

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 SCD-MMPSR: SEMI-SUPERVISED CROSS-DOMAIN LEARNING FRAMEWORK FOR MULTITASK MULTI- MODAL PSYCHOLOGICAL STATES RECOGNITION

006
007 **Anonymous authors**
008
009
010
011
012

Paper under double-blind review

ABSTRACT

013 Modern human-computer interaction interfaces demand robust recognition of
014 complex psychological states in real-world, unconstrained settings. However, ex-
015 isting multimodal corpora are typically limited to single tasks with narrow annota-
016 tion scopes, hindering the development of general-purpose models capable of mul-
017 titask learning and cross-domain adaptation. To address this, we introduce SCD-
018 MMPSR (**Semi-supervised Cross-Domain Multitask Multimodal Psychological**
019 **States Recognition**), a novel framework that unifies heterogeneous corpora via
020 GradNorm-based adaptive task weighting in multitask semi-supervised learning
021 (SSL) to train models across diverse psychological prediction tasks jointly. At
022 the architectural core, we propose two innovations within a graph-attention back-
023 bone: (1) Task-Specific Projectors, which transform shared multimodal represen-
024 tations into task-conditioned logits and re-embed them into a unified hidden space,
025 enabling iterative refinement through graph message passing while preserving
026 modality alignment; and (2) a Guide Bank, a learnable set of task-specific seman-
027 tic prototypes that anchor predictions, injecting structured priors to stabilize train-
028 ing and enhance generalization. We evaluate SCD-MMPSR on three distinct psy-
029 chological state recognition tasks, emotion recognition (MOSEI), personality trait
030 recognition (FIv2), and ambivalence/hesitancy recognition (BAH), demonstrating
031 consistent improvements in multitask performance and cross-domain robustness
032 over strong baselines. We also evaluate the generalization of SCD-MMPSR on un-
033 seen data from the MELD dataset. Multitask SSL improves generalization on
034 MELD by a macro F1-score of 7.5% (35.0 vs. 27.5) compared to single-
035 task SSL. Our results highlight the potential of semi-supervised, cross-task rep-
036 resentation learning for scalable affective computing. The code is available at
037
038 https://github.com/Anonymous-user-2026/ICLR_2026.

1 INTRODUCTION

040 Effective human-computer interaction increasingly requires automated systems that recognize rich,
041 interacting psychological states (e.g., emotions, personality traits, ambivalence/hesitancy) from mul-
042 timodal, in-the-wild data. Despite mounting studies of cross-task correlations (Li et al., 2022;
043 Wang et al., 2023), such as personality-guided Emotion Recognition (ER) (Wen et al., 2024) or
044 emotion-informed personality modeling (Bao et al., 2025), the field predominantly deploys single-
045 task, single-corpus architectures (Li et al., 2023; Kong et al., 2025). Recent advances in psycho-
046 logical states recognition (see detailed related work in Appendix A.1) have largely progressed in
047 isolation: State-of-the-Art (SOTA) methods for Personality Traits Recognition (PTR) benefit from
048 attention-based modeling of Big Five traits (Agrawal et al., 2023; Masumura et al., 2025). Am-
049 bivalence/Hesitancy Recognition (AHR) relies on temporal modeling via Temporal Convolutional
050 Networks (TCNs) and Long Short-Term Memorys (LSTMs) (Kollias et al., 2025; Hallmen et al.,
051 2025). Moreover, ER increasingly leverages Transformer and Mamba architectures for multimodal
052 fusion (Goncalves et al., 2023; Zhang et al., 2025a). It is known that the correlation between various
053 tasks of affective computing can enhance the model’s performance. For instance, personality traits
such as Neuroticism demonstrably modulate emotional reactivity to negative stimuli (Mohammadi &
Vuilleumier, 2022). At the same time, ambivalence serves as a critical indicator of internal conflict,

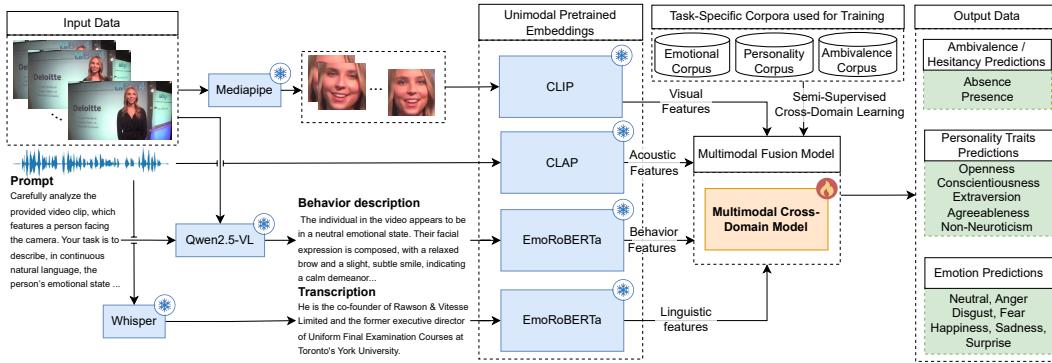


Figure 1: Pipeline of the proposed SCD-MMPSR method.

revealing whether an expressed emotion is genuine or socially masked, or whether self-reported personality aligns with behavioral cues (Hallmen et al., 2025). However, although multitask methods are emerging, particularly in emotion-sentiment or personality-emotion settings (Wen et al., 2024; Bao et al., 2025), they remain constrained to single corpora or homogeneous annotations. Meanwhile, Semi-Supervised Learning (SSL) has gained traction as a solution to annotation scarcity, with successful applications in unimodal ER, PTR (Hosseini & Caragea, 2023; Zhu et al., 2024) and multimodal methods (Fan et al., 2024; Lian et al., 2024).

Thus, nearly all effective methods remain task- and corpus-specific. These methods are trained using single-task corpora with narrow annotation scopes, inconsistent recording conditions, and different labeling protocols. This fragmentation imposes severe problems: (1) computational inefficiency, as deploying separate models for task-specific recognition multiplies inference overhead; and (2) poor generalization, as models trained on narrow, task-specific corpora suffer from domain overfitting and fail to transfer to unseen contexts. However, the lack of a general multitask solution stems from the fact that manual annotation at large-scale data is prohibitively expensive and often infeasible due to the complexity of the tasks and inter-annotator disagreement (Kollias et al., 2025; Sun et al., 2025; Mendelman & Talmon, 2025). Consequently, joint modeling of these states has remained largely unexplored, and the field lacks a practical, principled method to exploit many single-task, heterogeneous corpora jointly to learn shared multimodal representations that transfer across various affective behavior understanding tasks.

To fill this gap, we introduce SCD-MMPSR (Semi-supervised Cross-Domain Multitask Multimodal Psychological States Recognition), a unified framework (Figure 1) that enables joint training across heterogeneous, single-task corpora without requiring joint annotations. We rigorously evaluate SCD-MMPSR on three benchmark corpora (CMU Multimodal Opinion Sentiment and Emotion Intensity (MOSEI) (Bagher Zadeh et al., 2018) annotated for ER, ChaLearn First Impressions v2 (FIV2) (Escalante et al., 2020) annotated for PTR, and Behavioural Ambivalence/Hesitancy (BAH) (González-González et al., 2025) annotated for AHR) under standard protocols, and further test its zero-shot generalization on the unseen Multimodal EmotionLines Dataset (MELD) corpus (Poria et al., 2019). The results demonstrate high generalization due to multitask SSL, validating the framework’s capacity for cross-domain and cross-task transfer learning.

The main contributions of the article are as follows:

- SCD-MMPSR, an open-source semi-supervised cross-domain learning framework that jointly models ER, PTR, and AHR from heterogeneous, single-task corpora by using a GradNorm-based adaptive task weighting in multitask SSL.
- A Multimodal Cross-Domain Model (MCDM) with novel layers to learn cross-modal and cross-task interaction, called (1) Task-Specific Projectors for iterative feature-prediction refinement and (2) Guide Banks for structuring semantic task-specific embedding prototypes.
- Empirical evidence that our semi-supervised cross-domain learning improves multitask performance and generalization across various corpora, supported by ablations that isolate the benefits of the proposed modules.

108

2 PROPOSED METHOD

110 The proposed SCD-MMPSR (Figure 1) is a unified framework designed to predict ambivalence/hesitancy jointly, Personality Traits (PTs), and emotions from video sequences. Each video is
 111 divided into four modalities: video, audio, text, and behavior, which are then processed separately
 112 through specific pre-processing pipelines. Each modality is encoded using specialized pre-trained
 113 models to capture domain-specific features. These unimodal embeddings are then combined in a
 114 multimodal fusion architecture called MCDM. This model enhances cross-modal alignment and
 115 improves cross-domain generalization by utilizing task-specific corpora simultaneously. A key ad-
 116 vantage of the proposed method is its unified architecture for multitask learning, which enables joint
 117 optimization across different tasks. Training is performed in a cross-domain setting, where each task
 118 uses its own corpus to create robust and transferable representations. A pseudo-labeling technique is
 119 used to leverage unlabeled data, which involves applying a confidence threshold to high-confidence
 120 predictions and integrating them into the training process in a semi-supervised manner. This en-
 121 hances generalization without requiring additional annotation effort.

123

2.1 PRE-TRAINED EMBEDDINGS

125 In this study, we investigate the generalization of pre-trained encoders across different modalities
 126 and tasks using a unified multimodal framework. Instead of developing new encoders from scratch,
 127 we utilize existing models that have demonstrated effectiveness in affective and behavioral analysis
 128 (Appendix A.1). Systematically replacing one encoder at a time, while keeping the rest fixed, en-
 129 ables us to assess the contribution of each component to cross-modal and cross-task performance in
 130 a controlled manner. The evaluation is conducted in a multitask setting to assess the robustness of
 131 the encoders beyond the limitations of single-task scenarios.

132 We examine a range of encoders across four modalities: audio, video, and text/behavior. For au-
 133 dio, we use CLAP (Wu et al., 2023), Whisper (Radford et al., 2023), AST (Gong et al., 2021), and
 134 Wav2Vec2 (Baevski et al., 2020) models, including emotion-fine-tuned versions, as well as EmoEx-
 135 HuBERT (Amiriparian et al., 2024) and EmoWav2Vec2 (Wagner et al., 2023). Text and behavior
 136 encodings use both general-purpose models such as Jina (V3 / V4) (Sturua et al., 2024; Günther
 137 et al., 2025), BGE (Xiao et al., 2024a), CLAP (Wu et al., 2023), CLIP (Radford et al., 2021), and
 138 RoBERTa (Liu et al., 2019), as well as its modifications such as XLM RoBERTa (Conneau et al.,
 139 2019) and the affective models, such as EmoDistilRoBERTa (Sanh et al., 2019) and EmoRoBERTa¹.
 140 For video, we study Dino v2 (Oquab et al., 2024), CLIP (Radford et al., 2021) and ViT (Wu et al.,
 141 2020), ResNet-50 (He et al., 2016), and emotion-specific models such as EmotiEffLib (Savchenko,
 142 2023), EmoAffectNet (Ryumin et al., 2022), and two EmoViT models.

143 Pre-processing is applied to all modalities before encoding. For videos, the BlazeFace
 144 model (Bazarevsky et al., 2019) is used to detect face regions for accurate long-range tracking. This
 145 is followed by alignment and background removal using the FaceMesh model (Kartynnik et al.,
 146 2019). Both models are available in the MediaPipe library (Lugaresi et al., 2019), and their com-
 147 bined use allows eliminating each other’s limitations. Audio signals are encoded directly with the
 148 selected pre-trained models, without any additional normalization. Text transcription is extracted
 149 using the Whisper Turbo model (Radford et al., 2023) and is fed to the encoder.

150

2.2 LLM-BASED BEHAVIOR DESCRIPTION

152 In recent research, the use of Large Visual Language Models (VLLMs) to describe human behavior
 153 in videos has been shown to enhance affect recognition performance (Zhang et al., 2024a; Lu et al.,
 154 2025). In our work, we use the Qwen2.5-VL-3b model (Bai et al., 2025) to generate video behavior
 155 descriptions, as it provides robust fine-grained visual comprehension, long-term video reasoning,
 156 and adaptive resolution. The prompt design for our experiments is based on the following idea. In-
 157 stead of listing specific categories, the prompt encourages the model to generate continuous natural
 158 language narratives of observed behavior. It focuses on non-verbal cues, such as eye gaze, body
 159 posture, and microexpressions, and it avoids making assumptions about the context that cannot be
 160 verified. This narrative-based prompting ensures consistency across emotional, personality-related,

1¹https://huggingface.co/michellejieli/emotion_text_classifier

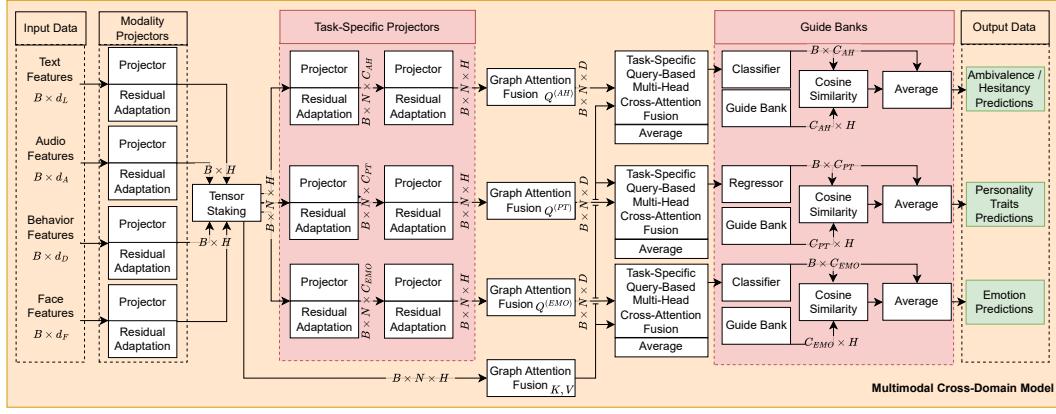


Figure 2: MCDM Architecture.

and ambiguous states, aligning with established psychological theories while leveraging the generative capabilities of VLLMs. The proposed prompt is presented in Appendix A.2. To confirm the effectiveness of the proposed prompt, we compare it with prompts designed explicitly for ER (Cheng et al., 2024; Zhang et al., 2025b).

2.3 MULTIMODAL CROSS-DOMAIN MODEL ARCHITECTURE

Since no existing corpus is jointly annotated for all three target tasks, we use multiple corpora from different domains. These differ in their recording conditions, annotation protocols, and label distributions. Importantly, the informativeness of modalities varies significantly across these corpora. To address this, we have designed a unified architecture that dynamically allocates attention across modalities within each task domain, while enabling cross-modal feature refinement to capture complementary signals. The architecture of the proposed MCDM is shown in Figure 2. MCDM addresses multimodal fusion across heterogeneous inputs by combining Modality- and Task-Specific Projectors, graph attention, task-specific query-based cross-attention fusions, and task-guided embedding banks. Each model component has its own purpose. The model therefore maps unimodal features $\{\mathbf{X}^{(m)}\}_{m \in \mathbb{M}}$ to task-specific predictions $\{\hat{\mathbf{y}}^{(t)}\}_{t \in \mathbb{T}}$ via a unified architecture. Let \mathbb{M} denote the set of active modalities, and $\mathbb{T} = \{\text{EMO, PT, AH}\}$ the set of recognition tasks. For each modality $m \in \mathbb{M} = \{F(\text{video}), D(\text{behavior}), A(\text{audio}), L(\text{text})\}$, the input is a tensor $\mathbf{X}^{(m)} \in \mathbb{R}^{B \times d_m}$, where B is the batch size and d_m is the input feature dimension. These input tensors are statistical functionals (mean and standard deviation) calculated from contextual embeddings extracted using unimodal encoders. Each modality is then mapped into a shared hidden dimension space H via a modality projector. **The modality projector ensures that heterogeneous unimodal embeddings are mapped into a unified latent space while retaining modality-specific inductive bias.** It is calculated as:

$$\mathbf{z}^{(m)} = \phi_m(\mathbf{X}^{(m)}) \in \mathbb{R}^{B \times H}, \quad (1)$$

where $\phi_m(\cdot)$ consists of a Fully Connected Layer (FCL), a Rectified Linear Unit (ReLU) activation function, a dropout layer, and a residual adaptation, which is calculated using the formula:

$$\tilde{\mathbf{z}}^{(m)} = \text{LayerNorm}(\mathbf{z}^{(m)} + \text{Adapter}(\mathbf{z}^{(m)})) \quad (2)$$

where $\text{Adapter}(\cdot)$ consists of a downsampling FCL (with weight tensor $\mathbf{W}_{down} \in \mathbb{R}^{H \times H/2}$), ReLU, a dropout layer, and an upsampling FCL ($\mathbf{W}_{up} \in \mathbb{R}^{H/2 \times H}$).

Concatenating across modalities yields the fused tensor:

$$\mathbf{Z} = \text{stack}(\tilde{\mathbf{z}}^{(m)})_{m \in \mathbb{M}} \in \mathbb{R}^{B \times N \times H}, \quad (3)$$

where $N = |\mathbb{M}|$ denotes the number of active modalities.

The graph attention fusion, GAF(\cdot), is then applied to both modality features and Task-Specific Projectors. **The modality features are processed by the shared GAF(\cdot) to yield a unified key-value**

representation that contains general representations for all task-specific domains. At the same time, the Task-Specific Projectors outputs are then refined through three $\text{GAF}(\cdot)$ layers to perform intra-modal and intra-task message passing in order to generate contextualized and task-aware queries. Given an adjacency $\mathbf{A} \in \{0, 1\}^{B \times N \times N}$, the graph attention operator updates node embeddings as follows:

$$\text{GAF}(\mathbf{Z}, \mathbf{A})_{b,i,:} = \sum_{j=1}^N \alpha_{b,ij} \mathbf{W} \mathbf{Z}_{b,j,:} \in \mathbb{R}^{B \times N \times H}, \quad (4)$$

with attention coefficients:

$$\alpha_{b,ij} = \frac{\exp(\text{LeakyReLU}(\mathbf{a}^\top [\mathbf{W} \mathbf{Z}_{b,i,:} \parallel \mathbf{W} \mathbf{Z}_{b,j,:}])) \mathbf{1}_{\{\mathbf{A}_{b,ij} > 0\}}}{\sum_{j'} \exp(\text{LeakyReLU}(\mathbf{a}^\top [\mathbf{W} \mathbf{Z}_{b,i,:} \parallel \mathbf{W} \mathbf{Z}_{b,j',:}])) \mathbf{1}_{\{\mathbf{A}_{b,ij'} > 0\}}}, \quad (5)$$

where $\mathbf{a} \in \mathbb{R}^{2H}$ is a learnable parameter and $\parallel \cdot \parallel$ denotes concatenation; $b \in B$ is a batch index; $\mathbf{W} \in \mathbb{R}^{H \times H}$ is a weight tensor. When graph connections are disabled, the identity operator is used instead.

Task-Specific Projectors functional. For each task $t \in \mathbb{T}$, per-modality predictions are obtained as follows:

$$\mathbf{L}^{(t)} = \phi_t(\mathbf{Z}) \in \mathbb{R}^{B \times N \times C_t}, \quad (6)$$

with C_t task-specific output dimension. These predictions are projected back to the hidden space:

$$\mathbf{P}^{(t)} = \phi_t(\mathbf{L}^{(t)}) \in \mathbb{R}^{B \times N \times H}, \quad (7)$$

and refined with a second graph operator:

$$\mathbf{C}_{\text{preds}}^{(t)} = \text{GAF}^{(t)}(\mathbf{P}^{(t)}, \mathbf{A}^{(t)}), \quad (8)$$

where $\mathbf{C}_{\text{preds}}^{(t)}$ are the contextualized prediction embeddings; both tensors, $\mathbf{L}^{(t)}$ and $\mathbf{P}^{(t)}$, pass through a task-specific projector, ϕ_t , similar to a multimodal projector, ϕ_m . The Task-Specific Projectors map shared multimodal embeddings into task-conditioned logits and re-embed them into the hidden space. This allows predictions to be refined through graph message passing and aligned with modality features via cross-attention.

Contextualized modality features are obtained analogously as $\mathbf{C}_{\text{mods}} = \text{GAF}(\mathbf{Z}, \mathbf{A}^{\text{feat}})$. Task-specific query-based cross-attention fusion, $\text{AF}(\cdot)$, integrates the two: with $\mathbf{C}_{\text{preds}}^{(t)}$ as queries ($\mathbf{Q}^{(t)}$) and \mathbf{C}_{mods} as keys / values (\mathbf{K}, \mathbf{V}), we compute:

$$\mathbf{r}^{(t)} = \text{AF}(\mathbf{C}_{\text{preds}}^{(t)}, \mathbf{C}_{\text{mods}}, \mathbf{C}_{\text{mods}}), \quad (9)$$

AF(·) aligns contextualized prediction embeddings with modality features to reinforce task-specific feature representations. These task-specific representations are averaged across modalities:

$$\mathbf{r}^{(t)} = \frac{1}{N} \sum_{i=1}^N \mathbf{T}_{:,i,:}^{(t)} \in \mathbb{R}^{B \times H}. \quad (10)$$

The final logs are produced through the task heads $h_t(\cdot)$:

$$\hat{\mathbf{y}}_{\text{head}}^{(t)} = h_t(\mathbf{r}^{(t)}) \in \mathbb{R}^{B \times C_t}. \quad (11)$$

Guide Bank functional. In the Guide Banks, each task t maintains embeddings $\mathbf{G}^{(t)} \in \mathbb{R}^{C_t \times H}$. These embeddings are learnable class prototypes, randomly initialized and dynamically updated during training. The input representation $\mathbf{r}_{b,:}^{(t)} \in \mathbb{R}^H$ is the output of the task-specific cross-attention module for batch sample b , i.e., the refined multimodal feature vector before the final prediction head. Cosine similarity between this representation and each prototype yields a semantic alignment score:

$$\text{sim}_{b,c} = \cos(\mathbf{r}_{b,:}^{(t)}, \mathbf{G}_{c,:}^{(t)}). \quad (12)$$

where c indexes the class for task t . Each similarity score $\text{sim}_{b,c}$ reflects the degree to which sample b conforms to the semantic prototype of class c . The Guide Banks introduce a structured semantic prior by anchoring predictions to task-specific embedding prototypes. This stabilizes learning

270 and improves generalization. The final prediction is a combination of the head outputs and guide
 271 similarities:

$$272 \quad \hat{y}^{(t)} = \begin{cases} \frac{1}{2} \left(\hat{y}_{\text{head}}^{(t)} + \text{sim} \right), & t \neq \text{PT}, \\ 273 \quad \frac{1}{2} \left(\sigma(\hat{y}_{\text{head}}^{(t)}) + \sigma(\text{sim}) \right), & t = \text{PT}, \end{cases} \quad (13)$$

274 where $\sigma(\cdot)$ is the logistic sigmoid function, which is only applicable to PTR, as the values of the
 275 PTs scores range from 0 to 1. In our work, we compare the performance of various Graph Neu-
 276 ral Network (GNN), including vanilla GNN (Veličković et al., 2018), Non-Convolutional GNN
 277 (NCGNN) (Wang & Cho, 2024), Unitary Convolutions GNN (UCGNN) (Kiani et al., 2024), Edge
 278 Directions GNN (EDGNN) (Pahng & Hormoz, 2025), Hyperbolic GNN (HGNN) (Yue et al., 2025)
 279 and attention mechanisms, including Multi-Head Attention (MHA) (Vaswani et al., 2017), Bidirec-
 280 tional Cross Attention (BiCA) (Hiller et al., 2024), Cross-attention Message-Passing Transformer
 281 (CrossMPT) (Park et al., 2025), Multi-Token Attention (MTA) (Golovneva et al., 2025), Forgetting
 282 Attention (FA) (Lin et al., 2025) to determine the optimal model configuration.

283 In this paper, we explicitly differentiate between two complementary components: SCD-MMPSPR
 284 and MCDM. SCD-MMPSPR denotes the full framework (including semi-supervised cross-domain
 285 learning protocol and data pre-processing), while MCDM refers to its central multimodal fusion
 286 model.

289 2.4 SEMI-SUPERVISED CROSS-DOMAIN LEARNING

290 We use three task-specific corpora, each of which is annotated exclusively for one task: ER, PTR, or
 291 AHR. Each corpus provides labels only for its own task, while the remaining labels are set to None.
 292 During training, a batch is constructed by randomly sampling from all corpora. Let n_1, n_2, n_3 be
 293 the randomly selected samples drawn from the three corpora, with batch size $B = n_1 + n_2 + n_3$.

294 We use a hybrid loss with adaptive task weighting, based on an extended GradNorm method (Chen
 295 et al., 2018). For each task, we define a supervised loss (\mathcal{L}_s) applied only to labeled samples, while
 296 unlabeled samples are masked out:

$$297 \quad \mathcal{L}_s = w_{\text{EMO}}^s \mathcal{L}_{\text{EMO}}^s + w_{\text{PT}}^s \mathcal{L}_{\text{PT}}^s + w_{\text{AH}}^s \mathcal{L}_{\text{AH}}^s, \quad (14)$$

300 where $\mathcal{L}_{\text{EMO}}^s$ is Cross-Entropy (CE) loss for ER, $\mathcal{L}_{\text{PT}}^s$ is Mean Absolute Error (MAE) loss for PTR,
 301 and $\mathcal{L}_{\text{AH}}^s$ is CE loss for AHR. The weights $\{w_t^s\}_{t \in \mathbb{T}}$ are not fixed hyperparameters, but are dynami-
 302 cally optimized during training to balance gradient magnitudes across tasks.

303 To exploit unlabeled samples, we use pseudo-labeling with confidence thresholds. **Pseudo-labels are**
 304 **generated in the same forward pass as the supervised loss, without the need for a separate teacher**
 305 **model or exponential moving average updates.** We use a pseudo-label scheme because our dual-
 306 **branch GradNorm mechanism adaptively balances supervised and semi-supervised losses, enabling**
 307 **stable SSL of the proposed model.** For ER and AHR, pseudo-labels are assigned from the softmax
 308 probabilities if the maximum confidence exceeds $\tau_{\text{EMO/AH}}$. For PTR, logits are binarized at 0.5 (as a
 309 threshold value for the PTs polarity) and accepted as pseudo-labels if they fall outside the uncertainty
 310 margin, i.e., if they are above τ_{PT} or below $1 - \tau_{\text{PT}}$. The semi-supervised loss (\mathcal{L}_{ss}) is then computed
 311 as:

$$312 \quad \mathcal{L}_{\text{ss}} = w_{\text{EMO}}^{\text{ss}} \mathcal{L}_{\text{EMO}}^{\text{ss}} + w_{\text{PT}}^{\text{ss}} \mathcal{L}_{\text{PT}}^{\text{ss}} + w_{\text{AH}}^{\text{ss}} \mathcal{L}_{\text{AH}}^{\text{ss}}, \quad (15)$$

313 where $\mathcal{L}_{\text{EMO}}^{\text{ss}}$ is CE loss for ER, $\mathcal{L}_{\text{PT}}^{\text{ss}}$ is Binary CE (BCE) loss for PTR, and $\mathcal{L}_{\text{AH}}^{\text{ss}}$ is CE loss for AHR.
 314 The total hybrid loss combines both components $\mathcal{L} = \mathcal{L}_s + \mathcal{L}_{\text{ss}}$. Task weights w_t^s and w_t^{ss} are updated
 315 online through two independent GradNorm branches, which minimize auxiliary balancing losses:

$$316 \quad \mathcal{L}_{\text{GradNorm}}^s = \sum_{t \in \mathbb{T}} \left| G_t^s - \bar{G}^s \cdot (r_t^s)^{\alpha^s} \right|, \quad \mathcal{L}_{\text{GradNorm}}^{\text{ss}} = \sum_{t \in \mathbb{T}} \left| G_t^{\text{ss}} - \bar{G}^{\text{ss}} \cdot (r_t^{\text{ss}})^{\alpha^{\text{ss}}} \right|, \quad (16)$$

317 where for each task t and branch (supervised or semi-supervised). $G_t = \|\nabla_{\theta_{\text{shared}}} (w_t \cdot \mathcal{L}_t)\|_2$ is the
 318 ℓ_2 -norm of the gradient of the weighted task loss with respect to shared model parameters θ_{shared} .
 319 $\bar{G} = \frac{1}{|\mathbb{T}|} \sum_{j \in \mathbb{T}} G_j$ is the mean gradient norm across all tasks \mathbb{T} in the current branch (supervised
 320 or SSL). $r_t = \frac{\mathcal{L}_t / \mathcal{L}_t^{(0)}}{\frac{1}{|\mathbb{T}|} \sum_{j \in \mathbb{T}} \mathcal{L}_j / \mathcal{L}_j^{(0)}}$ is the relative inverse training rate, comparing the normalized loss
 321 of task t to the branch-wise average. Here, \mathcal{L}_t denotes the raw, unweighted loss for the task t (with
 322

\mathcal{L}_t being supervised (\mathcal{L}_t^s) or semi-supervised (\mathcal{L}_t^{ss}), depending on the branch), and $\mathcal{L}_t^{(0)}$ is its value recorded at the first training step where it became finite and valid – serving as a per-task initialization baseline. α^s and α^{ss} control the aggressiveness of balancing, with larger α penalizing faster-learning tasks more strongly. The task weights are then updated via gradient descent on $\mathcal{L}_{\text{GradNorm}}$ with task-type-specific learning rates:

$$w_t^s \leftarrow \max(w_{\text{floor}}, w_t^s - \eta_w^s \cdot \nabla_{w_t^s} \mathcal{L}_{\text{GradNorm}}^s), \quad (17)$$

$$w_t^{ss} \leftarrow \max(w_{\text{floor}}, w_t^{ss} - \eta_w^{ss} \cdot \nabla_{w_t^{ss}} \mathcal{L}_{\text{GradNorm}}^{ss}), \quad (18)$$

where separate learning rates (η_w^s, η_w^{ss}) with w_{floor} preventing any task from being deactivated. After each update, weights are renormalized to budgets to enforce interpretable task prioritization:

$$w_t^s \leftarrow S^s \cdot \frac{w_t^s}{\sum_{j \in \mathbb{T}} w_j^s}, \quad w_t^{ss} \leftarrow S^{ss} \cdot \frac{w_t^{ss}}{\sum_{j \in \mathbb{T}} w_j^{ss}}, \quad (19)$$

with budgets $S^s = 3.0$ and $S^{ss} = 3.0 \times \lambda$, reflecting higher initial priority for supervised signals.

The adaptive change of task contribution coefficients serves as an implicit form of gradient-aware regularization. By aligning the task-specific gradients with their relative progress during training, GradNorm promotes balanced optimization and prevents the dominance of noisy or overfitting tasks, which is critical in semi-supervised cross-domain learning. Our dual-branch extension improves upon standard GradNorm in three key ways: (1) it decouples supervised and SSL optimization to account for differing noise levels; (2) it delays weight initialization until valid losses appear, to handle missing labels; and (3) it enforces explicit budget constraints for interpretable prioritization. The thresholds $\{\tau_t\}_{t \in \mathbb{T}}$ and other coefficients ($\alpha^s, \alpha^{ss}, \eta_w^s, \eta_w^{ss}, w_{\text{floor}}$, and λ) remain hyperparameters tuned on validation data, while the task contribution coefficients (w_t^s, w_t^{ss}) are now fully adaptive, eliminating manual tuning and improving robustness to dynamic label imbalance.

This hybrid loss function SSL across single-task corpora by combining supervised objectives with pseudo-labeled consistency. This alleviates task-wise label sparsity and improves cross-task generalization. The function is further stabilized by gradient-aware adaptive weighting.

3 EXPERIMENTS

3.1 CORPORA

In Appendix A.3, we provide a summary of existing corpora and identify corpora applicable to our study. We use three task-specific corpora, each of which is annotated for a single objective. For ER, we use the MOSEI corpus (Bagher Zadeh et al., 2018), the largest multimodal corpus for affect analysis. This contains over 23,500 YouTube videos at the utterance-level from more than 1,000 speakers, which have been annotated for six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Each video may have multiple labels, with no labels indicating a neutral state. For PTR, we use the FIv2 corpus (Escalante et al., 2020), which comprises 10,000 short vlogs (15 seconds each) from approximately 3,000 speakers. Each clip is annotated for the Big Five PTs (Openness, Conscientiousness, Extraversion, Agreeableness, Non-Neuroticism), with continuous scores between 0 and 1 obtained via pairwise comparisons. Finally, for AHR, we adopt the recently introduced BAH corpus (González-González et al., 2025), comprising 1,118 video recordings from 224 participants across nine Canadian provinces. The corpus is annotated for two categories: Absence or Presence of ambivalence/hesitancy. The corpora are split into Train, Development, and Test subsets. In Appendix A.4, we present the distribution of classes in subsets. Each corpus provides supervision only for its designated task, creating a heterogeneous setup in which cross-task generalization is enabled by SSL with pseudo-labels. To evaluate the cross-dataset generalizability of SCD-MMPSPR to unseen data, we utilize MELD (Poria et al., 2019), a dataset of video recordings from the TV series “Friends”. The corpus has been annotated for six basic emotions and a neutral state. We only use the fixed Test subset from this corpus. Performing model generalization assessment is difficult for other tasks due to the lack of corpora with a similar annotation protocol.

3.2 EXPERIMENTAL SETUP

We design a multi-stage experimental protocol to systematically assess the proposed framework. First, we identify the most effective unimodal encoders within a unified multimodal system (see

378
 379 Table 1: Experimental results of ablation studies. MCDM means the proposed Multimodal Cross-
 380 Domain Model. MCDM-1 based on vanilla GNN and MHA. MCDM-2 based on Unitary Convo-
 381 lutions GNN (UCGNN) and MHA. MCDM-3 based on Unitary Convolutions GNN (UCGNN) and
 382 Multi-Token Attention (MTA). V, A, T, and B stand for Video, Audio, Text, and Behavior. Rank is
 383 calculated using Friedman’s test (Demšar, 2006). **Best** and **second-best** results are highlighted

Exp ID	Extractors	Model	MOSEI		Flv2		BAH		MELD		Rank
			mMF1	mWACC	mACC	mCCC	MF1	UAR	MF1	WF1	
1	V+CLIP, A+CLAP, T+CLAP, B+CLIP	MCDM-1	61.50	61.87	91.46	66.10	65.66	65.36	30.91	38.56	13.13
2	V+CLIP, A+CLAP, T+EmoRoBERTa, B+EmoRoBERTa	MCDM-1	63.40	64.00	91.44	66.68	69.29	69.07	33.66	40.04	8.38
3	V+CLIP, A+CLAP, T+EmoRoBERTa, B+EmoRoBERTa	MCDM-2	63.35	63.99	91.67	69.38	69.14	69.12	34.06	42.53	6.75
4	V+CLIP, A+CLAP, T+EmoRoBERTa, B+EmoRoBERTa	MCDM-3	63.63	64.42	91.42	66.84	67.52	68.44	34.36	40.06	8.13
5	Exp-3 and best hyperparameters (Appendix A.7)	MCDM-2	63.06	63.62	91.77	69.51	70.38	70.28	36.26	42.51	5.25
6	Exp-5 and best SSL parameters (Appendix A.8)	MCDM-2	63.14	63.61	91.93	71.98	71.70	71.42	35.04	44.08	3.25
7	Exp-6 w/o Task-Specific Projectors	MCDM-2	62.05	63.47	91.81	71.11	70.20	70.60	34.17	42.45	6.38
8	Exp-6 w/o Graph Layers	MCDM-2	61.92	62.24	91.87	73.03	71.12	71.17	32.99	39.48	7.38
9	Exp-6 w/o Attention Layers	MCDM-2	60.02	61.71	91.51	69.30	37.88	50.00	23.22	33.65	13.88
10	Exp-6 w/o Guide Bank Layers	MCDM-2	62.35	62.88	91.97	73.21	70.12	70.74	31.87	39.88	6.13
11	Exp-6 w/o Video Modality	MCDM-2	61.91	62.69	90.32	57.87	67.73	68.01	20.64	19.13	13.75
12	Exp-6 w/o Audio Modality	MCDM-2	62.02	62.74	91.61	70.44	69.08	69.41	34.54	45.41	7.63
13	Exp-6 w/o Text Modality	MCDM-2	57.62	58.69	91.95	73.35	62.47	63.43	15.11	23.57	12.00
14	Exp-6 w/o Behavior Modality	MCDM-2	61.95	62.08	91.76	72.62	71.49	71.62	27.97	32.52	8.50
15	Exp-6 w/o ER task	MCDM-2	—	—	91.76	71.88	69.14	69.53	—	—	9.25
16	Exp-6 w/o PTR task	MCDM-2	62.92	63.61	—	—	70.46	69.95	29.40	35.95	7.83
17	Exp-6 w/o AHR task	MCDM-2	62.10	62.46	91.88	73.05	—	—	33.78	41.49	6.67

397
 398 Appendix A.5). As base extractors, we employ CLIP (Radford et al., 2021) (for video and scene
 399 descriptions) and CLAP (Wu et al., 2023) (for audio and transcripts), preserving semantic alignment
 400 across modalities as demonstrated in (Gan et al., 2023). We evaluate different model configurations
 401 with fixed encoders by replacing the graph layers and attention mechanisms (see Appendix A.6).
 402 The baseline model (MCDM-1) adopts the vanilla GNN (Veličković et al., 2018) and MHA (Vaswani
 403 et al., 2017). For the video, we compare different numbers of frames, while for behavior, we compare
 404 our prompt with two alternatives (Cheng et al., 2024; Zhang et al., 2025b) (see Appendix A.2).

405 Second, we construct two enhanced model configurations: MCDM-2 with a modified best-
 406 performing UCGNN (Kiani et al., 2024) and MCDM-3 with a modified best-performing UCGNN
 407 and MTA (Golovneva et al., 2025). At this stage, we tune model-level hyperparameters (learning
 408 rate, optimizer, dropout, hidden dimensions, output feature size, and number of attention heads)
 409 alongside SSL parameters (loss coefficients and pseudo-label thresholds). This stage determines the
 410 optimal architecture (see Appendix A.7) and SSL configuration (see Appendix A.8).

411 Third, we conduct ablation studies by selectively disabling model components, modalities, and tasks
 412 (see Table 1). To compare with SOTA methods, we also run single-task settings with and without
 413 SSL, varying the probability of incorporating unlabeled data (see Table 2). This stage establishes the
 414 contribution of each component of a model and the advantage of our framework over SOTA results.
 415 Finally, we conduct an inter-task correlation study and an error analysis to assess the effectiveness
 416 of joint multitask learning under semi-supervised conditions (see Appendix A.9).

417 We applied several performance measures to evaluate SCD-MMPSR. mean Accuracy (mACC) (Es-
 418 calante et al., 2020), and mean Concordance Correlation Coefficient (mCCC) (Lin, 1989) are used
 419 for PTR on Flv2 as a regression task. mean Weighted Accuracy (mWACC) (Bagher Zadeh et al.,
 420 2018) and mean Marco F1-score (mMF1) (Bagher Zadeh et al., 2018) are applied for multi-label ER
 421 on the MOSEI corpus. Classical classification recognition measures (Marco F1-score (MF1),
 422 Weighted F1-score (WF1), and Unweighted Average Recall (UAR) are unitized for single-label ER
 423 and AHR on MELD and BAH, respectively.

425 3.3 RESULTS

427 The experimental results are presented in Table 1. Optimization of the encoders (Exp-2, details
 428 in Appendix A.5) improves performance compared to the baseline model (Exp-1). Extending the
 429 baseline model with the UCGNN (Kiani et al., 2024) (Exp-3) improves performance. However,
 430 modifying the model with a MTA (Golovneva et al., 2025) (Exp-4) leads to decreased performance,
 431 indicating sensitivity to the choice of attention scheme. Overall, the performance improvement
 432 of Exp-3 is mainly due to the PTR. Further optimization of the model hyperparameters (details in

432
 433 Table 2: Comparison with single-task SOTA methods. The confidence intervals of SCD-MMPSR
 434 are calculated using the bootstrap resampling method (Tibshirani & Efron, 1993)

435 436 Method	437 Modality	438 Learning type	439 Learning domain	440 Performance measure	
				441 mWACC	442 mMF1
MOSEI					
Zhang et al. (2022)	Video, Audio, Text	Supervised	Single-domain	51.2	–
Peng et al. (2024)	Video, Audio, Text	Supervised	Single-domain	66.4	–
Ryuminina et al. (2025)	Video, Audio, Text	Supervised	Single-domain	69.3	–
SCD-MMPSR w/o SSL and multitask	Video, Audio, Text, Behavior	Supervised	Single-domain	63.6 [62.9, 64.3]	63.3 [62.7, 64.0]
SCD-MMPSR w/o multitask	Video, Audio, Text, Behavior	Semi-supervised	Cross-domain	68.9 [68.2, 69.6]	69.3 [68.5, 70.0]
MELD (testing only)					
SCD-MMPSR w/o SSL and multitask	Video, Audio, Text, Behavior	Supervised	Single-domain	27.0 [25.1, 28.9]	22.8 [21.1, 24.7]
SCD-MMPSR w/o multitask	Video, Audio, Text, Behavior	Semi-supervised	Cross-domain	30.4 [28.7, 32.4]	27.5 [25.6, 29.9]
FIV2					
Zhao et al. (2023)	Video, Audio	Supervised	Single-domain	91.7	–
Wang et al. (2025)	Video, Audio, Text	Supervised	Single-domain	92.1	–
Gan et al. (2023)	Video, Text	Supervised	Single-domain	92.6	–
SCD-MMPSR w/o SSL and multitask	Video, Audio, Text, Behavior	Supervised	Single-domain	91.8 [91.7, 92.0]	74.0 [72.6, 75.2]
SCD-MMPSR w/o multitask	Video, Audio, Text, Behavior	Semi-supervised	Cross-domain	92.6 [92.5, 92.8]	77.2 [75.8, 78.5]
BAH					
Kollias et al. (2025)	Video, Audio, Text, Gesture	Supervised	Single-domain	70.0	–
Hallmen et al. (2025)	Video, Audio, Text	Supervised	Single-domain	70.2	–
Savchenko & Savchenko (2025)	Video, Audio, Text	Supervised	Single-domain	71.0	–
SCD-MMPSR w/o SSL and multitask	Video, Audio, Text, Behavior	Supervised	Single-domain	72.9 [68.5, 77.2]	71.5 [66.6, 76.0]
SCD-MMPSR w/o multitask	Video, Audio, Text, Behavior	Semi-supervised	Cross-domain	73.2 [68.9, 77.8]	72.1 [67.6, 76.4]

451
 452
 453 Appendix A.7) and SSL parameters (details in Appendix A.8) has a positive impact on performance.
 454 While this comes at a slight cost to the ER performance, it improves one on other tasks.
 455

456 The component-level ablation study (Exp 7-10) reveals that the attention mechanism is the most crucial
 457 component, while graph attention plays a secondary role. The proposed layers, Task-Specific
 458 Projectors, and Guide Banks are also essential, as they help with effective task alignment and in-
 459 formation sharing across modalities. The modality-level ablation study (Exp 11-14) emphasizes
 460 the importance of video and text modalities in recognizing psychological states, highlighting the
 461 significance of both verbal and non-verbal communication. The task-level ablation study (Exp 15-
 462 17) shows that confidence estimation benefits from the presence of AHR, while removing the task
 463 improves performance on other tasks. Overall, the ablation study shows that all proposed frame-
 464 work components significantly improve the model’s performance. The results on MELD show high
 465 generalization ability, achieving MF1 = 35.04 and WFI = 44.08.

466 Table 2 compares the single-task versions of the SCD-MMPSR framework with SOTA methods.
 467 In supervised and single-domain settings, SCD-MMPSR tends to underperform compared to the
 468 SOTA methods. However, there is a significant improvement when the model is applied in SSL
 469 and cross-domain learning settings, leveraging unlabeled data from non-target corpora. Bootstrap
 470 confidence intervals confirm that improvements obtained by SCD-MMPSR over the SOTA are sta-
 471 tistically significant, as its upper bounds are higher than the SOTA results. Although our model does
 472 not outperform SOTA performance in ER, our results show that using unlabeled data, including cor-
 473 pora annotated for other paralinguistic tasks, improves model performance. This improvement is
 474 achieved without task-specific fine-tuning of encoders or the need for additional annotation.

475 For MELD, although performance is improved under single-task SSL, it did not achieve the level
 476 of models trained jointly across all three tasks. The reduction in measure MF1 was 7.5% (27.5 vs.
 477 35.0). The relative decrease in measure WFI was 13.7% (30.4 vs. 44.1). These results indicate
 478 that single-task models are prone to overfitting and have limited generalization to unseen data. In
 479 contrast, our proposed framework significantly improves model generalization, resulting in robust
 480 performance on new data.

481 Speaking about the computational cost of SCD-MMPSR, the real-time factor for processing 1 sec
 482 of multimodal data using MediaPipe, Qwen2.5-VL-3b, Whisper, CLIP, CLAP, EmoRoBERTa, and
 483 MCDM is 1.11 sec on an NVIDIA A100 GPU. Of this, 0.69 sec is consumed by Qwen2.5-VL-3b,
 484 which limits inference of SCD-MMPSR to the CPU only. The parameter count of MCDM grows
 485 quadratically with the number of tasks; the full model occupies 38.2 MB. Thus, while our framework
 486 demonstrates strong cross-dataset generalizability to unseen data, its main limitation is its reliance
 487 on VLLMs. However, if there are resource constraints, we suggest omitting the behavior modality.

486 This may result in a decrease in model performance of approximately 2% (depending on the task,
 487 see Table 1), but it will also reduce inference time by approximately 1.5 times.
 488

489 As an additional limitation of our framework, we introduce a few task-specific hyperparameters,
 490 such as confidence thresholds for pseudo-labeling and balancing coefficients for GradNorm, beyond
 491 standard deep learning settings (e.g., learning rate and batch size). These parameters can affect the
 492 stability and cross-task balance of our model, but adaptive mechanisms reduce the need for manual
 493 tuning. In future work, we plan to explore self-tuning or automated strategies to further enhance the
 494 reproducibility and robustness of our model.
 495

4 CONCLUSION

496 This paper presented SCD-MMPSR, a compact semi-supervised framework for joint multimodal
 497 recognition of psychological states that bridges heterogeneous, single-task corpora. SCD-MMPSR
 498 combines pre-trained unimodal encoders with a graph-attention fusion backbone and three improve-
 499 ments: (1) Task-Specific Projectors for iterative feature-prediction refinement; (2) Guide Banks
 500 for structuring semantic task-specific embedding prototypes; and (3) the dual-branch GradNorm
 501 method to adaptive task weighting in multitask SSL. We evaluate our framework on three task-
 502 specific corpora (MOSEI, FIv2, and BAH) under standard train-dev-test protocols, and demon-
 503 strate its generalization capability on MELD in a zero-shot cross-domain setup. Results show that joint
 504 multitask training improves generalization over single-task baselines. This confirms that our frame-
 505 work enables effective cross-domain learning without requiring full annotation across tasks, lever-
 506 aging pseudo-labels and SSL instead. In future work, we plan to scale the framework to additional
 507 tasks and integrate contrastive learning to enhance cross-task generalization by explicitly aligning
 508 task-invariant representations.
 509

510 REFERENCES

511 Tanay Agrawal, Michal Balazia, Philipp Müller, and François Brémond. Multimodal vision trans-
 512 formers with forced attention for behavior analysis. In *IEEE/CVF Winter Conference on Applica-*
 513 *tions of Computer Vision (WACV)*, pp. 3392–3402, 2023. doi: 10.1109/WACV56688.2023.00339.
 514

515 Hawraa Razzaq Abed Alameer, Pedram Salehpour, Seyyed Hadi Aghdasi, and Mohammad-Reza
 516 Feizi-Derakhshi. Integrating deep metric learning, semi supervised learning, and domain adapta-
 517 tion for cross-dataset eeg-based emotion recognition. *IEEE Access*, pp. 38914–38924, 2025.
 518

519 Jean-Baptiste Alayrac, Adrià Recasens, Rosalia Schneider, Relja Arandjelović, Jason Ramapuram,
 520 Jeffrey De Fauw, Lucas Smaira, Sander Dieleman, and Andrew Zisserman. Self-supervised mul-
 521 timodal versatile networks. In *International Conference on Neural Information Processing Sys-*
 522 *tems*, pp. 1–13, 2020.
 523

524 Shahin Amiriparian, Filip Packań, Maurice Gerczuk, and Björn W. Schuller. Exhubert: Enhanc-
 525 ing hubert through block extension and fine-tuning on 37 emotion datasets. In *Interspeech*, pp. 2635–
 526 2639, 2024. doi: 10.21437/Interspeech.2024-280.
 527

528 Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A frame-
 529 work for self-supervised learning of speech representations. In *Advances in Neural Information
 530 Processing Systems (NeurIPS)*, pp. 12449–12460, 2020.
 531

532 AmirAli Bagher Zadeh, Paul Pu Liang, Soujanya Poria, Erik Cambria, and Louis-Philippe Morency.
 533 Multimodal language analysis in the wild: CMU-MOSEI dataset and interpretable dynamic fusion
 534 graph. In *Annual Meeting of the Association for Computational Linguistics (ACL)*, pp. 2236–
 535 2246, 2018. doi: 10.18653/v1/P18-1208.
 536

537 Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional
 538 and recurrent networks for sequence modeling. *ArXiv*, pp. 1–14, 2018. doi: 10.48550/arXiv.1803.
 539 01271.
 540

541 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 542 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *ArXiv*, pp. 1–23, 2025. doi: 10.48550/
 543 arXiv.2502.13923.

540 Yongtang Bao, Yuzhen Wang, Yutong Qi, Qing Yang, Ruijun Liu, and Liping Feng. Emotion-
 541 assisted multi-modal personality recognition using adversarial contrastive learning. *Knowledge-
 542 Based Systems*, 317:1–13, 2025. doi: <https://doi.org/10.1016/j.knosys.2025.113504>.

543

544 Valentin Bazarevsky, Yury Kartynnik, Andrey Vakunov, Karthik Raveendran, and Matthias Grund-
 545 mann. Blazeface: Sub-millisecond neural face detection on mobile gpus. *ArXiv*, 2019. doi:
 546 10.48550/arXiv.1907.05047.

547

548 Enguerrand Boitel, Alaa Mohasseb, and Ella Haig. MIST: Multimodal emotion recognition using
 549 deberta for text, semi-cnn for speech, resnet-50 for facial, and 3d-cnn for motion analysis. *Expert
 550 Systems with Applications*, 270:1–12, 2025. doi: 10.1016/j.eswa.2024.126236.

551

552 Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe Kazemzadeh, Emily Mower, Samuel Kim, Jean-
 553 nette N Chang, Sungbok Lee, and Shrikanth S Narayanan. Iemocap: Interactive emotional dyadic
 554 motion capture database. *Language resources and evaluation*, 42(4):335–359, 2008.

555

556 Shengcao Cao, Dhiraj Joshi, Liang-Yan Gui, and Yu-Xiong Wang. Contrastive mean teacher for
 557 domain adaptive object detectors. In *IEEE/CVF Conference on Computer Vision and Pattern
 558 Recognition (CVPR)*, pp. 23839–23848, 2023.

559

560 Omkumar Chandraumakantham, N. Gowtham, Mohammed Zakariah, and Abdulaziz Almazyad.
 561 Multimodal emotion recognition using feature fusion: An llm-based approach. *IEEE Access*, 12:
 562 108052–108071, 2024. doi: 10.1109/ACCESS.2024.3425953.

563

564 Guo Chen, Zhiqi Li, Shihao Wang, Jindong Jiang, Yicheng Liu, Lidong Lu, De-An Huang, Wonmin
 565 Byeon, Matthieu Le, Tuomas Rintamaki, Tyler Poon, Max Ehrlich, Tong Lu, Limin Wang, Bryan
 566 Catanzaro, Jan Kautz, Andrew Tao, Zhiding Yu, and Guilin Liu. Eagle 2.5: Boosting long-context
 567 post-training for frontier vision-language models. *ArXiv*, 2025. doi: 10.48550/arXiv.2504.15271.

568

569 Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
 570 normalization for adaptive loss balancing in deep multitask networks. In *International Conference
 571 on Machine Learning (ICML)*, pp. 794–803, 2018.

572

573 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
 574 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
 575 for generic visual-linguistic tasks. In *IEEE Conference on Computer Vision and Pattern Recog-
 576 nition (CVPR)*, pp. 24185–24198, 2024. doi: 10.1109/CVPR52733.2024.02283.

577

578 Zebang Cheng, Zhi-Qi Cheng, Jun-Yan He, Kai Wang, Yuxiang Lin, Zheng Lian, Xiaojiang Peng,
 579 and Alexander Hauptmann. Emotion-llama: Multimodal emotion recognition and reasoning with
 580 instruction tuning. *Advances in Neural Information Processing Systems (NeurIPS)*, 37:110805–
 581 110853, 2024.

582

583 Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek,
 584 Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Un-
 585 supervised cross-lingual representation learning at scale. *ArXiv*, pp. 1–12, 2019. doi: 10.48550/
 586 arXiv.1911.02116.

587

588 Janez Demšar. Statistical comparisons of classifiers over multiple data sets. *Journal of Machine
 589 learning research*, 7(Jan):1–30, 2006.

590

591 Jinhong Deng, Wen Li, Yuhua Chen, and Lixin Duan. Unbiased mean teacher for cross-domain
 592 object detection. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 593 pp. 4089–4099, 2021. doi: 10.1109/CVPR46437.2021.00408.

594

595 Lujuan Deng, Boyi Liu, and Zuhe Li. Multimodal sentiment analysis based on a cross-modal mul-
 596 tithread attention mechanism. *Computers, Materials and Continua*, 78(1):1157–1170, 2024. doi:
 597 10.32604/cmc.2023.042150.

598

599 Yicheng Deng, Hideaki Hayashi, and Hajime Nagahara. Gaussian-based instance-adaptive inten-
 600 sity modeling for point-supervised facial expression spotting. In *International Conference on
 601 Learning Representations (ICLR)*, pp. 1–13, 2025.

594 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
 595 bidirectional transformers for language understanding". In *North American Chapter of the As-*
 596 *sociation for Computational Linguistics (NAACL)*, pp. 4171–4186, 2019. doi: 10.18653/v1/

597 N19-1423.

598 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 599 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
 600 image is worth 16x16 words: Transformers for image recognition at scale. In *ICLR*, pp. 1–22,
 601 2021.

602 Hugo Jair Escalante, Heysem Kaya, Albert Salah, Sergio Escalera, Yagmur Gucluturk, Umut
 603 Guclu, Xavier Baró, Isabelle Guyon, Julio Junior, Meysam Madadi, Stephane Ayache, Eve-
 604 lyne Viegas, Furkan Gürpinar, Achmadnoer Wicaksana, Cynthia Liem, Marcel Gerven, and
 605 Rob Lier. Explaining first impressions: Modeling, recognizing, and explaining apparent per-
 606 sonality from videos. *IEEE Transactions on Affective Computing*, PP:1–19, 02 2020. doi:
 607 10.1109/TAFFC.2020.2973984.

608 Qi Fan, Yutong Li, Yi Xin, Xinyu Cheng, Guanglai Gao, and Miao Ma. Leveraging contrastive
 609 learning and self-training for multimodal emotion recognition with limited labeled samples. In
 610 *International Workshop on Multimodal and Responsible Affective Computing*, pp. 72–77, 2024.

611 Aref Farhadipour, Hossein Ranjbar, Masoumeh Chapariniya, Teodora Vukovic, Sarah Ebling, and
 612 Volker Dellwo. Multimodal emotion recognition and sentiment analysis in multi-party conversa-
 613 tion contexts. *ArXiv*, pp. 1–5, 03 2025. doi: 10.48550/arXiv.2503.06805.

614 Peter Gan, Arcot Sowmya, and Gelareh Mohammadi. Clip-based model for effective and explain-
 615 able apparent personality perception. In *International Workshop on Multimodal and Responsible*
 616 *Affective Computing*, pp. 29–37, 10 2023. doi: 10.1145/3607865.3613178.

617 Yuan Gao, Hao Shi, Chenhui Chu, and Tatsuya Kawahara. Speech emotion recognition with multi-
 618 level acoustic and semantic information extraction and interaction. In *Interspeech*, pp. 1060–1064,
 619 2024. doi: 10.21437/Interspeech.2024-2385.

620 Olga Golovneva, Tianlu Wang, Jason E Weston, and Sainbayar Sukhbaatar. Multi-token attention.
 621 In *Conference on Language Modeling (COLM)*, 2025.

622 Lucas Goncalves, Seong-Gyun Leem, Wei-Cheng Lin, Berrak Sisman, and Carlos Busso. Ver-
 623 satile audio-visual learning for handling single and multi modalities in emotion regression and
 624 classification tasks. *IEEE Transactions on Affective Computing*, pp. 1–18, 05 2023. doi:
 625 10.48550/arXiv.2305.07216.

626 Yuan Gong, Yu-An Chung, and James Glass. AST: Audio Spectrogram Transformer. In *Interspeech*,
 627 pp. 571–575, 2021. doi: 10.21437/Interspeech.2021-698.

628 Manuela González-González, Soufiane Belharbi, Muhammad Osama Zeeshan, Masoumeh Sharafi,
 629 Muhammad Haseeb Aslam, Marco Pedersoli, Alessandro Lameiras Koerich, Simon L Bacon,
 630 and Eric Granger. BAH dataset for ambivalence/hesitancy recognition in videos for behavioural
 631 change. *ArXiv*, pp. 1–41, 2025. doi: 10.48550/arXiv.2505.19328.

632 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *ArXiv*,
 633 pp. 1–36, 2023. doi: 10.48550/arXiv.2312.00752.

634 Michael Günther, Saba Sturua, Mohammad Kalim Akram, Isabelle Mohr, Andrei Ungureanu,
 635 Bo Wang, Sedigheh Eslami, Scott Martens, Maximilian Werk, Nan Wang, et al. jina-embeddings-
 636 v4: Universal embeddings for multimodal multilingual retrieval. *ArXiv*, 2025. doi: 10.48550/
 637 arXiv.2506.18902.

638 Tobias Hallmen, Robin-Nico Kampa, Fabian Deuser, Norbert Oswald, and Elisabeth André. Seman-
 639 tic matters: Multimodal features for affective analysis. In *Computer Vision and Pattern Recog-
 640 nition Conference Workshops (CVPRW)*, pp. 5724–5733, June 2025.

641 Devamanyu Hazarika, Roger Zimmermann, and Soujanya Poria. Misa: Modality-invariant and -
 642 specific representations for multimodal sentiment analysis. In *ACM International Conference on*
 643 *Multimedia*, pp. 1122–1131, 2020. doi: 10.1145/3394171.3413678.

648 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
 649 In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 770–778,
 650 2016.

651

652 Markus Hiller, Krista A Ehinger, and Tom Drummond. Perceiving longer sequences with bi-
 653 directional cross-attention transformers. In *Advances in Neural Information Processing Systems*
 654 (*NeurIPS*), pp. 94097–94129, 2024.

655

656 Mahshid Hosseini and Cornelia Caragea. Semi-supervised domain adaptation for emotion-related
 657 tasks. In *Findings of the Association for Computational Linguistics (ACL)*, pp. 5402–5410, 2023.

658

659 Mohammad Hosseini, Mohammad Firoozabadi, Kambiz Badie, and Parviz Fallah. Electroen-
 660 cephalograph emotion classification using a novel adaptive ensemble classifier considering per-
 661 sonality traits. *Basic and Clinical Neuroscience Journal*, 14:687–700, 09 2023. doi: 10.32598/
 662 bcn.2022.3830.2.

663

664 Seyed Sadegh Hosseini, Mohammad Reza Yamaghani, and Soodabeh Poorzaker Arabani. Multi-
 665 modal modelling of human emotion using sound, image and text fusion. *Signal, Image and Video
 Processing*, 18:71–79, 2024. doi: 10.1007/s11760-023-02707-8.

666

667 Abhinav Joshi, Ashwani Bhat, Ayush Jain, Atin Singh, and Ashutosh Modi. Cogmen: Contextual-
 668 ized gnn based multimodal emotion recognition. In *Conference of the North American Chapter of
 669 the Association for Computational Linguistics: Human Language Technologies*, pp. 4148–4164,
 670 2022. doi: 10.18653/v1/2022.naacl-main.306.

671

672 Yury Kartynnik, Artsiom Ablavatski, Ivan Grishchenko, and Matthias Grundmann. Real-time facial
 673 surface geometry from monocular video on mobile gpus. *ArXiv*, 2019. doi: 10.48550/arXiv.1907.
 06724.

674

675 Bobak Kiani, Lukas Fesser, and Melanie Weber. Unitary convolutions for learning on graphs and
 676 groups. In *Annual Conference on Neural Information Processing Systems (NeurIPS)*, 2024.

677

678 Dimitrios Kollias and Stefanos Zafeiriou. Expression, affect, action unit recognition: Aff-wild2,
 679 multi-task learning and arcface. *arXiv preprint arXiv:1910.04855*, 2019.

680

681 Dimitrios Kollias, Panagiotis Tzirakis, Alan Cowen, Stefanos Zafeiriou, Irene Kotsia, Eric Granger,
 682 Marco Pedersoli, Simon Bacon, Alice Baird, Chris Gagne, Chunchang Shao, Guanyu Hu, Soufi-
 683 ane Belharbi, and Muhammad Haseeb Aslam. Advancements in affective and behavior analysis:
 684 The 8th abaw workshop and competition. In *Computer Vision and Pattern Recognition Confer-
 ence (CVPR)*, pp. 5572–5583, 2025.

685

686 Weixuan Kong, Jinpeng Yu, Zijun Li, Hanwei Liu, Jiqing Qu, Hui Xiao, and Xuefeng Li. Multi-
 687 modal expressive personality recognition in data non-ideal audiovisual based on multi-scale fea-
 688 ture enhancement and modal augment. *ArXiv*, pp. 1–11, 03 2025. doi: 10.48550/arXiv.2503.
 06108.

689

690 Linyang Li, Demin Song, Ruotian Ma, Xipeng Qiu, and Xuanjing Huang. Knn-bert: fine-tuning
 691 pre-trained models with knn classifier. *arXiv*, 2021. doi: 10.48550/arXiv.2110.02523.

692

693 Yang Li, Amirmohammad Kazemeini, Yash Mehta, and Erik Cambria. Multitask learning for
 694 emotion and personality traits detection. *Neurocomputing*, 493:340–350, 04 2022. doi: <https://doi.org/10.1016/j.neucom.2022.04.049>.

695

696 Yong Li, Yuanzhi Wang, and Zhen Cui. Decoupled multimodal distilling for emotion recognition.
 697 In *IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)*, pp.
 698 6631–6640, 2023. doi: 10.1109/CVPR52729.2023.00641.

699

700 Zheng Lian, Haiyang Sun, Licai Sun, Kang Chen, Mngyu Xu, Kexin Wang, Ke Xu, Yu He, Ying Li,
 701 Jinming Zhao, et al. Mer 2023: Multi-label learning, modality robustness, and semi-supervised
 learning. In *ACM International Conference on Multimedia*, pp. 9610–9614, 2023.

702 Zheng Lian, Haiyang Sun, Licai Sun, Zhuofan Wen, Siyuan Zhang, Shun Chen, Hao Gu, Jinming
 703 Zhao, Ziyang Ma, Xie Chen, et al. MER 2024: Semi-supervised learning, noise robustness, and
 704 open-vocabulary multimodal emotion recognition. In *International Workshop on Multimodal and*
 705 *Responsible Affective Computing*, pp. 41–48, 2024.

706 Lawrence I-Kuei Lin. A concordance correlation coefficient to evaluate reproducibility. *Biometrics*,
 707 pp. 255–268, 1989. doi: 10.2307/2532051.

709 Zhixuan Lin, Evgenii Nikishin, Xu Owen He, and Aaron Courville. Forgetting transformer: Softmax
 710 attention with a forget gate. In *International Conference on Learning Representations (ICLR)*,
 711 2025.

712 Xiaofang Liu, Guotian He, Shuge Li, Fan Yang, Songxiying He, and Lin Chen. Multi-level feature
 713 decomposition and fusion model for video-based multimodal emotion recognition. *Engineering*
 714 *Applications of Artificial Intelligence*, 152:110744, 2025. doi: 10.1016/j.engappai.2025.110744.

715 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
 716 Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
 717 approach. *ArXiv*, 2019. doi: 10.48550/arXiv.1907.11692.

719 Xilong Lu, Jun Yu, Yunxiang Zhang, Lingsi Zhu, Yang Zheng, Yongqi Wang, and Qiang Ling.
 720 Robust stage-wise l1vlm adaptation: Multi-phase prompt lora fine-tuning for compound expression
 721 recognition. In *IEEE Conf. Comput. Vis. Pattern Recog. Worksh. (CVPRW)*, pp. 5770–5777, 2025.

722 Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris McClanahan, Esha Ubweja, Michael Hays,
 723 Fan Zhang, Chuo-Ling Chang, Ming Guang Yong, Juhyun Lee, et al. Mediapipe: A framework
 724 for building perception pipelines. *ArXiv*, 2019. doi: 10.48550/arXiv.1906.08172.

726 Maxim Markitantov, Elena Ryumina, Heysem Kaya, and Alexey Karpov. Multi-modal multi-task
 727 affective states recognition based on label encoder fusion. In *Interspeech*, pp. 3010–3014, 2025.
 728 doi: 10.21437/Interspeech.2025-2060.

729 Iñigo Martin-Melero, Ana Serrano-Mamolar, and Juan J Rodríguez-Diez. Evaluation of semi-
 730 supervised machine learning applied to affective state detection. In *IEEE International Con-
 731 ference on Pervasive Computing and Communications Workshops and other Affiliated Events
 732 (PerCom Workshops)*, pp. 320–325, 2024.

733 Ryo Masumura, Shota Orihashi, Mana Ihori, Tomohiro Tanaka, Naoki Makishima, Satoshi Suzuki,
 734 Saki Mizuno, and Nobukatsu Hojo. Multimodal fine-grained apparent personality trait recog-
 735 nition: joint modeling of big five and questionnaire item-level scores. In *AAAI Conference
 736 on Artificial Intelligence and Conference on Innovative Applications of Artificial Intelligence
 737 and Symposium on Educational Advances in Artificial Intelligence*, pp. 1456–1464, 2025. doi:
 738 10.1609/aaai.v39i2.32136.

739 Robert R McCrae. The five-factor model of personality: Consensus and controversy. *The Cambridge
 740 handbook of personality psychology*, 2:129–141, 2020.

741 Valentyn Melnychuk, Evgeniy Faerman, Ilja Manakov, and Thomas Seidl. Matching the clinical
 742 reality: Accurate oct-based diagnosis from few labels. *arXiv*, pp. 1–9, 2020. doi: 10.48550/arXiv.
 743 2010.12316.

744 Harel Mendelman and Ronen Talmon. Supervised and semi-supervised diffusion maps with label-
 745 driven diffusion. In *International Conference on Learning Representations (ICLR)*, pp. 1–13,
 746 2025.

747 Gelareh Mohammadi and Patrik Vuilleumier. A multi-componential approach to emotion recog-
 748 nition and the effect of personality. *IEEE Transactions on Affective Computing*, 13:1127–1139,
 749 2022. doi: 10.1109/TAFFC.2020.3028109.

750 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 751 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 752 robust visual features without supervision. *Transactions on Machine Learning Research Journal*,
 753 pp. 1–31, 2024.

756 Seong Ho Pahng and Sahand Hormoz. Improving graph neural networks by learning continuous
 757 edge directions. In *International Conference on Learning Representations (ICLR)*, 2025.

758

759 Cristina Palmero, Javier Selva, Sorina Smeureanu, Julio Junior, Jacques CS, Albert Clapés, Alexa
 760 Mosegú, Zejian Zhang, David Gallardo, Georgina Guilera, et al. Context-aware personality
 761 inference in dyadic scenarios: Introducing the udova dataset. In *IEEE/CVF Winter Conference on*
 762 *Applications of Computer Vision (WACV)*, pp. 1–12, 2021.

763 Sudarshan Pant, Hyung-Jeong Yang, Eunchae Lim, Soo-Hyung Kim, and Seok-Bong Yoo. Phymer:
 764 Physiological dataset for multimodal emotion recognition with personality as a context. *IEEE*
 765 *Access*, 11:107638–107656, 2023. doi: 10.1109/ACCESS.2023.3320053.

766

767 Seong-Joon Park, Hee-Youl Kwak, Sang-Hyo Kim, Yongjune Kim, and Jong-Seon No. CrossMPT:
 768 Cross-attention message-passing transformer for error correcting codes. In *International Conference on Learning Representations (ICLR)*, 2025.

769

770 Cheng Peng, Ke Chen, Lidan Shou, and Gang Chen. Carat: Contrastive feature reconstruction
 771 and aggregation for multi-modal multi-label emotion recognition. *AAAI Conference on Artificial*
 772 *Intelligence*, 38:14581–14589, 03 2024. doi: 10.1609/aaai.v38i13.29374.

773

774 Soujanya Poria, Devamanyu Hazarika, Navonil Majumder, Gautam Naik, Erik Cambria, and Rada
 775 Mihalcea. MELD: A multimodal multi-party dataset for emotion recognition in conversations. In
 776 *Annual Meeting of the Association for Computational Linguistics (ACL)*, pp. 527–536, 2019. doi:
 10.18653/v1/P19-1050.

777

778 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 779 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 780 models from natural language supervision. In *International conference on machine learning (ICML)*, pp. 8748–8763, 2021.

781

782 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
 783 Robust speech recognition via large-scale weak supervision. In *International conference on ma-*
 784 *chine learning (ICML)*, pp. 28492–28518, 2023.

785

786 Elena Ryumina, Denis Dresvyanskiy, and Alexey Karpov. In search of a robust facial expressions
 787 recognition model: A large-scale visual cross-corpus study. *Neurocomputing*, 2022. doi: 10.
 1016/j.neucom.2022.10.013.

788

789 Elena Ryumina, Dmitry Ryumin, Maxim Markitantov, Heysem Kaya, and Alexey Karpov. Multi-
 790 modal personality traits assessment (MuPTA) corpus: The impact of spontaneous and read speech.
 791 In *Interspeech*, pp. 4049–4053, 2023. doi: 10.21437/Interspeech.2023-1686.

792

793 Elena Ryumina, Maxim Markitantov, Dmitry Ryumin, and Alexey Karpov. Gated siamese fusion
 794 network based on multimodal deep and hand-crafted features for personality traits assessment.
 795 *Pattern Recognition Letters*, 185:45–51, 2024. doi: <https://doi.org/10.1016/j.patrec.2024.07.004>.

796

797 Elena Ryumina, Dmitry Ryumin, Alexandre Axyonov, Denis Ivanko, and Alexey Karpov. Multi-
 798 corpus emotion recognition method based on cross-modal gated attention fusion. *Pattern Recog-*
 799 *nition Letters*, pp. 192–200, 2025. doi: 10.1016/j.patrec.2025.02.024.

800

801 Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
 802 bert: smaller, faster, cheaper and lighter. *ArXiv*, 2019. doi: 10.48550/arXiv.1910.01108.

803

804 Andrey Savchenko. Facial expression recognition with adaptive frame rate based on multiple testing
 805 correction. In *International Conference on Machine Learning (ICML)*, pp. 30119–30129, 2023.

806

807 Andrey Savchenko and Lyudmila Savchenko. Leveraging lightweight facial models and textual
 808 modality in audio-visual emotional understanding in-the-wild. In *Computer Vision and Pattern*
 809 *Recognition Conference Workshops (CVPRW)*, pp. 5787–5797, June 2025.

810

811 Meisam Jamshidi Seikavandi, Fabricio Batista Narcizo, Ted Vucurevich, Andrew Burke Dittberner,
 812 and Paolo Burelli. Mumtaffect: A multimodal multitask affective framework for personality and
 813 emotion recognition from physiological signals. In *International Workshop on Multimodal and*
 814 *Responsible Affective Computing*, pp. 100–108, 2025.

810 Harald Vilhelm Skat-Rørdam, Mia Hang Knudsen, Simon Nørby Knudsen, Sneha Das, and Line
 811 Clemmensen. Data augmentations and transfer learning for physiological time series. In *International
 812 Conference on Learning Representations (ICLR) Workshop on Learning from Time Series
 813 For Health*, pp. 1–10, 2024.

814 Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang, Nicholas Carlini, Ekin D. Cubuk,
 815 Alex Kurakin, Han Zhang, and Colin Raffel. Fixmatch: simplifying semi-supervised learning
 816 with consistency and confidence. In *International Conference on Neural Information Processing
 817 Systems*, pp. 1–13, 2020.

818 Saba Sturua, Isabelle Mohr, Mohammad Kalim Akram, Michael Günther, Bo Wang, Markus Krim-
 819 mel, Feng Wang, Georgios Mastrapas, Andreas Koukounas, Nan Wang, et al. jina-embeddings-
 820 v3: Multilingual embeddings with task lora. *ArXiv*, 2024. doi: 10.48550/arXiv.2409.10173.

821 Rui Sun, Huayu Mai, Wangkai Li, and Tianzhu Zhang. Towards unbiased learning in semi-
 822 supervised semantic segmentation. In *International Conference on Learning Representations
 823 (ICLR)*, pp. 1–18, 2025.

824 Soh Takahashi, Masaru Sasaki, Ken Takeda, and Masafumi Oizumi. Self-supervised learning fa-
 825 cilitates neural representation structures that can be unsupervisedly aligned to human behaviors.
 826 In *International Conference on Learning Representations (ICLR) Workshop on Representational
 827 Alignment*, pp. 1–12, 2024.

828 Jianwen Tao, Liangda Yan, and Tao He. Domain-invariant adaptive graph regularized label propa-
 829 gation for eeg-based emotion recognition. *IEEE Access*, pp. 126774–126792, 2024.

830 Robert J Tibshirani and Bradley Efron. An introduction to the bootstrap. *Monographs on statistics
 831 and applied probability*, 57(1):1–436, 1993.

832 Yao-Hung Hubert Tsai, Shaojie Bai, Paul Pu Liang, J. Zico Kolter, Louis-Philippe Morency, and
 833 Ruslan Salakhutdinov. Multimodal transformer for unaligned multimodal language sequences.
 834 In *Annual Meeting of the Association for Computational Linguistics*, 2019. doi: 10.18653/v1/
 835 P19-1656.

836 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 837 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Annual Conference on Neural
 838 Information Processing Systems (NeurIPS)*, pp. 1–11, 2017. doi: 10.48550/arXiv.1706.03762.

839 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 840 Bengio. Graph attention networks. In *International Conference on Learning Representations
 841 (ICLR)*, pp. 1–12, 2018.

842 Johannes Wagner, Andreas Triantafyllopoulos, Hagen Wierstorf, Maximilian Schmitt, Felix
 843 Burkhardt, Florian Eyben, and Björn W Schuller. Dawn of the transformer era in speech emo-
 844 tion recognition: closing the valence gap. *IEEE Transactions on Pattern Analysis and Machine
 845 Intelligence*, 45(9):10745–10759, 2023.

846 Rongquan Wang, Xianyu Xu, Hao Yang, Lin Wei, and Huimin Ma. A novel multimodal personality
 847 prediction method based on pretrained models and graph relational transformer network. In *IEEE
 848 International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5, 04
 849 2025. doi: 10.1109/ICASSP49660.2025.10888163.

850 Yuanqing Wang and Kyunghyun Cho. Non-convolutional graph neural networks. In *Annual Con-
 851 ference on Neural Information Processing Systems (NeurIPS)*, pp. 136922–136961, 2024.

852 Yusong Wang, Dongyuan Li, Kotaro Funakoshi, and Manabu Okumura. Emp: Emotion-guided
 853 multi-modal fusion and contrastive learning for personality traits recognition. In *International
 854 Conference on Multimedia Retrieval (ICMR)*, 2023. doi: 10.1145/3591106.3592243.

855 Zhiyuan Wen, Jiannong Cao, Jiaxing Shen, Ruosong Yang, Shuaiqi Liu, and Maosong Sun.
 856 Personality-affected emotion generation in dialog systems. *ACM Transactions on Information
 857 Systems*, 42(5), 2024. doi: 10.1145/3655616.

864 Mimoun Ben Henia Wiem and Zied Lachiri. Emotion classification in arousal valence model using
 865 mahnob-hci database. *International Journal of Advanced Computer Science and Applications*, 8
 866 (3), 2017.

867 Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng Yan, Masayoshi
 868 Tomizuka, Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. Visual transformers: Token-based
 869 image representation and processing for computer vision. *ArXiv*, 2020. doi: 10.48550/arXiv.
 870 2006.03677.

871 Xuecheng Wu, Heli Sun, Yifan Wang, Jiayu Nie, Jie Zhang, Yabing Wang, Junxiao Xue, and Liang
 872 He. AVF-MAE++: Scaling affective video facial masked autoencoders via efficient audio-visual
 873 self-supervised learning. In *Computer Vision and Pattern Recognition Conference (CVPR)*, pp.
 874 9142–9153, 2025.

875 Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, and Shlomo Dubnov.
 876 Large-scale contrastive language-audio pretraining with feature fusion and keyword-to-caption
 877 augmentation. In *IEEE International Conference on Acoustics, Speech and Signal Processing
 878 (ICASSP)*, pp. 1–5, 2023. doi: 10.1109/ICASSP49357.2023.10095969.

879 Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and Jian-Yun Nie. C-pack:
 880 Packed resources for general chinese embeddings. In *International ACM SIGIR conference on
 881 research and development in information retrieval*, pp. 641–649, 2024a.

882 Xiongye Xiao, Gengshuo Liu, Gaurav Gupta, Defu Cao, Shixuan Li, Yaxing Li, Tianqing Fang,
 883 Mingxi Cheng, and Paul Bogdan. Neuro-inspired information-theoretic hierarchical perception
 884 for multimodal learning. In *International Conference on Learning Representations (ICLR)*,
 885 2024b. doi: 10.48550/arXiv.2404.09403.

886 Zeng Xinyue, Wang Haohui, Lin Junhong, Wu Jun, Cody Tyler, and Zhou Dawei. LensLLM:
 887 Unveiling fine-tuning dynamics for LLM selection. In *International Conference on Machine
 888 Learning*, 2025. doi: 10.48550/arXiv.2505.03793.

889 Li Yuanchao, Bell Peter, and Lai Catherine. Transfer learning for personality perception via
 890 speech emotion recognition. In *Interspeech*, pp. 5197–5201, 2023. doi: 10.21437/Interspeech.
 891 2023-2061.

892 Juwei Yue, Haikuo Li, Jiawei Sheng, Xiaodong Li, Taoyu Su, Tingwen Liu, and Li Guo. Hyperbolic-
 893 PDE GNN: Spectral graph neural networks in the perspective of a system of hyperbolic partial
 894 differential equations. In *International Conference on Learning Representations (ICLR)*, 2025.

895 Amir Zadeh, Paul Liang, Navonil Mazumder, Soujanya Poria, Erik Cambria, and Louis-Philippe
 896 Morency. Memory fusion network for multi-view sequential learning. In *AAAI Conference on
 897 Artificial Intelligence*, pp. 5634–5641, 2018a. doi: 10.1609/aaai.v32i1.12021.

898 AmirAli Bagher Zadeh, Paul Pu Liang, Soujanya Poria, Erik Cambria, and Louis-Philippe Morency.
 899 Multimodal language analysis in the wild: Cmu-mosei dataset and interpretable dynamic fusion
 900 graph. In *Annual Meeting of the Association for Computational Linguistics (ACL)*, pp. 2236–
 901 2246, 2018b.

902 Qixuan Zhang, Zhifeng Wang, Dylan Zhang, Wenjia Niu, Sabrina Caldwell, Tom Gedeon, Yang Liu,
 903 and Zhenyue Qin. Visual prompting in LLMs for enhancing emotion recognition. In *Conference
 904 on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 4484–4499. Association
 905 for Computational Linguistics, 2024a. doi: 10.18653/v1/2024.emnlp-main.257.

906 Rui Zhang, Huifeng Guo, Zongxin Xu, Yuxia Hu, Mingming Chen, and Lipeng Zhang. Mgfkd: A
 907 semi-supervised multi-source domain adaptation algorithm for cross-subject eeg emotion recog-
 908 nition. *Brain Research Bulletin*, 208:110901, 2024b.

909 TaoZheng Zhang, Zhaoyang Chen, and Jiantao Du. Multimodal mamba model for emotion
 910 recognition in conversations. In *International Conference on Machine Learning and Comput-
 911 ing (ICMLC)*, pp. 262–273, 2025a. doi: 10.1007/978-3-031-94898-5_20.

918 Yazhou Zhang, Mengyao Wang, Youxi Wu, Prayag Tiwari, Qiuchi Li, Benyou Wang, and Jing
 919 Qin. DialogueLLM: Context and emotion knowledge-tuned large language models for emotion
 920 recognition in conversations. *Neural Networks*, 192:107901, 2025b. doi: <https://doi.org/10.1016/j.neunet.2025.107901>.

923 Yi Zhang, Mingyuan Chen, Jundong Shen, and Chongjun Wang. Tailor versatile multi-modal learn-
 924 ing for multi-label emotion recognition. *Conference on Artificial Intelligence (AAAI)*, pp. 1–9, 01
 925 2022. doi: 10.48550/arXiv.2201.05834.

926 Xiaoming Zhao, Yuehui Liao, Zhiwei Tang, Yicheng Xu, Xin Tao, Dandan Wang, Guoyu Wang,
 927 and Hongsheng Lu. Integrating audio and visual modalities for multimodal personality trait
 928 recognition via hybrid deep learning. *Frontiers in Neuroscience*, 16:1–11, 01 2023. doi:
 929 10.3389/fnins.2022.1107284.

931 Yangfu Zhu, Yue Xia, Meiling Li, Tingting Zhang, and Bin Wu. Data augmented graph neural
 932 networks for personality detection. In *AAAI Conference on Artificial Intelligence*, pp. 664–672,
 933 2024. doi: 10.1609/aaai.v38i1.27823.

936 A APPENDIX

938 A.1 RELATED WORK

939 A.1.1 STATE-OF-THE-ART PSYCHOLOGICAL STATES RECOGNITION METHOD

941 In this brief review, we consider methods for ER, PTR, and AHR. Emotions reflect transient reac-
 942 tions, while PTs reflects stable dispositions. Ambivalence reveals the uncertainty that may influence
 943 both states, providing critical insight into human intentions and decisions. These tasks enable the
 944 creation of more nuanced and context-sensitive human-machine interaction systems that cover only
 945 one specific task beyond classical affective recognition methods.

946 **Emotion Recognition Methods.** Multimodal Emotion Recognition (MER) is a crucial part of re-
 947 search related to analyzing human emotional state. Recent studies have noted that Deep Neural
 948 Networks (DNNs) provide robust results from integrating different modalities (Deng et al., 2024).
 949 Different types of Transformer architectures are used in multimodal feature extraction. For in-
 950 stance, Goncalves et al. (2023) presented an audio-visual framework that utilizes conformer layers
 951 instead of ordinary Transformers. Li et al. (2021) integrated a pre-trained BERT model (Devlin et al.,
 952 2019) with a K-Nearest Neighbors (KNN) classifier during fine-tuning. This method addresses
 953 the distribution shifts between the source domain and the target domain, enabling more accurate
 954 classification in cross-domain tasks. However, the study relies on minimizing the cross-entropy
 955 loss, which often leads to unstable fine-tuning and poor generalization. Hazarika et al. (2020) pro-
 956 posed a network, based on the Transformer architecture, in which features for each modality are
 957 projected to two distinct sub-spaces: modality-invariant and modality-specific. Tsai et al. (2019)
 958 applied the directional pairwise cross-modal attention mechanism, which attends to interactions be-
 959 tween unaligned multimodal sequences across different timesteps. Liu et al. (2025) leveraged a
 960 multilevel method based on a spatio-temporal vision Transformer to extract facial and body fea-
 961 tures. Mamba is another deep learning architecture outperforming conventional Transformers (Gu
 962 & Dao, 2023). Experiments have proven that Mamba-based models capture inter-modal interactions
 963 through a cross-modal mechanism, achieving better modal representations (Zhang et al., 2025a).
 964 Xinyue et al. (2025) introduced LensLLM method which enables early performance prediction of
 965 Large Language Models (LLMs) by analyzing signals from the initial phases of fine-tuning.

966 Several widely known methods, including graph-based (Joshi et al., 2022; Li et al., 2023), and
 967 hybrid methods based on Convolutional Neural Network (CNN) and Recurrent Neural Network
 968 (RNN) (Gao et al., 2024; Xiao et al., 2024b), are used for ER. For instance, Joshi et al. (2022) pro-
 969 posed a contextualized GNN-based method aimed to capture information via both inner and outer
 970 context. Zadeh et al. (2018a) proposed LSTM-based neural architecture using a multi-view gated
 971 memory that stores a history of cross-view interactions and integrates information from different
 972 modalities at different timesteps. Hosseini et al. (2024) showed that the combination of the network
 973 of Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) and Bidirectional Long

972 Short-Term Memory (BiLSTM) achieves a high performance when learning the features of the fusion.
 973 Farhadipour et al. (2025) used CNN along with Transformer architecture for extracting visual
 974 features. In contrast, Boitel et al. (2025) leveraged advanced Deep Learning techniques combin-
 975 ing Semi-CNN and 3D-CNN to enhance the robustness of data and comprehensively improve the
 976 performance of various modalities.

977 **Personality Traits Recognition Methods.** In addition to ER, recognizing persons' PTs has gained
 978 popularity over the past few years. PTR is often based on the scores of a psychological model named
 979 Big Five or the OCEAN model (McCrae, 2020). Deep learning algorithms such as CNN, LSTM, and
 980 the Transformer model are broadly applicable in PTR (Zhao et al., 2023). For pairwise and simulta-
 981 neous comparison of Personality Traits Assessment (PTA) Ryumina et al. (2024) proposed the Gated
 982 Siamese Fusion Network (GSFN), which enables the fusion of both hand-crafted and deep features
 983 across text, audio, and video-face modalities. Kong et al. (2025) used a cross-attention mechanism
 984 to improve both the proposed model's robustness and the audiovisual modality's performance. In
 985 particular, Masumura et al. (2025) proposed SOTA Transformer-based methods that address two
 986 tasks: assessing people's PT scores along with questionnaire-based item-level scores. Agrawal et al.
 987 (2023) highlighted the significance of the Transformer architecture, presenting the Forced Attention
 988 Transformer for tackling tasks related to PTR.

989 **Ambivalence/Hesitancy Recognition Methods.** The AHR task was first introduced in the 8th Af-
 990 fective Behavior Analysis in-the-Wild (ABAW) competition (Kollias et al., 2025). To solve this
 991 task, the BAH corpus (González-González et al., 2025) was collected and annotated. The baseline
 992 method (Kollias et al., 2025) combined TCN (Bai et al., 2018) with acoustic, linguistic, and visual
 993 features and used a co-attention block to aggregate multimodal features and to create a single em-
 994 bedding for each frame. Hallmen et al. (2025) proposed a method that integrated text, audio, and
 995 visual modalities, modeling temporal dependencies in audio and vision with LSTMs and applying
 996 a convolution-like temporal windowing mechanism for frame-level prediction. All modalities were
 997 fused through a Multi-Layer Perceptron (MLP). Savchenko & Savchenko (2025) developed a multi-
 998 modal method that emphasized efficient facial models, applied early fusion across modalities, and
 999 refined predictions with blending and temporal smoothing.

1000 **Multitask Recognition Methods.** Several recent studies are devoted to SOTA multitask unimodal
 1001 or multimodal methods, exploring various affective states. For instance, Markitantov et al. (2025)
 1002 explored the multitask method based on Label Encoder Fusion Strategy for both ER and Sentiment
 1003 Recognition (SR). However, it is important to note that only a limited number of studies focus on
 1004 the conjunction between ER, PTR, or AHR. Several works have been devoted to studying emotional
 1005 state via PTR (Hosseini et al., 2023; Wen et al., 2024). Wen et al. (2024) studied emotions based
 1006 on PTR in dialogue systems and investigated the personality-affected mood transition afterward.
 1007 PTR guided by emotional analysis has also been widely investigated (Yuanchao et al., 2023; Bao
 1008 et al., 2025). Bao et al. (2025) was the first to employ contrastive learning to increase precision
 1009 and predictability in multimodal PTR. Transfer learning using Transformer-based architecture is
 1010 another effective way to study the correlation between personality and emotions (Yuanchao et al.,
 1011 2023). Some recent research is focused on the correlation between ER and PTR within the scope of
 1012 physiological signals (Hosseini et al., 2023; Pant et al., 2023). For instance, Hosseini et al. (2023)
 1013 presented a SOTA method applied to ER based on the level of bioelectric activity of the brain.
 1014 **Seikavandi et al. (2025) proposed MuMTAffec for multimodal multitask ER and PTR on a limited**
 1015 **corpus annotated for the two target tasks.**

1016 A.1.2 STATE-OF-THE-ART METHODS BASED ON SEMI-SUPERVISED LEARNING

1017 SSL has emerged as a crucial strategy for addressing the significant challenge of limited labeled
 1018 data in machine learning (Mendelman & Talmon, 2025; Sun et al., 2025). This strategy leverages
 1019 small amounts of labeled data and larger pools of unlabeled data to improve model performance,
 1020 mitigating the high cost and difficulty associated with extensive manual annotation. **Widely-known**
 1021 **SSL methods, such as FixMatch and MixMatch, are based on the idea of consistency regularization**
 1022 **and pseudo-labeling (Sohn et al., 2020; Melnychuk et al., 2020).** MixMatch uses soft pseudo-labels
 1023 through averaging and sharpening for both labeled and unlabeled data. FixMatch, on the other hand,
 1024 utilizes one-hot confident pseudo-labels and employs both weak and strong data augmentations,
 1025 thereby simplifying the training procedure. Several studies have investigated the Mean Teacher
 1026 method for Object Detection and Instance Segmentation (Deng et al., 2021; Alayrac et al., 2020;

1026 Cao et al., 2023). The method leverages a teacher-student framework where the teacher acts as
 1027 Exponential Moving Average (EMA) of the student model, which generates pseudo-labels on un-
 1028 labeled target-domain images. Recent research demonstrates the application of SSL in diverse
 1029 areas of human behavior modeling, including ER (Hosseini & Caragea, 2023; Wu et al., 2025; Deng
 1030 et al., 2025; Alameer et al., 2025), PTR (Zhu et al., 2024), and other psychological states recogni-
 1031 tion (Takahashi et al., 2024; Skat-Rørdam et al., 2024). These studies primarily focus on unimodal
 1032 methods, including text (Hosseini & Caragea, 2023; Zhu et al., 2024), video (Takahashi et al., 2024;
 1033 Deng et al., 2025), and physiological signals (such as Electroencephalogram (EEG)) (Tao et al.,
 1034 2024; Martin-Melero et al., 2024; Alameer et al., 2025). Several works presented at the MER work-
 1035 shops (Lian et al., 2023; 2024) explicitly focus on multimodal SSL, highlighting its importance,
 1036 relevance, and complexity (Fan et al., 2024). A common strategy in such studies involves combin-
 1037 ing corpora to create a larger, unified corpus for training models on a single, specific task, extending
 1038 data domains, and enhancing model robustness (Zhang et al., 2024b; Skat-Rørdam et al., 2024). For
 1039 instance, methods often integrate data augmentation (Zhu et al., 2024; Skat-Rørdam et al., 2024)
 1040 or employ self-supervised and contrastive learning (Fan et al., 2024) within the SSL framework to
 1041 enhance performance on unified tasks. However, while combining corpora for a single task is well-
 1042 established, integrating corpora with distinct annotation tasks (e.g., emotion vs. PTs) and differ-
 1043 ent domains (e.g., varying recording setups or participant demographics) within a semi-supervised
 1044 cross-domain learning framework remains unknown.

1044 Table 3 systematically compares the SOTA methods for recognition of different psychological states,
 1045 including ER, PTR, and AHR. The analysis reveals the following trends. Linguistic features are pre-
 1046 dominantly extracted using Transformer-based encoders such as BERT or RoBERTa, reflecting their
 1047 dominance in contextual language modeling. Acoustic representations rely on self-supervised mod-
 1048 els like Wav2Vec2 and HuBERT or traditional feature sets like OpenSMILE and MFCC. Visual
 1049 encoding is typically handled by CNN architectures like ResNet and EfficientNet, with a growing
 1050 adoption of vision Transformers. Fusion strategies vary considerably, from attention and MLPs
 1051 to graph networks, yet all remain confined to single-task optimization without mechanisms for
 1052 cross-task knowledge transfer. Critically, every method in the table operates under fully supervised
 1053 learning within a single domain. In contrast, SCD-MMPSR is the first framework to enable semi-
 1054 supervised, cross-domain, and multitask learning protocols across ER, PTR, and AHR, overcoming
 1055 the annotation and generalization bottlenecks that constrain existing methods.

A.2 PROPOSED PROMPT AND EXAMPLE OF BEHAVIOR DESCRIPTION

Full proposed prompt

You are an expert in visual human behavior analysis. Carefully examine the provided video clip, which features a person facing the camera. Your task is to describe, in continuous natural language, the person's visible emotional state, personality tendencies, or possible signs of ambivalence and hesitancy as reflected through their nonverbal behavior.

Focus exclusively on observable cues such as facial muscle movements (eyes, eyebrows, mouth, gaze), body posture, gestures, and head motions. Infer emotional tendencies (neutral, anger, disgust, fear, happiness, sadness, surprise), personality traits (Openness, Conscientiousness, Extraversion, Agreeableness, Neuroticism), or subtle conflicting signals of uncertainty and hesitation when visible.

In your description:

- Comment on the person's appearance, posture, gestures, and expressiveness as indicators of emotional state, personality, or ambivalence.
- Observe and explain facial expressions and body movements as cues, highlighting consistency or discordance across behaviors.
- Avoid assumptions about personal background, spoken content, or context beyond what is visually observable.
- If the state appears mixed or ambiguous, briefly mention this with a short explanation based on visible cues.

Your final response must be a fluent, continuous natural language interpretation of the person's visible behavior in the video, written as a single coherent paragraph without any line breaks, bullet points, special characters, or formatting. The response must express a complete, finished thought and must not exceed 75 tokens in total.

Short proposed prompt

You are an expert in visual human behavior analysis. Analyze the provided video of a person facing the camera and describe, in continuous natural language, their visible emotional state, personality tendencies, or signs of ambivalence based only on facial expressions, posture, gestures, and head movements. Avoid assumptions beyond what is visually observable. Write one coherent paragraph not exceeding 75 tokens.

Example behavior description for MOSEI sample

The individual in the video appears to be engaged in a physical activity, likely aerial silks or a similar performance art, as they are suspended mid-air. Their body is stretched vertically, with arms gripping the silks above, suggesting focus and concentration. The facial expression is not clearly visible due to the angle and distance, but the overall posture indicates determination and control. The person's attire, including a striped sleeveless top and flowing skirt, suggests a performance-oriented context. There are no overt signs of hesitation or ambivalence; instead, the body language conveys confidence and precision, hinting at a disciplined and focused personality. The setting, with greenery in the background, adds a serene yet dynamic atmosphere to the scene.

Example behavior description for Flv2 sample

The individual in the video appears engaged and expressive, suggesting a communicative and possibly enthusiastic demeanor. Their facial expressions, including wide eyes and animated lip movements, indicate active participation in conversation or presentation. The consistent eye contact with the camera suggests confidence and direct engagement with the audience. The slight head tilts and hand gestures, particularly raising a finger, reinforce a sense of emphasis and clarity in their communication. Overall, the person's body language and facial cues convey openness and a dynamic personality, likely aiming to connect effectively with viewers. There are no significant signs of ambivalence or hesitation; instead, the behavior reflects a focused and confident approach.

Example behavior description for BAH sample

The individual in the video maintains a relatively neutral and composed demeanor throughout. Their facial expression remains mostly steady, with minimal changes in their eyebrows, eyes, or mouth, suggesting a calm and focused emotional state. There are slight shifts in eye movement, indicating attentiveness or engagement with something off-camera, but no significant signs of strong emotion such as joy, anger, or distress. The overall body posture is relaxed, with no noticeable tension or fidgeting, reinforcing a sense of stability and composure. While there are subtle variations in facial expressions, such as brief moments where the eyes widen slightly or the mouth moves subtly, these do not convey clear signs of ambivalence or hesitation. The consistent and controlled nature of their behavior suggests a level-headed and possibly reserved personality.

Figure 3: Proposed prompt and example of behavior description.

1080

1081

Table 3: Overview of SOTA methods

Method	Linguistic Features	Acoustic Features	Visual Features	Modality Fusion	Task	Learning Type	Learning Domain
Joshi et al. (2022)	sBERT	openSMILE, CNN	OpenFace 2.0, Multi-Comp OpenFace	GNN	ER	Supervised	Single-domain
Goncalves et al. (2023)	–	Wav2Vec2-large-robust	EfficientNet-B2	Cross-Modal Transformer	ER	Supervised	Single-domain
Li et al. (2023)	GloVe, BERT	COVAREP	Facet	Graph-based Knowledge Distillation	ER	Supervised	Single-domain
Deng et al. (2024)	Transformer	Transformer	–	Cross-Modal Attention, Multi-head Attention	ER	Supervised	Single-domain
Chandra�akantham et al. (2024)	DistilRoBERTa	openSMILE	PyFeat	LLM	ER	Supervised	Single-domain
Hosseini et al. (2024)	BiLSTM	CNN-LSTM	Inception-ResNet-v2	DNN, decision-level fusion using regression softmax	ER	Supervised	Single-domain
Boitel et al. (2025)	DeBERTa	Semi-CNN	ResNet-50, 3D-CNN	MIST framework	ER	Supervised	Single-domain
Farhadipour et al. (2025)	RoBERTa	Wav2Vec2	FacialNet, BiLSTM, CNN, Transformer	CNN, Transformer	ER	Supervised	Single-domain
Liu et al. (2025)	–	–	Spatio-Temporal vi- sion Transformer	Dynamic Feature Fusion	ER	Supervised	Single-domain
Zhang et al. (2025a)	Deberta	openSMILE	DenseNet	Cross-modal Transformer, Mamba	ER	Supervised	Single-domain
Markitanov et al. (2025)	XLMRoBERTa, JINA	Wav2Vec2, ExHuBERT	YOLO, EmoAffectNet, ResMoteNet	BFS, LEFS, LEFSA	ER, SR	Supervised	Multi-domain
Zhao et al. (2023)	–	VGGish	VGG-Face	Decision-level fusion strategy	PTR	Supervised	Single-domain
Agrawal et al. (2023)	XLM-RoBERTa	Trill-Distilled	R(2+1)D, Video Swin Transformer	Fast Transformer Cross-Attention	PTR	Supervised	Single-domain
Yuanchao et al. (2023)	–	Transformer, Wav2Vec2	–	–	PTR	Supervised	Single-domain
Ryumina et al. (2024)	BERT+BiLSTM, LiWC+ReBiLSTM	VGG-16+FCNN, openSMILE+LSTM	EmoAffectNet+LSTM, geometric features+LSTM	GSFN	PTR	Supervised	Cross-domain
Kong et al. (2025)	–	MFCC	EfficientFace	Feature concatenation, Attention Module	PTR	Supervised	Single-domain
Masumura et al. (2025)	BERT	HuBERT	CenterNet, MobileNetV3, Transformer, VGGFace2	Transformer	PTR	Supervised	Single-domain
Bao et al. (2025)	RoBERTa	ResNet-34	X3D, Temporal encoder	Transformer	PTR	Supervised	Single-domain
Hallmen et al. (2025)	Whisper, GTE-Large	Wav2Vec2 (with VAD)	ViT-Huge	MLP fusion, convolution-like temporal modeling	AHR	Supervised	Single-domain
Savchenko & Savchenko (2025)	RoBERTa (GoEmo-Whisper)	Wav2Vec2, HuBERT	EmoEffLib	MLP classifiers, early fusion, blending, temporal smoothing	AHR	Supervised	Single-domain
Kollias et al. (2025)	BERT, TCN	VGGish, TCN	ResNet-50, TCN	Co-attention, classifier head	AHR	Supervised	Single-domain
SCD-MMPSP	EmoRoBERTa	CLAP	CLIP	Multimodal Cross-Domain Model	ER, PTR, AHR	Semi-supervised	Cross-domain

1105

1106

1107

Table 4: Comparison of prompt performance. **Best** and **second-best** results are highlighted

Exp ID	Configuration	MOSEI		FIv2		BAH		Rank
		mMF1	mWACC	mACC	mCCC	MF1	UAR	
1	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP (full proposed prompt)	61.50	61.87	91.46	66.10	65.66	65.36	1.83
2	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP (short proposed prompt)	61.26	61.72	91.22	60.82	65.56	68.70	2.50
3	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP (Zhang et al. (2025b) prompt)	60.87	61.52	90.79	61.94	66.78	66.40	2.67
4	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP (Cheng et al. (2024) prompt)	60.36	61.28	91.10	61.29	66.52	67.98	3.00

1114

1115

1116

Figure 3 and Table 4 present our prompt design for video-based behavior description and its impact on downstream performance in recognizing psychological states. The full proposed prompt (Exp-1) instructs the model to analyze visual behavior in a video clip, focusing on facial expressions, posture, gestures, and signs of ambivalence or hesitation, while avoiding assumptions about internal states. It emphasizes objective observation and fluent, continuous language output limited to 75 tokens. A shorter variant (Exp-2) retains core instructions but simplifies phrasing, leading to comparable or slightly improved results across all tasks. Both outperform existing baselines: the prompt from Zhang et al. (2025b) (Exp-3) and Cheng et al. (2024) (Exp-4), which were developed to analyze only human emotional states. These findings confirm that the proposed prompts, which focus on complex behavioral changes, improve the model’s robustness and cover a broader range of psychological states in the video.

1127

1128

1129

1130

1131

1132

1133

Table 5 compares the performance of our framework using different VLLMs for generating behavioral descriptions. Qwen2.5-VL-3B produces the best results across all three corpora and achieves the highest average rank (1.17), demonstrating its effectiveness in generating behaviorally informative textual summaries. InternVL2.5-4B, despite being larger (4B vs. 3B), performs competitively on MOSEI, but lags slightly on FIv2 and BAH. Eagle2-2B, the smallest model (2B parameters), exhibits noticeably lower performance measures, particularly on MOSEI and FIv2, suggesting that model capacity is crucial for capturing nuanced behavioral cues. These results suggest that the choice of VLLM has a significant impact on multimodal fusion performance.

1134

1135 Table 5: Experimental results of behavior encoders using different VLLM to describe behavior. Best
1136 and second-best results are highlighted

1137

Exp ID	Configuration	MOSEI		FIv2		BAH		Rank
		mMF1	mWACC	mACC	mCCC	MF1	UAR	
1	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP using Qwen2.5-VL-3b (Bai et al., 2025)	61.50	61.87	91.46	66.10	65.66	65.36	1.17
2	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP using InternVL2.5-4b (Chen et al., 2024)	61.99	59.75	91.04	64.96	63.68	63.76	2.17
3	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP using Eagle2-2b (Chen et al., 2025)	55.19	59.29	90.70	59.46	63.87	63.87	2.67

1141

1142

1143

Table 6: Comparison of existing multimodal corpora

1144

Corpus	Conditions	Speech	Number of Records / Time	Task	Annotation protocol	Availability
IEMOCAP (Busso et al., 2008)	Laboratory	Spontaneous, prepared	10039 utterances of 10 participants / 11.46 h	ER	Video, audio, motion capture of face, text; experts; seven emotions; one label	Open by request
MELD (Poria et al., 2019)	Movie scenes	Prepared	1433 dialogs, 13708 utterances / 8h	ER	Video, audio, text; crowdsourcing; seven emotions; one label	Open
CMU-MOSEI (Zadeh et al., 2018b)	In-the-wild	Spontaneous	3228 videos, 23453 utterances, about 1000 YouTube speaker / 65.88 h	ER	Video, audio, text; crowdsourcing; sentiment on a scale of [-3, 3]; six emotions on a scale of [0, 3] annotated by multiple labels	Open
Aff-Wild2 (Kollias & Zafeiriou, 2019)	In-the-wild	Spontaneous	558 videos, 458 participants / 43 h	ER	Video, audio; experts; valence and arousal (on a scale of [-1, +1]) and seven emotions annotated frame by frame	Open by request
MAHNOB-HCI (Wiem & Lachiri, 2017)	Laboratory	Spontaneous	20 videos for 27 participants / 2 h	ER	EEG signal, audio, video, text; self-report; arousal and valence on a scale of 1-9; one label	Open
FIv2 (Escalante et al., 2020)	In-the-wild	Spontaneous	10000 videos of about 3.000 participants / 41 h	PTR	Video; crowdsourcing; Big Five on a scale of [0, 1]	Open
UDIVA (Palmero et al., 2021)	Laboratory	Spontaneous	188 sessions, 147 participants / 90.5 h	PTR	Audio, video, heart rate; self- and peer-reported; Big Five on a scale of [-4, 4]	Open by request
MuPTA (Ryuminia et al., 2023)	Laboratory	Spontaneous, prepared	3870 videos, 30 participants / 7 h	PTR	Video, audio; self evaluation; Big Five on a scale of [0, 1]	Open by request
BAH (González-González et al., 2025)	In-the-wild	Spontaneous	1118 videos, 224 participants / 8.26 h	AHR	Video, audio, text; experts; binary ambivalence and hesitancy	Open by request

1156

1157

1158

A.3 COMPARISON OF EXISTING MULTIMODAL CORPORA

1159

1160 Table 6 provides an overview of existing multimodal corpora, comparing them along key characteristics: recording conditions, speech type, scale, target tasks, annotation protocol, and availability. For our study, we restrict training data to in-the-wild corpora: CMU-MOSEI for ER, FIv2 PTR, and BAH for AHR. This choice aligns with our focus on real-world applicability.

1161

1162 To evaluate cross-corpus generalization in ER, we use MELD, which provides audio, video, and text
1163 modalities and is annotated with the same seven emotions as CMU-MOSEI. This sets it apart from
1164 Aff-Wild2, which primarily consists of facial reactions to movie clips and often lacks informative
1165 audio or spoken content. IEMOCAP employs a distinct emotion label set and was recorded in
1166 controlled laboratory settings, whereas MAHNOB-HCI focuses on valence-arousal dimensions and
1167 is also based in the laboratory. For PTR, both MuPTA and UDIVA rely on self-evaluation of the
1168 BigFive traits under controlled laboratory conditions, which does not reflect the FIv2 corpus. Finally,
1169 BAH is the only multimodal corpus that targets ambivalence and hesitation, making it uniquely
1170 suitable for AHR.

1171

1172

A.4 CLASSES DISTRIBUTIONS IN RESEARCH CORPORA

1173

1174

1175 Figures 4 and 5 illustrate the class distributions across Train, Development, and Test subsets for the
1176 four research corpora used in our experiments: MOSEI, BAH, MELD, and FIv2.

1177

1178

1179 Figure 4 shows that MOSEI exhibits a strong imbalance in emotion labels, with Happiness dominating
1180 the corpus (over 12,000 examples), while emotions such as Fear and Surprise are significantly
1181 underrepresented. The BAH corpus presents a balanced distribution of ambivalence classes, Ab-
1182 sence and Presence, across all subsets, ensuring fair evaluation of AHR. The corpus BAH represents
1183 a nearly balanced distribution of ambivalence across all subsets, with a slight bias towards the Pres-
1184 ence class. This ensures a fair estimation of AHR. The emotion distribution in MELD is unbalanced,
1185 with over 1,200 examples belonging to the Neutral class, while there are fewer than 100 examples
1186 for Fear and Disgust.

1187

1188

1189 Figure 5 reveals that PTs scores follow continuous distributions across five Big Five dimensions:
1190 Openness, Conscientiousness, Extraversion, Agreeableness, and non-Neuroticism. Notably, most

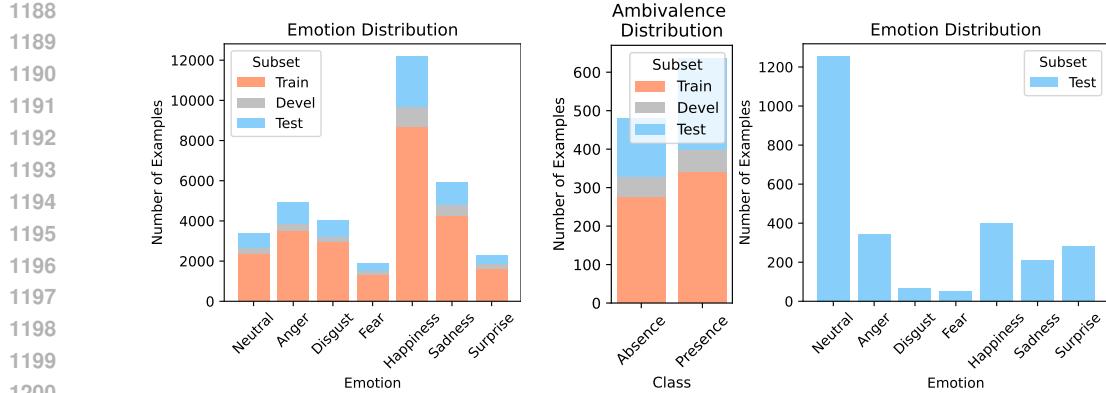


Figure 4: Distributions of classes in videos across subsets of MOSEI (left sub-figure), BAH (central sub-figure), and MELD (right sub-figure).

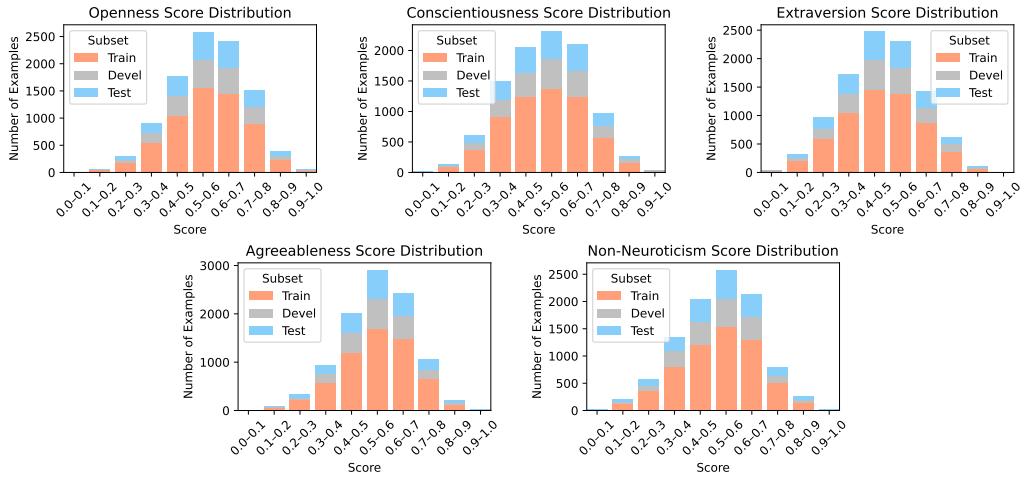


Figure 5: Distributions of PTs scores in videos across subsets of FIv2.

scores cluster in the mid-range (0.4–0.7), indicating a balanced representation of traits without extreme bias.

These distributions confirm that our experimental setup accounts for both categorical imbalances (MOSEI, BAH, and MELD) and continuous score variations (FIv2), enabling comprehensive evaluation of SCD-MMPSR’s performance under realistic, heterogeneous conditions.

A.5 COMPARATIVE ANALYSIS OF ENCODER PERFORMANCE

Video encoders. Table 7 evaluates eight visual encoders within the SCD-MMPSR framework under fixed audio, text, and behavior modalities. CLIP (Radford et al., 2021)², trained on image-caption pairs via contrastive learning, provides strong general-purpose visual representations. Google ViT (Dosovitskiy et al., 2021)³, pre-trained on ImageNet for generic image classification. ResNet-50 (He et al., 2016)⁴, a CNN backbone pre-trained on ImageNet. DinoV2 Large (Oquab et al., 2024)⁵, a self-supervised vision Transformer trained without labels, provides robust generic features but lacks affective grounding. EmoViT v1⁶, adapted for static facial ER, shows task-specific gains.

²<https://huggingface.co/openai/clip-vit-base-patch32>

³<https://huggingface.co/google/vit-base-patch16-224>

⁴<https://huggingface.co/microsoft/resnet-50>

⁵<https://huggingface.co/facebook/dinov2-large>

⁶<https://huggingface.co/trpakov/vit-face-expression>

1242

1243

Table 7: Experimental results of video encoders. **Best** and **second-best** results are highlighted

1244

1245

Exp ID	Configuration	MOSEI		FIv2		BAH		Rank
		mMF1	mWACC	mACC	mCCC	MF1	UAR	
1	Video+CLIP (Radford et al., 2021) (30 frames), Audio+CLAP, Text+CLAP, Behavior+CLIP	61.50	61.87	91.46	66.10	65.66	65.36	5.50
2	Video+CLIP (Radford et al., 2021) (20 frames), Audio+CLAP, Text+CLAP, Behavior+CLIP	61.27	62.15	90.79	61.94	66.78	66.40	6.17
3	Video+CLIP (Radford et al., 2021) (40 frames), Audio+CLAP, Text+CLAP, Behavior+CLIP	61.98	62.62	91.20	63.13	64.27	65.01	3.67
4	Video+Google ViT (Dosovitskiy et al., 2021) (30 frames), Audio+CLAP, Text+CLAP, Behavior+CLIP	61.29	61.91	91.17	62.67	66.61	66.53	5.83
5	Video+ResNet-50 (He et al., 2016) (30 frames), Audio+CLAP, Text+CLAP, Behavior+CLIP	56.84	59.52	89.92	50.51	68.26	68.55	7.00
6	Video+DinoV2 Large (Oquab et al., 2024) (30 frames), Audio+CLAP, Text+CLAP, Behavior+CLIP	61.65	62.03	91.31	64.24	66.66	66.51	4.17
7	Video+EmoViT v1 (30 frames), Audio+CLAP, Text+CLAP, Behavior+CLIP	61.08	62.29	90.49	58.28	67.43	67.25	5.67
8	Video+EmoViT v2 (30 frames), Audio+CLAP, Text+CLAP, Behavior+CLIP	61.39	61.56	91.11	62.90	65.98	65.88	7.00
9	Video+EmoAffectNet (Ryumina et al., 2022) (30 frames), Audio+CLAP, Text+CLAP, Behavior+CLIP	62.07	62.69	90.68	56.69	67.30	66.99	4.50
10	Video+EmotiEffLib (Savchenko, 2023) (30 frames), Audio+CLAP, Text+CLAP, Behavior+CLIP	62.57	62.73	91.29	65.48	66.21	66.09	3.50

1251

1252

1253

Table 8: Experimental results of audio encoders. **Best** and **second-best** results are highlighted

1254

1255

Exp ID	Configuration	MOSEI		FIv2		BAH		Rank
		mMF1	mWACC	mACC	mCCC	MF1	UAR	
1	Video+CLIP, Audio+CLAP (Wu et al., 2023), Text+CLAP, Behavior+CLIP	61.50	61.87	91.46	66.10	65.66	65.36	3.50
2	Video+CLIP, Audio+Whisper-base (Radford et al., 2023), Text+CLAP, Behavior+CLIP	57.98	60.34	90.84	62.52	67.39	67.83	5.00
3	Video+CLIP, Audio+AST (Gong et al., 2021), Text+CLAP, Behavior+CLIP	60.78	62.58	91.08	60.75	66.62	66.36	3.67
4	Video+CLIP, Audio+Wav2Vec2 (Baevski et al., 2020), Text+CLAP, Behavior+CLIP	61.45	62.04	91.06	63.40	65.22	65.56	3.83
5	Video+CLIP, Audio+EmoWav2Vec2 (Wagner et al., 2023), Text+CLAP, Behavior+CLIP	61.27	63.13	91.43	65.11	67.91	67.96	1.83
6	Video+CLIP, Audio+EmoExHuBERT (Amiriparian et al., 2024), Text+CLAP, Behavior+CLIP	58.39	61.60	90.86	55.93	67.18	69.11	4.83

1260

1261

1262

EmoViT v2⁷, optimized for ER in images. Both the VIT-based models were fine-tuned using the FER2013 corpus. EmoAffectNet (Ryumina et al., 2022)⁸, based on ResNet-50, and was fine-tuned with different augmentation techniques on AffectNet for in-the-wild ER. EmotiEffLib (Savchenko, 2023)⁹, a lightweight library optimized for real-time facial affect analysis in video sequences. This model achieves the highest overall rank by effectively capturing dynamic, context-aware facial cues across ER, PTR, and AHR. Evaluation of SCD-MMPSR under varying numbers of uniformly sampled frames (Exp 1-3) reveals that 30 frames yield optimal performance.

1263

Audio encoders. Table 8 compares six audio encoders within the SCD-MMPSR framework under identical multimodal conditions. CLAP (Wu et al., 2023)¹⁰, trained on large-scale audio-text pairs with contrastive learning, aligns audio representations with semantic textual descriptions. Whisper-base (Radford et al., 2023)¹¹, trained for multilingual speech recognition and translation, offers robustness to noise and accents but is optimized for lexical content rather than paralinguistic cues. Audio Spectrogram Transformer (AST) (Gong et al., 2021)¹², a spectrogram-based Transformer pre-trained on AudioSet for environmental sound classification, proves less suitable for vocal affect due to its domain mismatch. Wav2Vec2 (Baevski et al., 2020)¹³, fine-tuned for phonetic recognition on LibriSpeech, captures linguistic structure effectively but lacks explicit modeling of emotional prosody. EmoWav2Vec2 (Wagner et al., 2023)¹⁴, a Wav2Vec2 variant fine-tuned on MSP-Podcast to predict arousal, dominance, and valence, provides both dimensional emotion logits and affect-rich pooled hidden states from its last transformer layer. EmoExHuBERT (Amiriparian et al., 2024)¹⁵, an extension of HuBERT fine-tuned on multiple emotion corpora, is explicitly designed to extract expressive paralinguistic features and predict dimensional affect. Results show that EmoWav2Vec2 achieves the best overall performance. This confirms that encoders explicitly optimized for affective representation deliver superior transferability for psychological state recognition tasks compared to general-purpose speech, environmental audio, or even contrastively aligned models like CLAP.

1264

1265

1266

Text / behavior encoders. Tables 9 and 10 compares eight encoders for text and behavioral modalities within the SCD-MMPSR framework under identical multimodal conditions. CLAP (Wu et al.,

1267

⁷https://huggingface.co/dima806/facial_emotions_image_detection

1268

⁸<https://github.com/ElenaRyumina/EMO-AffectNetModel>

1269

⁹<https://github.com/sb-ai-lab/EmotiEffLib>

1270

¹⁰<https://huggingface.co/laion/clap-htsat-fused>

1271

¹¹<https://huggingface.co/openai/whisper-base>

1272

¹²<https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593>

1273

¹³<https://huggingface.co/facebook/wav2vec2-base-960h>

1274

¹⁴<https://huggingface.co/audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim>

1275

¹⁵<https://huggingface.co/amiriparian/ExHuBERT>

1296

1297 Table 9: Experimental results of text encoders. **Best** and **second-best** results are highlighted
1298

Exp ID	Configuration	MOSEI		F1v2		BAH		Rank
		mMF1	mWACC	mACC	mCCC	MF1	UAR	
1	Video+CLIP, Audio+CLAP, Text+CLAP (Wu et al., 2023), Behavior+CLIP	61.50	61.87	91.46	66.10	65.66	65.36	6.33
2	Video+CLIP, Audio+CLAP, Text+JinaV3 (Sturua et al., 2024), Behavior+CLIP	63.57	65.18	91.30	66.07	66.76	68.19	4.50
3	Video+CLIP, Audio+CLAP, Text+JinaV4 (Günther et al., 2025), Behavior+CLIP	58.28	69.36	91.84	69.18	63.27	63.37	4.50
4	Video+CLIP, Audio+CLAP, Text+BGE (Xiao et al., 2024a), Behavior+CLIP	63.73	64.95	91.36	63.93	68.22	68.14	4.67
5	Video+CLIP, Audio+CLAP, Text+RoBERTa (Liu et al., 2019), Behavior+CLIP	63.39	64.33	91.44	65.44	68.76	68.68	3.83
6	Video+CLIP, Audio+CLAP, Text+XLM RoBERTa (Conneau et al., 2019), Behavior+CLIP	62.93	63.59	91.70	68.25	67.56	67.92	4.66
7	Video+CLIP, Audio+CLAP, Text+EmoDistilRoBERTa (Sanh et al., 2019), Behavior+CLIP	63.05	64.15	91.53	66.33	68.68	68.56	3.83
8	Video+CLIP, Audio+CLAP, Text+EmoRoBERTa, Behavior+CLIP	63.10	64.77	91.57	66.07	68.61	68.59	3.50

1305

1306

1307 Table 10: Experimental results of behavior encoders **by text**. **Best** and **second-best** results are highlighted
1308

Exp ID	Configuration	MOSEI		F1v2		BAH		Rank
		mMF1	mWACC	mACC	mCCC	MF1	UAR	
1	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP (Radford et al., 2021)	61.50	61.87	91.46	66.10	65.66	65.36	4.67
2	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+JinaV3 (Sturua et al., 2024)	61.71	62.89	91.21	63.85	63.95	63.83	5.33
3	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+JinaV4 (Günther et al., 2025)	59.30	61.24	91.33	63.34	66.65	66.34	6.33
4	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+BGE (Xiao et al., 2024a)	59.03	61.88	91.16	62.13	66.69	67.96	5.83
5	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+RoBERTa (Liu et al., 2019)	60.51	62.23	91.36	65.35	67.43	67.25	3.83
6	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+XLM RoBERTa (Conneau et al., 2019)	61.32	62.68	91.34	63.45	67.37	67.28	4.00
7	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+EmoDistilRoBERTa (Sanh et al., 2019)	61.96	62.30	91.45	65.05	65.67	65.55	3.83
8	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+EmoRoBERTa	61.53	62.92	91.40	67.17	67.15	67.62	2.17

1316

1317

1318 2023), a contrastive audio-language model, aligns textual representations with acoustic semantics
 1319 but is not optimized for psychological nuance. CLIP (Radford et al., 2021), a contrastive vision-
 1320 language model, captures general semantic grounding but lacks specialization for affective or behav-
 1321 ior cues. JinaV3 (Sturua et al., 2024)¹⁶, a 570M-parameter multilingual transformer with LoRA
 1322 adapters, supports long contexts (8192 tokens) and excels in retrieval but is not fine-tuned for psy-
 1323 chological states recognition. JinaV4 (Günther et al., 2025)¹⁷, a 3.8B-parameter multimodal encoder
 1324 based on Qwen2.5-VL-3b, unifies text and image representations. BGE (Xiao et al., 2024a)¹⁸, a
 1325 BERT-based dense retriever, is highly effective for semantic matching and classification but lacks
 1326 dialogue-aware or affective tuning. RoBERTa (Liu et al., 2019)¹⁹, trained on 160GB of English text
 1327 with dynamic masking, offers strong general-purpose contextual embeddings but is not emotion-
 1328 specialized. XLM RoBERTa (Conneau et al., 2019)²⁰, pre-trained on 100 languages, provides ro-
 1329 bust cross-lingual features but similarly lacks affective grounding. EmoDistilRoBERTa (Sanh et al.,
 1330 2019)²¹, a distilled model fine-tuned on multi-domain emotion corpora (Twitter, Reddit, etc.), is
 1331 lightweight and efficient for ER. EmoRoBERTa²² is a version of EmoDistilRoBERTa fine-tuned
 1332 on transcripts from multiple corpora (Crowdflower, GoEmotions, etc.) for ER. Across both text
 1333 and behavior modalities, EmoRoBERTa outperforms all alternatives. Unlike general-purpose en-
 1334 coders (CLAP, BGE, RoBERTa) or multilingual/retrieval models (JinaV3/V4, XLM RoBERTa),
 1335 EmoRoBERTa is fine-tuned specifically on emotionally annotated dialogue.

1336 We conduct additional experiments to assess whether behavior representations can be effectively
 1337 derived without VLLMs, using only lightweight visual encoders and scene-level visual context (as
 1338 opposed to text-based behavioral descriptions). As shown in Table 11, behavior encoding based on
 1339 scene analysis outperforms text-based encoding across all three corpora. This indicates that holistic
 1340 visual context often provides more stable and informative behavioral cues than current VLLM-
 1341 generated summaries. We nevertheless adopt VLLM-generated textual behavior descriptions be-
 1342 cause this approach is novel, interpretable, and enables semantic reasoning, offering a path toward
 1343 human-aligned, language-mediated analysis that pure visual features cannot provide.

1344

¹⁶<https://huggingface.co/jinaai/jina-embeddings-v3>

¹⁷<https://huggingface.co/jinaai/jina-embeddings-v4>

¹⁸<https://huggingface.co/BAAI/bge-large-en>

¹⁹<https://huggingface.co/1319lm.top/FacebookAI/roberta-large>

²⁰<https://huggingface.co/FacebookAI/xlm-roberta-large>

²¹<https://huggingface.co/j-hartmann/emotion-english-distilroberta-base>

²²https://huggingface.co/michellejieli/emotion_text_classifier

1350

1351 Table 11: Experimental results of behavior encoders by scene. Best and second-best results are
1352 highlighted

Exp ID	Configuration	MOSEI		FIv2		BAH		Rank
		mMF1	mWACC	mACC	mCCC	MF1	UAR	
1	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP (Radford et al., 2021) by text	61.50	61.87	91.46	66.10	65.66	65.36	3.67
2	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP (Radford et al., 2021) by scene	61.53	62.36	91.58	69.80	68.61	68.59	1.17
3	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+Google ViT (Dosovitskiy et al., 2021) by scene	60.18	62.14	90.93	64.83	68.13	67.68	3.50
4	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+ResNet-50 (He et al., 2016) by scene	59.28	61.24	91.31	65.28	67.67	67.19	4.17
5	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+DinoV2 Large (Oquab et al., 2024) by scene	61.50	62.60	91.52	67.66	67.15	67.62	2.33

1357

1358

1359 Table 12: Experimental results of various combinations of modality encoders. Best and second-best
1360 results are highlighted

Exp ID	Configuration	MOSEI		FIv2		BAH		Rank
		mMF1	mWACC	mACC	mCCC	MF1	UAR	
1	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP	61.50	61.87	91.46	66.10	65.66	65.36	6.00
2	Video+EmotiEffLib, Audio+CLAP, Text+CLAP, Behavior+CLIP	62.57	62.73	91.29	65.48	66.21	66.09	6.50
3	Video+CLIP, Audio+EmoWav2Vec2, Text+CLAP, Behavior+CLIP	61.27	63.13	91.43	65.11	67.91	67.96	5.33
4	Video+CLIP, Audio+CLAP, Text+EmoRoBERTa, Behavior+CLIP	63.10	64.77	91.57	66.07	68.61	68.59	2.50
5	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+EmoRoBERTa	61.53	62.92	91.40	67.17	67.15	67.62	4.67
6	Video+EmotiEffLib, Audio+Wav2vec, Text+EmoRoBERTa, Behavior+EmoRoBERTa	63.55	63.75	91.30	65.33	67.12	66.93	5.00
7	Video+CLIP, Audio+Wav2vec, Text+EmoRoBERTa, Behavior+EmoRoBERTa	63.36	64.41	91.40	62.99	68.00	69.35	3.67
8	Video+CLIP, Audio+CLAP, Text+EmoRoBERTa, Behavior+EmoRoBERTa	63.40	64.00	91.44	66.68	69.29	69.07	2.17

1367

1368

1369

1370 Table 12 summarizes the performance of various multimodal configurations that combine the top-
1371 performing unimodal encoders from prior ablation studies. We selected the strongest candidates for
1372 each modality (EmotiEffLib for video, EmoWav2Vec2 for audio, and EmoRoBERTa for text and
1373 behavior) and fused them to evaluate their combined contribution. The results show that the optimal
1374 configuration is Video+CLIP, Audio+CLAP, Text+EmoRoBERTa, and Behavior+EmoRoBERTa
1375 (ID-8). This combination achieves the highest overall rank (2.17), as well as top scores on BAH
1376 (MF1: 69.29, UAR: 69.07), and a strong performance on MOSEI and FIv2. This configuration
1377 demonstrates that using affect-specialized encoders for text and behavior (EmoRoBERTa) provides
1378 greater gains than modality-specific models for visual or acoustic data, even when combined with
1379 general-purpose models such as CLIP and CLAP. Replacing CLAP with EmoWav2Vec2 (ID-3) or
1380 CLIP with EmotiEffLib (ID-2) results in marginal or inconsistent improvements. This suggests that
1381 linguistic modeling of psychological states is the primary driver of cross-task generalization in our
1382 framework.

1383

A.6 COMPARATIVE ANALYSIS OF GRAPH LAYERS AND ATTENTION MECHANISM

1384

1385 **Attention mechanisms.** Table 13 compares four advanced attention variants with the vanilla
1386 Multi-Head Attention (MHA) mechanism (Vaswani et al., 2017). Multi-Token Attention
1387 (MTA) (Golovneva et al., 2025)²³ conditions attention weights on multiple query and key vectors at
1388 once. Within each head, this mechanism applies a convolution operation to attention scores using
1389 both a key-query and head convolution, repeating the process after softmax and adding a scalar gating
1390 function before final concatenation. This allows for fine-grained, multi-scale interaction modeling.
1391 Cross-attention Message-Passing Transformer (CrossMPT) (Park et al., 2025)²⁴ uses two
1392 cross-attention blocks to iteratively update query and key-value representations, improving multi-
1393 modal alignment through iterative refinement. Bidirectional Cross Attention (BiCA) (Hiller et al.,
1394 2024)²⁵ allows input tokens and latent variables to attend to each other simultaneously. It lever-
1395 ages emergent attention symmetry for balanced bidirectional information flow. Forgetting Attention
1396 (FA) (Lin et al., 2025)²⁶ introduces a forget gate within the softmax attention mechanism. This
1397 gate down-weights unnormalized attention scores in a data-dependent manner, mimicking cogni-
1398 tive filtering of irrelevant signals. The comparison results show that MTA achieves the best overall
1399 rank (2.33), particularly excelling on FIv2 and BAH. This confirms that its convolution-augmented,
1400 multi-stage normalization architecture better captures cross-modal psychological dependencies than
1401 iterative, symmetric, or gating-based mechanisms.

1400

²³<https://github.com/facebookresearch/RAM/tree/main/projects/mta>

1402

²⁴<https://github.com/iil-postech/crossmpt>

1403

²⁵<https://github.com/lucidrains/bidirectional-cross-attention>²⁶<https://github.com/zhixuan-lin/forgetting-transformer/tree/main>

1404
 1405 Table 13: Experimental results on attention mechanisms. **Best** and **second-best** results are high-
 1406 lighted

Exp ID	Configuration	MOSEI		FIv2		BAH		Rank
		mMF1	mWACC	mACC	mCCC	MF1	UAR	
1	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP, MHA (Vaswani et al., 2017)	61.50	61.87	91.46	66.10	65.66	65.36	3.67
2	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP, MTA (Golovneva et al., 2025)	60.83	61.45	91.59	68.04	68.76	68.36	2.33
3	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP, CrossMPT (Park et al., 2025)	61.56	62.60	91.32	65.06	68.75	68.82	2.83
4	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP, BiCA (Hiller et al., 2024)	61.81	62.49	91.50	67.82	66.29	67.28	2.50
5	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP, FA (Lin et al., 2025)	60.10	61.06	91.33	65.61	68.12	69.21	3.67

1412
 1413 Table 14: Experimental results on GNNs. **Best** and **second-best** results are highlighted

Exp ID	Configuration	MOSEI		FIv2		BAH		Rank
		mMF1	mWACC	mACC	mCCC	MF1	UAR	
1	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP, vanilla GNN (Veličković et al., 2018)	61.50	61.87	91.46	66.10	65.66	65.36	4.17
2	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP, NCGNN (Wang & Cho, 2024) ²⁷	61.51	63.31	91.40	65.33	66.99	67.12	2.67
3	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP, EDGNN (Pahng & Hormoz, 2025)	61.84	61.89	91.62	68.99	66.00	66.17	2.67
4	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP, UCGNN (Kiani et al., 2024) ²⁸	62.43	63.22	91.74	70.14	65.47	65.49	2.33
5	Video+CLIP, Audio+CLAP, Text+CLAP, Behavior+CLIP, HGNN (Yue et al., 2025)	61.48	62.81	91.35	67.42	66.89	68.05	3.17

1423 **Graph Neural Network.** Table 14 compares four GNN variants with the vanilla one (Veličković
 1424 et al., 2018). Non-Convolutional GNN (NCGNN) (Wang & Cho, 2024)²⁷ replaces conventional
 1425 message passing with random walks guided by a unified memory. This GNN utilizes RNN to aggre-
 1426 gate topological and semantic signals along node-anchored walks, thereby mitigating the limitations
 1427 of expressiveness and over-smoothing without relying on sparse convolutional kernels. Edge Di-
 1428 rections GNN (EDGNN) (Pahng & Hormoz, 2025)²⁸ introduces learnable edge directions, encoded
 1429 in a complex-valued Laplacian. The real and imaginary parts of the Laplacian encode opposite in-
 1430 formation flows. Messages from in- and out-neighbors are combined with optional self-features to
 1431 enable differentiable, long-range directional propagation on directed and undirected graphs. Uni-
 1432 tary Convolutions GNN (UCGNN) (Kiani et al., 2024)²⁹ stabilize deep graph models by enforcing
 1433 unit-modulus transformations that avoid over-smoothing and improve training stability as the depth
 1434 increases. Hyperbolic GNN (HGNN) (Yue et al., 2025)³⁰ recasts message passing as a system of
 1435 hyperbolic partial differential equations. This method offers spectral-spatiotemporal interpretabil-
 1436 ity and enhanced performance by evolving node states in a solution space spanned by Laplacian
 1437 eigenvectors. Results show that UCGNN achieves the best overall rank (2.33), confirming that
 1438 depth-stable, unit-modulus architectures are critical for modeling complex, cross-task psychological
 1439 states interactions in graph-based fusion.

A.7 OPTIMIZATION OF MODEL AND TRAINING HYPERPARAMETERS

1440 To optimize performance across multimodal corpora, a comprehensive grid search was conducted
 1441 over key training and model hyperparameters. Starting from a strong baseline Exp-3 (see Table 1),
 1442 we explored variations in hidden states (hidden_dim) and output feature (out_features) dimensions,
 1443 transformer head count (num_transformer_heads), dropout rate (dropout), learning rate (lr), sched-
 1444 uler type (scheduler_type), and optimizer choice. The search results are presented in Table 15. All
 1445 experiments presented in Appendix A.2, A.5 and A.6 are carried out under the baseline values of
 1446 hyperparameters, while the task contribution coefficients (w_t^s, w_t^{ss}) are fixed at 1.0.

1447 The search revealed that increasing model capacity via hidden_dim and out_features to 512 con-
 1448 sistently improved generalization without overfitting, particularly benefiting two corpora (FIv2 and
 1449 BAH). A moderate dropout of 0.15 offered the best regularization, while the plateau scheduler
 1450 proved most effective in stabilizing late-stage training by adapting to loss plateaus. The remaining
 1451 parameters remained unchanged due to the search and showed no improvement.

1452 ²⁷<https://github.com/ak24watch/RUM-Graph-nets/tree/main>

1453 ²⁸<https://github.com/hormoz-lab/coed-gnn/tree/main>

1454 ²⁹https://github.com/Weber-GeoML/Unitary_Convolutions/tree/main

1455 ³⁰<https://github.com/YueAWu/Hyperbolic-GNN/tree/main>

1458

1459

1460

Table 15: Grid search result of hyperparameters

1461

Hyperparameter	Baseline value	Search values	Best value
hidden_dim	256	[128, 256, 512, 1024]	512
out_features	256	[128, 256, 512, 1024]	512
num_transformer_heads	8	[2, 4, 8, 16]	8
dropout	0.2	[0.0, 0.1, 0.15, 0.2, 0.25, 0.3]	0.15
scheduler.type	none	[none, plateau, cosine, onecycle]	plateau
lr	10^{-4}	$[10^{-3}, 10^{-4}, 10^{-5}]$	10^{-4}
optimizer	adam	[adam, adamw, lion, sgd, rmsprop]	adam

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471 Applying the best-performing hyperparameters (Exp-5, as shown in Table 1) resulted in a per-

1472 formance improvement. The gains were most significant on FIv2 and BAH, where classification and

1473 regression measures improved, indicating increased robustness to cross-task variability. MOSEI

1474 metrics decreased, suggesting either saturation of this corpus or a need for task-specific fine-tuning.

1475 Overall, these results indicate that careful parameter selection can lead to improved model perfor-

1476

1477

A.8 OPTIMIZATION OF SEMI-SUPERVISED LEARNING HYPERPARAMETERS

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

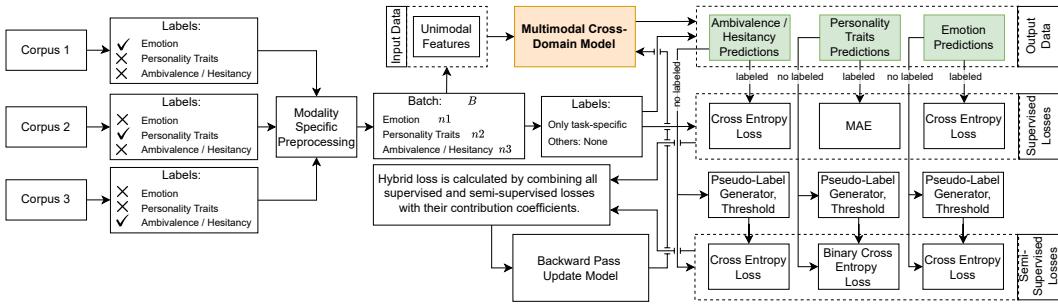


Figure 6: Training process pipeline.

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

Figure 6 shows the training process of SCD-MMPSR, a framework that can recognize three psychological states simultaneously. The framework uses three different corpora (MOSEI, FIv2, and BAH) that are annotated for various tasks. These corpora are used to extract features for each modality, which are then fed into a MCDM. MCDM generates predictions for all three tasks at once. A hybrid loss function is employed, combining supervised losses and semi-supervised losses. This allows the model to learn from both labeled and unlabeled data. Pseudo labels are generated based on confidence thresholds and are updated during the training process. This helps the model learn robust representations for all tasks without requiring co-annotated data.

The SSL hyperparameters are optimized using grid search. The results are presented in Table 16. This search reveals that optimal pseudo-labeling requires lower confidence thresholds (0.60) than commonly assumed. It indicates that moderately confident predictions contain a valuable signal for cross-task learning. The gradient balancing controllers have approximately equal values ($\alpha^s = 1.25$ and $\alpha^{ss} = 1.0$). This confirms that unlabeled data contributes substantially, but only when properly scaled. Learning rates ($\eta_w^s = 0.01$ and $\eta_w^{ss} = 0.005$) are best set higher than the baseline for both loss types, suggesting that a faster adaptation improves convergence. The budget coefficient peaks at $\lambda = 0.3$. This suggests that 30% of training steps should be devoted to pseudo-label refinement to maximize gain. Finally, preserving a minimal task contribution of $w_{\text{floor}} = 10^{-3}$ prevents gradient starvation for weaker tasks. Together, these settings create a best-performing SSL: lower thresholds, higher semi-supervised weights, aggressive learning, and controlled budgeting, unlocking the full potential of unlabeled data in cross-domain multitask learning.

Figure 7 shows the adaptive change in task contribution coefficients for each epoch with the best hyperparameters SSL. The contribution coefficients for all tasks are dynamically adjusted at each

1512

1513

Table 16: Grid search result of SSL hyperparameters

Hyperparameter	Baseline value	Search values	Best value
Pseudo-label threshold $\tau_{EMO/AH}$	0.8	[0.5, 0.6, 0.7, 0.8, 0.9]	0.6
Pseudo-label threshold τ_{PT}	0.5	[0.5, 0.55, 0.6, 0.56]	0.6
Gradient balancing controller α^s	1	[1.0, 1.25, 1.50, 1.75]	1.25
Gradient balancing controller α^{ss}	0.25	[0.25, 0.50, 0.75, 1.0, 1.25]	1.0
Learning rate η_{hw}^s	0.005	[0.005, 0.01, 0.025]	0.01
Learning rate η_{hw}^{ss}	0.004	[0.004, 0.005, 0.006]	0.005
Budget coefficient λ	0.1	[0.1, 0.2, 0.3, 0.4]	0.3
Min value of the task contribution coefficients w_{floor}	10^{-3}	$[10^{-2}, 10^{-3}, 10^{-4}]$	10^{-3}

1522

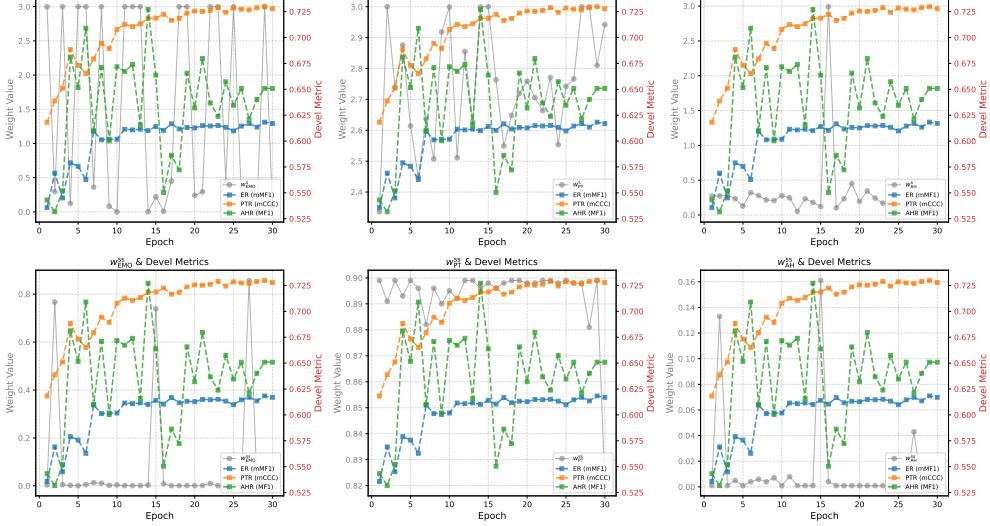


Figure 7: Visualization of adaptive change of task contribution coefficients by the best SSL hyperparameters.

training epoch using the double-branch GradNorm method. The coefficient trajectories are plotted in gray. The blue line shows the evolution of the mMF1 measure for ER, the orange line tracks mCCC for PTR, and the green line represents MF1 performance for AHR. Overall, the measures for emotion and PTs show a monotonic increase from the beginning to the end of learning, indicating stable and consistent learning. In contrast, the ambivalence curve has high volatility and is sensitive to changes in task weights. Interestingly, the weights for ambivalence are consistently low, both in supervised and semi-supervised settings. Conversely, the weights for PTs remain moderate to high with supervised learning and consistently high with SSL, suggesting that using pseudo-labels is critical for optimizing this task. The supervised weights are highly unstable for ER, while the semi-supervised weights remain persistently low. Despite their low magnitude, the semi-supervised weights for emotions and ambivalence were deliberately increased at epoch 15, coinciding with a reduction in the supervised weights. This adjustment yielded peak overall multitask performance, suggesting that strategic rebalancing towards SSL could positively impact the model’s generalizability across all tasks. Even for tasks with noisy or sparse pseudo-labels, the double-branch GradNorm method can mitigate overfitting to limited labeled data and promote cross-task regularization through shared representation learning.

A.9 CORRELATION BETWEEN TASKS AND ERROR ANALYSIS

Figure 8 illustrates the complex interplay between emotions, PTs, and ambivalence in a correlation matrix. Ambivalence shows positive correlations with negative emotions, particularly Sadness, Fear, and Disgust, and a negative correlation with Happiness, suggesting that ambivalent states are more likely to co-occur with distress-related affect rather than positive emotional experiences. No substantial correlations were observed between ambivalence and PTs, likely because ambivalence reflects

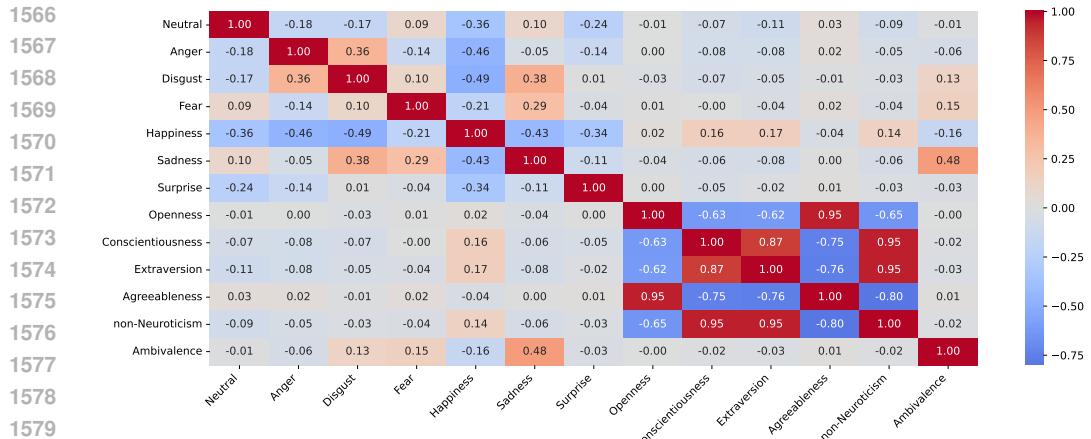


Figure 8: Visualization of the correlation between three target tasks.

a transient affective conflict rather than a stable dispositional characteristic. PTs exhibit strong positive correlations between Openness and Agreeableness and negative correlations among other Big Five dimensions. Regarding emotions, Happiness is negatively associated with most other emotional states but positively linked to Extraversion, Non-neuroticism, and Conscientiousness, aligning with established affect-trait relationships. Anger and Disgust are highly positively correlated, possibly due to overlapping expressive or semantic features in the underlying data. Disgust, Fear, and Sadness also correlate, potentially reflecting shared arousal dimensions or contextual triggers. These patterns suggest that while PTs traits form a stable, interrelated system, emotional experiences, particularly negative ones, are more dynamically intertwined with ambivalence.

Figure 9 shows the confusion matrices on MELD for different model configurations. The error analysis across the three configurations highlights the central role of learning strategies in addressing model cross-dataset generalizability to new data. By the SCD-MMPSR w/o SSL and multitask configuration, where the model was trained solely in a supervised manner on the single corpus, predictions are heavily biased toward the majority class Happiness, with more than 50% of all samples misclassified as such. This outcome reflects the uneven distribution of the training data and demonstrates the model’s limited ability to generalize to less common emotion categories when faced with unseen data. Emotions such as Fear and Disgust are underrepresented in the model. The model often confuses Disgust with other emotions, such as Anger and Happiness, and Fear is confused with all emotions except Disgust.

The introduction of SSL with additional unlabeled corpora substantially mitigates this bias. By leveraging pseudo-labeling, the model in the second configuration (SCD-MMPSR w/o multitask) exhibits a more balanced distribution of predictions across emotion classes. While Happiness still dominates, the recall for Anger, Sadness, and Surprise improves, suggesting that exposure to a broader range of inputs encourages more nuanced decision boundaries. In the case of Disgust, the confusion between classes is reduced, with errors now primarily occurring in Anger and Happiness.

The full configuration (SCD-MMPSR) achieves the most consistent improvements. Incorporating auxiliary tasks (PTR and AHR) alongside pseudo-labeling introduces inductive biases, leading to significant improvements in UAR. This setup reduces the over-prediction of Happiness and strengthens recognition of Neutral, Anger, and Surprise, which benefit from richer contextual embeddings derived from the auxiliary tasks. The improved balance of classification across categories demonstrates that multitask signals help the model disentangle subtle affective cues that are otherwise obscured when optimizing for ER alone. Moreover, the problem with Fear and Disgust has been notably reduced: while in the previous two configurations both classes were predominantly misclassified as Happiness, which has the opposite valence, the errors are now redirected toward Anger, a category with closer semantic relations and overlapping multimodal patterns.

In summary, the main challenge remains a reliable minority ER, which is still affected by class imbalance and cross-domain discrepancies. Semi-supervised, cross-domain, and multitask learning

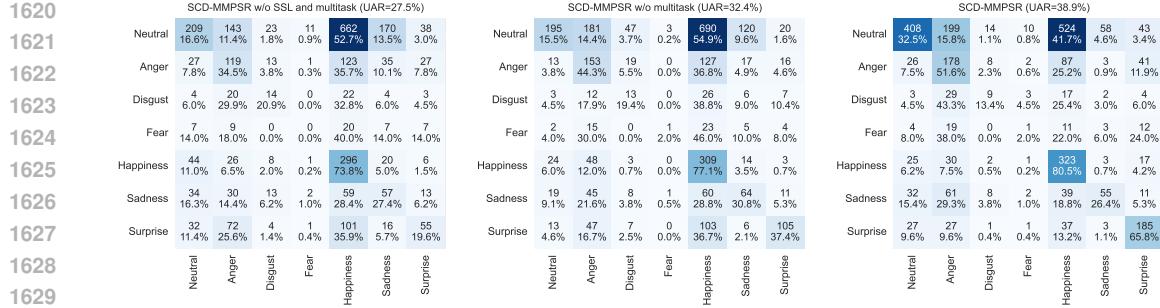


Figure 9: Confusion matrices obtained for the Test subset of the Meld corpus with different model configurations: SCD-MMPSR w/o SSL and multitask (left sub-figure), SCD-MMPSR w/o multitask (central sub-figure), SCD-MMPSR (right).

methods reduce bias and improve overall balance. However, confusion persists for semantically related categories. Future work could address these issues by adapting to the domain to align feature distributions across corpora. Combined with targeted data augmentation or reweighting strategies, this could help strengthen minority-class representations.

A.10 COMPUTATIONAL COST

Table 17 provides a summary of the computational costs of the full MCDM model with UCGNN and MHA and its variants. The complete model incurs a moderate overhead of 9.76 M parameters, 37.2 MB in model size, and 158 seconds per epoch, primarily due to the presence of task-specific projections, graph- and cross-attention mechanisms.

Removing cross-attention layers leads to the largest reduction in model size (6.60 M parameters), while eliminating graph-attention layers results in the lowest training time (55 seconds per epoch), reflecting their computational intensity. Removing the guide bank layers slightly reduces training time, but has a negligible impact on the number of parameters or model size, confirming its lightweight design. Removing any single modality or task reduces the complexity of the model.

Table 17: Computational cost of various SCD-MMPSR configurations

Configuration	Number of parameters, M	Model weight, MB	Learning time per epoch, s
SCD-MMPSR	9.756	37.2	158
w/o Task-Specific Projectors	8.159	31.1	73
w/o Graph Layers	8.703	33.2	55
w/o Attention Layers	6.604	25.2	125
w/o Guide Bank Layers	9.749	37.2	147
w/o Video Modality	8.967	34.2	148
w/o Audio Modality	8.705	33.2	148
w/o Text Modality	8.705	33.2	148
w/o Behavior Modality	8.705	33.2	152
w/o ER task	7.901	30.1	111
w/o PTR task	7.905	30.1	112
w/o AHR task	7.911	30.2	120

It should be noted that the figures in Table 17 pertain exclusively to the SCD-MMPSR core model, trained on pre-extracted unimodal features and thus excluding the upstream feature extraction pipeline. The full framework, however, incorporates pretrained encoders for all modalities: MediaPipe for face detection (1 MB), CLIP for visual features (605 MB), CLAP for audio (615 MB), EmoRoBERTa for text (329 MB), Whisper-Turbo for speech transcription (1.62 GB), and Qwen2.5-VL-3b for behavior description generation (3.98 GB). While these components account for the majority of the total memory cost (approximately 7 GB combined), they are only used during pre-processing. When executed end-to-end on an NVIDIA A100 GPU, the complete system processes a 1-second video in 1.11 seconds on average, with 0.69 seconds spent on behavior description generation via Qwen2.5-VL-3b, highlighting it as the current computational bottleneck.

1674 To reduce the computational cost associated with LLMs, we plan to explore several techniques in
1675 our future research. These include distilled student models, dynamic batching, caching of behavioral
1676 descriptions for repeated contexts, and more compact prompting schemes. This allows the proposed
1677 framework to provide near-real-time inference.

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727