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ABSTRACT

Modern human-computer interaction interfaces demand robust recognition of
complex psychological states in real-world, unconstrained settings. However, ex-
isting multimodal corpora are typically limited to single tasks with narrow annota-
tion scopes, hindering the development of general-purpose models capable of mul-
titask learning and cross-domain adaptation. To address this, we introduce SCD-
MMPSR (Semi-supervised Cross-Domain Multitask Multimodal Psychological
States Recognition), a novel framework that unifies heterogeneous corpora via
GradNorm-based adaptive task weighting in multitask semi-supervised learning
(SSL) to train models across diverse psychological prediction tasks jointly. At
the architectural core, we propose two innovations within a graph-attention back-
bone: (1) Task-Specific Projectors, which transform shared multimodal represen-
tations into task-conditioned logits and re-embed them into a unified hidden space,
enabling iterative refinement through graph message passing while preserving
modality alignment; and (2) a Guide Bank, a learnable set of task-specific seman-
tic prototypes that anchor predictions, injecting structured priors to stabilize train-
ing and enhance generalization. We evaluate SCD-MMPSR on three distinct psy-
chological state recognition tasks, emotion recognition (MOSEI), personality trait
recognition (FIv2), and ambivalence/hesitancy recognition (BAH), demonstrating
consistent improvements in multitask performance and cross-domain robustness
over strong baselines. We also evaluate the generalization of SCD-MMPSR on
unseen data from the MELD dataset. Multitask SSL improves generalization
on MELD by a macro F1-score of 7.5% (35.0 vs. 27.5) compared to single-
task SSL. Our results highlight the potential of semi-supervised, cross-task rep-
resentation learning for scalable affective computing. The code is available at
https://github.com/Anonymous-user-2026/ICLR_2026.

1 INTRODUCTION

Effective human-computer interaction increasingly requires automated systems that recognize rich,
interacting psychological states (e.g., emotions, personality traits, ambivalence/hesitancy) from mul-
timodal, in-the-wild data. Despite mounting studies of cross-task correlations (Li et al., 2022;
Wang et al., 2023), such as personality-guided Emotion Recognition (ER) (Wen et al., 2024) or
emotion-informed personality modeling (Bao et al., 2025), the field predominantly deploys single-
task, single-corpus architectures (Li et al., 2023; Kong et al., 2025). Recent advances in psycho-
logical states recognition (see detailed related work in Appendix A.1) have largely progressed in
isolation: State-of-the-Art (SOTA) methods for Personality Traits Recognition (PTR) benefit from
attention-based modeling of Big Five traits (Agrawal et al., 2023; Masumura et al., 2025). Am-
bivalence/Hesitancy Recognition (AHR) relies on temporal modeling via Temporal Convolutional
Networks (TCNs) and Long Short-Term Memorys (LSTMs) (Kollias et al., 2025; Hallmen et al.,
2025). Moreover, ER increasingly leverages Transformer and Mamba architectures for multimodal
fusion (Goncalves et al., 2023; Zhang et al., 2025a). It is known that the correlation between various
tasks of affective computing can enhance the model’s performance. For instance, personality traits
such as Neuroticism demonstrably modulate emotional reactivity to negative stimuli (Mohammadi &
Vuilleumier, 2022). At the same time, ambivalence serves as a critical indicator of internal conflict,
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Figure 1: Pipeline of the proposed SCD-MMPSR method.

revealing whether an expressed emotion is genuine or socially masked, or whether self-reported per-
sonality aligns with behavioral cues (Hallmen et al., 2025). However, although multitask methods
are emerging, particularly in emotion-sentiment or personality-emotion settings (Wen et al., 2024;
Bao et al., 2025), they remain constrained to single corpora or homogeneous annotations. Mean-
while, Semi-Supervised Learning (SSL) has gained traction as a solution to annotation scarcity,
with successful applications in unimodal ER, PTR (Hosseini & Caragea, 2023; Zhu et al., 2024) and
multimodal methods (Fan et al., 2024; Lian et al., 2024).

Thus, nearly all effective methods remain task- and corpus-specific. These methods are trained using
single-task corpora with narrow annotation scopes, inconsistent recording conditions, and different
labeling protocols. This fragmentation imposes severe problems: (1) computational inefficiency, as
deploying separate models for task-specific recognition multiplies inference overhead; and (2) poor
generalization, as models trained on narrow, task-specific corpora suffer from domain overfitting
and fail to transfer to unseen contexts. However, the lack of a general multitask solution stems from
the fact that manual annotation at large-scale data is prohibitively expensive and often infeasible
due to the complexity of the tasks and inter-annotator disagreement (Kollias et al., 2025; Sun et al.,
2025; Mendelman & Talmon, 2025). Consequently, joint modeling of these states has remained
largely unexplored, and the field lacks a practical, principled method to exploit many single-task,
heterogeneous corpora jointly to learn shared multimodal representations that transfer across various
affective behavior understanding tasks.

To fill this gap, we introduce SCD-MMPSR (Semi-supervised Cross-Domain Multitask Multimodal
Psychological States Recognition), a unified framework (Figure 1) that enables joint training across
heterogeneous, single-task corpora without requiring joint annotations. We rigorously evaluate
SCD-MMPSR on three benchmark corpora (CMU Multimodal Opinion Sentiment and Emotion
Intensity (MOSEI) (Bagher Zadeh et al., 2018) annotated for ER, ChaLearn First Impressions
v2 (FIv2) (Escalante et al., 2020) annotated for PTR, and Behavioural Ambivalence/Hesitancy
(BAH) (González-González et al., 2025)annotated for AHR) under standard protocols, and fur-
ther test its zero-shot generalization on the unseen Multimodal EmotionLines Dataset (MELD) cor-
pus (Poria et al., 2019). The results demonstrate high generalization due to multitask SSL, validating
the framework’s capacity for cross-domain and cross-task transfer learning.

The main contributions of the article are as follows:

• SCD-MMPSR, an open-source semi-supervised cross-domain learning framework that
jointly models ER, PTR, and AHR from heterogeneous, single-task corpora by using a
GradNorm-based adaptive task weighting in multitask SSL.

• A Multimodal Cross-Domain Model (MCDM) with novel layers to learn cross-modal and
cross-task interaction, called (1) Task-Specific Projectors for iterative feature-prediction re-
finement and (2) Guide Banks for structuring semantic task-specific embedding prototypes.

• Empirical evidence that our semi-supervised cross-domain learning improves multitask
performance and generalization across various corpora, supported by ablations that isolate
the benefits of the proposed modules.
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2 PROPOSED METHOD

The proposed SCD-MMPSR (Figure 1) is a unified framework designed to predict ambiva-
lence/hesitancy jointly, Personality Traits (PTs), and emotions from video sequences. Each video is
divided into four modalities: video, audio, text, and behavior, which are then processed separately
through specific pre-processing pipelines. Each modality is encoded using specialized pre-trained
models to capture domain-specific features. These unimodal embeddings are then combined in a
multimodal fusion architecture called MCDM. This model enhances cross-modal alignment and
improves cross-domain generalization by utilizing task-specific corpora simultaneously. A key ad-
vantage of the proposed method is its unified architecture for multitask learning, which enables joint
optimization across different tasks. Training is performed in a cross-domain setting, where each task
uses its own corpus to create robust and transferable representations. A pseudo-labeling technique is
used to leverage unlabeled data, which involves applying a confidence threshold to high-confidence
predictions and integrating them into the training process in a semi-supervised manner. This en-
hances generalization without requiring additional annotation effort.

2.1 PRE-TRAINED EMBEDDINGS

In this study, we investigate the generalization of pre-trained encoders across different modalities
and tasks using a unified multimodal framework. Instead of developing new encoders from scratch,
we utilize existing models that have demonstrated effectiveness in affective and behavioral analysis
(Appendix A.1). Systematically replacing one encoder at a time, while keeping the rest fixed, en-
ables us to assess the contribution of each component to cross-modal and cross-task performance in
a controlled manner. The evaluation is conducted in a multitask setting to assess the robustness of
the encoders beyond the limitations of single-task scenarios.

We examine a range of encoders across four modalities: audio, video, and text/behavior. For au-
dio, we use CLAP (Wu et al., 2023), Whisper (Radford et al., 2023), AST (Gong et al., 2021), and
Wav2Vec2 (Baevski et al., 2020) models, including emotion-fine-tuned versions, as well as EmoEx-
HuBERT (Amiriparian et al., 2024) and EmoWav2Vec2 (Wagner et al., 2023). Text and behavior
encodings use both general-purpose models such as Jina (V3 / V4) (Sturua et al., 2024; Günther
et al., 2025), BGE (Xiao et al., 2024a), CLAP (Wu et al., 2023), CLIP (Radford et al., 2021), and
RoBERTa (Liu et al., 2019), as well as its modifications such as XLM RoBERTa (Conneau et al.,
2019) and the affective models, such as EmoDistilRoBERTa (Sanh et al., 2019) and EmoRoBERTa1.
For video, we study Dino v2 (Oquab et al., 2024), CLIP (Radford et al., 2021) and ViT (Wu et al.,
2020), ResNet-50 (He et al., 2016), and emotion-specific models such as EmotiEffLib (Savchenko,
2023), EmoAffectNet (Ryumina et al., 2022), and two EmoViT models.

Pre-processing is applied to all modalities before encoding. For videos, the BlazeFace
model (Bazarevsky et al., 2019) is used to detect face regions for accurate long-range tracking. This
is followed by alignment and background removal using the FaceMesh model (Kartynnik et al.,
2019). Both models are available in the MediaPipe library (Lugaresi et al., 2019), and their com-
bined use allows eliminating each other’s limitations. Audio signals are encoded directly with the
selected pre-trained models, without any additional normalization. Text transcription is extracted
using the Whisper Turbo model (Radford et al., 2023) and is fed to the encoder.

2.2 LLM-BASED BEHAVIOR DESCRIPTION

In recent research, the use of Large Visual Language Models (VLLMs) to describe human behavior
in videos has been shown to enhance affect recognition performance (Zhang et al., 2024a; Lu et al.,
2025). In our work, we use the Qwen2.5-VL-3b model (Bai et al., 2025) to generate video behavior
descriptions, as it provides robust fine-grained visual comprehension, long-term video reasoning,
and adaptive resolution. The prompt design for our experiments is based on the following idea. In-
stead of listing specific categories, the prompt encourages the model to generate continuous natural
language narratives of observed behavior. It focuses on non-verbal cues, such as eye gaze, body
posture, and microexpressions, and it avoids making assumptions about the context that cannot be
verified. This narrative-based prompting ensures consistency across emotional, personality-related,

1https://huggingface.co/michellejieli/emotion_text_classifier
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Figure 2: MCDM Architecture.

and ambiguous states, aligning with established psychological theories while leveraging the gener-
ative capabilities of VLLMs. The proposed prompt is presented in Appendix A.2. To confirm the
effectiveness of the proposed prompt, we compare it with prompts designed explicitly for ER (Cheng
et al., 2024; Zhang et al., 2025b).

2.3 MULTIMODAL CROSS-DOMAIN MODEL ARCHITECTURE

Since no existing corpus is jointly annotated for all three target tasks, we use multiple corpora
from different domains. These differ in their recording conditions, annotation protocols, and label
distributions. Importantly, the informativeness of modalities varies significantly across these cor-
pora. To address this, we have designed a unified architecture that dynamically allocates attention
across modalities within each task domain, while enabling cross-modal feature refinement to capture
complementary signals. The architecture of the proposed MCDM is shown in Figure 2. MCDM ad-
dresses multimodal fusion across heterogeneous inputs by combining Modality- and Task-Specific
Projectors, graph attention, task-specific query-based cross-attention fusions, and task-guided em-
bedding banks. Each model component has its own purpose. The model therefore maps unimodal
features {X(m)}m∈M to task-specific predictions {ŷ(t)}t∈T via a unified architecture. Let M denote
the set of active modalities, and T = {EMO,PT,AH} the set of recognition tasks. For each modal-
ity m ∈ M = {F (video), D(behavior), A(audio), L(text)}, the input is a tensor X(m) ∈ RB×dm ,
where B is the batch size and dm is the input feature dimension. These input tensors are statistical
functionals (mean and standard deviation) calculated from contextual embeddings extracted using
unimodal encoders. Each modality is then mapped into a shared hidden dimension space H via a
modality projector. The modality projector ensures that heterogeneous unimodal embeddings are
mapped into a unified latent space while retaining modality-specific inductive bias. It is calculated
as:

z(m) = ϕm(X(m)) ∈ RB×H , (1)

where ϕm(·) consists of a Fully Connected Layer (FCL), a Rectified Linear Unit (ReLU) activation
function, a dropout layer, and a residual adaptation, which is calculated using the formula:

z̃(m) = LayerNorm(z(m) + Adapter(z(m))) (2)

where Adapter(·) consists of a downsampling FCL (with weight tensor Wdown ∈ RH×H/2), ReLU,
a dropout layer, and an upsampling FCL (Wup ∈ RH/2×H ).

Concatenating across modalities yields the fused tensor:

Z = stack
(
z̃(m)

)
m∈M ∈ RB×N×H , (3)

where N = |M| denotes the number of active modalities.

The graph attention fusion, GAF(·), is then applied to both modality features and Task-Specific
Projectors. The modality features are processed by the shared GAF(·) to yield a unified key-value
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representation that contains general representations for all task-specific domains. At the same time,
the Task-Specific Projectors outputs are then refined through three GAF(·) layers to perform intra-
modal and intra-task message passing in order to generate contextualized and task-aware queries.
Given an adjacency A ∈ {0, 1}B×N×N , the graph attention operator updates node embeddings as
follows:

GAF(Z,A)b,i,: =

N∑
j=1

αb,ij WZb,j,: ∈ RB×N×H , (4)

with attention coefficients:

αb,ij =
exp

(
LeakyReLU

(
a⊤[WZb,i,: ∥WZb,j,:]

) )
1{Ab,ij>0}∑

j′ exp
(
LeakyReLU (a⊤[WZb,i,: ∥WZb,j′,:])

)
1{Ab,ij′>0}

, (5)

where a ∈ R2H is a learnable parameter and ∥ · ∥ denotes concatenation; b ∈ B is a batch index;
W ∈ RH×H is a weight tensor. When graph connections are disabled, the identity operator is used
instead.

Task-Specific Projectors functional. For each task t ∈ T, per-modality predictions are obtained as
follows:

L(t) = ϕt(Z) ∈ RB×N×Ct , (6)
with Ct task-specific output dimension. These predictions are projected back to the hidden space:

P (t) = ϕt(L
(t)) ∈ RB×N×H , (7)

and refined with a second graph operator:

C
(t)
preds = GAF(t)(P (t),A(t)), (8)

where C(t)
preds are the contextualized prediction embeddings; both tensors, L(t) and P (t), pass through

a task-specific projector, ϕt, similar to a multimodal projector, ϕm. The Task-Specific Projectors
map shared multimodal embeddings into task-conditioned logits and re-embed them into the hid-
den space. This allows predictions to be refined through graph message passing and aligned with
modality features via cross-attention.

Contextualized modality features are obtained analogously as Cmods = GAF(Z,Afeat). Task-
specific query-based cross-attention fusion, AF(·), integrates the two: with C

(t)
preds as queries (Q(t))

and Cmods as keys / values (K,V ), we compute:

T (t) = AF
(
C

(t)
preds,Cmods,Cmods

)
, (9)

AF(·) aligns contextualized prediction embeddings with modality features to reinforce task-specific
feature representations. These task-specific representations are averaged across modalities:

r(t) =
1

N

N∑
i=1

T
(t)
:,i,: ∈ RB×H . (10)

The final logs are produced through the task heads ht(·):

ŷ
(t)
head = ht(r

(t)) ∈ RB×Ct . (11)

Guide Bank functional. In the Guide Banks, each task t maintains embeddings G(t) ∈ RCt×H .
These embeddings are learnable class prototypes, randomly initialized and dynamically updated
during training. The input representation r

(t)
b,: ∈ RH is the output of the task-specific cross-attention

module for batch sample b, i.e., the refined multimodal feature vector before the final prediction
head. Cosine similarity between this representation and each prototype yields a semantic alignment
score:

simb,c = cos
(
r
(t)
b,: ,G

(t)
c,:

)
. (12)

where c indexes the class for task t. Each similarity score simb,c reflects the degree to which sample
b conforms to the semantic prototype of class c. The Guide Banks introduce a structured seman-
tic prior by anchoring predictions to task-specific embedding prototypes. This stabilizes learning

5
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and improves generalization. The final prediction is a combination of the head outputs and guide
similarities:

ŷ(t) =


1
2

(
ŷ
(t)
head + sim

)
, t ̸= PT,

1
2

(
σ(ŷ

(t)
head) + σ(sim)

)
, t = PT,

(13)

where σ(·) is the logistic sigmoid function, which is only applicable to PTR, as the values of the
PTs scores range from 0 to 1. In our work, we compare the performance of various Graph Neu-
ral Network (GNN), including vanilla GNN (Veličković et al., 2018), Non-Convolutional GNN
(NCGNN) (Wang & Cho, 2024), Unitary Convolutions GNN (UCGNN) (Kiani et al., 2024), Edge
Directions GNN (EDGNN) (Pahng & Hormoz, 2025), Hyperbolic GNN (HGNN) (Yue et al., 2025)
and attention mechanisms, including Multi-Head Attention (MHA) (Vaswani et al., 2017), Bidirec-
tional Cross Attention (BiCA) (Hiller et al., 2024), Cross-attention Message-Passing Transformer
(CrossMPT) (Park et al., 2025), Multi-Token Attention (MTA) (Golovneva et al., 2025), Forgetting
Attention (FA) (Lin et al., 2025) to determine the optimal model configuration.

In this paper, we explicitly differentiate between two complementary components: SCD-MMPSR
and MCDM. SCD-MMPSR denotes the full framework (including semi-supervised cross-domain
learning protocol and data pre-processing), while MCDM refers to its central multimodal fusion
model.

2.4 SEMI-SUPERVISED CROSS-DOMAIN LEARNING

We use three task-specific corpora, each of which is annotated exclusively for one task: ER, PTR, or
AHR. Each corpus provides labels only for its own task, while the remaining labels are set to None.
During training, a batch is constructed by randomly sampling from all corpora. Let n1, n2, n3 be
the randomly selected samples drawn from the three corpora, with batch size B = n1 + n2 + n3.

We use a hybrid loss with adaptive task weighting, based on an extended GradNorm method (Chen
et al., 2018). For each task, we define a supervised loss (Ls) applied only to labeled samples, while
unlabeled samples are masked out:

Ls = ws
EMO Ls

EMO + ws
PT Ls

PT + ws
AH Ls

AH, (14)

where Ls
EMO is Cross-Entropy (CE) loss for ER, Ls

PT is Mean Absolute Error (MAE) loss for PTR,
and Ls

AH is CE loss for AHR. The weights {ws
t}t∈T are not fixed hyperparameters, but are dynami-

cally optimized during training to balance gradient magnitudes across tasks.

To exploit unlabeled samples, we use pseudo-labeling with confidence thresholds. Pseudo-labels are
generated in the same forward pass as the supervised loss, without the need for a separate teacher
model or exponential moving average updates. We use a pseudo-label scheme because our dual-
branch GradNorm mechanism adaptively balances supervised and semi-supervised losses, enabling
stable SSL of the proposed model. For ER and AHR, pseudo-labels are assigned from the softmax
probabilities if the maximum confidence exceeds τEMO/AH. For PTR, logits are binarized at 0.5 (as a
threshold value for the PTs polarity) and accepted as pseudo-labels if they fall outside the uncertainty
margin, i.e., if they are above τPT or below 1− τPT. The semi-supervised loss (Lss) is then computed
as:

Lss = wss
EMO Lss

EMO + wss
PT Lss

PT + wss
AH Lss

AH, (15)

where Lss
EMO is CE loss for ER, Lss

PT is Binary CE (BCE) loss for PTR, and Lss
AH is CE loss for AHR.

The total hybrid loss combines both components L = Ls+Lss. Task weights ws
t and wss

t are updated
online through two independent GradNorm branches, which minimize auxiliary balancing losses:

Ls
GradNorm =

∑
t∈T

∣∣∣Gs
t −G

s · (rs
t)

αs
∣∣∣ , Lss

GradNorm =
∑
t∈T

∣∣∣Gss
t −G

ss · (rss
t )

αss
∣∣∣ , (16)

where for each task t and branch (supervised or semi-supervised). Gt = ∥∇θshared (wt · Lt)∥2 is the
ℓ2-norm of the gradient of the weighted task loss with respect to shared model parameters θshared.
G = 1

|T|
∑

j∈T Gj is the mean gradient norm across all tasks T in the current branch (supervised

or SSL). rt =
Lt/L(0)

t
1
|T|

∑
j∈T Lj/L(0)

j

is the relative inverse training rate, comparing the normalized loss

of task t to the branch-wise average. Here, Lt denotes the raw, unweighted loss for the task t (with

6
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Lt being supervised (Ls
t) or semi-supervised (Lss

t ), depending on the branch), and L(0)
t is its value

recorded at the first training step where it became finite and valid – serving as a per-task initialization
baseline. αs and αss control the aggressiveness of balancing, with larger α penalizing faster-learning
tasks more strongly. The task weights are then updated via gradient descent on LGradNorm with task-
type-specific learning rates:

ws
t ← max

(
wfloor, w

s
t − ηs

w · ∇ws
t
Ls

GradNorm

)
, (17)

wss
t ← max

(
wfloor, w

ss
t − ηss

w · ∇wss
t
Lss

GradNorm

)
, (18)

where separate learning rates (ηs
w, ηss

w) with wfloor preventing any task from being deactivated. After
each update, weights are renormalized to budgets to enforce interpretable task prioritization:

ws
t ← Ss · ws

t∑
j∈T w

s
j

, wss
t ← Sss · wss

t∑
j∈T w

ss
j

, (19)

with budgets Ss = 3.0 and Sss = 3.0× λ, reflecting higher initial priority for supervised signals.

The adaptive change of task contribution coefficients serves as an implicit form of gradient-aware
regularization. By aligning the task-specific gradients with their relative progress during training,
GradNorm promotes balanced optimization and prevents the dominance of noisy or overfitting tasks,
which is critical in semi-supervised cross-domain learning. Our dual-branch extension improves
upon standard GradNorm in three key ways: (1) it decouples supervised and SSL optimization to
account for differing noise levels; (2) it delays weight initialization until valid losses appear, to
handle missing labels; and (3) it enforces explicit budget constraints for interpretable prioritization.
The thresholds {τt}t∈T and other coefficients (αs, αss, ηs

w, ηss
w, wfloor, and λ) remain hyperparameters

tuned on validation data, while the task contribution coefficients (ws
t, w

ss
t ) are now fully adaptive,

eliminating manual tuning and improving robustness to dynamic label imbalance.

This hybrid loss function SSL across single-task corpora by combining supervised objectives with
pseudo-labeled consistency. This alleviates task-wise label sparsity and improves cross-task gener-
alization. The function is further stabilized by gradient-aware adaptive weighting.

3 EXPERIMENTS

3.1 CORPORA

In Appendix A.3, we provide a summary of existing corpora and identify corpora applicable to
our study. We use three task-specific corpora, each of which is annotated for a single objective.
For ER, we use the MOSEI corpus (Bagher Zadeh et al., 2018), the largest multimodal corpus for
affect analysis. This contains over 23,500 YouTube videos at the utterance-level from more than
1,000 speakers, which have been annotated for six basic emotions (Anger, Disgust, Fear, Happi-
ness, Sadness, Surprise). Each video may have multiple labels, with no labels indicating a neutral
state. For PTR, we use the FIv2 corpus (Escalante et al., 2020), which comprises 10,000 short vlogs
(15 seconds each) from approximately 3,000 speakers. Each clip is annotated for the Big Five PTs
(Openness, Conscientiousness, Extraversion, Agreeableness, Non-Neuroticism), with continuous
scores between 0 and 1 obtained via pairwise comparisons. Finally, for AHR, we adopt the recently
introduced BAH corpus (González-González et al., 2025), comprising 1,118 video recordings from
224 participants across nine Canadian provinces. The corpus is annotated for two categories: Ab-
sence or Presence of ambivalence/hesitancy. The corpora are split into Train, Development, and
Test subsets. In Appendix A.4, we present the distribution of classes in subsets. Each corpus pro-
vides supervision only for its designated task, creating a heterogeneous setup in which cross-task
generalization is enabled by SSL with pseudo-labels. To evaluate the cross-dataset generalizability
of SCD-MMPSR to unseen data, we utilize MELD (Poria et al., 2019), a dataset of video record-
ings from the TV series “Friends”. The corpus has been annotated for six basic emotions and a
neutral state. We only use the fixed Test subset from this corpus. Performing model generalization
assessment is difficult for other tasks due to the lack of corpora with a similar annotation protocol.

3.2 EXPERIMENTAL SETUP

We design a multi-stage experimental protocol to systematically assess the proposed framework.
First, we identify the most effective unimodal encoders within a unified multimodal system (see

7
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Table 1: Experimental results of ablation studies. MCDM means the proposed Multimodal Cross-
Domain Model. MCDM-1 based on vanilla GNN and MHA. MCDM-2 based on Unitary Convo-
lutions GNN (UCGNN) and MHA. MCDM-3 based on Unitary Convolutions GNN (UCGNN) and
Multi-Token Attention (MTA). V, A, T, and B stand for Video, Audio, Text, and Behavior. Rank is
calculated using Friedman’s test (Demšar, 2006). Best and second-best results are highlighted

Exp ID Extractors Model
MOSEI FIv2 BAH MELD

Rank
mMF1 mWACC mACC mCCC MF1 UAR MF1 WF1

1 V+CLIP, A+CLAP, T+CLAP, B+CLIP MCDM-1 61.50 61.87 91.46 66.10 65.66 65.36 30.91 38.56 13.13
2 V+CLIP, A+CLAP, T+EmoRoBERTa, B+EmoRoBERTa MCDM-1 63.40 64.00 91.44 66.68 69.29 69.07 33.66 40.04 8.38
3 V+CLIP, A+CLAP, T+EmoRoBERTa, B+EmoRoBERTa MCDM-2 63.35 63.99 91.67 69.38 69.14 69.12 34.06 42.53 6.75
4 V+CLIP, A+CLAP, T+EmoRoBERTa, B+EmoRoBERTa MCDM-3 63.63 64.42 91.42 66.84 67.52 68.44 34.36 40.06 8.13

5 Exp-3 and best hyperparameters (Appendix A.7) MCDM-2 63.06 63.62 91.77 69.51 70.38 70.28 36.26 42.51 5.25
6 Exp-5 and best SSL parameters (Appendix A.8) MCDM-2 63.14 63.61 91.93 71.98 71.70 71.42 35.04 44.08 3.25

7 Exp-6 w/o Task-Specific Projectors MCDM-2 62.05 63.47 91.81 71.11 70.20 70.60 34.17 42.45 6.38
8 Exp-6 w/o Graph Layers MCDM-2 61.92 62.24 91.87 73.03 71.12 71.17 32.99 39.48 7.38
9 Exp-6 w/o Attention Layers MCDM-2 60.02 61.71 91.51 69.30 37.88 50.00 23.22 33.65 13.88
10 Exp-6 w/o Guide Bank Layers MCDM-2 62.35 62.88 91.97 73.21 70.12 70.74 31.87 39.88 6.13

11 Exp-6 w/o Video Modality MCDM-2 61.91 62.69 90.32 57.87 67.73 68.01 20.64 19.13 13.75
12 Exp-6 w/o Audio Modality MCDM-2 62.02 62.74 91.61 70.44 69.08 69.41 34.54 45.41 7.63
13 Exp-6 w/o Text Modality MCDM-2 57.62 58.69 91.95 73.35 62.47 63.43 15.11 23.57 12.00
14 Exp-6 w/o Behavior Modality MCDM-2 61.95 62.08 91.76 72.62 71.49 71.62 27.97 32.52 8.50

15 Exp-6 w/o ER task MCDM-2 – – 91.76 71.88 69.14 69.53 – – 9.25
16 Exp-6 w/o PTR task MCDM-2 62.92 63.61 – – 70.46 69.95 29.40 35.95 7.83
17 Exp-6 w/o AHR task MCDM-2 62.10 62.46 91.88 73.05 – – 33.78 41.49 6.67

Appendix A.5). As base extractors, we employ CLIP (Radford et al., 2021) (for video and scene
descriptions) and CLAP (Wu et al., 2023) (for audio and transcripts), preserving semantic alignment
across modalities as demonstrated in (Gan et al., 2023). We evaluate different model configurations
with fixed encoders by replacing the graph layers and attention mechanisms (see Appendix A.6).
The baseline model (MCDM-1) adopts the vanilla GNN (Veličković et al., 2018) and MHA (Vaswani
et al., 2017). For the video, we compare different numbers of frames, while for behavior, we compare
our prompt with two alternatives (Cheng et al., 2024; Zhang et al., 2025b) (see Appendix A.2).

Second, we construct two enhanced model configurations: MCDM-2 with a modified best-
performing UCGNN (Kiani et al., 2024) and MCDM-3 with a modified best-performing UCGNN
and MTA (Golovneva et al., 2025). At this stage, we tune model-level hyperparameters (learning
rate, optimizer, dropout, hidden dimensions, output feature size, and number of attention heads)
alongside SSL parameters (loss coefficients and pseudo-label thresholds). This stage determines the
optimal architecture (see Appendix A.7) and SSL configuration (see Appendix A.8).

Third, we conduct ablation studies by selectively disabling model components, modalities, and tasks
(see Table 1). To compare with SOTA methods, we also run single-task settings with and without
SSL, varying the probability of incorporating unlabeled data (see Table 2). This stage establishes the
contribution of each component of a model and the advantage of our framework over SOTA results.
Finally, we conduct an inter-task correlation study and an error analysis to assess the effectiveness
of joint multitask learning under semi-supervised conditions (see Appendix A.9).

We applied several performance measures to evaluate SCD-MMPSR. mean Accuracy (mACC) (Es-
calante et al., 2020), and mean Concordance Correlation Coefficient (mCCC) (Lin, 1989) are used
for PTR on FIv2 as a regression task. mean Weighted Accuracy (mWACC) (Bagher Zadeh et al.,
2018) and mean Marco F1-score (mMF1) (Bagher Zadeh et al., 2018) are applied for multi-label ER
on the MOSEI corpus. Classical classification recognition measures (Marco F1-score (MF1),
Weighted F1-score (WF1), and Unweighted Average Recall (UAR) are unitized for single-label ER
and AHR on MELD and BAH, respectively.

3.3 RESULTS

The experimental results are presented in Table 1. Optimization of the encoders (Exp-2, details
in Appendix A.5) improves performance compared to the baseline model (Exp-1). Extending the
baseline model with the UCGNN (Kiani et al., 2024) (Exp-3) improves performance. However,
modifying the model with a MTA (Golovneva et al., 2025) (Exp-4) leads to decreased performance,
indicating sensitivity to the choice of attention scheme. Overall, the performance improvement
of Exp-3 is mainly due to the PTR. Further optimization of the model hyperparameters (details in
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Table 2: Comparison with single-task SOTA methods. The confidence intervals of SCD-MMPSR
are calculated using the bootstrap resampling method (Tibshirani & Efron, 1993)

Method Modality Learning type Learning domain Performance measure
MOSEI mWACC mMF1

Zhang et al. (2022) Video, Audio, Text Supervised Single-domain 51.2 –
Peng et al. (2024) Video, Audio, Text Supervised Single-domain 66.4 –
Ryumina et al. (2025) Video, Audio, Text Supervised Single-domain 69.3 –

SCD-MMPSR w/o SSL and multitask Video, Audio, Text, Behavior Supervised Single-domain 63.6 [62.9, 64.3] 63.3 [62.7, 64.0]
SCD-MMPSR w/o multitask Video, Audio, Text, Behavior Semi-supervised Cross-domain 68.9 [68.2, 69.6] 69.3 [68.5, 70.0]

MELD (testing only) WF1 MF1

SCD-MMPSR w/o SSL and multitask Video, Audio, Text, Behavior Supervised Single-domain 27.0 [25.1, 28.9] 22.8 [21.1, 24.7]
SCD-MMPSR w/o multitask Video, Audio, Text, Behavior Semi-supervised Cross-domain 30.4 [28.7, 32.4] 27.5 [25.6, 29.9]

FIv2 mACC mCCC

Zhao et al. (2023) Video, Audio Supervised Single-domain 91.7 –
Wang et al. (2025) Video, Audio, Text Supervised Single-domain 92.1 –
Gan et al. (2023) Video, Text Supervised Single-domain 92.6 –

SCD-MMPSR w/o SSL and multitask Video, Audio, Text, Behavior Supervised Single-domain 91.8 [91.7, 92.0] 74.0 [72.6, 75.2]
SCD-MMPSR w/o multitask Video, Audio, Text, Behavior Semi-supervised Cross-domain 92.6 [92.5, 92.8] 77.2 [75.8, 78.5]

BAH WF1 MF1

Kollias et al. (2025) Video, Audio, Text, Gesture Supervised Single-domain 70.0 –
Hallmen et al. (2025) Video, Audio, Text Supervised Single-domain 70.2 –
Savchenko & Savchenko (2025) Video, Audio, Text Supervised Single-domain 71.0 –

SCD-MMPSR w/o SSL and multitask Video, Audio, Text, Behavior Supervised Single-domain 72.9 [68.5, 77.2] 71.5 [66.6, 76.0]
SCD-MMPSR w/o multitask Video, Audio, Text, Behavior Semi-supervised Cross-domain 73.2 [68.9, 77.8] 72.1 [67.6, 76.4]

Appendix A.7) and SSL parameters (details in Appendix A.8) has a positive impact on performance.
While this comes at a slight cost to the ER performance, it improves one on other tasks.

The component-level ablation study (Exp 7-10) reveals that the attention mechanism is the most cru-
cial component, while graph attention plays a secondary role. The proposed layers, Task-Specific
Projectors, and Guide Banks are also essential, as they help with effective task alignment and in-
formation sharing across modalities. The modality-level ablation study (Exp 11-14) emphasizes
the importance of video and text modalities in recognizing psychological states, highlighting the
significance of both verbal and non-verbal communication. The task-level ablation study (Exp 15-
17) shows that confidence estimation benefits from the presence of AHR, while removing the task
improves performance on other tasks. Overall, the ablation study shows that all proposed frame-
work components significantly improve the model’s performance. The results on MELD show high
generalization ability, achieving MF1 = 35.04 and WFI = 44.08.

Table 2 compares the single-task versions of the SCD-MMPSR framework with SOTA methods.
In supervised and single-domain settings, SCD-MMPSR tends to underperform compared to the
SOTA methods. However, there is a significant improvement when the model is applied in SSL
and cross-domain learning settings, leveraging unlabeled data from non-target corpora. Bootstrap
confidence intervals confirm that improvements obtained by SCD-MMPSR over the SOTA are sta-
tistically significant, as its upper bounds are higher than the SOTA results. Although our model does
not outperform SOTA performance in ER, our results show that using unlabeled data, including cor-
pora annotated for other paralinguistic tasks, improves model performance. This improvement is
achieved without task-specific fine-tuning of encoders or the need for additional annotation.

For MELD, although performance is improved under single-task SSL, it did not achieve the level
of models trained jointly across all three tasks. The reduction in measure MF1 was 7.5% (27.5 vs.
35.0). The relative decrease in measure WF1 was 13.7% (30.4 vs. 44.1). These results indicate
that single-task models are prone to overfitting and have limited generalization to unseen data. In
contrast, our proposed framework significantly improves model generalization, resulting in robust
performance on new data.

Speaking about the computational cost of SCD-MMPSR, the real-time factor for processing 1 sec
of multimodal data using MediaPipe, Qwen2.5-VL-3b, Whisper, CLIP, CLAP, EmoRoBERTa, and
MCDM is 1.11 sec on an NVIDIA A100 GPU. Of this, 0.69 sec is consumed by Qwen2.5-VL-3b,
which limits inference of SCD-MMPSR to the CPU only. The parameter count of MCDM grows
quadratically with the number of tasks; the full model occupies 38.2 MB. Thus, while our framework
demonstrates strong cross-dataset generalizability to unseen data, its main limitation is its reliance
on VLLMs. However, if there are resource constraints, we suggest omitting the behavior modality.
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This may result in a decrease in model performance of approximately 2% (depending on the task,
see Table 1), but it will also reduce inference time by approximately 1.5 times.

As an additional limitation of our framework, we introduce a few task-specific hyperparameters,
such as confidence thresholds for pseudo-labeling and balancing coefficients for GradNorm, beyond
standard deep learning settings (e.g., learning rate and batch size). These parameters can affect the
stability and cross-task balance of our model, but adaptive mechanisms reduce the need for manual
tuning. In future work, we plan to explore self-tuning or automated strategies to further enhance the
reproducibility and robustness of our model.

4 CONCLUSION

This paper presented SCD-MMPSR, a compact semi-supervised framework for joint multimodal
recognition of psychological states that bridges heterogeneous, single-task corpora. SCD-MMPSR
combines pre-trained unimodal encoders with a graph-attention fusion backbone and three improve-
ments: (1) Task-Specific Projectors for iterative feature-prediction refinement; (2) Guide Banks
for structuring semantic task-specific embedding prototypes; and (3) the dual-branch GradNorm
method to adaptive task weighting in multitask SSL. We evaluate our framework on three task-
specific corpora (MOSEI, FIv2, and BAH) under standard train-dev-test protocols, and demonstrate
its generalization capability on MELD in a zero-shot cross-domain setup. Results show that joint
multitask training improves generalization over single-task baselines. This confirms that our frame-
work enables effective cross-domain learning without requiring full annotation across tasks, lever-
aging pseudo-labels and SSL instead. In future work, we plan to scale the framework to additional
tasks and integrate contrastive learning to enhance cross-task generalization by explicitly aligning
task-invariant representations.
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A APPENDIX

A.1 RELATED WORK

A.1.1 STATE-OF-THE-ART PSYCHOLOGICAL STATES RECOGNITION METHOD

In this brief review, we consider methods for ER, PTR, and AHR. Emotions reflect transient reac-
tions, while PTs reflects stable dispositions. Ambivalence reveals the uncertainty that may influence
both states, providing critical insight into human intentions and decisions. These tasks enable the
creation of more nuanced and context-sensitive human-machine interaction systems that cover only
one specific task beyond classical affective recognition methods.

Emotion Recognition Methods. Multimodal Emotion Recognition (MER) is a crucial part of re-
search related to analyzing human emotional state. Recent studies have noted that Deep Neural
Networks (DNNs) provide robust results from integrating different modalities (Deng et al., 2024).
Different types of Transformer architectures are used in multimodal feature extraction. For in-
stance, Goncalves et al. (2023) presented an audio-visual framework that utilizes conformer layers
instead of ordinary Transformers. Li et al. (2021) integrated a pre-trained BERT model (Devlin et al.,
2019) with a K-Nearest Neighbors (KNN) classifier during fine-tuning. This method addresses
the distribution shifts between the source domain and the target domain, enabling more accurate
classification in cross-domain tasks. However, the study relies on minimizing the cross-entropy
loss, which often leads to unstable fine-tuning and poor generalization. Hazarika et al. (2020) pro-
posed a network, based on the Transformer architecture, in which features for each modality are
projected to two distinct sub-spaces: modality-invariant and modality-specific. Tsai et al. (2019)
applied the directional pairwise cross-modal attention mechanism, which attends to interactions be-
tween unaligned multimodal sequences across different timesteps. Liu et al. (2025) leveraged a
multilevel method based on a spatio-temporal vision Transformer to extract facial and body fea-
tures. Mamba is another deep learning architecture outperforming conventional Transformers (Gu
& Dao, 2023). Experiments have proven that Mamba-based models capture inter-modal interactions
through a cross-modal mechanism, achieving better modal representations (Zhang et al., 2025a).
Xinyue et al. (2025) introduced LensLLM method which enables early performance prediction of
Large Language Models (LLMs) by analyzing signals from the initial phases of fine-tuning.

Several widely known methods, including graph-based (Joshi et al., 2022; Li et al., 2023), and
hybrid methods based on Convolutional Neural Network (CNN) and Recurrent Neural Network
(RNN) (Gao et al., 2024; Xiao et al., 2024b), are used for ER. For instance, Joshi et al. (2022) pro-
posed a contextualized GNN-based method aimed to capture information via both inner and outer
context. Zadeh et al. (2018a) proposed LSTM-based neural architecture using a multi-view gated
memory that stores a history of cross-view interactions and integrates information from different
modalities at different timesteps. Hosseini et al. (2024) showed that the combination of the network
of Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) and Bidirectional Long
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Short-Term Memory (BiLSTM) achieves a high performance when learning the features of the fu-
sion. Farhadipour et al. (2025) used CNN along with Transformer architecture for extracting visual
features. In contrast, Boitel et al. (2025) leveraged advanced Deep Learning techniques combin-
ing Semi-CNN and 3D-CNN to enhance the robustness of data and comprehensively improve the
performance of various modalities.

Personality Traits Recognition Methods. In addition to ER, recognizing persons’ PTs has gained
popularity over the past few years. PTR is often based on the scores of a psychological model named
Big Five or the OCEAN model (McCrae, 2020). Deep learning algorithms such as CNN, LSTM, and
the Transformer model are broadly applicable in PTR (Zhao et al., 2023). For pairwise and simulta-
neous comparison of Personality Traits Assessment (PTA) Ryumina et al. (2024) proposed the Gated
Siamese Fusion Network (GSFN), which enables the fusion of both hand-crafted and deep features
across text, audio, and video-face modalities. Kong et al. (2025) used a cross-attention mechanism
to improve both the proposed model’s robustness and the audiovisual modality’s performance. In
particular, Masumura et al. (2025) proposed SOTA Transformer-based methods that address two
tasks: assessing people’s PT scores along with questionnaire-based item-level scores. Agrawal et al.
(2023) highlighted the significance of the Transformer architecture, presenting the Forced Attention
Transformer for tackling tasks related to PTR.

Ambivalence/Hesitancy Recognition Methods. The AHR task was first introduced in the 8th Af-
fective Behavior Analysis in-the-Wild (ABAW) competition (Kollias et al., 2025). To solve this
task, the BAH corpus (González-González et al., 2025) was collected and annotated. The baseline
method (Kollias et al., 2025) combined TCN (Bai et al., 2018) with acoustic, linguistic, and visual
features and used a co-attention block to aggregate multimodal features and to create a single em-
bedding for each frame. Hallmen et al. (2025) proposed a method that integrated text, audio, and
visual modalities, modeling temporal dependencies in audio and vision with LSTMs and applying
a convolution-like temporal windowing mechanism for frame-level prediction. All modalities were
fused through a Multi-Layer Perceptron (MLP). Savchenko & Savchenko (2025) developed a mul-
timodal method that emphasized efficient facial models, applied early fusion across modalities, and
refined predictions with blending and temporal smoothing.

Multitask Recognition Methods. Several recent studies are devoted to SOTA multitask unimodal
or multimodal methods, exploring various affective states. For instance, Markitantov et al. (2025)
explored the multitask method based on Label Encoder Fusion Strategy for both ER and Sentiment
Recognition (SR). However, it is important to note that only a limited number of studies focus on
the conjunction between ER, PTR, or AHR. Several works have been devoted to studying emotional
state via PTR (Hosseini et al., 2023; Wen et al., 2024). Wen et al. (2024) studied emotions based
on PTR in dialogue systems and investigated the personality-affected mood transition afterward.
PTR guided by emotional analysis has also been widely investigated (Yuanchao et al., 2023; Bao
et al., 2025). Bao et al. (2025) was the first to employ contrastive learning to increase precision
and predictability in multimodal PTR. Transfer learning using Transformer-based architecture is
another effective way to study the correlation between personality and emotions (Yuanchao et al.,
2023). Some recent research is focused on the correlation between ER and PTR within the scope of
physiological signals (Hosseini et al., 2023; Pant et al., 2023). For instance, Hosseini et al. (2023)
presented a SOTA method applied to ER based on the level of bioelectric activity of the brain.
Seikavandi et al. (2025) proposed MuMTAffec for multimodal multitask ER and PTR on a limited
corpus annotated for the two target tasks.

A.1.2 STATE-OF-THE-ART METHODS BASED ON SEMI-SUPERVISED LEARNING

SSL has emerged as a crucial strategy for addressing the significant challenge of limited labeled
data in machine learning (Mendelman & Talmon, 2025; Sun et al., 2025). This strategy leverages
small amounts of labeled data and larger pools of unlabeled data to improve model performance,
mitigating the high cost and difficulty associated with extensive manual annotation. Widely-known
SSL methods, such as FixMatch and MixMatch, are based on the idea of consistency regularization
and pseudo-labeling (Sohn et al., 2020; Melnychuk et al., 2020). MixMatch uses soft pseudo-labels
through averaging and sharpening for both labeled and unlabeled data. FixMatch, on the other hand,
utilizes one-hot confident pseudo-labels and employs both weak and strong data augmentations,
thereby simplifying the training procedure. Several studies have investigated the Mean Teacher
method for Object Detection and Instance Segmentation (Deng et al., 2021; Alayrac et al., 2020;
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Cao et al., 2023). The method leverages a teacher-student framework where the teacher acts as
Exponential Moving Average (EMA) of the student model, which generates pseudo-labels on un-
labeled target-domain images. Recent research demonstrates the application of SSL in diverse
areas of human behavior modeling, including ER (Hosseini & Caragea, 2023; Wu et al., 2025; Deng
et al., 2025; Alameer et al., 2025), PTR (Zhu et al., 2024), and other psychological states recogni-
tion (Takahashi et al., 2024; Skat-Rørdam et al., 2024). These studies primarily focus on unimodal
methods, including text (Hosseini & Caragea, 2023; Zhu et al., 2024), video (Takahashi et al., 2024;
Deng et al., 2025), and physiological signals (such as Electroencephalogram (EEG)) (Tao et al.,
2024; Martin-Melero et al., 2024; Alameer et al., 2025). Several works presented at the MER work-
shops (Lian et al., 2023; 2024) explicitly focus on multimodal SSL, highlighting its importance,
relevance, and complexity (Fan et al., 2024). A common strategy in such studies involves combin-
ing corpora to create a larger, unified corpus for training models on a single, specific task, extending
data domains, and enhancing model robustness (Zhang et al., 2024b; Skat-Rørdam et al., 2024). For
instance, methods often integrate data augmentation (Zhu et al., 2024; Skat-Rørdam et al., 2024)
or employ self-supervised and contrastive learning (Fan et al., 2024) within the SSL framework to
enhance performance on unified tasks. However, while combining corpora for a single task is well-
established, integrating corpora with distinct annotation tasks (e.g., emotion vs. PTs) and differ-
ent domains (e.g., varying recording setups or participant demographics) within a semi-supervised
cross-domain learning framework remains unknown.

Table 3 systematically compares the SOTA methods for recognition of different psychological states,
including ER, PTR, and AHR. The analysis reveals the following trends. Linguistic features are pre-
dominantly extracted using Transformer-based encoders such as BERT or RoBERTa, reflecting their
dominance in contextual language modeling. Acoustic representations rely on self-supervised mod-
els like Wav2Vec2 and HuBERT or traditional feature sets like OpenSMILE and MFCC. Visual
encoding is typically handled by CNN architectures like ResNet and EfficientNet, with a growing
adoption of vision Transformers. Fusion strategies vary considerably, from attention and MLPs
to graph networks, yet all remain confined to single-task optimization without mechanisms for
cross-task knowledge transfer. Critically, every method in the table operates under fully supervised
learning within a single domain. In contrast, SCD-MMPSR is the first framework to enable semi-
supervised, cross-domain, and multitask learning protocols across ER, PTR, and AHR, overcoming
the annotation and generalization bottlenecks that constrain existing methods.

A.2 PROPOSED PROMPT AND EXAMPLE OF BEHAVIOR DESCRIPTION

Full proposed prompt
You are an expert in visual human behavior analysis. Carefully examine the provided
video clip, which features a person facing the camera. Your task is to describe, in
continuous natural language, the person’s visible emotional state, personality
tendencies, or possible signs of ambivalence and hesitancy as reflected through their
nonverbal behavior.

Focus exclusively on observable cues such as facial muscle movements (eyes,
eyebrows, mouth, gaze), body posture, gestures, and head motions. Infer emotional
tendencies (neutral, anger, disgust, fear, happiness, sadness, surprise), personality
traits (Openness, Conscientiousness, Extraversion, Agreeableness, Neuroticism), or
subtle conflicting signals of uncertainty and hesitation when visible.

In your description:
- Comment on the person’s appearance, posture, gestures, and expressiveness as
indicators of emotional state, personality, or ambivalence.
- Observe and explain facial expressions and body movements as cues, highlighting
consistency or discordance across behaviors.
- Avoid assumptions about personal background, spoken content, or context beyond
what is visually observable.
- If the state appears mixed or ambiguous, briefly mention this with a short explanation
based on visible cues.

Your final response must be a fluent, continuous natural language interpretation of the
person’s visible behavior in the video, written as a single coherent paragraph without
any line breaks, bullet points, special characters, or formatting. The response must
express a complete, finished thought and must not exceed 75 tokens in total.

Short proposed prompt
You are an expert in visual human behavior analysis. Analyze the provided video of
a person facing the camera and describe, in continuous natural language, their
visible emotional state, personality tendencies, or signs of ambivalence based only
on facial expressions, posture, gestures, and head movements. Avoid assumptions
beyond what is visually observable. Write one coherent paragraph not exceeding 75
tokens.

Example behavior description for MOSEI sample
The individual in the video appears to be engaged in a physical activity, likely aerial silks
or a similar performance art, as they are suspended mid-air. Their body is stretched
vertically, with arms gripping the silks above, suggesting focus and concentration. The
facial expression is not clearly visible due to the angle and distance, but the overall
posture indicates determination and control. The person's attire, including a striped
sleeveless top and flowing skirt, suggests a performance-oriented context. There are no
overt signs of hesitation or ambivalence; instead, the body language conveys confidence
and precision, hinting at a disciplined and focused personality. The setting, with greenery
in the background, adds a serene yet dynamic atmosphere to the scene.

Example behavior description for FIv2 sample
The individual in the video appears engaged and expressive, suggesting a
communicative and possibly enthusiastic demeanor. Their facial expressions, including
wide eyes and animated lip movements, indicate active participation in conversation or
presentation. The consistent eye contact with the camera suggests confidence and direct
engagement with the audience. The slight head tilts and hand gestures, particularly
raising a finger, reinforce a sense of emphasis and clarity in their communication. Overall,
the person's body language and facial cues convey openness and a dynamic personality,
likely aiming to connect effectively with viewers. There are no significant signs of
ambivalence or hesitation; instead, the behavior reflects a focused and confident
approach.

Example behavior description for BAH sample
The individual in the video maintains a relatively neutral and composed demeanor
throughout. Their facial expression remains mostly steady, with minimal changes in their
eyebrows, eyes, or mouth, suggesting a calm and focused emotional state. There are
slight shifts in eye movement, indicating attentiveness or engagement with something off-
camera, but no significant signs of strong emotion such as joy, anger, or distress. The
overall body posture is relaxed, with no noticeable tension or fidgeting, reinforcing a
sense of stability and composure. While there are subtle variations in facial expressions,
such as brief moments where the eyes widen slightly or the mouth moves subtly, these do
not convey clear signs of ambivalence or hesitation. The consistent and controlled nature
of their behavior suggests a level-headed and possibly reserved personality.

Figure 3: Proposed prompt and example of behavior description.
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Table 3: Overview of SOTA methods
Method Linguistic Features Acoustic Features Visual Features Modality Fusion Task Learning Type Learning Domain

Joshi et al. (2022) sBERT openSMILE, CNN OpenFace 2.0, Multi-
Comp OpenFace GNN ER Supervised Single-domain

Goncalves et al. (2023) – Wav2Vec2-large-robust EfficientNet-B2 Cross-Modal Transformer ER Supervised Single-domain

Li et al. (2023) GloVe, BERT COVAREP Facet Graph-based Knowledge Dis-
tillation ER Supervised Single-domain

Deng et al. (2024) Transformer Transformer – Cross-Modal Attention, Multi-
head Attention ER Supervised Single-domain

Chandraumakantham et al. (2024) DistilRoBERTa openSMILE PyFeat LLM ER Supervised Single-domain

Hosseini et al. (2024) BiLSTM CNN-LSTM Inception-ResNet-v2 DNN, decision-level fusion
using regression softmax ER Supervised Single-domain

Boitel et al. (2025) DeBERTa Semi-CNN ResNet-50, 3D-CNN MIST framework ER Supervised Single-domain

Farhadipour et al. (2025) RoBERTa Wav2Vec2 FacialNet, BiLSTM,
CNN, Transformer CNN, Transformer ER Supervised Single-domain

Liu et al. (2025) – – Spatio-Temporal vi-
sion Transformer Dynamic Feature Fusion ER Supervised Single-domain

Zhang et al. (2025a) Deberta openSMILE DenseNet Cross-modal Transformer,
Mamba ER Supervised Single-domain

Markitantov et al. (2025) XLMRoBERTa,
JINA Wav2Vec2, ExHuBERT YOLO, EmoAffect-

Net, ResEmoteNet BFS, LEFS, LEFSA ER, SR Supervised Multi-domain

Zhao et al. (2023) – VGGish VGG-Face Decision-level fusion strategy PTR Supervised Single-domain

Agrawal et al. (2023) XLM-RoBERTa Trill-Distilled R(2+1)D, Video Swin
Transformer

Fat Transformer Cross-
Attention PTR Supervised Single-domain

Yuanchao et al. (2023) – Transformer, Wav2Vec2 – – PTR Supervised Single-domain

Ryumina et al. (2024) BERT+BiLSTM,
LIWC+ReBiLSTM

VGG-16+FCNN, openS-
MILE+LSTM

EmoAffectNet+LSTM,
geometric fea-
tures+LSTM

GSFN PTR Supervised Cross-domain

Kong et al. (2025) – MFCC EfficientFace Feature concatenation, Atten-
tion Module PTR Supervised Single-domain

Masumura et al. (2025) BERT HuBERT
CenterNet, Mo-
bileNetV3, Trans-
former, VGGFace2

Transformer PTR Supervised Single-domain

Bao et al. (2025) RoBERTa ResNet-34 X3D, Temporal en-
coder Transformer PTR Supervised Single-domain

Hallmen et al. (2025) Whisper, GTE-Large Wav2Vec2 (with VAD) ViT-Huge MLP fusion, convolution-like
temporal modeling AHR Supervised Single-domain

Savchenko & Savchenko (2025) RoBERTa (GoEmo-
tions), Whisper

Wav2Vec2, HuBERT EmotiEffLib MLP classifiers, early fusion,
blending, temporal smoothing AHR Supervised Single-domain

Kollias et al. (2025) BERT, TCN VGGish, TCN ResNet-50, TCN Co-attention, classifier head AHR Supervised Single-domain

SCD-MMPSR EmoRoBERTa CLAP CLIP Multimodal Cross-Domain
Model

ER, PTR,
AHR Semi-supervised Cross-domain

Table 4: Comparison of prompt performance. Best and second-best results are highlighted

Exp ID Configuration
MOSEI FIv2 BAH

Rank
mMF1 mWACC mACC mCCC MF1 UAR

1 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP (full proposed prompt) 61.50 61.87 91.46 66.10 65.66 65.36 1.83
2 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP (short proposed prompt) 61.26 61.72 91.22 60.82 65.56 68.70 2.50
3 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP ( Zhang et al. (2025b) prompt) 60.87 61.52 90.79 61.94 66.78 66.40 2.67
4 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP ( Cheng et al. (2024) prompt) 60.36 61.28 91.10 61.29 66.52 67.98 3.00

Figure 3 and Table 4 present our prompt design for video-based behavior description and its im-
pact on downstream performance in recognizing psychological states. The full proposed prompt
(Exp-1) instructs the model to analyze visual behavior in a video clip, focusing on facial expres-
sions, posture, gestures, and signs of ambivalence or hesitation, while avoiding assumptions about
internal states. It emphasizes objective observation and fluent, continuous language output limited
to 75 tokens. A shorter variant (Exp-2) retains core instructions but simplifies phrasing, leading to
comparable or slightly improved results across all tasks. Both outperform existing baselines: the
prompt from Zhang et al. (2025b) (Exp-3) and Cheng et al. (2024) (Exp-4), which were developed
to analyze only human emotional states. These findings confirm that the proposed prompts, which
focus on complex behavioral changes, improve the model’s robustness and cover a broader range of
psychological states in the video.

Table 5 compares the performance of our framework using different VLLMs for generating behav-
ioral descriptions. Qwen2.5-VL-3B produces the best results across all three corpora and achieves
the highest average rank (1.17), demonstrating its effectiveness in generating behaviorally informa-
tive textual summaries. InternVL2.5-4B, despite being larger (4B vs. 3B), performs competitively
on MOSEI, but lags slightly on FIv2 and BAH. Eagle2-2B, the smallest model (2B parameters),
exhibits noticeably lower performance measures, particularly on MOSEI and FIv2, suggesting that
model capacity is crucial for capturing nuanced behavioral cues. These results suggest that the
choice of VLLM has a significant impact on multimodal fusion performance.
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Table 5: Experimental results of behavior encoders using different VLLM to describe behavior. Best
and second-best results are highlighted

Exp ID Configuration
MOSEI FIv2 BAH

Rank
mMF1 mWACC mACC mCCC MF1 UAR

1 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP using Qwen2.5-VL-3b (Bai et al., 2025) 61.50 61.87 91.46 66.10 65.66 65.36 1.17
2 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP using InternVL2.5-4b (Chen et al., 2024) 61.99 59.75 91.04 64.96 63.68 63.76 2.17
3 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP using Eagle2-2b (Chen et al., 2025) 55.19 59.29 90.70 59.46 63.87 63.87 2.67

Table 6: Comparison of existing multimodal corpora

Corpus Conditions Speech Number of Records / Time Task Annotation protocol Availability
IEMOCAP (Busso et al., 2008) Laboratory Spontaneous, pre-

pared
10039 utterances of 10 par-
ticipants / 11.46 h

ER Video, audio, motion capture of face, text;
experts; seven emotions; one label

Open by request

MELD (Poria et al., 2019) Movie scenes Prepared 1433 dialogs, 13708 utter-
ances / 8h

ER Video, audio, text; crowdsourcing; seven
emotions; one label

Open

CMU-MOSEI (Zadeh et al., 2018b) In-the-wild Spontaneous 3228 videos, 23453 utter-
ances, about 1000 YouTube
speaker / 65.88 h

ER Video, audio, text; crowdsourcing; senti-
ment on a scale of [−3, 3], six emotions on
a scale of [0, 3] annotated by multiple la-
bels

Open

Aff-Wild2 (Kollias & Zafeiriou, 2019) In-the-wild Spontaneous 558 videos, 458 participants
/ 43 h

ER Video, audio; experts; valence and arousal
(on a scale of [−1,+1]) and seven emo-
tions annotated frame by frame

Open by request

MAHNOB-HCI (Wiem & Lachiri, 2017) Laboratory Spontaneous 20 videos for 27 participants
/ 2 h

ER EEG signal, audio, video, text; self-report;
arousal and valence on a scale of 1-9; one
label

Open

FIv2 (Escalante et al., 2020) In-the-wild Spontaneous 10000 videos of about 3,000
participants/ 41 h

PTR Video; crowdsourcing; Big Five on a scale
of [0, 1]

Open

UDIVA (Palmero et al., 2021) Laboratory Spontaneous 188 sessions, 147 partici-
pants / 90.5 h

PTR Audio, video, heart rate; self- and peer-
reported; Big Five on a scale of [−4, 4]

Open by request

MuPTA (Ryumina et al., 2023) Laboratory Spontaneous, pre-
pared

3870 videos, 30 participants
/ 7 h

PTR Video, audio; self evaluation; Big Five on
a scale of [0, 1]

Open by request

BAH (González-González et al., 2025) In-the-wild spontaneous 1118 videos, 224 partici-
pants / 8.26 h

AHR Video, audio, text; experts; binary ambiva-
lence and hesitancy

Open by request

A.3 COMPARISON OF EXISTING MULTIMODAL CORPORA

Table 6 provides an overview of existing multimodal corpora, comparing them along key charac-
teristics: recording conditions, speech type, scale, target tasks, annotation protocol, and availability.
For our study, we restrict training data to in-the-wild corpora: CMU-MOSEI for ER, FIv2 PTR, and
BAH for AHR. This choice aligns with our focus on real-world applicability.

To evaluate cross-corpus generalization in ER, we use MELD, which provides audio, video, and text
modalities and is annotated with the same seven emotions as CMU-MOSEI. This sets it apart from
Aff-Wild2, which primarily consists of facial reactions to movie clips and often lacks informative
audio or spoken content. IEMOCAP employs a distinct emotion label set and was recorded in
controlled laboratory settings, whereas MAHNOB-HCI focuses on valence-arousal dimensions and
is also based in the laboratory. For PTR, both MuPTA and UDIVA rely on self-evaluation of the
BigFive traits under controlled laboratory conditions, which does not reflect the FIv2 corpus. Finally,
BAH is the only multimodal corpus that targets ambivalence and hesitation, making it uniquely
suitable for AHR.

A.4 CLASSES DISTRIBUTIONS IN RESEARCH CORPORA

Figures 4 and 5 illustrate the class distributions across Train, Development, and Test subsets for the
four research corpora used in our experiments: MOSEI, BAH, MELD, and FIv2.

Figure 4 shows that MOSEI exhibits a strong imbalance in emotion labels, with Happiness dominat-
ing the corpus (over 12,000 examples), while emotions such as Fear and Surprise are significantly
underrepresented. The BAH corpus presents a balanced distribution of ambivalence classes, Ab-
sence and Presence, across all subsets, ensuring fair evaluation of AHR. The corpus BAH represents
a nearly balanced distribution of ambivalence across all subsets, with a slight bias towards the Pres-
ence class. This ensures a fair estimation of AHR. The emotion distribution in MELD is unbalanced,
with over 1,200 examples belonging to the Neutral class, while there are fewer than 100 examples
for Fear and Disgust.

Figure 5 reveals that PTs scores follow continuous distributions across five Big Five dimensions:
Openness, Conscientiousness, Extraversion, Agreeableness, and non-Neuroticism. Notably, most
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Figure 4: Distributions of classes in videos across subsets of MOSEI (left sub-figure), BAH (central
sub-figure), and MELD (right sub-figure).
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Figure 5: Distributions of PTs scores in videos across subsets of FIv2.

scores cluster in the mid-range (0.4–0.7), indicating a balanced representation of traits without ex-
treme bias.

These distributions confirm that our experimental setup accounts for both categorical imbalances
(MOSEI, BAH, and MELD) and continuous score variations (FIv2), enabling comprehensive eval-
uation of SCD-MMPSR’s performance under realistic, heterogeneous conditions.

A.5 COMPARATIVE ANALYSIS OF ENCODER PERFORMANCE

Video encoders. Table 7 evaluates eight visual encoders within the SCD-MMPSR framework under
fixed audio, text, and behavior modalities. CLIP (Radford et al., 2021)2, trained on image-caption
pairs via contrastive learning, provides strong general-purpose visual representations. Google
ViT (Dosovitskiy et al., 2021)3, pre-trained on ImageNet for generic image classification. ResNet-
50 (He et al., 2016)4, a CNN backbone pre-trained on ImageNet. DinoV2 Large (Oquab et al.,
2024)5, a self-supervised vision Transformer trained without labels, provides robust generic features
but lacks affective grounding. EmoViT v16, adapted for static facial ER, shows task-specific gains.

2https://huggingface.co/openai/clip-vit-base-patch32
3https://huggingface.co/google/vit-base-patch16-224
4https://huggingface.co/microsoft/resnet-50
5https://huggingface.co/facebook/dinov2-large
6https://huggingface.co/trpakov/vit-face-expression
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Table 7: Experimental results of video encoders. Best and second-best results are highlighted

Exp ID Configuration
MOSEI FIv2 BAH

Rank
mMF1 mWACC mACC mCCC MF1 UAR

1 Video+CLIP (Radford et al., 2021) (30 frames), Audio+CLAP, Text+CLAP, Behavior+CLIP 61.50 61.87 91.46 66.10 65.66 65.36 5.50
2 Video+CLIP (Radford et al., 2021) (20 frames), Audio+CLAP, Text+CLAP, Behavior+CLIP 61.27 62.15 90.79 61.94 66.78 66.40 6.17
3 Video+CLIP (Radford et al., 2021) (40 frames), Audio+CLAP, Text+CLAP, Behavior+CLIP 61.98 62.62 91.20 63.13 64.27 65.01 5.67
4 Video+Google ViT (Dosovitskiy et al., 2021) (30 frames), Audio+CLAP, Text+CLAP, Behavior+CLIP 61.29 61.91 91.17 62.67 66.61 66.53 5.83
5 Video+ResNet-50 (He et al., 2016) (30 frames), Audio+CLAP, Text+CLAP, Behavior+CLIP 56.84 59.52 89.92 50.51 68.26 68.55 7.00
6 Video+DinoV2 Large (Oquab et al., 2024) (30 frames), Audio+CLAP, Text+CLAP, Behavior+CLIP 61.65 62.03 91.31 64.24 66.66 66.51 4.17
7 Video+EmoViT v1 (30 frames), Audio+CLAP, Text+CLAP, Behavior+CLIP 61.08 62.29 90.49 58.28 67.43 67.25 5.67
8 Video+EmoViT v2 (30 frames), Audio+CLAP, Text+CLAP, Behavior+CLIP 61.39 61.56 91.11 62.90 65.98 65.88 7.00
9 Video+EmoAffectNet (Ryumina et al., 2022) (30 frames), Audio+CLAP, Text+CLAP, Behavior+CLIP 62.07 62.69 90.68 56.69 67.30 66.99 4.50
10 Video+EmotiEffLib (Savchenko, 2023) (30 frames), Audio+CLAP, Text+CLAP, Behavior+CLIP 62.57 62.73 91.29 65.48 66.21 66.09 3.50

Table 8: Experimental results of audio encoders. Best and second-best results are highlighted

Exp ID Configuration
MOSEI FIv2 BAH

Rank
mMF1 mWACC mACC mCCC MF1 UAR

1 Video+CLIP, Audio+CLAP (Wu et al., 2023), Text+CLAP, Behavior+CLIP 61.50 61.87 91.46 66.10 65.66 65.36 3.50
2 Video+CLIP, Audio+Whisper-base (Radford et al., 2023), Text+CLAP, Behavior+CLIP 57.98 60.34 90.84 62.52 67.39 67.83 5.00
3 Video+CLIP, Audio+AST (Gong et al., 2021), Text+CLAP, Behavior+CLIP 60.78 62.58 91.08 60.75 66.62 66.36 3.67
4 Video+CLIP, Audio+Wav2Vec2 (Baevski et al., 2020), Text+CLAP, Behavior+CLIP 61.45 62.04 91.06 63.40 65.22 65.56 3.83
5 Video+CLIP, Audio+EmoWav2Vec2 (Wagner et al., 2023), Text+CLAP, Behavior+CLIP 61.27 63.13 91.43 65.11 67.91 67.96 1.83
6 Video+CLIP, Audio+EmoExHuBERT (Amiriparian et al., 2024), Text+CLAP, Behavior+CLIP 58.39 61.60 90.86 55.93 67.18 69.11 4.83

EmoViT v27, optimized for ER in images. Both the VIT-based models were fine-tuned using the
FER2013 corpus. EmoAffectNet (Ryumina et al., 2022)8, based on ResNet-50, and was fine-tuned
with different augmentation techniques on AffectNet for in-the-wild ER. EmotiEffLib (Savchenko,
2023)9, a lightweight library optimized for real-time facial affect analysis in video sequences. This
model achieves the highest overall rank by effectively capturing dynamic, context-aware facial cues
across ER, PTR, and AHR. Evaluation of SCD-MMPSR under varying numbers of uniformly sam-
pled frames (Exp 1-3) reveals that 30 frames yield optimal performance.

Audio encoders. Table 8 compares six audio encoders within the SCD-MMPSR framework under
identical multimodal conditions. CLAP (Wu et al., 2023)10, trained on large-scale audio-text pairs
with contrastive learning, aligns audio representations with semantic textual descriptions. Whisper-
base (Radford et al., 2023)11, trained for multilingual speech recognition and translation, offers
robustness to noise and accents but is optimized for lexical content rather than paralinguistic cues.
Audio Spectrogram Transformer (AST) (Gong et al., 2021)12, a spectrogram-based Transformer
pre-trained on AudioSet for environmental sound classification, proves less suitable for vocal affect
due to its domain mismatch. Wav2Vec2 (Baevski et al., 2020)13, fine-tuned for phonetic recognition
on LibriSpeech, captures linguistic structure effectively but lacks explicit modeling of emotional
prosody. EmoWav2Vec2 (Wagner et al., 2023)14, a Wav2Vec2 variant fine-tuned on MSP-Podcast
to predict arousal, dominance, and valence, provides both dimensional emotion logits and affect-rich
pooled hidden states from its last transformer layer. EmoExHuBERT (Amiriparian et al., 2024)15,
an extension of HuBERT fine-tuned on multiple emotion corpora, is explicitly designed to extract
expressive paralinguistic features and predict dimensional affect. Results show that EmoWav2Vec2
achieves the best overall performance. This confirms that encoders explicitly optimized for affective
representation deliver superior transferability for psychological state recognition tasks compared to
general-purpose speech, environmental audio, or even contrastively aligned models like CLAP.

Text / behavior encoders. Tables 9 and 10 compares eight encoders for text and behavioral modal-
ities within the SCD-MMPSR framework under identical multimodal conditions. CLAP (Wu et al.,

7https://huggingface.co/dima806/facial_emotions_image_detection
8https://github.com/ElenaRyumina/EMO-AffectNetModel
9https://github.com/sb-ai-lab/EmotiEffLib

10https://huggingface.co/laion/clap-htsat-fused
11https://huggingface.co/openai/whisper-base
12https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593
13https://huggingface.co/facebook/wav2vec2-base-960h
14https://huggingface.co/audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim
15https://huggingface.co/amiriparian/ExHuBERT
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Table 9: Experimental results of text encoders. Best and second-best results are highlighted

Exp ID Configuration
MOSEI FIv2 BAH

Rank
mMF1 mWACC mACC mCCC MF1 UAR

1 Video+CLIP, Audio+CLAP, Text+CLAP (Wu et al., 2023), Behavior+CLIP 61.50 61.87 91.46 66.10 65.66 65.36 6.33
2 Video+CLIP, Audio+CLAP, Text+JinaV3 (Sturua et al., 2024), Behavior+CLIP 63.57 65.18 91.30 66.07 66.76 68.19 4.50
3 Video+CLIP, Audio+CLAP, Text+JinaV4 (Günther et al., 2025), Behavior+CLIP 58.28 69.36 91.84 69.18 63.27 63.37 4.50
4 Video+CLIP, Audio+CLAP, Text+BGE (Xiao et al., 2024a), Behavior+CLIP 63.73 64.95 91.36 63.93 68.22 68.14 4.67
5 Video+CLIP, Audio+CLAP, Text+RoBERTa (Liu et al., 2019), Behavior+CLIP 63.39 64.33 91.44 65.44 68.76 68.68 3.83
6 Video+CLIP, Audio+CLAP, Text+XLM RoBERTa (Conneau et al., 2019), Behavior+CLIP 62.93 63.59 91.70 68.25 67.56 67.92 4.66
7 Video+CLIP, Audio+CLAP, Text+EmoDistilRoBERTa (Sanh et al., 2019), Behavior+CLIP 63.05 64.15 91.53 66.33 68.68 68.56 3.83
8 Video+CLIP, Audio+CLAP, Text+EmoRoBERTa, Behavior+CLIP 63.10 64.77 91.57 66.07 68.61 68.59 3.50

Table 10: Experimental results of behavior encoders by text. Best and second-best results are high-
lighted

Exp ID Configuration
MOSEI FIv2 BAH

Rank
mMF1 mWACC mACC mCCC MF1 UAR

1 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP (Radford et al., 2021) 61.50 61.87 91.46 66.10 65.66 65.36 4.67
2 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+JinaV3 (Sturua et al., 2024) 61.71 62.89 91.21 63.85 63.95 63.83 5.33
3 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+JinaV4 (Günther et al., 2025) 59.30 61.24 91.33 63.34 66.65 66.34 6.33
4 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+BGE (Xiao et al., 2024a) 59.03 61.88 91.16 62.13 66.69 67.96 5.83
5 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+RoBERTa (Liu et al., 2019) 60.51 62.23 91.36 65.35 67.43 67.25 3.83
6 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+XLM RoBERTa (Conneau et al., 2019) 61.32 62.68 91.34 63.45 67.37 67.28 4.00
7 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+EmoDistilRoBERTa (Sanh et al., 2019) 61.96 62.30 91.45 65.05 65.67 65.55 3.83
8 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+EmoRoBERTa 61.53 62.92 91.40 67.17 67.15 67.62 2.17

2023), a contrastive audio-language model, aligns textual representations with acoustic semantics
but is not optimized for psychological nuance. CLIP (Radford et al., 2021), a contrastive vision-
language model, captures general semantic grounding but lacks specialization for affective or behav-
ioral cues. JinaV3 (Sturua et al., 2024)16, a 570M-parameter multilingual transformer with LoRA
adapters, supports long contexts (8192 tokens) and excels in retrieval but is not fine-tuned for psy-
chological states recognition. JinaV4 (Günther et al., 2025)17, a 3.8B-parameter multimodal encoder
based on Qwen2.5-VL-3b, unifies text and image representations. BGE (Xiao et al., 2024a)18, a
BERT-based dense retriever, is highly effective for semantic matching and classification but lacks
dialogue-aware or affective tuning. RoBERTa (Liu et al., 2019)19, trained on 160GB of English text
with dynamic masking, offers strong general-purpose contextual embeddings but is not emotion-
specialized. XLM RoBERTa (Conneau et al., 2019)20, pre-trained on 100 languages, provides ro-
bust cross-lingual features but similarly lacks affective grounding. EmoDistilRoBERTa (Sanh et al.,
2019)21, a distilled model fine-tuned on multi-domain emotion corpora (Twitter, Reddit, etc.), is
lightweight and efficient for ER. EmoRoBERTa22 is a version of EmoDistilRoBERTa fine-tuned
on transcripts from multiple corpora (Crowdflower, GoEmotions, etc.) for ER. Across both text
and behavior modalities, EmoRoBERTa outperforms all alternatives. Unlike general-purpose en-
coders (CLAP, BGE, RoBERTa) or multilingual/retrieval models (JinaV3/V4, XLM RoBERTa),
EmoRoBERTa is fine-tuned specifically on emotionally annotated dialogue.

We conduct additional experiments to assess whether behavior representations can be effectively
derived without VLLMs, using only lightweight visual encoders and scene-level visual context (as
opposed to text-based behavioral descriptions). As shown in Table 11, behavior encoding based on
scene analysis outperforms text-based encoding across all three corpora. This indicates that holistic
visual context often provides more stable and informative behavioral cues than current VLLM-
generated summaries. We nevertheless adopt VLLM-generated textual behavior descriptions be-
cause this approach is novel, interpretable, and enables semantic reasoning, offering a path toward
human-aligned, language-mediated analysis that pure visual features cannot provide.

16https://huggingface.co/jinaai/jina-embeddings-v3
17https://huggingface.co/jinaai/jina-embeddings-v4
18https://huggingface.co/BAAI/bge-large-en
19https://huggingface.1319lm.top/FacebookAI/roberta-large
20https://huggingface.co/FacebookAI/xlm-roberta-large
21https://huggingface.co/j-hartmann/emotion-english-distilroberta-base
22https://huggingface.co/michellejieli/emotion_text_classifier
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Table 11: Experimental results of behavior encoders by scene. Best and second-best results are
highlighted

Exp ID Configuration
MOSEI FIv2 BAH

Rank
mMF1 mWACC mACC mCCC MF1 UAR

1 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP (Radford et al., 2021) by text 61.50 61.87 91.46 66.10 65.66 65.36 3.67
2 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP (Radford et al., 2021) by scene 61.53 62.36 91.58 69.80 68.61 68.59 1.17
3 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+Google ViT (Dosovitskiy et al., 2021) by scene 60.18 62.14 90.93 64.83 68.13 67.68 3.50
4 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+ResNet-50 (He et al., 2016) by scene 59.28 61.24 91.31 65.28 67.67 67.19 4.17
5 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+DinoV2 Large (Oquab et al., 2024) by scene 61.50 62.60 91.52 67.66 67.15 67.62 2.33

Table 12: Experimental results of various combinations of modality encoders. Best and second-best
results are highlighted

Exp ID Configuration
MOSEI FIv2 BAH

Rank
mMF1 mWACC mACC mCCC MF1 UAR

1 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP 61.50 61.87 91.46 66.10 65.66 65.36 6.00
2 Video+EmotiEffLib, Audio+CLAP, Text+CLAP, Behavior+CLIP 62.57 62.73 91.29 65.48 66.21 66.09 6.50
3 Video+CLIP, Audio+EmoWav2Vec2, Text+CLAP, Behavior+CLIP 61.27 63.13 91.43 65.11 67.91 67.96 5.33
4 Video+CLIP, Audio+CLAP, Text+EmoRoBERTa, Behavior+CLIP 63.10 64.77 91.57 66.07 68.61 68.59 2.50
5 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+EmoRoBERTa 61.53 62.92 91.40 67.17 67.15 67.62 4.67
6 Video+EmotiEffLib, Audio+Wav2vec, Text+EmoRoBERTa, Behavior+EmoRoBERTa 63.55 63.75 91.30 65.33 67.12 66.93 5.00
7 Video+CLIP, Audio+Wav2vec, Text+EmoRoBERTa, Behavior+EmoRoBERTa 63.36 64.41 91.40 62.99 68.00 69.35 3.67
8 Video+CLIP, Audio+CLAP, Text+EmoRoBERTa, Behavior+EmoRoBERTa 63.40 64.00 91.44 66.68 69.29 69.07 2.17

Table 12 summarizes the performance of various multimodal configurations that combine the top-
performing unimodal encoders from prior ablation studies. We selected the strongest candidates for
each modality (EmotiEffLib for video, EmoWav2Vec2 for audio, and EmoRoBERTa for text and
behavior) and fused them to evaluate their combined contribution. The results show that the optimal
configuration is Video+CLIP, Audio+CLAP, Text+EmoRoBERTa, and Behavior+EmoRoBERTa
(ID-8). This combination achieves the highest overall rank (2.17), as well as top scores on BAH
(MF1: 69.29, UAR: 69.07), and a strong performance on MOSEI and FIv2. This configuration
demonstrates that using affect-specialized encoders for text and behavior (EmoRoBERTa) provides
greater gains than modality-specific models for visual or acoustic data, even when combined with
general-purpose models such as CLIP and CLAP. Replacing CLAP with EmoWav2Vec2 (ID-3) or
CLIP with EmotiEffLib (ID-2) results in marginal or inconsistent improvements. This suggests that
linguistic modeling of psychological states is the primary driver of cross-task generalization in our
framework.

A.6 COMPARATIVE ANALYSIS OF GRAPH LAYERS AND ATTENTION MECHANISM

Attention mechanisms. Table 13 compares four advanced attention variants with the vanilla
Multi-Head Attention (MHA) mechanism (Vaswani et al., 2017). Multi-Token Attention
(MTA) (Golovneva et al., 2025)23 conditions attention weights on multiple query and key vectors at
once. Within each head, this mechanism applies a convolution operation to attention scores using
both a key-query and head convolution, repeating the process after softmax and adding a scalar gat-
ing function before final concatenation. This allows for fine-grained, multi-scale interaction mod-
eling. Cross-attention Message-Passing Transformer (CrossMPT) (Park et al., 2025)24 uses two
cross-attention blocks to iteratively update query and key-value representations, improving multi-
modal alignment through iterative refinement. Bidirectional Cross Attention (BiCA) (Hiller et al.,
2024)25 allows input tokens and latent variables to attend to each other simultaneously. It lever-
ages emergent attention symmetry for balanced bidirectional information flow. Forgetting Attention
(FA) (Lin et al., 2025)26 introduces a forget gate within the softmax attention mechanism. This
gate down-weights unnormalized attention scores in a data-dependent manner, mimicking cogni-
tive filtering of irrelevant signals. The comparison results show that MTA achieves the best overall
rank (2.33), particularly excelling on FIv2 and BAH. This confirms that its convolution-augmented,
multi-stage normalization architecture better captures cross-modal psychological dependencies than
iterative, symmetric, or gating-based mechanisms.

23https://github.com/facebookresearch/RAM/tree/main/projects/mta
24https://github.com/iil-postech/crossmpt
25https://github.com/lucidrains/bidirectional-cross-attention
26https://github.com/zhixuan-lin/forgetting-transformer/tree/main
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Table 13: Experimental results on attention mechanisms. Best and second-best results are high-
lighted

Exp ID Configuration
MOSEI FIv2 BAH

Rank
mMF1 mWACC mACC mCCC MF1 UAR

1 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP, MHA (Vaswani et al., 2017) 61.50 61.87 91.46 66.10 65.66 65.36 3.67
2 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP, MTA (Golovneva et al., 2025) 60.83 61.45 91.59 68.04 68.76 68.36 2.33
3 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP, CrossMPT (Park et al., 2025) 61.56 62.60 91.32 65.06 68.75 68.82 2.83
4 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP, BiCA (Hiller et al., 2024) 61.81 62.49 91.50 67.82 66.29 67.28 2.50
5 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP, FA (Lin et al., 2025) 60.10 61.06 91.33 65.61 68.12 69.21 3.67

Table 14: Experimental results on GNNs. Best and second-best results are highlighted

Exp ID Configuration
MOSEI FIv2 BAH

Rank
mMF1 mWACC mACC mCCC MF1 UAR

1 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP, vanilla GNN (Veličković et al., 2018) 61.50 61.87 91.46 66.10 65.66 65.36 4.17
2 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP, NCGNN (Wang & Cho, 2024) 61.51 63.31 91.40 65.33 66.99 67.12 2.67
3 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP, EDGNN (Pahng & Hormoz, 2025) 61.84 61.89 91.62 68.99 66.00 66.17 2.67
4 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP, UCGNN (Kiani et al., 2024) 62.43 63.22 91.74 70.14 65.47 65.49 2.33
5 Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP, HGNN (Yue et al., 2025) 61.48 62.81 91.35 67.42 66.89 68.05 3.17

Graph Neural Network. Table 14 compares four GNN variants with the vanilla one (Veličković
et al., 2018). Non-Convolutional GNN (NCGNN) (Wang & Cho, 2024)27 replaces conventional
message passing with random walks guided by a unified memory. This GNN utilizes RNN to aggre-
gate topological and semantic signals along node-anchored walks, thereby mitigating the limitations
of expressiveness and over-smoothing without relying on sparse convolutional kernels. Edge Di-
rections GNN (EDGNN) (Pahng & Hormoz, 2025)28 introduces learnable edge directions, encoded
in a complex-valued Laplacian. The real and imaginary parts of the Laplacian encode opposite in-
formation flows. Messages from in- and out-neighbors are combined with optional self-features to
enable differentiable, long-range directional propagation on directed and undirected graphs. Uni-
tary Convolutions GNN (UCGNN) (Kiani et al., 2024)29 stabilize deep graph models by enforcing
unit-modulus transformations that avoid over-smoothing and improve training stability as the depth
increases. Hyperbolic GNN (HGNN) (Yue et al., 2025)30 recasts message passing as a system of
hyperbolic partial differential equations. This method offers spectral-spatiotemporal interpretabil-
ity and enhanced performance by evolving node states in a solution space spanned by Laplacian
eigenvectors. Results show that UCGNN achieves the best overall rank (2.33), confirming that
depth-stable, unit-modulus architectures are critical for modeling complex, cross-task psychological
states interactions in graph-based fusion.

A.7 OPTIMIZATION OF MODEL AND TRAINING HYPERPARAMETERS

To optimize performance across multimodal corpora, a comprehensive grid search was conducted
over key training and model hyperparameters. Starting from a strong baseline Exp-3 (see Table 1),
we explored variations in hidden states (hidden dim) and output feature (out features) dimensions,
transformer head count (num transformer heads), dropout rate (dropout), learning rate (lr), sched-
uler type (scheduler type), and optimizer choice. The search results are presented in Table 15. All
experiments presented in Appendix A.2, A.5 and A.6 are carried out under the baseline values of
hyperparameters, while the task contribution coefficients (ws

t, w
ss
t ) are fixed at 1.0.

The search revealed that increasing model capacity via hidden dim and out features to 512 con-
sistently improved generalization without overfitting, particularly benefiting two corpora (FIv2 and
BAH). A moderate dropout of 0.15 offered the best regularization, while the plateau scheduler
proved most effective in stabilizing late-stage training by adapting to loss plateaus. The remaining
parameters remained unchanged due to the search and showed no improvement.

27https://github.com/ak24watch/RUM-Graph-nets/tree/main
28https://github.com/hormoz-lab/coed-gnn/tree/main
29https://github.com/Weber-GeoML/Unitary_Convolutions/tree/main
30https://github.com/YueAWu/Hyperbolic-GNN/tree/main

27
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Table 15: Grid search result of hyperparameters

Hyperparameter Baseline value Search values Best value
hidden dim 256 [128, 256, 512, 1024] 512
out features 256 [128, 256, 512, 1024] 512
num transformer heads 8 [2, 4, 8, 16] 8
dropout 0.2 [0.0, 0.1, 0.15, 0.2, 0.25, 0.3] 0.15
scheduler type none [none, plateau, cosine, onecycle] plateau
lr 10−4 [10−3, 10−4, 10−5] 10−4

optimizer adam [adam, adamw, lion, sgd, rmsprop] adam

Applying the best-performing hyperparameters (Exp-5, as shown in Table 1) resulted in a perfor-
mance improvement. The gains were most significant on FIv2 and BAH, where classification and
regression measures improved, indicating increased robustness to cross-task variability. MOSEI
metrics decreased, suggesting either saturation of this corpus or a need for task-specific fine-tuning.
Overall, these results indicate that careful parameter selection can lead to improved model perfor-
mance.

A.8 OPTIMIZATION OF SEMI-SUPERVISED LEARNING HYPERPARAMETERS
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Figure 6: Training process pipeline.

Figure 6 shows the training process of SCD-MMPSR, a framework that can recognize three psycho-
logical states simultaneously. The framework uses three different corpora (MOSEI, FIv2, and BAH)
that are annotated for various tasks. These corpora are used to extract features for each modality,
which are then fed into a MCDM. MCDM generates predictions for all three tasks at once. A hybrid
loss function is employed, combining supervised losses and semi-supervised losses. This allows the
model to learn from both labeled and unlabeled data. Pseudo labels are generated based on con-
fidence thresholds and are updated during the training process. This helps the model learn robust
representations for all tasks without requiring co-annotated data.

The SSL hyperparameters are optimized using grid search. The results are presented in Table 16.
This search reveals that optimal pseudo-labeling requires lower confidence thresholds (0.60) than
commonly assumed. It indicates that moderately confident predictions contain a valuable signal for
cross-task learning. The gradient balancing controllers have approximately equal values (αs = 1.25
and αss = 1.0). This confirms that unlabeled data contributes substantially, but only when properly
scaled. Learning rates (ηs

w = 0.01 and ηss
w = 0.005) are best set higher than the baseline for both

loss types, suggesting that a faster adaptation improves convergence. The budget coefficient peaks
at λ = 0.3. This suggests that 30% of training steps should be devoted to pseudo-label refinement to
maximize gain. Finally, preserving a minimal task contribution of wfloor = 10−3 prevents gradient
starvation for weaker tasks. Together, these settings create a best-performing SSL: lower thresholds,
higher semi-supervised weights, aggressive learning, and controlled budgeting, unlocking the full
potential of unlabeled data in cross-domain multitask learning.

Figure 7 shows the adaptive change in task contribution coefficients for each epoch with the best
hyperparameters SSL. The contribution coefficients for all tasks are dynamically adjusted at each
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Table 16: Grid search result of SSL hyperparameters
Hyperparameter Baseline value Search values Best value
Pseudo-label threshold τEMO/AH 0.8 [0.5, 0.6, 0.7, 0.8, 0.9] 0.6
Pseudo-label threshold τPT 0.5 [0.5, 0.55, 0.6, 0.56] 0.6
Gradient balancing controller αs 1 [1.0, 1.25, 1.50, 1.75] 1.25
Gradient balancing controller αss 0.25 [0.25, 0.50, 0.75, 1.0, 1.25] 1.0
Learning rate ηs

w 0.005 [0.005, 0.01, 0.025] 0.01
Learning rate ηss

w 0.004 [0.004, 0.005, 0.006] 0.005
Budget coefficient λ 0.1 [0.1, 0.2, 0.3, 0.4] 0.3
Min value of the task contribution coefficients wfloor 10−3 [10−2, 10−3, 10−4] 10−3
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Figure 7: Visualization of adaptive change of task contribution coefficients by the best SSL hyper-
parameters.

training epoch using the double-branch GradNorm method. The coefficient trajectories are plotted
in gray. The blue line shows the evolution of the mMF1 measure for ER, the orange line tracks
mCCC for PTR, and the green line represents MF1 performance for AHR. Overall, the measures for
emotion and PTs show a monotonic increase from the beginning to the end of learning, indicating
stable and consistent learning. In contrast, the ambivalence curve has high volatility and is sensitive
to changes in task weights. Interestingly, the weights for ambivalence are consistently low, both
in supervised and semi-supervised settings. Conversely, the weights for PTs remain moderate to
high with supervised learning and consistently high with SSL, suggesting that using pseudo-labels
is critical for optimizing this task. The supervised weights are highly unstable for ER, while the
semi-supervised weights remain persistently low. Despite their low magnitude, the semi-supervised
weights for emotions and ambivalence were deliberately increased at epoch 15, coinciding with a
reduction in the supervised weights. This adjustment yielded peak overall multitask performance,
suggesting that strategic rebalancing towards SSL could positively impact the model’s generalizabil-
ity across all tasks. Even for tasks with noisy or sparse pseudo-labels, the double-branch GradNorm
method can mitigate overfitting to limited labeled data and promote cross-task regularization through
shared representation learning.

A.9 CORRELATION BETWEEN TASKS AND ERROR ANALYSIS

Figure 8 illustrates the complex interplay between emotions, PTs, and ambivalence in a correlation
matrix. Ambivalence shows positive correlations with negative emotions, particularly Sadness, Fear,
and Disgust, and a negative correlation with Happiness, suggesting that ambivalent states are more
likely to co-occur with distress-related affect rather than positive emotional experiences. No substan-
tial correlations were observed between ambivalence and PTs, likely because ambivalence reflects

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Neu
tra

l
Ang

er

Disg
ust Fea

r

Hap
pin

ess

Sa
dn

ess

Su
rpr

ise

Ope
nn

ess

Con
sci

en
tio

usn
ess

Ex
tra

ve
rsi

on

Agre
ea

ble
ne

ss

no
n-N

eu
rot

icis
m

Ambiv
ale

nce

Neutral

Anger

Disgust

Fear

Happiness

Sadness

Surprise

Openness

Conscientiousness

Extraversion

Agreeableness

non-Neuroticism

Ambivalence

1.00 -0.18 -0.17 0.09 -0.36 0.10 -0.24 -0.01 -0.07 -0.11 0.03 -0.09 -0.01

-0.18 1.00 0.36 -0.14 -0.46 -0.05 -0.14 0.00 -0.08 -0.08 0.02 -0.05 -0.06

-0.17 0.36 1.00 0.10 -0.49 0.38 0.01 -0.03 -0.07 -0.05 -0.01 -0.03 0.13

0.09 -0.14 0.10 1.00 -0.21 0.29 -0.04 0.01 -0.00 -0.04 0.02 -0.04 0.15

-0.36 -0.46 -0.49 -0.21 1.00 -0.43 -0.34 0.02 0.16 0.17 -0.04 0.14 -0.16

0.10 -0.05 0.38 0.29 -0.43 1.00 -0.11 -0.04 -0.06 -0.08 0.00 -0.06 0.48

-0.24 -0.14 0.01 -0.04 -0.34 -0.11 1.00 0.00 -0.05 -0.02 0.01 -0.03 -0.03

-0.01 0.00 -0.03 0.01 0.02 -0.04 0.00 1.00 -0.63 -0.62 0.95 -0.65 -0.00

-0.07 -0.08 -0.07 -0.00 0.16 -0.06 -0.05 -0.63 1.00 0.87 -0.75 0.95 -0.02

-0.11 -0.08 -0.05 -0.04 0.17 -0.08 -0.02 -0.62 0.87 1.00 -0.76 0.95 -0.03

0.03 0.02 -0.01 0.02 -0.04 0.00 0.01 0.95 -0.75 -0.76 1.00 -0.80 0.01

-0.09 -0.05 -0.03 -0.04 0.14 -0.06 -0.03 -0.65 0.95 0.95 -0.80 1.00 -0.02

-0.01 -0.06 0.13 0.15 -0.16 0.48 -0.03 -0.00 -0.02 -0.03 0.01 -0.02 1.00 0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 8: Visualization of the correlation between three target tasks.

a transient affective conflict rather than a stable dispositional characteristic. PTs exhibit strong pos-
itive correlations between Openness and Agreeableness and negative correlations among other Big
Five dimensions. Regarding emotions, Happiness is negatively associated with most other emotional
states but positively linked to Extraversion, Non-neuroticism, and Conscientiousness, aligning with
established affect-trait relationships. Anger and Disgust are highly positively correlated, possibly
due to overlapping expressive or semantic features in the underlying data. Disgust, Fear, and Sad-
ness also correlate, potentially reflecting shared arousal dimensions or contextual triggers. These
patterns suggest that while PTs traits form a stable, interrelated system, emotional experiences, par-
ticularly negative ones, are more dynamically intertwined with ambivalence.

Figure 9 shows the confusion matrices on MELD for different model configurations. The error
analysis across the three configurations highlights the central role of learning strategies in address-
ing model cross-dataset generalizability to new data. By the SCD-MMPSR w/o SSL and multitask
configuration, where the model was trained solely in a supervised manner on the single corpus, pre-
dictions are heavily biased toward the majority class Happiness, with more than 50% of all samples
misclassified as such. This outcome reflects the uneven distribution of the training data and demon-
strates the model’s limited ability to generalize to less common emotion categories when faced with
unseen data. Emotions such as Fear and Disgust are underrepresented in the model. The model often
confuses Disgust with other emotions, such as Anger and Happiness, and Fear is confused with all
emotions except Disgust.

The introduction of SSL with additional unlabeled corpora substantially mitigates this bias. By
leveraging pseudo-labeling, the model in the second configuration (SCD-MMPSR w/o multitask)
exhibits a more balanced distribution of predictions across emotion classes. While Happiness still
dominates, the recall for Anger, Sadness, and Surprise improves, suggesting that exposure to a
broader range of inputs encourages more nuanced decision boundaries. In the case of Disgust, the
confusion between classes is reduced, with errors now primarily occurring in Anger and Happiness.

The full configuration (SCD-MMPSR) achieves the most consistent improvements. Incorporating
auxiliary tasks (PTR and AHR) alongside pseudo-labeling introduces inductive biases, leading to
significant improvements in UAR. This setup reduces the over-prediction of Happiness and strength-
ens recognition of Neutral, Anger, and Surprise, which benefit from richer contextual embeddings
derived from the auxiliary tasks. The improved balance of classification across categories demon-
strates that multitask signals help the model disentangle subtle affective cues that are otherwise
obscured when optimizing for ER alone. Moreover, the problem with Fear and Disgust has been
notably reduced: while in the previous two configurations both classes were predominantly misclas-
sified as Happiness, which has the opposite valence, the errors are now redirected toward Anger, a
category with closer semantic relations and overlapping multimodal patterns.

In summary, the main challenge remains a reliable minority ER, which is still affected by class
imbalance and cross-domain discrepancies. Semi-supervised, cross-domain, and multitask learning
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Figure 9: Confusion matrices obtained for the Test subset of the Meld corpus with different model
configurations: SCD-MMPSR w/o SSL and multitask (left sub-figure), SCD-MMPSR w/o multitask
(central sub-figure), SCD-MMPSR (right).

methods reduce bias and improve overall balance. However, confusion persists for semantically
related categories. Future work could address these issues by adapting to the domain to align feature
distributions across corpora. Combined with targeted data augmentation or reweighting strategies,
this could help strengthen minority-class representations.

A.10 COMPUTATIONAL COST

Table 17 provides a summary of the computational costs of the full MCDM model with UCGNN
and MHA and its variants. The complete model incurs a moderate overhead of 9.76 M parameters,
37.2 MB in model size, and 158 seconds per epoch, primarily due to the presence of task-specific
projections, graph- and cross-attention mechanisms.

Removing cross-attention layers leads to the largest reduction in model size (6.60 M parameters),
while eliminating graph-attention layers results in the lowest training time (55 seconds per epoch),
reflecting their computational intensity. Removing the guide bank layers slightly reduces train-
ing time, but has a negligible impact on the number of parameters or model size, confirming its
lightweight design. Removing any single modality or task reduces the complexity of the model.

Table 17: Computational cost of various SCD-MMPSR configurations
Configuration Number of parameters, M Model weight, MB Learning time per epoch, s

SCD-MMPSR 9.756 37.2 158
w/o Task-Specific Projectors 8.159 31.1 73
w/o Graph Layers 8.703 33.2 55
w/o Attention Layers 6.604 25.2 125
w/o Guide Bank Layers 9.749 37.2 147
w/o Video Modality 8.967 34.2 148
w/o Audio Modality 8.705 33.2 148
w/o Text Modality 8.705 33.2 148
w/o Behavior Modality 8.705 33.2 152
w/o ER task 7.901 30.1 111
w/o PTR task 7.905 30.1 112
w/o AHR task 7.911 30.2 120

It should be noted that the figures in Table 17 pertain exclusively to the SCD-MMPSR core model,
trained on pre-extracted unimodal features and thus excluding the upstream feature extraction
pipeline. The full framework, however, incorporates pretrained encoders for all modalities: Me-
diaPipe for face detection (1 MB), CLIP for visual features (605 MB), CLAP for audio (615 MB),
EmoRoBERTa for text (329 MB), Whisper-Turbo for speech transcription (1.62 GB), and Qwen2.5-
VL-3b for behavior description generation (3.98 GB). While these components account for the ma-
jority of the total memory cost (approximately 7 GB combined), they are only used during pre-
processing. When executed end-to-end on an NVIDIA A100 GPU, the complete system processes
a 1-second video in 1.11 seconds on average, with 0.69 seconds spent on behavior description gen-
eration via Qwen2.5-VL-3b, highlighting it as the current computational bottleneck.
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To reduce the computational cost associated with LLMs, we plan to explore several techniques in
our future research. These include distilled student models, dynamic batching, caching of behavioral
descriptions for repeated contexts, and more compact prompting schemes. This allows the proposed
framework to provide near-real-time inference.

32


	Introduction
	Proposed Method
	Pre-trained Embeddings
	LLM-based Behavior Description
	Multimodal Cross-Domain Model Architecture
	Semi-Supervised Cross-Domain Learning

	Experiments
	Corpora
	Experimental Setup
	Results

	Conclusion
	Appendix
	Related Work
	State-of-the-Art Psychological States Recognition Method
	State-of-the-Art Methods based on Semi-Supervised Learning

	Proposed Prompt and Example of Behavior Description
	Comparison of Existing Multimodal Corpora
	Classes Distributions in Research Corpora
	Comparative Analysis of Encoder Performance
	Comparative Analysis of Graph Layers and Attention Mechanism
	Optimization of Model and Training Hyperparameters
	Optimization of Semi-Supervised Learning Hyperparameters
	Correlation Between Tasks and Error Analysis
	Computational Cost


