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ABSTRACT

Contrastive learning is a highly successful technique for learning representations
of data from labeled tuples, specifying the distance relations within the tuple. We
study the sample complexity of contrastive learning, i.e. the minimum number of
labeled tuples sufficient for getting high generalization accuracy. We give tight
bounds on the sample complexity in a variety of settings, focusing on arbitrary
distance functions, both general ℓp-distances, and tree metrics. Our main result is
an (almost) optimal bound on the sample complexity of learning ℓp-distances for
integer p. For any p ≥ 1 we show that Θ̃(min(nd, n2)) labeled tuples are neces-
sary and sufficient for learning d-dimensional representations of n-point datasets.
Our results hold for an arbitrary distribution of the input samples and are based
on giving the corresponding bounds on the Vapnik-Chervonenkis/Natarajan di-
mension of the associated problems. We further show that the theoretical bounds
on sample complexity obtained via VC/Natarajan dimension can have strong pre-
dictive power for experimental results, in contrast with the folklore belief about
a substantial gap between the statistical learning theory and the practice of deep
learning.

1 INTRODUCTION

Contrastive learning (Gutmann & Hyvärinen, 2010) has recently emerged as a powerful technique
for learning representations, see e.g. Smith & Eisner (2005); Mikolov et al. (2013); Dosovitskiy
et al. (2014); Schroff et al. (2015a); Wang & Gupta (2015); Wu et al. (2018); Logeswaran & Lee
(2018a); Hjelm et al. (2019); He et al. (2020); Tian et al. (2020); Chen et al. (2020); Chen & He
(2021); Gao et al. (2021); Chen et al. (2021). In this paper we study the generalization properties
of contrastive learning, focusing on its sample complexity. Despite recent interest in theoretical
foundations of contrastive learning, most of the previous work approaches this problem from other
angles, e.g. focusing on the design of specific loss functions (HaoChen et al., 2021), transfer learn-
ing (Saunshi et al., 2019; Chuang et al., 2020), multi-view redundancy (Tosh et al., 2021), inductive
biases (Saunshi et al., 2022; HaoChen & Ma, 2023), the role of negative samples (Ash et al., 2022;
Awasthi et al., 2022), mutual information (van den Oord et al., 2018; Hjelm et al., 2019; Bachman
et al., 2019; Tschannen et al., 2020), etc. (Wang & Isola, 2020; Tsai et al., 2021; Zimmermann et al.,
2021; von Kügelgen et al., 2021; Mitrovic et al., 2021; Wen & Li, 2021).

Generalization is one of the central questions in deep learning theory. However, despite substantial
efforts, a folklore belief still persists that the gap between classic PAC-learning and the practice
of generalization in deep learning is very wide. Here we focus on the following high-level ques-
tion: can PAC-learning bounds be non-vacuous in the context of deep learning? Direct applica-
tions of PAC-learning to explain generalization in neural networks lead to vacuous bounds due to
the high expressive power of modern architectures. Hence, recent attempts towards understanding
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generalization in deep learning involve stability assumptions (Hardt et al., 2016), PAC-Bayesian
bounds (Langford & Caruana, 2001; Dziugaite & Roy, 2017; Neyshabur et al., 2017), capacity
bounds (Neyshabur et al., 2019), sharpness (Keskar et al., 2017; Lyu et al., 2022) and kerneliza-
tion (Arora et al., 2019; Wei et al., 2019) among others (see e.g. Jiang et al. (2020) for an overview).
In this paper, we make a step towards closing this gap by showing that the classic PAC-learning
bounds have strong predictive power over experimental results.

We overcome this gap by changing the assumptions used to analyze generalization, shifting the
emphasis from the inputs to the outputs. While it is typical in the literature to assume the presence of
latent classes in the input (Saunshi et al., 2019; Ash et al., 2022; Awasthi et al., 2022), we avoid this
assumption by allowing arbitrary input distributions. Instead, we shift the focus to understanding the
sample complexity of training a deep learning pipeline whose output dimension is d, only assuming
that by a suitable choice of architecture, one can find the best mapping of a given set of samples into
Rd. Hence, our assumptions about the architecture are very minimal, allowing us to study the sample
complexity more directly. This is in contrast with the previous work, where a typical approach in
the study of generalization (see e.g. Zhang et al. (2017)) is to assume that n input points are in Rd,
while here we only assume the existence of an embedding of these points into a (metric) space such
as Rd. This avoids the challenges faced by Zhang et al. (2017) and related work, which shows that
a two-layer network with 2n+ d parameters can learn any function of the input.

1.1 OUR RESULTS

Consider a simple model for contrastive learning in which labeled samples (x, y+, z−1 , . . . , z−k ) are
drawn i.i.d. from an unknown joint distribution D. 1 Here x is referred to as the anchor, y+ is a
positive example and z−i are negative examples, reflecting the fact that the positive example is “more
similar” to the anchor than the negative examples. Before the tuple is labeled, it is presented as an
anchor x together with an unordered (k+ 1)-tuple (x1, . . . , xk+1), from which the labeling process
then selects a single positive example y+ and k negative examples z−1 , . . . , z−k .

The goal of contrastive learning is to learn a representation of similarity between the domain points,
usually in the form of a metric space. For samples from a domain V , the learned representation is
a distance function ρ : V × V → R. A highly popular choice for the domain is the ℓp-space under
ℓp-distance ρp(x, y) = ∥f(x) − f(y)∥p for some f : V → Rd, with p = 2 used most frequently.
Our central question is:

How many contrastive samples are needed for learning a good distance function?

The number of samples is a primary factor in the computational cost of training. While it is typical
for the previous work to consider the number of samples required for generalization to be somewhat
unimportant and focus on performance on the downstream tasks (in fact, contrastive learning is
often referred to as an unsupervised learning method, see e.g. Saunshi et al. (2019)), here we focus
specifically on the sample complexity. This is due to the fact that even if the samples themselves
might be sometimes easy to obtain (e.g. when class labels are available and (x, y+) are sampled
from the same class2), the computational cost is still of major importance and scales linearly with
the number of samples.

Furthermore, in some settings, sample complexity might itself correspond to the cost of labeling,
making the contrastive learning process directly supervised. Consider, for example, a crowdsourcing
scenario (see e.g. Zou et al. (2015)), where a triple is shown as (x, y, z) to a labeler who labels it
according to whether y or z is more similar to x. In this setting, data collection is of primary
importance since the sample complexity corresponds directly to the labeling cost.

In this paper, we state our main results first for the case k = 1 in order to simplify the presentation.
Our bounds for general k are obtained by straightforward modifications of the proofs for this case.

1This is substantially more general and hence includes as special cases typical models used in the literature
which make various further assumptions about the structure of D (e.g. Saunshi et al. (2019); Chuang et al.
(2020); Awasthi et al. (2022)).

2In this case, class information is still required, making this approach somewhat supervised. Supervision can
be fully avoided, e.g. by creating a positive example from the anchor point (e.g. via transformations), although
this can affect the quality of the learned metric due to the more limited nature of the resulting distribution.
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Table 1: Sample complexity for contrastive learning for a dataset of size n. The notation Oϵ,δ hides
dependence on ϵ and δ. Dimension of the representation is denoted as d. Let d̃ = min(n, d).

Setting Lower bound Upper bound

ℓp for integer p Ωϵ,δ(nd̃), Thm. 3.1
Even p: Oϵ,δ(nd̃) (matching), Thm. 3.2

Odd p: Oϵ,δ(nmin(d log n, n)), Thm. 3.2

Constant d: Oϵ,δ(n) (matching), Thm. 3.2

(1 + α)-separate ℓ2 Ωϵ,δ(n/α), Thm. 4.2 Õϵ,δ(n/α2), Thm. 4.2

Arbitrary distance Ωϵ,δ(n
2), Thm. 2.7 Oϵ,δ(n

2) (matching), Thm. 2.7

Cosine similarity Ωϵ,δ(nd̃) Thm D.3 Oϵ,δ(nd̃) (matching) Thm D.3

Tree metric Ωϵ,δ(n), Thm. D.2 Oϵ,δ(n log n), Thm. D.2

Generalizations, in the same settings
Quadruplet learning Same, Cor. C.3 Same, Cor. C.3

k negatives Same, Thm. 4.1,C.1 Same, with extra log(k + 1) factor, Thm. 4.1

Theoretical Results We address the above central question in the framework of PAC-
learning (Valiant, 1984) by giving bounds on the number of samples required for the prediction
of subsequent samples. Recall that we use notation (x, y, z) to refer to unlabeled samples and
(x, y+, z−) for their labeled counterparts. In contrastive learning, a classifier is given access to m
labeled training samples {(xi, y

+
i , z

−
i )}mi=1 drawn from D. The goal of the classifier is to correctly

classify new samples from D. I.e. for every such sample with the ground truth label hidden and
thus presented as (x, y, z), to correctly label it as either (x, y+, z−) or (x, z+, y−). For the resulting
classifier, we refer to the probability (over D) of incorrectly labeling a new sample as the error rate.

Let H be a hypothesis class (in our case, metric spaces, ℓp-distances, etc.). For parameters ϵ, δ > 0,
the goal of the training algorithm is to find with probability at least 1 − δ a classifier with the error
rate at most ϵ + ϵ∗, where ϵ∗ is the smallest error rate achieved by any classifier from H (i.e. the
best error achieved by a metric embedding, ℓp-embedding, etc.). We refer to the number of samples
required to achieve the required error rate as sample complexity. See Appendix A for a concrete
example.

As is standard in PAC-learning, we state results in two settings: realizable and agnostic. Here
realizable refers to the case when there exists a distance function in our chosen class (e.g. ℓ2-
distance) that perfectly fits the data, i.e. ϵ∗ = 0, while in the agnostic setting, such a function
might not exist. Let n = |V | be the number of data points in the dataset, which the triples are
sampled from. We summarize our results in Table 1. To simplify the presentation, for the rest of
the section we assume that ϵ, δ are fixed constants (see full statements of our results for the precise
bounds, which show optimal dependence on these parameters). We first give a simple baseline,
which characterizes the number of samples required for contrastive learning.
Theorem 1.1 (Arbitrary distance3 (informal), full statement: Theorem 2.7). The sample complexity
of contrastive learning for arbitrary distance functions is Θ(n2), where the lower bound holds even
for metric distances.

This basic guarantee is already substantially better than the overall Θ(n3) number of different triples,
but can still be a pessimistic estimate of the number of samples required. We thus leverage the fact
that in practice ℓp-spaces are a typical choice for a representation of the distance function between
the data points. In particular, ℓ2-distance (and the related cosine similarity) is most frequently used as
a measure of similarity between points after embedding the input data into Rd. Here the dimension d
of the embedding space is typically a fixed large constant depending on the choice of the architecture
(e.g. d = 512, 1024, 4096 are popular choices).

Our main results are much stronger bounds on the sample complexity of learning representations
under these ℓp distances. For any ℓp-distance we get the following result:

3In this paper, the only requirement for arbitrary distances is symmetry, i.e. ρ(x, y) = ρ(y, x)
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Theorem 1.2 (ℓp-distance upper bound (informal), full statement: Theorem 3.2). For any constant
integer p, the sample complexity of contrastive learning under ℓp-distance is O(min(nd, n2)) if p is
even, and O(min(nd log n, n2)) if p is odd. Furthermore, if d = O(1), then the sample complexity
is O(n) for any positive integer p.

We show an Ω(min(nd, n2)) lower bound for any ℓp-distance, essentially matching our upper
bounds:

Theorem 1.3 (ℓp-distance lower bound (informal), full statement: Theorem 3.1). For any constant
integer p, the sample complexity of contrastive learning under ℓp-distance is Ω(min(nd, n2)).

For cosine similarity, we show the same result:

Theorem 1.4 (Cosine similarity (informal), full statement: Theorem D.3). The sample complexity
of contrastive learning under cosine similarity is Θ(min(nd, n2)).

Using the techniques we develop for the above results, we also immediately get the following result:

Theorem 1.5 (Tree distance (informal), full statement: Theorem D.2). The sample complexity of
contrastive learning under tree distance is Ω(n) and O(n log n).

We also present multiple variations and extensions to complement the main results above. First, we
show that the results above can be extended to the case where the positive example has to be selected
among k+1 options instead of just two, as is typical in the literature. This results in a log k increase
in the sample complexity (see Theorem 4.1). Furthermore, our results can be extended to the case
when the samples are well-separated, i.e. the distance to the negative example is at least a factor
(1+α) larger than the distance to the positive example. This is a frequent case in applications when
the positive example is often sampled to be much closer to the anchor, which is often referred to as
learning with hard negatives. In this case, we give an Õ(n/α2) upper bound and an Ω(n/α) lower
bound (see Theorem 4.2).

Finally, we show in Corollary C.3 that all of our results can be adapted to another popular sce-
nario in contrastive learning, where instead of sampling triples, one instead samples quadru-
ples ((x+

1 , x
+
2 ), (x

−
3 , x

−
4 )) with the semantic that the pair (x+

1 , x
+
2 ) is more similar than the pair

(x−
3 , x

−
4 ). While the lower bounds transfer trivially, it is somewhat surprising that the upper bounds

also hold for this case despite the fact that the overall number of different samples is Θ(n4).

Outline of the techniques To describe the main idea behind our techniques, consider the case
of ℓ2-metrics in a d-dimensional space. Let f : V → Rd be a function mapping elements to
their representations, and then the query (x, y, z) is labeled (x, y+, z−) if ∥f(x) − f(y)∥2 <

∥f(x) − f(z)∥2. This is equivalent to
∑d

i=1(fi(x) − fi(y))
2 <

∑d
i=1(fi(x) − fi(z))

2, where
fi denotes the i-th coordinate of the representation. This condition can be written in the form
P (f1(x), . . . , fd(x), f1(y), . . . , fd(y), f1(z), . . . , fd(z)) < 0, where P is some polynomial of de-
gree 2. Hence, every input triplet corresponds to a polynomial such that the label of the triplet
is decided by the sign of this polynomial. We show that the number of possible satisfiable sign
combinations of the polynomials – and hence the largest shattered set of triplets – is bounded.

Experimental results To verify that our results indeed correctly predict the sample complexity,
we perform experiments on several popular image datasets: CIFAR-10/100 and MNIST/Fashion-
MNIST. We find the representations for these images using ResNet18 trained from scratch using
various contrastive losses. Our experiments show that for a fixed number of samples, the error rate
is well approximated by the value predicted by our theory. We present our findings in Appendix F.

1.2 OTHER PREVIOUS WORK

For a survey on metric learning we refer the reader the the monograph by Kulis (2013). A popular
approach to metric learning involves learning Mahalanobis metrics, see Verma & Branson (2015) for
PAC-like bounds in this setting. Wang & Tan (2018) study the sample complexity of this problem in
the presence of label noise. We note that our bounds are more general since Mahalanobis distances
only represent a subclass of possible metrics.
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Related problems are also studied in the literature on ordinal embeddings, which requires adaptive
queries in order to recover the underlying embedding. This is in contrast with our work where
the samples are taken non-adaptive from an unknown distribution. For triplet queries, Arias-Castro
(2017) shows that it’s possible to recover the embedding from the triplets queries, up to a trans-
formation, and provide convergence rates for quadruplet queries. Ghosh et al. (2019) shows that
O(d8n log n) adaptive noisy triplet queries suffice for recovering an embedding up to a transforma-
tion with O(1) additive divergence. Terada & Luxburg (2014) shows that it’s possible to recover the
ground-truth points up to a transformation assuming that these points are sampled from a continuous
distribution assuming the kNN graph is given.

2 PRELIMINARIES

In order to state our main results, we first introduce formal definitions of contrastive learning in the
realizable and agnostic setting and the associated notions of Vapnik-Chervonenkis and Natarajan
dimension. We start by giving the definitions for the simplest triplet case.
Definition 2.1 (Contrastive learning, realizable case). Let H be a hypothesis class and ρ ∈ H be an
unknown distance function.4 Given access to samples of the form (x, y+, z−) from a distribution D,
meaning ρ(x, y) < ρ(x, z), the goal of contrastive learning is to create a classifier from H which
accurately labels subsequent unlabeled inputs. For an error parameter ϵ ∈ (0, 1/2) 5, the sample
complexity of contrastive learning, denoted as S3(ϵ, δ), is the minimum number of samples required
to achieve error rate ϵ with probability at least 1− δ.
Definition 2.2 (Contrastive learning, agnostic case). Let H be a hypothesis class. Given access
to labeled samples of the form (x, y+, z−) from a distribution D, the goal of agnostic contrastive
learning is to create a classifier from H which accurately labels subsequent unlabeled inputs. For
an error parameter ϵ > 0, the sample complexity of contrastive learning, denoted as Sa

3 (ϵ, δ), is the
minimum number of samples required to achieve error rate ϵ + ϵ∗ with probability at least 1 − δ,
where ϵ∗ is the best error rate that can be achieved by a hypothesis ρ ∈ H.

The above definitions can be naturally generalized to the case when instead of triplets we get inputs
of the form (x, x1, . . . , xk+1) and the objective is to select xi minimizing ρ(x, xi).
Definition 2.3 (Quadruplet learning). If instead of triplets as in the definitions above, the samples
are quadruples of the form ((x, y), (z, w)) labeled according to whether the (x, y) pair is closer
than the (z, w) pair, we refer to this problem as quadruplet contrastive learning and denote the
corresponding sample complexities as SQ(ϵ, δ) and Sa

Q(ϵ, δ).

VC and Natarajan dimension The main tool used for sample bounds is the Vapnik–Chervonenkis
(VC) dimension for binary classification and the Natarajan dimension for multi-label classification.
Definition 2.4 (VC-dimension (Vapnik & Chervonenkis, 1971)). Let X be the set of inputs. Let
H ⊆ 2X be a set of subsets of X , called the hypothesis space. We say that A ⊂ X is shattered
by H if for any B ⊂ A there exists a hypothesis h ∈ H such that h ∩ A = B. Finally, the
Vapnik–Chervonenkis (VC) dimension of H is defined as the size of the largest shattered set.

Intuitively, a set A is shattered if all of 2|A| possible labelings on A are realizable by H . In our case,
the set of inputs X is defined by all possible triplets on V , i.e. X ⊆ V 3.

The set of distance functions ∆ will vary depending on the setting. Below we show results when ∆
contains 1) all possible distance functions6, 2) all metrics induced by the ℓp-norms over n points in
Rd, and 3) other distance functions, such as tree metrics, cosine similarity etc.

For non-binary (finite) labels, the key property we use to characterize the sample complexity of a
problem is the Natarajan dimension, which generalizes the VC dimension Ben David et al. (1995):

4The inputs are labeled based on ρ. With a slight abuse of notation, we refer to both the distance function
and the hypothesis (i.e. a classifier) it defines as ρ.

5The 1/2 error rate can be achieved by random guess, which requires zero samples. Hence, our theory makes
prediction only for non-trivial values of ϵ, as in Blumer et al. (1989)

6We only consider functions such that all distances are different. This is a reasonable assumption since
in practice the probability of encountering exactly the same distances is zero. This assumption simplifies the
analysis since we only need to consider the binary classification case
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Definition 2.5 (Natarajan dimension (Natarajan, 1989)). Let X be the set of inputs, Y be the set
of labels, and let H ⊆ Y X be a hypothesis class. Then S ⊆ X is N-shattered by H if there exist
f1, f2 : X → Y such that f1(x) ̸= f2(x) for all x ∈ A and for every B ⊆ A there exists g ∈ H
such that:

g(x) = f1(x) for x ∈ B and g(x) = f2(x) for x /∈ B

Finally, the Natarajan dimension Ndim(H) of H is the maximum size of an N -shattered set.

Lemma 2.6 ((Ben David et al., 1995), Informal). If |Y | is finite, then for the sample complexity
S(ϵ, δ) of the realizable case it holds that:

S(ϵ, δ) = O

(
Ndim(H) log |Y |

ϵ
polylog

(
1

ϵ
,
1

δ

))
and Ω

(
Ndim(H)

ϵ
polylog

(
1

ϵ
,
1

δ

))
In the agnostic case:

Sa(ϵ, δ) = O

(
Ndim(H) log |Y |

ϵ2
polylog

(
1

ϵ
,
1

δ

))
and Ω

(
Ndim(H)

ϵ2
polylog

(
1

ϵ
,
1

δ

))
VC-dimension is a special case of Natarjan-dimension when |Y | = 2. In Appendix A we give
examples to illustrate the notion of shattering.

Before presenting our main results, we state the following simple baseline, which we prove in Ap-
pendix D.

Theorem 2.7 (Arbitrary distance). For an arbitrary distance function ρ : V ×V → R and a dataset
of size n, the sample complexity of contrastive learning is S3(ϵ, δ) = Θ

(
n2

ϵ polylog
(
1
ϵ ,

1
δ

))
in the

realizable case and Sa
3 (ϵ, δ) = Θ

(
n2

ϵ2 polylog
(
1
ϵ ,

1
δ

))
in the agnostic case. Furthermore, the lower

bounds hold even if ρ is assumed to be a metric.

3 CONTRASTIVE LEARNING IN ℓp-NORM

In this section, we show in most cases optimal bounds for the sample complexity of the contrastive
learning problem for the ℓp-metric in dimension Rd, for any constant integer p ≥ 1. First, we
give the following lower bound, whose proof is deferred to Appendix B.1. Recall that ρp(x, y) =
∥f(x)− f(y)∥p for f : V → Rd.

Theorem 3.1 (Lower bound for ℓp-distances). For any real constant p ∈ (0,+∞), a dataset V
of size n, and the ℓp distance ρp : V × V → R in a d-dimensional space, the sample complex-

ity of contrastive learning is S3(ϵ, δ) = Ω
(

min(nd,n2)
ϵ polylog

(
1
ϵ ,

1
δ

))
in the realizable case and

Sa
3 (ϵ, δ) = Ω

(
min(nd,n2)

ϵ2 polylog
(
1
ϵ ,

1
δ

))
in the agnostic case.

We then show that for integer p this bound can be closely matched by the following upper bounds:

Theorem 3.2 (Upper bound for ℓp-distances for integer p). For integer p, a dataset V of size n, and
the ℓp distance ρp : V × V → R in a d-dimensional space, the sample complexity of contrastive
learning is upper-bounded as shown in Table 2.

Setting Realizable case Agnostic case
Even p min(nd, n2)/ϵ min(nd, n2)/ϵ2

Odd p min(nd log n, n2)/ϵ min(nd log n, n2)/ϵ2

Constant d n/ϵ n/ϵ2

Table 2: Upper bounds on sample complexity bounds for ℓp distances up to polylog
(
1
ϵ ,

1
δ

)

Proof. For the first two cases, we assume d < n, since otherwise, the bounds follow from Theo-
rem 2.7. Our proof uses the following result of Warren (1968) from algebraic geometry:
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Fact 3.3 (Warren (1968)). Let m ≥ ℓ ≥ 2 be integers, and let P1, . . . , Pm be real polynomials on ℓ
variables, each of degree ≤ k. Let

U(P1, . . . , Pm) =
{
x⃗ ∈ Rℓ | Pi(x⃗) ̸= 0 for all i ∈ [m]

}
be the set of points x ∈ Rℓ which are non-zero in all polynomials. Then the number of connected
components in U(P1, . . . , Pm) is at most (4ekm/ℓ)ℓ.

In order to bound the sample complexity of the contrastive learning problem, by Lemma 2.6 it suf-
fices to bound its Natarajan dimension, which in the binary case is equivalent to the VC dimension.
In particular, we show that for a dataset V of size n, the VC-dimension of contrastive learning for ℓp-
distances in dimension d is O(nmin(d, n)) for even p ≥ 2 and O(nd log n) for odd p ≥ 1. For this
it suffices to show that for every set of queries Q = {(ui, vi, wi)}mi=1 of size m = Ω̃(nmin(d, n)),
there exists labeling of Q that cannot be satisfied by any embedding in a d-dimensional ℓp-space.
We split the analysis into cases for even p and odd p.

Upper Bound for Even p. We associate each data point v ∈ V with a set of d variables
x1(v), . . . , xd(v), corresponding to coordinates of v after embedding in the d-dimensional space.
Let x⃗ = (x1(v1), . . . , xd(v1), . . . , x1(vn), . . . , xd(vn)). For every constraint (u, v, w), we define
the polynomial Pu,v,w : Rnd → R as

P(u,v,w)(x⃗) =

d∑
j=1

(xj(u)− xj(v))
p −

d∑
j=1

(xj(u)− xj(w))
p.

Note that P(u,v,w)(x⃗) < 0 if and only if the constraint (u, v+, w−) is satisfied, and P(u,v,w)(x⃗) > 0

if and only if the constraint (u,w+, v−) is satisfied. Finally, we define P1, . . . , Pm for i ∈ [m] as
Pi(x⃗) = Pui,vi,wi(x⃗).

For any labeling Q⃗ of the queries Q and for any i ∈ [m], we define si(Q⃗) = 1 if the i’th query
(ui, vi, wi) ∈ Q is labeled as (ui, v

+
i , w

−
i ), and si(Q⃗) = −1 otherwise.

We make the following observations, which are proven in Section B:

Lemma 3.4. For s ∈ {−1, 1}m, define Cs = {x⃗ ∈ Rd | signPi(x⃗) = si for all i}. Then:

1. For distinct s, s′ ∈ {−1, 1}m we have Cs ∩ Cs′ = ∅.
2. Each Cs is either empty or is a union of connected components of U(P1, . . . , Pm).
3. Let Q⃗ be a labeling of Q. Then Cs(Q⃗) ̸= ∅ if and only if there is a mapping V → Rd

satisfying all the distance constraints of Q⃗.

We now complete the proof for the case of even p. Defining P1, . . . , Pm as above, by Theorem 3.3,
there are at most (4epm/nd)nd connected components in the set U(P1, . . . , Pm). Since for two la-
belings Q⃗1, Q⃗2 of Q it holds that s(Q⃗1) ̸= s(Q⃗2), then by Lemma 3.4 either the sets Cs(Q⃗1)

and
Cs(Q⃗2)

are different connected components, or at least one of them is empty. Moreover, the number
of possible labelings of Q is 2m, which is greater than (4epm/nd)nd when choosing m ≥ cnd for a
sufficiently large constant c. Therefore, for at least one labeling Q⃗ it holds that Cs(Q⃗) = ∅. Since

there is no embedding satisfying the distance constraints of Q⃗, the claim follows.

Upper bound for odd p. In the case of odd p it suffices to show that for a dataset of size n in
dimension d, the VC-dimension of contrastive learning for ℓp-distances is O(nd log n). Unlike in the
even p case, our distance constraints are comprised of sums of functions of the form |xj(u)−xj(v)|p,
and are thus not polynomial constraints. On the other hand, we note that if we have some fixed
ordering of the points w.r.t. each coordinate, these constraints become polynomials. To address the
issue, we enumerate all possible choices for the ordering of the points w.r.t. each coordinate and
show that there is a labeling Q⃗ such that no embedding satisfies it, regardless of the ordering.

Similarly to the case of even p, we associate with each v ∈ V a set of d variables x1(v), . . . , xd(v).
Let x⃗ = (x1(v1), . . . , xd(v1), . . . , x1(vn), . . . , xd(vn)). For every coordinate i ∈ [d], we fix the
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ordering of the points w.r.t. this coordinate, i.e. we fix a permutation π(i) : [n] → [n] such that
xi(vπ(i)(1)) ≤ xi(vπ(i)(2)) ≤ · · · ≤ xi(vπ(i)(n)), and bound the number of satisfiable labelings

which respect this ordering. We define σ
(i)
uv = 1 if xi(u) ≥ xi(v) and σ

(i)
uv = −1 otherwise, and

refer to σ as the order. Then, for any constraint (u, v, w), define the polynomial Pu,v,w : Rnd → R:

P(u,v,w)(x⃗) =

d∑
j=1

σ(j)
uv (xj(u)− xj(v))

p −
d∑

j=1

σ(j)
uw(xj(u)− xj(w))

p.

Note that P(u,v,w)(x⃗) < 0 if and only if the constraint (u, v+, w−) is satisfied for the selected order
π(1), . . . , π(d) (and likewise for P(u,v,w)(x⃗) > 0 and (u,w+, v−)). Similarly to the case of even p,
we define P1, . . . , Pm for i ∈ [m] as Pi(x⃗) = Pui,vi,wi(x⃗), and for any labeling Q⃗ of queries Q, for
all i ∈ [m], we define si(Q⃗) = 1 if the i’th query (ui, vi, wi) ∈ Q is labeled as (ui, v

+
i , w

−
i ), and

si(Q⃗) = −1 otherwise.

As in the case of even p, by Fact 3.3, there are at most (4epm/nd)nd connected components in the set
U(P1, . . . , Pm). Therefore, there are at most (4epm/nd)nd choices of labels which are satisfiable in
a manner that respects the ordering π(1), . . . , π(d).

Taking m = Ω(nd log n), we have that 2m

nnd >
(
4epm
nd

)nd
. Since there are (n!)d < nnd possible

choices of the permutations π(1), . . . , π(n) and hence at most as many orders σ, there are at most
(4epm/nd)nd ·nnd possible labelings for which there exists some order such that the set of constraints
is satisfiable and respects this order. Since (4epm/nd)nd ·nnd is less than 2m, there exists a choice of
a labeling Q⃗ for which the constraints are not satisfiable for any order, i.e. Q is not shattered.

Upper Bound for Constant d. We will proof the following statement: for constant odd p ∈
(0,+∞), a dataset V of size n, and the ℓp distance ρp : V × V → R in a d-dimensional space,
the VC dimension of contrastive learning is O(nd2). This gives optimal bound for constant d.

Similarly to the proof above, we assume that d2 < n. We then prove the sample complexity bound
by bounding the VC dimension of the problem by O(nd2), and obtain the sample bounds using
Theorem 2.6.

Similar to previous cases, we associate with each v ∈ V a set of d variables x1(v), . . . , xd(v). Let
x⃗ = (x1(v1), . . . , xd(v1), . . . , x1(vn), . . . , xd(vn)).

We associate each constraint with 22d polynomials in the following manner: for any constraint
(u, v, w) and any choice τ ∈ {−1, 1}2d, we define the polynomial Pτ,u,v,w : Rℓ → R as

Pτ,u,v,w(x⃗) =

d∑
j=1

τ(j)(xj(u)− xj(v))
p −

d∑
j=1

τ(d+ j)(xj(u)− xj(w))
p,

where τ(j) is the value of the j’th coordinate of τ .

We note that the sign pattern of the set of polynomials {Pτ,u,v,w(x⃗) ≷ 0}τ∈{0,1}2d determines the
sign of

∑d
j=1 |xj(u)−xj(v)|p−

∑d
j=1 |xj(u)−xj(w)|p. Therefore, for different choices of signs for

the constraints, the solutions satisfying them must be contained in different connected components
of U(P1, . . . , P22d·m).

By Fact 3.3, there are at most (4ep22dm/nd)nd connected components in the set U(P1, . . . , P22d·m).
Therefore, taking m ≥ cnd2 for sufficiently large c (depending on p), we get that 2m >
(4ep2

2dm/nd)nd, meaning there is a choice of signs for which there is no solution, i.e. these samples
cannot be shattered.

4 EXTENSIONS

Reducing dependence on n While our results show that the dependence on n is necessary, in
practice it can be avoided by making additional assumptions. An extremely popular assumption is

8
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that the existence of k ≪ n latent classes in the data (see e.g. Saunshi et al. (2019)). In this case,
one can consider using an unsupervised clustering algorithm (e.g. a pretrained neural network) to
partition the points into k clusters and then apply our results to classes instead of individual points,
effectively replacing n with k in all our bounds.

Extension to k negative samples: In this extension, we consider a setting in which each sample is
a tuple (x, x1, . . . , xk+1) ∈ V k+2, and a labeling (x, x+

i , x
−
1 , . . . , x

−
i−1, x

−
i+1, . . . , x

−
k+1) is a choice

of an example xi which minimizes minj∈[k+1] ρ(x, xj), i.e. ρ(x, xi) < ρ(x, xj) for all j ̸= i. As an
immediate corollary to our results, we obtain a bound on the sample complexity for the k negative
setting (in fact, our results for all distance functions considered in the paper extend to this setting,
see proof in Appendix C.1):

Theorem 4.1. For a constant p, a dataset V of size n, and the ℓp distance ρp : V × V → R in a
d-dimensional space, the sample complexity of contrastive learning ℓp-distances with k negatives is
bounded as shown in Table 3

p Realizable? Upper bound up to polylog
(
1
ϵ ,

1
δ

)
Lower bound up to polylog

(
1
ϵ ,

1
δ

)
Even Realizable min(nd, n2) log(k + 1)/ϵ min(nd, n2)/ϵ
Even Agnostic min(nd, n2) log (k + 1)/ϵ2 min(nd, n2)/ϵ2

Odd Realizable min(nd log n, n2) log(k + 1)/ϵ min(nd, n2)/ϵ
Odd Agnostic min(nd log n, n2) log(k + 1)/ϵ2 min(nd, n2)/ϵ2

Table 3: Bounds on sample complexity for ℓp distances with k negatives

Well-separated samples: In this extension, we focus on the most popular ℓ2-distance and con-
sider an “approximate” setting, where the positive and negative samples are guaranteed to be well-
separated, i.e. their distance from the anchor differs by at least a multiplicative factor. This scenario
is highly motivated in practice since the positive example is typically sampled to be much closer to
the anchor than the negative example. We show that in this setting the sample complexity can be
improved to be almost independent of d.7

For a parameter 0 < α < 1, we assume that our sample distribution D has the following property:
If (x, y+, z−) ∈ supp(D), then ρ(x, z) > (1 + α)ρ(x, y), or ρ(x, y) > (1 + α)ρ(x, z). We
call a distribution with this property well-separated. We show that for the ℓ2-distance, the sample
complexity of the problem in this setting is between Ω̃ϵ,δ(n/α) and Õϵ,δ(n/α

2). This result is
proven in Appendix E.

Theorem 4.2. The sample complexity of (1 + α)-separate contrastive learning for ℓ2 distance is
S3(ϵ, δ) = Õϵ,δ

(
n
α2

)
and S3(ϵ, δ) = Ω̃ϵ,δ

(
n
α

)
.

Contrastive Learning for Other Distance Functions: In Appendix D, we show near-tight sample
complexity bounds for contrastive learning in other distance functions, such as tree metrics, cosine
similarity, class distances, and prove tight general bounds for arbitrary metrics. We also extend our
results to quadruplet contrastive learning.

5 CONCLUSION

In this paper we have given a theoretical analysis of contrastive learning, focusing on the general-
ization in the PAC-learning setting. Our results show (in most cases) tight dependence of the sample
complexity on the dimension of the underlying representation. It remains open whether our results
can be made optimal for ℓp-distances for odd p. It is also open how the results can be improved
via a suitable choice of batched adaptively chosen comparisons (see e.g. Zou et al. (2015)). Note
that in the non-batched adaptive query setting optimal bounds on the query complexity are known
to be Θ(n log n) (Kannan et al., 1996; Emamjomeh-Zadeh & Kempe, 2018). On the experimental
side, while we show asymptotic convergence between our theory and practice, it might be worth
looking into further refinements of our approach which can better capture the fact that the constant
ratio between the observed and predicted values tends to be small.

7Disregarding polylog factors in d.
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A EXAMPLE

Example and notation We are given 4 data points: images of a cat, a rat, a plane, and a train,
which we denote as V = {c, r, p, t}. We consider the realizable case, i.e. there exists a ground truth
metric ρ on these points (e.g. general or ℓp) with error rate ϵ∗ = 0. For this example, we will assume
that we embed these points into R, i.e. d = 1. Hence the hypothesis class H is just a class of all
Euclidean metrics on R.

For these data points, there are 12 possible input samples, corresponding to 4 choices of an anchor
and 3 choices of the two other query points. For this example, let D be the distribution of samples
(x, y+, z−) such that each input (x, y, z) is sampled uniformly, and the label is decided according
to which of y and z is closer to x according to ρ. For example, if the input is (c, r, p), we expect
the ground truth ρ to be that the cat is closer to the rat rather than to the plane, which we write as
(c, r+, p−). Hence, this version of the problem is just a binary classification problem.

Error rate If, for example, the ground-truth embedding ρ was r → 0, c → 1, p → 3, t → 10,
then, assuming the distribution on the inputs is uniform, we achieve the error rate ϵ = 1

6 , since only
2 of 12 queries - (p, c+, r−) and (p, c+, r−) - are not satisfied.

Sampling mechanism and learning scheme Since we have a binary classification problem, with-
out a training set, we can only predict randomly, which gives the error rate ϵ = 1

2 . Now, suppose
that we have a single training example (c, r+, p−) sampled from D. The algorithm that achieves the
best worst-case guarantee is an empirical risk minimizer (ERM), which seeks to find the embedding
satisfying the maximum number of constraints. In this case, the constraint is satisfiable e.g. by
embedding c → 0, r → 1, p → 3, t → 10, since |c− r| = 1 < |c− p| = 3.

Example of Shattering As an example, the set S = {(c, r, p), (c, p, t), (c, r, t)} is not shat-
tered since for the labeling {(c, r+, p−), (c, p+, t−), (c, t+, r−)} there exists no embedding such
that ρ(c, r) < ρ(c, p), ρ(c, p) < ρ(c, t), and ρ(c, r) > ρ(c, t). On the other hand, the set
S′ = {(c, p, t), (r, p, t)} is shattered: a labeling of S′ determines for each of c, r which point is
closer between p and t. For any labeling of S′, we can embed p, t arbitrarily and embed each of
c, r closer to either p or t according to the labeling, thus satisfying the constraints imposed by the
labeling.

B MISSING PROOFS FROM SECTION 3

Proof of Lemma 3.4.

1. If x⃗ ∈ Cs and y⃗ ∈ Cs′ for and s and s′ which differ in index j, we know that signPj(x⃗) ̸=
signPj(y⃗), and hence x⃗ ̸= y⃗. Hence, Cs and Cs′ are disjoint.

2. First note that all Cs are open since polynomials are continuous functions, and preimages
of open sets (−∞, 0) and (0,+∞) are open. Moreover, ∪sCs = U(P1, . . . , Pm) and
all Cs are disjoint, and hence {Cs}s is a partition of U(P1, . . . , Pm). By definition of a
connected set, it’s impossible to partition a connected component of U(P1, . . . , Pm) into
multiple open sets, and hence each Cs must be a union of some connected components of
U(P1, . . . , Pm).

3. Follows from our choice of polynomials: P(u,v,w)(x⃗) > 0 if x⃗(u) is closer to x⃗(v) than to
x⃗(w), and P(u,v,w)(x⃗) < 0 otherwise.

B.1 MISSING LOWER BOUND OF SECTION 3

Recall that our goal is to learn a distance function ρ : V × V → R which can be produced by some
allocation of points in the d-dimensional Euclidean space. In other words, the set of labeled queries
{(xi, yi, zi)}i is realizable if there exists a mapping f : V → Rd such that ∥f(xi) − f(yi)∥2 <
∥f(xi)− f(zi)∥2.
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Theorem B.1. For a dataset of size n, the VC-dimension of contrastive learning for ℓp-distances
for any p ∈ (0,+∞) in dimension d is Ω(min(n2, nd))

Proof. We first assume that d < n, since otherwise the bound follows from Theorem 2.7. Let V be
the set of points of size n. We will present a set of queries S of size Ω(nd) that can be shattered.
Recall that it means that for any T ⊆ S there exists a mapping f : V → Rd, such that:

• triplets from T are satisfied, i.e. each triplet (x, y, z) ∈ T is labeled (x, y+, z−), meaning
ρ(x, y) < ρ(x, z);

• triplets from S \T are not satisfied, i.e. each triplet (x, y, z) ∈ S \T is labeled (x, z+, y−),
meaning ρ(x, y) > ρ(x, z).

First, note that for d = 1, any set of ⌊n/3⌋ disjoint queries gives Ω(n) lower bound. For the rest of
the proof, we assume that d > 1.

We partition V arbitrarily into disjoint sets A and B of sizes n − d and d respectively. Intuitively,
the points from A always act like anchors, and points from B never act like anchors.

We first describe how to map B = {v1, . . . , vd} (their mapping won’t depend on the labels of the
queries). For each i ∈ [d], we map f(vi) = ei, where ei is the i’th standard basis vector.

Next, we describe the queries. As defined above, A = {x1, . . . , xn−d} is a set of anchors, and
for each anchor xi, the queries are of form (xi, v1, v2), (xi, v1, v3), . . . , (xi, v1, vd). Hence, there
exist (d − 1)(n − d) queries, as required by the theorem, and it remains to show that this set of
queries can be shattered. Clearly, since the arrangement of points v1, . . . , vd is fixed, allocation of
anchor xi doesn’t affect queries with another anchor xj , and hence it suffices to map every anchor
independently from each other.

Let’s fix the anchor xi. Let the first coordinate of f(xi) be 1/2. For j ∈ [2 : d], if (xi, v1, vj) is
labeled (xi, v

+
1 , v

−
j ), then we select the the j-th coordinate of f(xi) to be 0, and otherwise we select

it to be 1. Note that then the query is satisfied: the summations for ∥f(xi)−e1∥pp and ∥f(xi)−ej∥pp
differ only in the first and the j-th coordinates. When the j-th coordinate is 0, we have

∥f(xi)− e1∥pp − ∥f(xi)− ej∥pp = (1/2)p − ((1/2)p + 1p) < 0,

and hence (xi, v
+
1 , v

−
j ) is satisfied. On the other hand, when the j-th coordinate is 1, we have

∥f(xi)− e1∥pp − ∥f(xi)− ej∥pp = ((1/2)p + 1p)− (1/2)p > 0,

and hence (xi, v
+
j , v

−
1 ) is satisfied. Hence, we can construct f(xi) that satisfies all the queries with

anchor xi. Therefore, we can shatter the set of all (d− 1)(n− d) queries, finishing the proof.

C VARIATIONS

C.1 CONTRASTIVE LEARNING WITH k NEGATIVES

In the previous sections, we considered the queries of the form (anchor, positive, negative).In con-
trastive learning, it’s common to have multiple negative examples. In this section, we show the
following result which can be used to derive bounds for the contrastive learning with k negatives.

Theorem C.1. Let ∆ be the class of allowed metric functions. Let Ndim be the VC dimension
of the contrastive learning problem on ∆ with 1 negative. Then the Natarajan dimension for the
contrastive learning problem on ∆ with k negatives is at most Ndim.

Assume additionally that for any set of points S and any distance function ρ ∈ ∆ on S, for any point
o there exists a distance function ρ′ ∈ ∆ on S ∪{o} such that ρ′|S×S = ρ and ρ(x, y) < ρ(x, o) for
any x, y ∈ S 8. Then, for the dataset on n points such that n− k = Ω(n), the Natarajan dimension
of contrastive learning on ∆ with k negatives is Ω(Ndim).

8Intuitively, this condition implies that for any set S of points we can find an “outlier” – a point o which is
sufficiently far from the existing set of points. This assumption is naturally satisfied for ℓp and tree distances.
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Proof. For the upper bound, assume that for some query (x, x1, . . . , xk+1), for the Natara-
jan shattering we select the xi and xj for some i and j, i.e. the possible labels are
(x, x+

i , x
−
1 , . . . , x

−
i−1, x

−
i+1, . . . , x

−
k+1) and (x, x+

j , x
−
1 , . . . , x

−
j−1, x

−
j+1, . . . , x

−
k+1). Then, the first

query implies (x, x+
i , x

−
j ), and the second query implies (x, x+

j , x
−
i ). Hence, any Natarajan-

shattered set with k negatives corresponds to a VC-shattered set of queries with 1 negatives of
the same cardinality. Hence, the Natarajan dimension is upper-bounded by the VC dimension of the
1-negative problem.

For the lower bound, we split the set of points V into two sets: “outlier” points O = {o1, . . . , ok−1}
and the remaining points S = {v1, . . . , vn−k+1}. Let Q = {(xi, yi, zi)}i be the VC-shattered set
for the 1-negative contrastive learning on n − k + 1 points. Then, the Natarajan-shattered set of
queries for the k-negative contrastive learning on n points are Q′ = {(xi, yi, zi, o1, . . . , ok−1)}i.
For each query, for the Natarajan shattering we select yi and zi, meaning that possible labels are
(xi, y

+
i , z

−
i , o−1 , . . . , o

−
k−1)}i and (xi, z

+
i , y

−
i , o

−
1 , . . . , o

−
k−1)}i

Since the set of Q is shattered, for any choice of labeling of {(xi, yi, zi)}i there exists a distance
function ρ ∈ ∆ satisfying this labeling. It suffices to guarantee that ρ(xi, yi) < ρ(xi, oj) and
ρ(xi, zi) < ρ(xi, oj) for all i and j, and by our assumption, there exists a distance function satisfying
this condition.

Corollary C.2. The same upper bounds on sample complexities for all distance functions considered
in the paper (i.e. in Theorem 3.2, Theorem 2.7, Theorem D.2, and Theorem D.4) hold for k-negative
contrastive learning Sk(ϵ, δ) and Sa

k(ϵ, δ) up to the log k-factor. The same lower bounds that hold
for contrastive learning in ℓp-norm and tree metrics (i.e. Theorem 3.1 and Theorem D.2) also hold
for k-negative contrastive learning.

C.2 LEARNING ON QUADRUPLETS

Recall that we are given a set of quadruplets {((x+, y+), (z−, w−))}, where each quadruplet
((x+, y+), (z−, w−)) imposes constraint ρ(x+, y+) < ρ(z−, w−).

Theorem C.3. For the VC dimension of contrastive learning on quadruplets, we have the same
bounds as for the learning on triplets. Namely, for a dataset of size n, the following holds.

• The VC dimension for arbitrary metric is Θ(n2).

• The VC dimension for ℓp-distances in dimension d is Ω(nd) for all p ∈ (0,∞).

• The VC dimension for ℓp-distances in dimension d is O(nd) for even p and O(nd log n) for
odd p.

• The VC dimension for the tree metric is Ω(n) ∩O(n log n).

Proof. First, we note that any lower bound in the triplet case is also a lower bound for the quadruplet
case, since a triplet query (x, y, z) is equivalent to the quadruplet query ((x, y), (x, z)).

For the upper bounds, for ℓp and tree metric, we use the same approach: each constraint
((x, y), (z, w)) corresponds to a polynomial (potentially after fixing the order of points or the tree
structure). Since the number of variables and polynomials doesn’t change, we get the same upper
bounds. Finally, for arbitrary metric, similarly to Theorem 2.7, for each set of queries, we can con-
struct a graph with vertices from V × V : for each query ((x, y), (z, w)), we create an undirected
edge, and labeling the query is equivalent to orienting the edge. If there is a cycle, it’s possible to
get a contradiction, and hence we can’t have more than O(|V × V |) = O(n2) queries.

D CONTRASTIVE LEARNING IN OTHER METRICS

In this section, we discuss related results. First, we show a bound for arbitrary distance functions:

Theorem D.1 (Arbitrary distance). For an arbitrary distance function ρ : V ×V → R and a dataset
of size n, the sample complexity of contrastive learning is S3(ϵ, δ) = Θ

(
n2

ϵ polylog
(
1
ϵ ,

1
δ

))
in the
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realizable case and Sa
3 (ϵ, δ) = Θ

(
n2

ϵ2 polylog
(
1
ϵ ,

1
δ

))
in the agnostic case. Furthermore, the lower

bounds hold even if ρ is assumed to be a metric.

Proof. We prove this by showing a Θ(n2) bound on the VC dimension of contrastive learning with
arbitrary distance functions.

Upper bound. Consider any set of samples {(xi, yi, zi))}i=1...k of size k ≥ n2. There exists x
such that there are at least n samples which have x as their first element. We denote these sam-
ples as (x, yi1 , zi1), . . . , (x, yin , zin). Consider a graph that has a vertex corresponding to each
element in the dataset. Create an undirected edge in this graph between the n pairs of vertices
(yi1 , zi1), . . . , (yin , zin).

Since the number of edges is equal to the number of vertices, there must exist a cycle C in this graph.
We can index the vertices along this cycle as v1, v2, . . . , vt. Now consider the following labeling of
the samples:

ρ(x, v1) < ρ(x, v2) < ρ(x, v3) < · · · < ρ(x, vt) < ρ(x, v1).

This labeling is inconsistent with any distance function and hence not all different labelings of this
sample are possible. Since the same argument applies for any sample of size at least n2, an n2 upper
bound on the VC-dimension follows.

Lower Bound. Let V = {v1, . . . , vn}. We prove that the set of queries

Q = ∪i∈[n]{(vi, vi+1, vi+2), (vi, vi+2, vi+3), . . . , (vi, vn−1, vn)}

is shattered. Let Q⃗ be a labeling of Q. For every i ∈ [n], we define a graph Hi =
({vi+1, . . . , vn}, Ei) where Ei contains a directed edge (vj , vj+1) for each query, (vi, vj , vj+1)),
orientated towards the negative example according to Q⃗. The graph Hi is acyclic, as it is an ori-
entation of a path. Therefore we can topologically sort Hi, and obtain some topological order
p
(i)
i+1, . . . , p

(i)
n on the vertices vi+1, . . . , vn.

Consider a metric where the distance between two data items vi, vj is defined as ρ(vi, vj) := n+p
(i)
j

for each i < j ≤ n. We note that this is indeed a metric: triangle inequalities are satisfied since
all distances are in the range [n, 2n]. Finally, we note this distance function satisfies all the queries.
Indeed, for i, j, k such that i < k, j and |k − j| = 1, if (vi, v+j , v

−
k ) ∈ Q⃗ then the directed edge

(vj , vk) ∈ Ei, therefore ρ(vi, vk) > ρ(vi, vj) since p
(i)
k > p

(i)
j .

A metric (V, ρ) is called a tree metric if there exists a tree T with weighted edges and n leaves, such
that for each v ∈ V there is a unique leaf l(v) associated with it, and such that for each u, v ∈ V ,
ρ(u, v) is equal to the sum of weights along the unique path between l(u), l(v) in T .
Theorem D.2 (Tree distance). For the tree metric distance function ρT : V ×V → R, corresponding
to distances between the nodes of a tree with leaves from V , the sample complexity of contrastive
learning in the realizable case is S3(ϵ, δ) = O

(
n logn

ϵ polylog
(
1
ϵ ,

1
δ

))
and Ω

(
n
ϵ polylog

(
1
ϵ ,

1
δ

))
,

and in the agnostic case is Sa
3 (ϵ, δ) = O

(
n logn

ϵ2 polylog
(
1
ϵ ,

1
δ

))
and Ω

(
n
ϵ2 polylog

(
1
ϵ ,

1
δ

))
.

Proof. We prove this by showing that the VC-dimension of contrastive learning for the tree metric
is O(n log n). First, we may assume that the number of vertices in the tree is at most 2n. Indeed,
any induced path in the tree can be contracted to a single edge whose weight is the sum of weights
along the path. After this procedure, the tree metric remains the same and the resulting tree has no
vertices of degree 2. It follows by a counting argument that the number of vertices in this tree is at
most 2n. The rest of the proof is similar to the odd case of the Theorem 3.2: we enumerate over
all possible tree structures with at most 2n vertices and allocation of the data items onto the tree
vertices. By Cayley’s formula (Cayley, 1878), there exists 2(2n)2n−2 such different tree structures
and vertex allocations. For a fixed tree, the distance between every pair of vertices can be expressed
as a linear combination of the edge weights. Hence, every constraint becomes a linear inequality on
the edge weights.
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The rest of the proof is analogous to that of Theorem 3.2. Fix a tree T . Let ET (u, v) be the set of
edges in the path between u, v in T . We have k ≤ 2n − 1 variables x⃗ = (x1, . . . , xk), where xi

represents the edge weight of ei. For m queries we define polynomials P1(x⃗), . . . , Pm(x⃗), one for
each query, such that for query (ui, vi, wi) we define the polynomial

Pi(x⃗) =
∑

ei∈ET (ui,vi)

xi −
∑

ei∈ET (ui,wi)

xi.

I.e. (ui, v
+
i , w

−
i ) is satisfied if and only Pi(e⃗) < 0. For m = 3n log n queries, by Theorem 3.3 the

number of possible sign combinations is at most (4em/k)k < 2m

2(2n)2n−2 . Summing over all possible
tree structures, the number of sign combinations is less than 2m, and hence the set of m queries can’t
be shattered.

The Cosine Similarity function cos : Rd × Rd → R is a function which returns for each pair of
points x, y the cosine of their angle, i.e. cos∠(x, y).
Theorem D.3 (Cosine Similarity). For the cosine similarity function, the sample complexity of con-
trastive learning S3(ϵ, δ) = Θ

(
min(n2,nd)

ϵ polylog
(
1
ϵ ,

1
δ

))
in the realizable case and is Sa

3 (ϵ, δ) =

Θ
(

min(n2,nd)
ϵ2 polylog

(
1
ϵ ,

1
δ

))
in the agnostic case.

Proof. As usual, we assume that d < n, since otherwise the result follows from Theorem 2.7. We
prove this by showing that the VC-dimension of contrastive learning for cosine similarity in Rd is
Θ(nd). Recall that cos∠(x, y) = ⟨x,y⟩

∥x∥2·∥y∥2
= ⟨ x

∥x∥2
, y
∥y∥2

⟩, and hence w.l.o.g. we can assume that
all points are unit vectors. For unit vectors x, y we have ∥x − y∥22 = ∥x∥22 + ∥y∥22 − 2⟨x, y⟩ =
2−2 cos∠(x, y), and hence cos∠(x, y+) > cos∠(x, z−) is equivalent to ∥x−y+∥2 < ∥x−z−∥2.
To summarize, contrastive learning for cosine similarity is equivalent to contrastive learning for ℓ2
distance of points on the sphere.

The upper bound O(nd) for VC dimension follows directly from the fact that for the cosine similarity
we only consider unit vectors, and hence the hypothesis space is less than that for the ℓ2-distance
(which allows arbitrarily-normed vectors).

For the lower bound, we repeat the proof of Theorem B.1, with minor alterations that ensure that all
points are embeddable in the unit sphere.

Similar to Theorem B.1, we partition V into two sets A = {x1, . . . , xn−d} as a set of anchors, and
B = {v1, . . . , vd}. We define the query set Q as follows: for each anchor xi, the set Q contains the
queries (xi, v1, v2), (xi, v1, v3), . . . , (xi, v1, vd).

We set f(vi) = ei, i.e. we embed vi to the i’th standard vector ei.

For each xi, we define a vector g(xi) ∈ Rd in the following manner. Let the first coordinate of g(xi)
be 1/2. For j ∈ [2 : d], if (xi, v1, vj) is labeled (xi, v

+
1 , v

−
j ), then we select the the j-th coordinate

of g(xi) to be 0, and otherwise we select it to be 1. We map xi to f(xi) := g(xi)/∥g(xi)∥.

Next, we prove that all queries are satisfied: the summations for ∥f(xi) − e1∥22 and ∥f(xi) − ej∥22
differ only in the first and the j-th coordinates. When the j-th coordinate is 0, we have

∥f(xi)−e1∥22−∥f(xi)−ej∥22 =

(
1− 1

2∥g(xi)∥2

)2

−
(( 1

2∥g(xi)∥2

)2

+12
)

= − 1

∥g(xi)∥2
< 0,

Hence (xi, v
+
1 , v

−
j ) is satisfied. On the other hand, when the j-th coordinate is 1, we have

∥f(xi)−e1∥22−∥f(xi)−ej∥22 =

((
1− 1

2∥g(xi)∥2

)2

+12
)
−
( 1

2∥g(xi)∥2

)2

= 2− 1

∥g(xi)∥2
> 0,

where the inequality holds since ∥g(xi)∥2 > 1
2 (due to the first coordinate and the j-th coordinate).

Hence (xi, v
+
j , v

−
1 ) is satisfied. Therefore, we can construct f(xi) that satisfies all the queries with

anchor xi. Therefore, we can shatter the set of all (d− 1)(n− d) queries.

20



Published as a conference paper at ICLR 2024

Theorem D.4 (Class distance). Consider a domain V partitioned into any number of disjoint classes
C1, . . . , Cm, where m ≥ 2. For the class indicator function ρC : V × V → {0, 1}, defined as
ρC(x, y) = 0 iff there exists i such that x, y ∈ Ci, the sample complexity of contrastive learning is
S3(ϵ, δ) = Θ

(
n
ϵ polylog

(
1
ϵ ,

1
δ

))
in the realizable case and Θ

(
n
ϵ2 polylog

(
1
ϵ ,

1
δ

))
in the agnostic

case.9

Proof. We prove this by showing an Θ(n) bound on the VC dimension of contrastive learning with
class distances.

Upper bound. Consider any set of samples {(xi, yi, zi)}i=1...k of size k ≥ n. Fix an arbitrary
labeling of this set. Note that in any triple, one pair (e.g. (xi, yi)) is from the same class and the other
(e.g. (xi, zi)) is from different classes. Create a graph on n vertices, where each vertex corresponds
to an element in the dataset. For each labeled sample create an edge in this graph corresponding to
the pair of vertices, which are from the same class. Since this graph has n edges, there must be a
cycle C in this graph and all the vertices on this cycle must be in the same class according to the
labeling. Consider any edge (x, y) on the cycle and change the labeling of the triple corresponding
to this edge. This forces x and y to be from different classes and leads to a contradiction, since x
and y must be in the same class due to the existence of a path between them.

Lower bound. Partition V into disjoint sets of size 3, and associate a query with each set, i.e.

Q = {(v1, v2, v3), (v4, v5, v6), . . . , (vn−2, vn−1, vn)}.

For each labeled query (vi, v
+
i+1, v

−
i+2) ∈ Q⃗, place vi and vi+1 in C1, and vi+2 in C2. For each

labeled query (vi, v
+
i+2, v

−
i+1) ∈ Q⃗, place vi and vi+2 in C1, and vi+1 in C2.

By Theorem C.3, our bounds extend to the quadruple contrastive learning setting.
Corollary D.5. The same bounds as in Theorem 3.1, Theorem 3.2, Theorem 2.7, Theorem D.2,
Theorem D.3 hold for quadruplet contrastive learning.

E LEARNING LABELS UNDER A WELL-SEPARATED ASSUMPTION

In this section, we show that under a well-separated setting (i.e. when the two distances of each
triplet are guaranteed to be separated by some multiplicative factor), the sample complexity can be
improved to be almost independent of d (disregarding polylog factors).

More formally, given parameter α > 0, each labeled query (x, y+, z−) implies the constraint (1 +
α)ρ(x, y) < ρ(x, z).
Lemma E.1. Let n, d be integers and 0 < α < 1. Let T (n, d) be the VC dimension of the contrastive
learning problem and T (n, d, α) be the VC dimension of the (1 + α)-separate contrastive learning
problem.

T (n, d, α) = O
(
min(n2, nd, n log n/α2)

)
, T (n, d, α) = Ω

(
min(n2, nd, n/α)

)
.

We start with the lower bound in Theorem E.1. Recall the embedding f given in the proof of
Theorem B.1. From this embedding it follows that T (n, d, c/d) = Ω(nd) for a sufficiently small
constant c > 0. Indeed, for all i ≤ n− d and j ≤ d, if (xi, v

+
1 , v

−
j ) is satisfied then

∥f(xi)− f(vj)∥22 − ∥f(xi)− f(v1)∥22 ≥ 1 ≥ ∥f(xi)− f(v1)∥22/d,

where the last inequality follows as all the coordinates are bounded by 1. Rearranging we obtain

∥f(xi)− f(vj)∥2 ≥
√
1 + 1/d · ∥f(xi)− f(v1)∥2 ≥ (1 + c/d)∥f(xi)− f(v1)∥2.

Similarly we have
∥f(xi)− f(v1)∥2 ≥ (1 + c/d)∥f(xi)− f(vj)∥2.

when (xi, v
+
j , v

−
1 ) is satisfied. This shows that T (n, d, c/d) = Ω(nd).

9For this distance function we also allow an “equality” label (x, y+, z+), which implies ρC(x, y) =
ρC(x, z).
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Next, when α ≤ c/d we have that T (n, d, α) ≥ T (n, d, c/d) = Ω(nd). When α ≥ c/d we have
that T (n, d, α) ≥ T (n, d1, c/d1) = Ω(n/α), where d1 := ⌈c/α⌉.

Next, we prove the upper bound. We first show a dimension reduction argument, which intuitively
shows that in separate contrastive learning can always be reduced to O(log n/α2) dimensions.
Lemma E.2. Let d1 = ⌈1000 log n/α2⌉. We have that

T (n, d, α) ≤ T (n, d1, α/2).

The lemma is a simple application of the Johnson-Lindenstrauss lemma (Johnson, 1984), given
below.
Fact E.3 (The Johnson-Lindenstrauss lemma). For any 1 > β > 0, a set X of n points in Rd and
an integer d1 ≥ 15 log n/β2, there is an embedding f : X → Rd1 such that for all x, y ∈ X we
have

(1− β)∥x− y∥2 ≤ ∥f(x)− f(y)∥2 ≤ (1 + β)∥x− y∥2.

We can now prove Lemma E.2.

Proof of Lemma E.2. Suppose that T (n, d, α) ≥ m for some integer m. By definition, there exists
a set of queries Q = {(ui, vi, wi) : i ≤ m} such that for any labeling of the queries Q⃗, there
is an embedding f : V → Rd such that if the query (ui, vi, wi) is labeled as (ui, v

+
i , w

−
i ) then

∥f(ui) − f(wi)∥2 ≥ (1 + α)∥f(ui) − f(vi)∥2. Next, we use the Johnson-Lindenstrauss lemma
in order to embed the points {f(v) : v ∈ V } in a lower dimensional space without distorting the
distances too much. By Fact E.3 with β := α/7 we have an embedding g : V → Rd1 such that if
the query (ui, vi, wi) is labeled as (ui, v

+
i , w

−
i ) then

∥g(ui)− g(wi)∥2 ≥ (1− β)∥f(ui)− f(wi)∥2 ≥ (1 + α)(1− β)∥f(ui)− f(vi)∥2

≥ (1 + α)(1− β)

1 + β
∥g(ui)− g(vi)∥2 ≥ (1 + α/2)∥g(ui)− g(vi)∥2,

(1)

where the last inequality holds for all 0 < α < 1. This shows that T (n, d1, α/2) ≥ m and completes
the proof.

Given this lemma, our claim follows since

T (n, d, α) ≤ T (n, d1, α/2) ≤ T (n, d1) = O(nd1) = O(n log n/α2).

Where the first inequality holds due to Lemma E.2, the second since for any integers n′, d′ and value
α′ > 0 we have that T (n′, d′, α′) ≤ T (n′, d′) (i.e. the exact version is at least as hard to learn as the
separate version, since the hypothesis space of the latter is contained in the former), and the third
equality holds due to Theorem 3.2. This concludes the proof of Lemma E.1.

Using Lemma 2.6, we obtain our sample complexity bounds.
Theorem E.4. For any 1 > α > 0, the sample complexity of (1 + α)-separate contrastive learning

is S3(ϵ, δ) = O
(

n logn
α2·ϵ polylog( 1ϵ ,

1
δ

)
and S3(ϵ, δ) = Ω

(
n
α·ϵ polylog

(
1
ϵ ,

1
δ

))
for the realizable

case, and S3(ϵ, δ) = O
(

n logn
α2·ϵ2 polylog

(
1
ϵ ,

1
δ

))
and S3(ϵ, δ) = Ω

(
n

α·ϵ2 polylog
(
1
ϵ ,

1
δ

))
for the

agnostic case.

We note that the case of α ≥ 1 is a relaxed version of e.g. α = 0.99, therefore we immediately
obtain the following near-tight bounds:
Corollary E.5. For any α ≥ 1, the sample complexity of (1 + α)-separate contrastive learning is

S3(ϵ, δ) = O
(

n logn
ϵ polylog(1ϵ ,

1
δ

)
and S3(ϵ, δ) = Ω

(
n
ϵ polylog

(
1
ϵ ,

1
δ

))
for the realizable case,

and S3(ϵ, δ) = O
(

n logn
ϵ2 polylog

(
1
ϵ ,

1
δ

))
and S3(ϵ, δ) = Ω

(
n
ϵ2 polylog

(
1
ϵ ,

1
δ

))
for the agnostic

case.

As an interesting open problem, we leave open whether the upper bound of O(n log n) can be
improved for large enough values of α.
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(a) Fashion-MNIST dataset (b) CIFAR-10 dataset

Figure 1: Training with triplet loss. For various embedding dimensions d, we show the empirical
and the scaled predicted generalization errors. The scaling factor is chosen as

√
1/320 (Mohri

et al., 2018). In this scenario, we consider the well-separated case, and hence the predicted error is
the same for all d. Data points are averaged over 10 runs, error bars show 10% and 90% quantiles.

F EXPERIMENTS

In this section, we empirically verify our theoretical findings on real-world image datasets. We
compute image embeddings using the ResNet-18 network, with the last layer being replaced with a
linear layer with the output dimension matching that of the target embedding dimension. The neural
network is trained from scratch for 100 epochs using a set of m ∈ {102, 103, 104} training samples,
and is evaluated on a different test set of 104 triplets from the same distribution. We show that our
theory provides a good estimation of the gap between the training and test error.

We consider the standard experimental setup used in the literature where the positive example is
sampled from the same class as the anchor, and negative examples are sampled from a different
class, see e.g. Saunshi et al. (2019); Awasthi et al. (2022). Note that it means that the ground-truth
distances are well-separated, and hence we are in the setting of Theorem 4.2 (see Section F for
experiments in the non-well-separated case). Since the neural network doesn’t perfectly fit the data,
the setting is agnostic, and hence for n data points and error parameter ϵ, our theory predicts that
m ≈ c n

ϵ2 labeled samples are required, where we estimate c = 320 based on Mohri et al. (2018,
Page 48). Hence, given m samples, our theory predicts that ϵ ≈

√
n

320m . We compare this value to
the empirical generalization error ϵ̃, defined as the difference between training and test errors.

We consider two settings: when each sample has a single negative example and when it has multiple
negative examples.

Single negative example: When every sample has only one negative, we train the model from
scratch on CIFAR-10 (Krizhevsky, 2009) and Fashion-MNIST (Xiao et al., 2017) datasets using the
marginal triplet loss (Schroff et al., 2015b)

LMT (x, y
+, z−) = max(0, ∥x− y+∥2 − ∥x− z−∥2 + 1),

where x and y+ are points from the same class and z− is a point from a different class.

We present our results in Figure 1. For a small number of samples, there is a discrepancy between
the predicted and the empirical generalization errors, which is due to the fact that the random guess
trivially achieves 50% accuracy, while our results hold only for the non-trivial error rates (see Def-
inition 2.1). First, the results for different embedding dimensions match closely, which shows that
the error doesn’t depend on the dimension, as predicted by our theory. Note that the scaled predicted
and the empirical results are within a constant factor, which is hard to attribute to coincidence given
the choice of the scaling factor. Hence, these experiments support the theory by showing that it
provides a good predictor of practical generalization error.
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(a) MNIST dataset (b) CIFAR-100 dataset

Figure 2: Training with the contrastive loss with k ∈ {1, 2, 4, 8} negatives. We show the empirical
and the scaled predicted generalization errors. The data points correspond to the average over 10
runs, and the error bars show 10% and 90% quantiles

Multiple negative examples: For the case of multiple negative samples, we train the model using
the contrastive loss (Logeswaran & Lee, 2018b)

LC(x, y
+, z−1 , . . . , z−k ) = − log

exp(xT y+)

exp(xT y+) +
∑k

i=1 exp(x
T z−i )

.

We train the model from scratch on the MNIST (Yann, 1998) and CIFAR-100 (Krizhevsky, 2009)
datasets, and report ϵ̃/ϵ for different numbers of negatives k ∈ [1, 2, 4, 8]. Recall that for k negatives
we have ϵ ∈ Ω( n

ϵ2 ) ∩ O( n
ϵ2 log(k + 1)), and for our experiments we use the upper bound. The

results are shown in Figure 2. As before, the values are within a constant factor for all values of k
and numbers of samples m. Figure 2(b) shows that the log(k + 1) factor in the sample complexity
is observable in practice (we use it when computing the predicted error and the curves for different
k match closely after this normalization). The lack of convergence in Figure 2(b) is most likely at-
tributable to the fact that the sample size is too small. Similarly to other plots, we expect convergence
for larger sample sizes, which were computationally prohibitive to include in this version.

Non-well-separated case Finally, we conduct experiments for the case when the positive example
is not necessarily sampled from the same class as the anchor. While the experiments above corre-
spond to one of the most conventional contrastive learning approaches, the experiments in this sec-
tion more closely match our theoretical settings. In particular, we don’t use any data augmentation
for the training, and we use the same set of points (but not the same set of triplets) for both training
and testing. Since the VC-dimension depends on the number of points (Theorems 3.1 and 3.2), to
verify those results, we subsample n ∈ {102, 103, 104} points.

In contrast with the previous experiments, where the positive example is sampled from the same
class as the anchor, in this section, all elements of a triplet are sampled uniformly from the chosen
n points. We determine negative and positive examples based on the distance between ground-truth
embeddings computed using a pretrained ResNet-18 network.

We compare the empirical generalization error ϵ̃ to the theoretically predicted error rate ϵ (compared
to the best classifier). We perform experiments on the training set of CIFAR-10 and the validation
set of ImageNet by training ResNet-18 from scratch on m ∈ {2, 10, 102, 103, 104, 105} randomly
sampled triplets, and evaluating the model on the 104 triplets sampled from the same distribution10.
In Figure 3, the predicted and the empirical errors show the same tendencies and the same relative
behavior between different choices of n. As before, the empirical and the scaled predicted errors are
within a factor of 2 of each other.

10We express our thanks to the FFCV library (Leclerc et al., 2022) which allowed us to significantly speed
up the execution
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(a) ImageNet dataset (b) CIFAR-10 dataset

Figure 3: Training with the contrastive loss with one negative with embedding dimension 512. For
each n ∈ {102, 103, 104}, we subsample n points from a dataset for m ∈ {102, 103, 104, 105} input
triplets. For various n, we show the empirical and the scaled predicted generalization errors. Note
that the theoretical predicted error is bounded by 50%, which is a achieved by a random guess. Data
points are averaged over 10 runs, error bars show 10% and 90% quantiles.
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