised	Single-domain
Markitantov et al. (2025)	XLMRoBERTa, JINA	Wav2Vec2, ExHuBERT	YOLO, EmoAffect- Net, ResEmoteNet	BFS, LEFS, LEFSA	ER, SR	Supervised	Multi-domain
Zhao et al. (2023)	-	VGGish	VGG-Face	Decision-level fusion strategy	PTR	Supervised	Single-domain
Agrawal et al. (2023)	XLM-RoBERTa	Trill-Distilled	R(2+1)D, Video Swin Transformer	Fat Transformer Cross- Attention	PTR	Supervised	Single-domain
Yuanchao et al. (2023)	-	Transformer, Wav2Vec2	-	-	PTR	Supervised	Single-domain
Ryumina et al. (2024)	BERT+BiLSTM, LIWC+ReBiLSTM	VGG-16+FCNN, openS- MILE+LSTM	EmoAffectNet+LSTM, geometric fea- tures+LSTM	GSFN	PTR	Supervised	Cross-domain
Kong et al. (2025)	-	MFCC	EfficientFace	Feature concatenation, Attention Module	PTR	Supervised	Single-domain
Masumura et al. (2025)	BERT	HuBERT	CenterNet, Mo- bileNetV3, Trans- former, VGGFace2	Transformer	PTR	Supervised	Single-domain
Bao et al. (2025)	RoBERTa	ResNet-34	X3D, Temporal en- coder	Transformer	PTR	Supervised	Single-domain
Hallmen et al. (2025)	Whisper, GTE-Large	Wav2Vec2 (with VAD)	ViT-Huge	MLP fusion, convolution-like temporal modeling	AHR	Supervised	Single-domain
Savchenko & Savchenko (2025)	RoBERTa (GoEmo- tions), Whisper	Wav2Vec2, HuBERT	EmotiEffLib	MLP classifiers, early fusion, blending, temporal smoothing	AHR	Supervised	Single-domain
Kollias et al. (2025)	BERT, TCN	VGGish, TCN	ResNet-50, TCN	Co-attention, classifier head	AHR	Supervised	Single-domain
SCD-MMPSR	EmoRoBERTa	CLAP	CLIP	Multimodal Cross-Domain Model	ER, PTR, AHR	Semi-supervised	Cross-domain

training models on a single, specific task, extending data domains, and enhancing model robustness (Zhang et al., 2024b; Skat-Rørdam et al., 2024). For instance, methods often integrate data augmentation (Zhu et al., 2024; Skat-Rørdam et al., 2024) or employ self-supervised and contrastive learning (Fan et al., 2024) within the SSL framework to improve performance on unified tasks. However, while combining corpora for a single task is well-established, the integration of corpora with distinct annotation tasks (e.g., emotion vs. PTs) and different domains (e.g., varying recording setups or participant demographics) within a semi-supervised cross-domain learning framework

Table 3 systematically compares the SOTA methods for recognition of different psychological states, including ER, PTR, and AHR. The analysis reveals the following trends. Linguistic features are predominantly extracted using Transformer-based encoders such as BERT or RoBERTa, reflecting their dominance in contextual language modeling. Acoustic representations rely on self-supervised models like Wav2Vec2 and HuBERT or traditional feature sets like OpenSMILE and MFCC. Visual encoding is typically handled by CNN architectures like ResNet and EfficientNet, with a growing adoption of vision Transformers. Fusion strategies vary considerably, from attention and MLPs to graph networks, yet all remain confined to single-task optimization without mechanisms for cross-task knowledge transfer. Critically, every method in the table operates under fully supervised learning within a single domain. In contrast, SCD-MMPSR is the first framework to enable semi-supervised, cross-domain, and multitask learning protocols across ER, PTR, and AHR, overcoming the annotation and generalization bottlenecks that constrain existing methods.

A.2 PROPOSED PROMPT AND EXAMPLE OF BEHAVIOR DESCRIPTION

Figure 3 and Table 4 present our prompt design for video-based behavior description and its impact on downstream psychological states recognition performance. The full proposed prompt (Exp-1) instructs the model to analyze visual behavior in a video clip, focusing on facial expressions, posture, gestures, and signs of ambivalence or hesitation, while avoiding assumptions about internal states. It emphasizes objective observation and fluent, continuous language output limited to 75 tokens. A shorter variant (Exp-2) retains core instructions but simplifies phrasing, leading to comparable

Figure 3: Proposed prompt and example of behavior description.

Table 4: Comparison of prompt performance. Best and second-best results are highlighted

Exp ID	Configuration		MOSEI		FIv2		BAH	
ExpID	Conniguitation	mMF1	mWACC	mACC	mCCC	MF1	UAR	Rank
1	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP (full proposed prompt)	61.50	61.87	91.46	66.10	65.66	65.36	1.83
2	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP (short proposed prompt)	61.26	61.72	91.22	60.82	65.56	68.70	2.50
3	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP (Zhang et al. (2025b) prompt)	60.87	61.52	90.79	61.94	66.78	66.40	2.67
4	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP (Cheng et al. (2024) prompt)	60.36	61.28	91.10	61.29	66.52	67.98	3.00

or slightly improved results across all tasks. Both outperform existing baselines: the prompt from Zhang et al. (2025b) (Exp-3) and Cheng et al. (2024) (Exp-4), which were developed to analyze only human emotional states. These findings confirm that the proposed prompts, which focus on complex behavior changes, improve the model's robustness and cover more psychological states in the video.

A.3 CLASSES DISTRIBUTIONS IN RESEARCH CORPORA

Figures 4 and 5 illustrate the class distributions across Train, Development, and Test subsets for the four research corpora used in our experiments: MOSEI, BAH, MELD, and FIv2.

Figure 4 shows that MOSEI exhibits a strong imbalance in emotion labels, with Happiness dominating the corpus (over 12,000 examples), while emotions such as Fear and Surprise are significantly underrepresented. The BAH corpus presents a balanced distribution of ambivalence classes, Absence and Presence, across all subsets, ensuring fair evaluation of AHR. The corpus BAH represents a nearly balanced distribution of ambivalence across all subsets, with a slight bias towards the Presence class. This ensures a fair estimation of AHR. The emotion distribution in MELD is unbalanced, with over 1,200 examples belonging to the Neutral class, while there are fewer than 100 examples for Fear and Disgust.

Figure 5 reveals that PTs scores follow continuous distributions across five Big Five dimensions: Openness, Conscientiousness, Extraversion, Agreeableness, and non-Neuroticism. Notably, most scores cluster in the mid-range (0.4–0.7), indicating a balanced representation of traits without extreme bias.

These distributions confirm that our experimental setup accounts for both categorical imbalances (MOSEI, BAH, and MELD) and continuous score variations (FIv2), enabling comprehensive evaluation of SCD-MMPSR's performance under realistic, heterogeneous conditions.

Figure 4: Distributions of classes in videos across subsets of MOSEI (left sub-figure), BAH (central sub-figure), and MELD (right sub-figure).

Figure 5: Distributions of PTs scores in videos across subsets of FIv2.

A.4 Comparative Analysis of Encoder Performance

Video encoders. Table 5 evaluates eight visual encoders within the SCD-MMPSR framework under fixed audio, text, and behavior modalities. CLIP (Radford et al., 2021)², trained on image-caption pairs via contrastive learning, provides strong general-purpose visual representations. Google ViT (Dosovitskiy et al., 2021)³, pre-trained on ImageNet for generic image classification. ResNet-50 (He et al., 2016)⁴, a CNN backbone pre-trained on ImageNet. DinoV2 Large (Oquab et al., 2024)⁵, a self-supervised vision Transformer trained without labels, provides robust generic features but lacks affective grounding. EmoViT v1⁶, adapted for static facial ER, shows task-specific gains. EmoViT v2⁷, optimized for ER in images. Both the VIT-based models fine-tuned using the FER2013 corpus. EmoAffectNet (Ryumina et al., 2022)⁸, based on ResNet-50 and was fine-tuned with different augmentation techniques on AffectNet for in-the-wild ER. EmotiEffLib (Savchenko, 2023)⁹, a lightweight library optimized for real-time facial affect analysis in video sequences. This

²https://huggingface.co/openai/clip-vit-base-patch32

³https://huggingface.co/google/vit-base-patch16-224

⁴https://huggingface.co/microsoft/resnet-50

⁵https://huggingface.co/facebook/dinov2-large

⁶https://huggingface.co/trpakov/vit-face-expression

⁷https://huggingface.co/dima806/facial_emotions_image_detection

 $^{^8}$ https://github.com/ElenaRyumina/EMO-AffectNetModel

⁹https://github.com/sb-ai-lab/EmotiEffLib

Table 5: Experimental results of video encoders. Best and second-best results are highlighted

Evn ID	Exp ID Configuration		OSEI	FIv2		BAH		Rank
ExpID	Connigui auton	mMF1	mWACC	mACC	mCCC	MF1	UAR	Kalik
1	Video+CLIP (Radford et al., 2021) (30 frames), Audio+CLAP, Text+CLAP, Behavior+CLIP	61.50	61.87	91.46	66.10	65.66	65.36	5.50
2	Video+CLIP (Radford et al., 2021) (20 frames), Audio+CLAP, Text+CLAP, Behavior+CLIP	61.27	62.15	90.79	61.94	66.78	66.40	6.17
3	Video+CLIP (Radford et al., 2021) (40 frames), Audio+CLAP, Text+CLAP, Behavior+CLIP	61.98	62.62	91.20	63.13	64.27	65.01	5.67
4	Video+Google ViT (Dosovitskiy et al., 2021) (30 frames), Audio+CLAP, Text+CLAP, Behavior+CLIP	61.29	61.91	91.17	62.67	66.61	66.53	5.83
5	Video+ResNet-50 (He et al., 2016) (30 frames), Audio+CLAP, Text+CLAP, Behavior+CLIP	56.84	59.52	89.92	50.51	68.26	68.55	7.00
6	Video+DinoV2 Large (Oquab et al., 2024) (30 frames), Audio+CLAP, Text+CLAP, Behavior+CLIP	61.65	62.03	91.31	64.24	66.66	66.51	4.17
7	Video+EmoViT v1 (30 frames), Audio+CLAP, Text+CLAP, Behavior+CLIP	61.08	62.29	90.49	58.28	67.43	67.25	5.67
8	Video+EmoViT v2 (30 frames), Audio+CLAP, Text+CLAP, Behavior+CLIP	61.39	61.56	91.11	62.90	65.98	65.88	7.00
9	Video+EmoAffectNet (Ryumina et al., 2022) (30 frames), Audio+CLAP, Text+CLAP, Behavior+CLIP	62.07	62.69	90.68	56.69	67.30	66.99	4.50
10	Video+EmotiEffLib (Savchenko, 2023) (30 frames), Audio+CLAP, Text+CLAP, Behavior+CLIP	62.57	62.73	91.29	65.48	66.21	66.09	3.50

Table 6: Experimental results of audio encoders. Best and second-best results are highlighted

Exp ID	Configuration		MOSEI		FIv2		BAH	
Exp ID			mWACC	mACC	mCCC	MF1	UAR	Rank
1	Video+CLIP, Audio+CLAP (Wu et al., 2023), Text+CLAP, Behavior+CLIP	61.50	61.87	91.46	66.10	65.66	65.36	3.50
1	Video+CLIP, Audio+Whisper-base (Radford et al., 2023), Text+CLAP, Behavior+CLIP	57.98	60.34	90.84	62.52	67.39	67.83	5.00
2	Video+CLIP, Audio+AST (Gong et al., 2021), Text+CLAP, Behavior+CLIP	60.78	62.58	91.08	60.75	66.62	66.36	3.67
3	Video+CLIP, Audio+Wav2Vec2 (Baevski et al., 2020), Text+CLAP, Behavior+CLIP	61.45	62.04	91.06	63.40	65.22	65.56	3.83
4	Video+CLIP, Audio+EmoWav2Vec2 (Wagner et al., 2023), Text+CLAP, Behavior+CLIP	61.27	63.13	91.43	65.11	67.91	67.96	1.83
5	Video+CLIP, Audio+EmoExHuBERT (Amiriparian et al., 2024), Text+CLAP, Behavior+CLIP	58.39	61.60	90.86	55.93	67.18	69.11	4.83

model achieves the highest overall a rank by effectively capturing dynamic, context-aware facial cues across ER, PTR, and AHR. Evaluation of SCD-MMPSR under varying numbers of uniformly sampled frames (Exp 1-3) reveals that 30 frames yield optimal performance.

Audio encoders. Table 6 compares six audio encoders within the SCD-MMPSR framework under identical multimodal conditions. CLAP (Wu et al., 2023)10, trained on large-scale audio-text pairs with contrastive learning, aligns audio representations with semantic textual descriptions. Whisperbase (Radford et al., 2023)¹¹, trained for multilingual speech recognition and translation, offers robustness to noise and accents but is optimized for lexical content rather than paralinguistic cues. Audio Spectrogram Transformer (AST) (Gong et al., 2021)¹², a spectrogram-based Transformer pre-trained on AudioSet for environmental sound classification, proves less suitable for vocal affect due to its domain mismatch. Wav2Vec2 (Baevski et al., 2020)¹³, fine-tuned for phonetic recognition on LibriSpeech, captures linguistic structure effectively but lacks explicit modeling of emotional prosody. EmoWav2Vec2 (Wagner et al., 2023)¹⁴, a Wav2Vec2 variant fine-tuned on MSP-Podcast to predict arousal, dominance, and valence, provides both dimensional emotion logits and affect-rich pooled hidden states from its last transformer layer. EmoExHuBERT (Amiriparian et al., 2024)¹⁵, an extension of HuBERT fine-tuned on multiple emotion corpora, is explicitly designed to extract expressive paralinguistic features and predict dimensional affect. Results show that EmoWav2Vec2 achieves the best overall performance. This confirms that encoders explicitly optimized for affective representation deliver superior transferability for psychological state recognition tasks compared to general-purpose speech, environmental audio, or even contrastively aligned models like CLAP.

Text / behavior encoders. Tables 7 and 8 compares eight encoders for text and behavioral modalities within the SCD-MMPSR framework under identical multimodal conditions. CLAP (Wu et al., 2023), a contrastive audio-language model, aligns textual representations with acoustic semantics but is not optimized for psychological nuance. CLIP (Radford et al., 2021), a contrastive vision-language model, captures general semantic grounding but lacks specialization for affective or behavioral cues. JinaV3 (Sturua et al., 2024)¹⁶, a 570M-parameter multilingual transformer with LoRA adapters, supports long contexts (8192 tokens) and excels in retrieval but is not fine-tuned

¹⁰https://huggingface.co/laion/clap-htsat-fused

¹¹https://huggingface.co/openai/whisper-base

¹²https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593

¹³https://huggingface.co/facebook/wav2vec2-base-960h

 $^{^{14} \}texttt{https://huggingface.co/audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim}$

¹⁵https://huggingface.co/amiriparian/ExHuBERT

¹⁶https://huggingface.co/jinaai/jina-embeddings-v3

Table 7: Experimental results of text encoders. Best and second-best results are highlighted

Exp ID	Configuration		MOSEI		FIv2		BAH	
ExpID	Comiguration	mMF1	mWACC	mACC	mCCC	MF1	UAR	Rank
1	Video+CLIP, Audio+CLAP, Text+CLAP (Wu et al., 2023), Behavior+CLIP	61.50	61.87	91.46	66.10	65.66	65.36	6.33
2	Video+CLIP, Audio+CLAP, Text+JinaV3 (Sturua et al., 2024), Behavior+CLIP	63.57	65.18	91.30	66.07	66.76	68.19	4.50
3	Video+CLIP, Audio+CLAP, Text+JinaV4 (Günther et al., 2025), Behavior+CLIP	58.28	69.36	91.84	69.18	63.27	63.37	4.50
4	Video+CLIP, Audio+CLAP, Text+BGE (Xiao et al., 2024a), Behavior+CLIP	63.73	64.95	91.36	63.93	68.22	68.14	4.67
5	Video+CLIP, Audio+CLAP, Text+RoBERTa (Liu et al., 2019), Behavior+CLIP	63.39	64.33	91.44	65.44	68.76	68.68	3.83
6	Video+CLIP, Audio+CLAP, Text+XLM RoBERTa (Conneau et al., 2019), Behavior+CLIP	62.93	63.59	91.70	68.25	67.56	67.92	4.66
7	Video+CLIP, Audio+CLAP, Text+EmoDistilRoBERTa (Sanh et al., 2019), Behavior+CLIP	63.05	64.15	91.53	66.33	68.68	68.56	3.83
8	Video+CLIP, Audio+CLAP, Text+EmoRoBERTa, Behavior+CLIP	63.10	64.77	91.57	66.07	68.61	68.59	3.50

Table 8: Experimental results of behavior encoders. Best and second-best results are highlighted

Exp ID	Configuration		MOSEI		FIv2		BAH	
Exp ID			mWACC	mACC	mCCC	MF1	UAR	Rank
1	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP (Radford et al., 2021)	61.50	61.87	91.46	66.10	65.66	65.36	4.67
2	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+JinaV3 (Sturua et al., 2024)	61.71	62.89	91.21	63.85	63.95	63.83	5.33
3	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+JinaV4 (Günther et al., 2025)	59.30	61.24	91.33	63.34	66.65	66.34	6.33
4	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+BGE (Xiao et al., 2024a)	59.03	61.88	91.16	62.13	66.69	67.96	5.83
5	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+RoBERTa (Liu et al., 2019)	60.51	62.23	91.36	65.35	67.43	67.25	3.83
6	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+XLM RoBERTa (Conneau et al., 2019)	61.32	62.68	91.34	63.45	67.37	67.28	4.00
7	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+EmoDistilRoBERTa (Sanh et al., 2019)	61.96	62.30	91.45	65.05	65.67	65.55	3.83
8	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+EmoRoBERTa	61.53	62.92	91.40	67.17	67.15	67.62	2.17

for psychological states recognition. JinaV4 (Günther et al., 2025)¹⁷, a 3.8B-parameter multimodal encoder based on Qwen2.5-VL, unifies text and image representations. BGE (Xiao et al., 2024a)¹⁸, a BERT-based dense retriever, is highly effective for semantic matching and classification but lacks dialogue-aware or affective tuning. RoBERTa (Liu et al., 2019)¹⁹, trained on 160GB of English text with dynamic masking, offers strong general-purpose contextual embeddings but is not emotion-specialized. XLM RoBERTa (Conneau et al., 2019)²⁰, pre-trained on 100 languages, provides robust cross-lingual features but similarly lacks affective grounding. EmoDistilRoBERTa (Sanh et al., 2019)²¹, a distilled model fine-tuned on multi-domain emotion corpora (Twitter, Reddit, etc.), is lightweight and efficient for ER. EmoRoBERTa²² is a version of EmoDistilRoBERTa fine-tuned on transcripts from multiple corpora (Crowdflower, GoEmotions, etc.) for ER. Across both text and behavior modalities, EmoRoBERTa outperforms all alternatives. Unlike general-purpose encoders (CLAP, BGE, RoBERTa) or multilingual/retrieval models (JinaV3/V4, XLM RoBERTa), EmoRoBERTa is fine-tuned specifically on emotionally annotated dialogue.

Table 9 summarizes the performance of various multimodal configurations that combine the top-performing unimodal encoders from prior ablation studies. We selected the strongest candidates for each modality – EmotiEffLib for video, EmoWav2Vec2 for audio, and EmoRoBERTa for text and behavior – and fused them to evaluate their combined contribution. The results show that the optimal configuration is Video+CLIP, Audio+CLAP, Text+EmoRoBERTa, and Behavior+EmoRoBERTa (ID-8). This combination achieves the highest overall rank (2.17), as well as top scores on BAH (MF1 69.29, UAR 69.07), and strong performance on MOSEI and FIv2. This configuration demonstrates that using affect-specialized encoders for text and behavior (EmoRoBERTa) provides greater gains than modality-specific models for visual or acoustic data, even when combined with general-purpose models such as CLIP and CLAP. Replacing CLAP with EmoWav2Vec2 (ID-3) or CLIP with EmotiEffLib (ID-2) results in marginal or inconsistent improvements. This suggests that linguistic modeling of psychological states is the primary driver of cross-task generalization in our framework.

 $^{^{17}}$ https://huggingface.co/jinaai/jina-embeddings-v4

¹⁸https://huggingface.co/BAAI/bge-large-en

¹⁹https://huggingface.1319lm.top/FacebookAI/roberta-large

²⁰https://huggingface.co/FacebookAI/xlm-roberta-large

https://huggingface.co/j-hartmann/emotion-english-distilroberta-base

²²https://huggingface.co/michellejieli/emotion_text_classifier

Table 9: Experimental results of various combinations of modality encoders. Best and second-best results are highlighted

Exp ID	Configuration	Me	OSEI	FI	v2	BA	Н	Rank
Exp ID	Conniguration	mMF1	mWACC	mACC	mCCC	MF1	UAR	Kank
1	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP	61.50	61.87	91.46	66.10	65.66	65.36	6.00
2	Video+EmotiEffLib, Audio+CLAP, Text+CLAP, Behavior+CLIP	62.57	62.73	91.29	65.48	66.21	66.09	6.50
3	Video+CLIP, Audio+EmoWav2Vec2, Text+CLAP, Behavior+CLIP	61.27	63.13	91.43	65.11	67.91	67.96	5.33
4	Video+CLIP, Audio+CLAP, Text+EmoRoBERTa, Behavior+CLIP	63.10	64.77	91.57	66.07	68.61	68.59	2.50
5	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+EmoRoBERTa	61.53	62.92	91.40	67.17	67.15	67.62	4.67
6	Video+EmotiEffLib, Audio+Wav2vec, Text+EmoRoBERTa, Behavior+EmoRoBERTa	63.55	63.75	91.30	65.33	67.12	66.93	5.00
7	Video+CLIP, Audio+Wav2vec, Text+EmoRoBERTa, Behavior+EmoRoBERTa	63.36	64.41	91.40	62.99	68.00	69.35	3.67
8	Video+CLIP, Audio+CLAP, Text+EmoRoBERTa, Behavior+EmoRoBERTa	63.40	64.00	91.44	66.68	69.29	69.07	2.17

Table 10: Experimental results on attention mechanisms. Best and second-best results are high-lighted

Exp ID	Configuration		MOSEI		v2	BAH		Rank
Exp ID	Conniguration	mMF1	mWACC	mACC	mCCC	MF1	UAR	Kank
1	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP, MHA (Vaswani et al., 2017)	61.50	61.87	91.46	66.10	65.66	65.36	3.67
2	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP, MTA (Golovneva et al., 2025)	60.83	61.45	91.59	68.04	68.76	68.36	2.33
3	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP, CrossMPT (Park et al., 2025)	61.56	62.60	91.32	65.06	68.75	68.82	2.83
4	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP, BiCA (Hiller et al., 2024)	61.81	62.49	91.50	67.82	66.29	67.28	2.50
5	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP, FA (Lin et al., 2025)	60.10	61.06	91.33	65.61	68.12	69.21	3.67

A.5 COMPARATIVE ANALYSIS OF GRAPH LAYERS AND ATTENTION MECHANISM

Attention mechanisms. Table 10 compares four advanced attention variants with the vanilla Multi-Head Attention (MHA) mechanism (Vaswani et al., 2017). Multi-Token Attention (MTA) (Golovneva et al., 2025)²³ conditions attention weights on multiple query and key vectors at once. Within each head, this mechanism applies a convolution operation to attention scores using both a key-query and head convolution, repeating the process after softmax and adding a scalar gating function before final concatenation. This allows for fine-grained, multi-scale interaction modeling. Cross-attention Message-Passing Transformer (CrossMPT) (Park et al., 2025)²⁴ uses two crossattention blocks to iteratively update query and key-value representations, improving multimodal alignment through iterative refinement. Bidirectional Cross Attention (BiCA) (Hiller et al., 2024)²⁵ allows input tokens and latent variables to attend to each other simultaneously. It leverages emergent attention symmetry for balanced bidirectional information flow. Forgetting Attention (FA) (Lin et al., 2025)²⁶ introduces a forget gate within the softmax attention mechanism. This gate downweights unnormalized attention scores in a data-dependent manner, mimicking cognitive filtering of irrelevant signals. The comparison results show that MTA achieves the best overall rank (2.33), particularly excelling on FIv2 and BAH. This confirms that its convolution-augmented, multi-stage normalization architecture better captures cross-modal psychological dependencies than iterative, symmetric, or gating-based mechanisms.

Graph Neural Network. Table 11 compares four GNN variants with the vanilla one (Veličković et al., 2018). Non-Convolutional GNN (NCGNN) (Wang & Cho, 2024)²⁷ replaces conventional message passing with random walks guided by a unified memory. This GNN uses RNN to aggregate topological and semantic signals along node-anchored walks, mitigating limited expressiveness and over-smoothing without using sparse convolutional kernels. Edge Directions GNN (EDGNN) (Pahng & Hormoz, 2025)²⁸ introduces learnable edge directions, encoded in a complex-valued Laplacian. The real and imaginary parts of the Laplacian encode opposite information flows. Messages from in- and out-neighbors are combined with optional self-features to enable differentiable, long-range directional propagation on directed and undirected graphs. Unitary Convolutions GNN (UCGNN) (Kiani et al., 2024)²⁹ stabilize deep graph models by enforcing unit-modulus trans-

²³https://github.com/facebookresearch/RAM/tree/main/projects/mta

²⁴https://github.com/iil-postech/crossmpt

²⁵https://github.com/lucidrains/bidirectional-cross-attention

²⁶https://github.com/zhixuan-lin/forgetting-transformer/tree/main

²⁷https://github.com/ak24watch/RUM-Graph-nets/tree/main

²⁸https://github.com/hormoz-lab/coed-gnn/tree/main

 $^{^{29} \}verb|https://github.com/Weber-GeoML/Unitary_Convolutions/tree/main$

1242 1243

Table 11: Experimental results on GNNs. Best and second-best results are highlighted

1257 1259 1261

1264 1265 1266

1262

1263

1271 1272

1273 1275

1276

1282

1288 1289

1287

1290

1291 1293 1294

1295

MOSEI FIv2 BAH Exp ID Configuration Rank mWACC | mACC mCCC | MF1 mMF1 UAR Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP, vanilla GNN (Veličković et al., 2018) 65.36 61.50 61.87 91.46 66.10 65.66 4.17 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP, NCGNN (Wang & Cho, 2024)
Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP, EDGNN (Pahng & Hormoz, 20
Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP, UCGNN (Kiani et al., 2024) 61.51 91.40 65.33 66.00 65.47 66.17 65.49 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP, HGNN (Yue et al., 2025) 61.48 62.81 91.35 67.42 3.17

Table 12: Grid search result of hyperparameters

Hyperparameter	Baseline value	Search values	Best value
hidden_dim	256	[128, 256, 512, 1024]	512
out_features	256	[128, 256, 512, 1024]	512
num_transformer_heads	8	[2, 4, 8, 16]	8
dropout	0.2	[0.0, 0.1, 0.15, 0.2, 0.25, 0.3]	0.15
scheduler_type	none	[none, plateau, cosine, onecycle]	plateau
lr	10^{-4}	$[10^{-3}, 10^{-4}, 10^{-5}]$	10^{-4}
optimizer	adam	[adam, adamw, lion, sgd, rmsprop]	adam

formations that avoid over-smoothing and improve training stability as the depth increases. Hyperbolic GNN (HGNN) (Yue et al., 2025)³⁰ recasts message passing as a system of hyperbolic partial differential equations. This method offers spectral-spatiotemporal interpretability and enhanced performance by evolving node states in a solution space spanned by Laplacian eigenvectors. Results show that UCGNN achieves the best overall rank (2.33), confirming that depth-stable, unit-modulus architectures are critical for modeling complex, cross-task psychological states interactions in graphbased fusion.

A.6 OPTIMIZATION OF MODEL AND TRAINING HYPERPARAMETERS

To optimize performance across multimodal corpora, a comprehensive grid search was conducted over key training and model hyperparameters. Starting from a strong baseline Exp-3 (see Table 1), we explored variations in hidden states (hidden_dim) and output feature (out_features) dimensions, transformer head count (num_transformer_heads), dropout rate (dropout), learning rate (lr), scheduler type (scheduler_type), and optimizer choice. The search results are presented in Table 12. All experiments presented in Appendix A.2, A.4 and A.5 are carried out under the baseline values of hyperparameters, while the task contribution coefficients ((w_t^s, w_t^{ss})) are fixed at 1.0.

The search revealed that increasing model capacity via hidden_dim and out_features to 512 consistently improved generalization without overfitting, particularly benefiting two corpora (FIv2 and BAH). A moderate dropout of 0.15 offered the best regularization, while the plateau scheduler proved most effective in stabilizing late-stage training by adapting to loss plateaus. The remaining parameters remained unchanged due to the search and showed no improvement.

Applying the best-performing hyperparameters (Exp-5, see Table 1) resulted in a performance improvement. The gains were most significant on FIv2 and BAH, where classification and regression measures improved, indicating increased robustness to cross-task variability. MOSEI metrics decreased, suggesting either saturation of this corpus or a need for task-specific fine-tuning. Overall, these results indicate that careful parameter selection can lead to improved model performance.

A.7 OPTIMIZATION OF SEMI-SUPERVISED LEARNING HYPERPARAMETERS

Figure 6 shows the training process of SCD-MMPSR, a framework that can recognize three psychological states simultaneously. The framework uses three different corpora (MOSEI, FIv2, and BAH) that are annotated for various tasks. These corpora are used to extract features for each modality,

³⁰https://github.com/YueAWu/Hyperbolic-GNN/tree/main

1297

1298

1299

1301

1302

1303

1304

1305

1309

1310 1311

1321

1322

1323

1324

1325

1326

1327

1328

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1344

1347

1348

1349

Figure 6: Training process pipeline.

Table 13: Grid search result of SSL hyperparameters

Baseline value	Search values	Best value
0.8	[0.5, 0.6, 0.7, 0.8, 0.9]	0.6
0.5	[0.5, 0.55, 0.6, 0.56]	0.6
1	[1.0, 1.25, 1.50, 1.75]	1.25
0.25	[0.25, 0.50, 0.75, 1.0, 1.25]	1.0
0.005	[0.005, 0.01, 0.025]	0.01
0.004	[0.004, 0.005, 0.006]	0.005
0.1	[0.1, 0.2, 0.3, 0.4]	0.3
10^{-3}	$[10^{-2}, 10^{-3}, 10^{-4}]$	10^{-3}
	0.8 0.5 1 0.25 0.005 0.004 0.1	0.8 [0.5, 0.6, 0.7, 0.8, 0.9] 0.5 [0.5, 0.55, 0.6, 0.56] 1 [1.0, 1.25, 1.50, 1.75] 0.25 [0.25, 0.50, 0.75, 1.0, 1.25] 0.005 [0.005, 0.01, 0.025] 0.004 [0.004, 0.005, 0.006] 0.1 [0.1, 0.2, 0.3, 0.4]

which are then fed into a MCDM. MCDM generates predictions for all three tasks at once. A hybrid loss function is used, which combines supervised losses and semi-supervised losses. This allows the model to learn from both labeled and unlabeled data. Pseudo labels are generated based on confidence thresholds and are updated during training. This helps the model learn robust representations for all tasks without requiring co-annotated data.

The SSL hyperparameters are optimized using grid search. The results are presented in Table 13. This search reveals that optimal pseudo-labeling requires lower confidence thresholds (0.60) than commonly assumed. It indicates that moderately confident predictions contain a valuable signal for cross-task learning. The gradient balancing controllers have approximately equal values ($\alpha^{s} = 1.25$ and $\alpha^{\rm ss} = 1.0$). This confirms that unlabeled data contributes substantially, but only when properly scaled. Learning rates ($\eta_w^s = 0.01$ and $\eta_w^{ss} = 0.005$) are best set higher than the baseline for both loss types, suggesting that a faster adaptation improves convergence. The budget coefficient peaks at $\lambda = 0.3$. This suggests that 30% of training steps should be devoted to pseudo-label refinement to maximize gain. Finally, preserving a minimal task contribution of $w_{floor} = 10^{-3}$ prevents gradient starvation for weaker tasks. Together, these settings create a best-performing SSL: lower thresholds, higher semi-supervised weights, aggressive learning, and controlled budgeting, unlocking the full potential of unlabeled data in cross-domain multitask learning.

Figure 7 shows the adaptive change in task contribution coefficients for each epoch with the best hyperparameters SSL. The contribution coefficients for all tasks are dynamically adjusted at each training epoch using the double-branch GradNorm method. The coefficient trajectories are plotted in gray. The blue line shows the evolution of the mMF1 measure for ER, the orange line tracks mCCC for PTR, and the green line represents MF1 performance for AHR. Overall, the measures for emotion and PTs show a monotonic increase from the beginning to the end of learning, indicating stable and consistent learning. In contrast, the ambivalence curve has high volatility and is sensitive to changes in task weights. Interestingly, the weights for ambivalence are consistently low, both supervised and semi-supervised. Conversely, the weights for PTs remain moderate to high with supervised learning and consistently high with SSL, suggesting that using pseudo-labels is critical for optimizing this task. The supervised weights are highly unstable for ER, while the semi-supervised weights remain persistently low. Despite their low magnitude, the semi-supervised weights for emotions and ambivalence were deliberately increased at epoch 15, coinciding with a reduction in the supervised weights. This adjustment yielded peak overall multitask performance, suggesting that strategic rebalancing towards SSL could positively impact the model's generalizability across all

Figure 7: Visualization of adaptive change of task contribution coefficients by the best SSL hyperparameters.

tasks. Even for tasks with noisy or sparse pseudo-labels, the double-branch GradNorm method can mitigate overfitting to limited labeled data and promote cross-task regularization through shared representation learning.

A.8 CORRELATION BETWEEN TASKS AND ERROR ANALYSIS

Figure 8 illustrates the complex interplay between emotions, PTs, and ambivalence in a correlation matrix. Ambivalence shows positive correlations with negative emotions, particularly Sadness, Fear, and Disgust, and a negative correlation with Happiness, suggesting that ambivalent states are more likely to co-occur with distress-related affect rather than positive emotional experiences. No substantial correlations were observed between ambivalence and PTs, likely because ambivalence reflects a transient affective conflict rather than a stable dispositional characteristic. PTs exhibit strong positive correlations between Openness and Agreeableness and negative correlations among other Big Five dimensions. Regarding emotions, Happiness is negatively associated with most other emotional states but positively linked to Extraversion, non-Neuroticism, and Conscientiousness, aligning with established affect-trait relationships. Anger and Disgust are highly positively correlated, possibly due to overlapping expressive or semantic features in the underlying data. Disgust, Fear, and Sadness also correlate, potentially reflecting shared arousal dimensions or contextual triggers. These patterns suggest that while PTs traits form a stable, interrelated system, emotional experiences, particularly negative ones, are more dynamically intertwined with ambivalence.

Figure 9 shows the confusion matrices on MELD for different model configurations. The error analysis across the three configurations highlights the central role of learning strategies in addressing model generalizability to new data. By the SCD-MMPSR w/o SSL and multitask configuration, where the model was trained solely in a supervised manner on the single-corpus, predictions are heavily biased toward the majority class Happiness, with more 50% of all samples misclassified as such. This outcome reflects the uneven distribution of the training data and demonstrates the model's limited ability to generalize to less common emotion categories when faced with unseen data. Emotions such as Fear and Disgust are underrepresented in the model. The model often confuses Disgust with other Anger and Happiness, and Fear is confused with all emotions except for Disgust.

The introduction of SSL with additional unlabeled corpora substantially mitigates this bias. By leveraging pseudo-labeling, the model in the second configuration (SCD-MMPSR w/o multitask) exhibits a more balanced distribution of predictions across emotion classes. While Happiness still dominates, the recall for Anger, Sadness, and Surprise improves, suggesting that exposure to a

Figure 8: Visualization of the correlation between three target tasks.

Figure 9: Confusion matrices obtained for the Test subset of the Meld corpus with different model configurations: SCD-MMPSR w/o SSL and multitask (left sub-figure), SCD-MMPSR w/o multitask (central sub-figure), SCD-MMPSR (right).

broader range of inputs encourages more nuanced decision boundaries. In the case of Disgust, the confusion between classes is reduced, with errors now primarily occurring in Anger and Happiness.

The full configuration (SCD-MMPSR) achieves the most consistent improvements. Incorporating auxiliary tasks (PTR and AHR) alongside pseudo-labeling introduces inductive biases, leading to significant improvements in UAR. Importantly, this setup reduces the over-prediction of Happiness and strengthens recognition of Neutral, Anger, and Surprise, which benefit from richer contextual embeddings derived from the auxiliary tasks. The improved balance of classification across categories demonstrates that multitask signals help the model disentangle subtle affective cues that are otherwise obscured when optimizing for ER alone. Moreover, the problem with Fear and Disgust has been notably reduced: while in the previous two configurations both classes were predominantly misclassified as Happiness, which has the opposite valence, the errors are now redirected toward Anger, a category with closer semantic relations and overlapping multimodal patterns.

In summary, the main challenge remains reliable minority ER, which is still affected by class imbalance and cross-domain discrepancies. Semi-supervised, cross-domain, and multitask learning methods reduce bias and improve overall balance. However, confusion persists for semantically related categories. Future work could address these issues by adapting to the domain to align feature distributions across corpora. Combined with targeted data augmentation or reweighting strategies, this could help strengthen minority-class representations.