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ABSTRACT

Distance Metric Learning (DML) aims to learn the distance metric that better re-
flects the semantically similarities in the data. Current pair-based and proxy-based
methods on DML focus on reducing the distance between similar samples, while
expanding the distance of dissimilar ones. However, we reveal that shrinking the
distance between similar samples may distort the feature space, increasing the
distance between points of the same class region, and therefore, harming the gen-
eralization of the model. The regularization terms (such as L2-norm on weights)
cannot be adopted to solve this issue as they are based on linear projection. To
alleviate this issue, we adopt the structure of normalizing flow as the deep metric
layer and calculate the determinant of the Jacobian matrix as a regularization term
that helps in reducing the Lipschitz constant. At last, we conduct experiments on
several pair-based and proxy-based algorithms that demonstrate the benefits of
our method.

1 INTRODUCTION

Deep metric learning (DML) is a branch of learning algorithms that parameterizes a deep neural
network to capture highly non-linear similarities between images according to a given semantical
relationship. Because the learned similarity functions can measure the similarity between samples
that do not appear in the training data set, the learning paradigm of DML is widely used in many
applications such as image classification & clustering, face re-identification, or general supervised
and unsupervised contrastive representation learning Chuang et al. (2020). Commonly, DML aims
to optimize a deep neural networks to span the projection space on a surface of hyper-sphere in
which the semantic similar samples have small distances and the semantic dissimilar samples have
large distance. This goal can be formulated as the discriminant criterion (and its many variants that
appear in the literature) we summarize as follows.

max{dθ(xi, xj)|j ∈ Si} < δ1 < δ2 < min{dθ(xi, xl)|l ∈ Di} (1)

where θ are the parameters of the deep metric model, δ1 and δ2 are two tunable hyperparameters,
and Si and Di are the sets of similar and dissimilar samples of the query xi, respectively.
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Figure 1: The illustration represents the feature
space spanned by fθ(x) learned by deep metric
learning. ri is the radius i-th class of samples in
training dataset and r∗ the radius of an unknown
class. δ2 − δ1 reflects the distance between the
two closest samples in class 1 and class 2.

Commonly the log-exp function qλ(θ) =
log(

∑n
j=1 e

λai(θ)) Oh Song et al. (2016) is
used to define the objective function in DML.
Besides the definition of the objective function,
many works point out that the performance of DML
crucially depends on the informative sample mining
(HSM) procedure and therefore focus their research
direction on improving the HSM. Unfortunately,
the explicit definitions of informative samples is
still unclear, and the problem seems to be unsolved.
This leads us to the following question: what is the
real reason that makes DML model so crucially
depend on hard sample mining? In this paper,
we try to answer this question studying the local
Lipschitz constant of the learned projection fθ(x).
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Many recent advances have been presented on DML in many new excellent works Wang et al.
(2019); Kim et al. (2020); Roth et al. (2022); Wang & Liu (2021); Schroff et al. (2015); Sun et al.
(2020); Deng et al. (2019); Wang et al. (2018) since the first DML model was proposed in 2015
Schroff et al. (2015). Current methods present good generalization i.e., the learned metric can work
well on the unseen classes. We attribute the good generalization performance of DML models to
the fact that the learned function fθ(x) extends in a continuous manner on the projecting region
presenting a small Lipschitz constant w.r.t. the origin sample space. As we know, DML reduces
the distances between similar samples which also reduces the local Lipschitz constant of fθ(x) of
the region surrounded by training samples. The continuity of fθ(x) prevents the Lipschitz constant
from changing fast, so fθ(x) presents a small Lipschitz constant at points close the region where
training samples are located. The learned projection having small Lipschitz constant induces a
smaller upper bound on the empirical loss, which results on a better generalization performance.
This interpretation explains why the projection fθ(x) learned by distance metric learning has a good
generalization even on unseen classes.

However, DML presents some drawbacks. Shrinking the cluster of each class increases the local
Lipschitz constant of fθ(x). This phenomenon can be divided into two effects. The first one corre-
sponds to the increase of the Lipschitz constant caused by enlarging the distances between dissimilar
samples, which was found by Song et al. (2021). This effect increases the local Lipschitz constant
of fθ(x) at the region between classes. The author of Song et al. (2021) commented that the failure
of training triplet loss without semi-hard sample mining can be attributed to it. In the second case,
the regions with large Lipschitz constant are a priori unknown. This effect may occur in the region
that belongs to unknown regions or regions that belong to a cluster for a class. In the first case, the
negative effect can be alleviated reducing the distance between dissimilar samples. Based on this
strategy, Song et al. (2021) designs an KKN decision boundary to formulate a general framework
of distance metric learning and proved that current state-of-the-art algorithms such as lifted struc-
ture loss, multi-similarity loss, circle loss or N-pair loss are special cases of it. Those implicitly
mean that the sample mining strategies are designed to reduce the Lipschitz constant of the learned
projection.

Regarding the second case, there are a few works that address this issue. A common strategy is
to assign the position of centers of each class by minimizing designed energy functions Duan et al.
(2019); Liu et al. (2018). The main assumption of this method is that if distances between centers are
large, there is no need to shrink each class too much while still preserving the classes gap. However,
this method has only positive results if it increases the Lipschitz constant at the region of unknown
cases. If the increasing regions occur within each class, this routine will fail to work.

In summary, we claim that current methods in distance metric learning can improve its dis-
criminant ability and reduce the Lipschitz constant of the learned problem at the same time
by applying the right regularization factor. In this paper, we design a framework to demonstrate
this. The contents include the following aspects:

1 We give an unified framework of proxy-based distance metric learning. In our framework,
we summarize the traditional distance metric learning algorithms and classification-based
distance metric learning algorithms together. Therefore, we present the mathematical
framework that proves the connections between these methods and it gives us a theoretical
base to support our hypothesis on the effects of the Lipschitz constant on distance metric
learning.

2 We reveal that potential energy-based methods are not very effective in pushing centers
away from each other since it only consider local information of the data. To alleviate
this problem, we adopt the log-exp mean functions and power mean function to design a
loss term that pulls away centers of each classes. Because we prove that potential energy
methods are a special realization of our algorithm, ours also has the power to separate
centers of different classes.

3 To further solve the Lipschitz constant problem on distance metric learning we design a
deep neural network structure that allow us to minimize the Lipschitz constant of the deep
neural network directly. This structure contains two parts: the first part extracts features
using traditional backbone networks, such as Resnet, VGG, and Inceptions; the second
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part learns the non-linear metric by an invertible deep neural layer used in the Normalizing
Flows, whose gradients with respect to the input are easy to compute.

4 We conduct extensive experiments on challenging data sets such as CUB-200-2011,
Cars196, Standord Online Products, and In-Shop Clothes Retrieval to illustrate the effec-
tiveness of our algorithm.

Notation. We denote as X o = {(xi, yi)}N1
i=1 the C-class dataset where xi ∈ Rd1 is the i-th sample

and yi ∈ {1, · · · , C} is the label of xi. zi = fθ(xi) : Rd1 → Rd2 is a deep neural networks
parameterized by θ. The similarity between xi and xj is denoted as Aij = cos(fθ(xi), fθ(xj)). The
set of proxies is denoted by X p = {(wk, yk)}N2

k=1 where wk ∈ Rd2 and yk ∈ {1, · · · , C} is the
corresponding label of wk. The similarity between xi and wj is denoted by Bij = cos(fθ(xi),wj).
Because proxy-based DML does not calculate the similarity between samples within X or X p, the
similar relationship between samples X o + X p can be depicted by a bipartite graph. For xi ∈ X o,
its similar samples are only in X p and denoted as S1

i . For wi ∈ X p, its similar samples are only in
X o and denoted by S2

i . Likewise, dissimilar sample sets of xi ∈ X o and wi ∈ X p are denoted by
D1

i and D2
i , respectively.

2 MOTIVATION

Let us consider a deep neural network z = fθ(x) : Rd1 :→ Rd where θ is the learnable parameter,
x is the image vector, and z is the feature vector of the image vector x. Normally, in DML the norm
of z is equal to 1 because the L2-normalization is often used on the last layer of fθ(x). Therefore,
for a training dataset Xtr = {(xi, yi)}Ni=1 and a testing data Xte = {xi}Ti=1, the samples of them are
all projected to the surface of a d-dimensional sphere centered at the origin of the feature space.

Let us denote the surface of the considered d-dimensional sphere by S. Because in classification-
based tasks, the features vectors of different classes are desired to be separated from each other,
the features from different classes are located in different clusters on S . Without loss of generality,
we suppose that each class of samples belong only to one cluster, and the cluster region located
by the k-th class is denoted by Sk. Therefore, the set S is divided into C + 1 parts. Besides the
C regions {Sk}Ck=1, there is one region without any samples located in, which is called as blank
region. In the open set problem, the blank region is specified to the unknown classes. In distance
metric learning, the blank region of the training features may be located within the region of the
testing features. Because there is no overlapping between classes of the training and the testing sets,
therefore, S = B + ∪n

k=1Sk.

Then, we would like to demonstrate why shrinking the samples will increase the Lipschitz constant
of the learned projection. Before doing this, we introduce the definition of the Lipschitz constant.

Definition. Let (X , dX ) and (Y, dY) be two metric spaces, the Lipschitz constant of a function f is
defined as:

Lip(f) = max
x1,x2∈X :i ̸=j

dY(f(x1), f(x2))

dX (x1, x2)
(2)

Let us consider two projection f1(x) and f2(x), their projecting regions on S are {S1
k}Ck=1+B1 and

{S2
k}Ck=1 + B2, respectively. Thus, if the area of {S1

k}Ck=1 is larger than the area of {S2
k}Ck=1, the

area of B1 is smaller than that of B2. Therefore, we can find two samples xa xb whose projections
are in B1 and B2. Thus, the following constraint holds

dY (f1(xa), f1(xb))
dX(xa, xb)

<
dY (f2(xa), f2(xb))

dX(xa, xb)
(3)

The Eq. (3) indicates that the Lipschitz constant of the f1 is smaller than that of f2.

However, for distance metric learning tasks, the dimension of S is very small when compared to the
number of training samples. For example, the CUB200-2021 dataset has 11,788 samples with 200
classes. Each class has less than 60 images on average. Thus, Sk, the region of the k-th class may
be not a connected to the neighborhood of another class, otherwise we consider that both belong to
the same one. As seen from Figure 1, between two similar samples there could be a space belonging
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to the blank region. Thus, when we shrink the distance between samples of each class, the regions
involving the increasing Lipschitz constant may probably be within the blank areas between two
similar samples. When this happens, the generalization ability of f1 would be harmed.

For a good training on the deep neural network, we want to learn the distance metric learning without
increasing the Lipschitz constant within the cluster of each class.

3 ANALYSIS ON THE LIPSCHITZ CONSTANT OF NEURAL NETWORK

In this section, we introduce how to control the Lipschitz constant of our deep network. Before doing
this, we introduce an useful lemma about the Lipschitz constant of a deep layer-based projection.

Lemma 1.[Weaver (2018)] Given a T -layer deep projection fθ(x0) = fT (fT−1 . . . f1(x0)) param-
eterized with θ, the i-th layer is xi+1 = fi(xi). Let Lfi and Lfθ denote the Lipschitz constant of
fi(xi) and fθ(x0), there is an equation of Lfθ constrained by

Lfθ =

T∏
i=1

Lfi (4)

According to Eq.(4), the Lipschitz constant of fθ(x) can be constrained calculating the individual
contribution of each layer {Lfi |i = 1, · · · , T}. Let us introduce another lemma which gives a
tighter upper bound to the Lipschitz constant of the projection Lfi .

Lemma 2. Given a deep neural network, the Lipschitz constant of its i-th layer presents the follow-
ing relationship.

Lfi = max
x1,x2∈X

∥fi(x1)− fi(x2)∥2

∥x1 − x2∥2
= max

x′∈X
∥(∂fi

∂x
)|x=x′∥2F = max

x′∈X

d∑
i=1

(λx′
i )

2 (5)

where λx′
i is the i-th singular value of the matrix ∂fi

∂x |x=x′ .

Proof. Suppose fi is a continuous function, according to the Taylor equation there is a x′ such
that fi(x2) = fi(x1) + Ax′(x2 − x1), where Ax′ = ∂fi(x)

∂x| x=x′
. Thus, maxx1,x2

∥fi(x1)−fi(x2)∥2

∥x1−x2∥2 =

maxx′,x1,x2
(x2−x1)T AT

x Ax(x2−x1)
∥x1−x2∥2 = maxx′ ∥Ax∥2F . Denoting the singular values of Ax′ by {λx′

i }di=1,

there is ∥Ax∥2F = Tr(AT
x Ax) =

∑d
i=1(λ

x′
i )

2. Thus, Lfi = maxx′∈X
∑d

i=1(λ
x′
i )

2. □

Remark 1. The above Lemma estimates the Lipschitz constant of a projection by calculating
partial gradient of fi(x) with respect to x. Thus, if we reduce the F-norm of the partial gradient
matrix at all the samples in the training dataset, we can let the learned projection have a smaller
Lipschitz constant. If fi represents a linear projection: y = LT x. Because ∂fi

∂x = LT , the Lipschitz
constant corresponds to Lfi = ∥L∥2F which is a widely-used regularization term to improve the
generalization ability on deep learning models.

Distance metric learning learns a representation where samples in the same class present a small
distance, and samples from different classes a large distance. Thus, for the deep neural networks
fθ trained on this metric, the lipschitz constant of fθ will naturally increase in the black region and
decrease in clusters. However, if we use the term in Eq.(5) to minimize the Lipschitz constant of
fθ, then we would reduce the Lipschitz constant of the overall problem. Such a result contradicts
the goal of distance metric learning. Because it harms the discriminant ability of the model, but in
return it improves generalization.

Thus, instead of using
∑d

i=1 λ
x
i (dxi), we introduce the following term to regularize the Lipschitz

constant.

Rx′ = log(

d∏
i=1

(λx′

i )2) = 2

d∑
i=1

log(λx′

i ) (6)

Geometric meaning . Suppose Ax is the Jacobian matrix of z = fi(x) at x′. O(x, r) = {x||x′−x| <
r} is a neighborhood of x′, so the volume of O(x, r) =

∏d
i=1(dxi) if r → 0. Suppose the singular
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values of Ax are λx
1 > λx

2 > · · · > λx
d . The volume of fi(O(x, r)) is

∏d
i=1 λ

x
i (dxi), thus,

∏d
i=1 λ

x
i

is the volume changed after projection.

Therefore, if Rx′ is reduced, the value ∥Ax′∥2F =
∑d

i=1(λ
x′

i )2 is reduced. But the difference from
∥Ax′∥2F is that minimizing Rx′ will let small (λx′

i )2 become smaller at the procedure of minimizing
∥Ax′∥2F .

Therefore, we can propose a regularization term to minimize the Lipschitz constant according to the
metric learning requirement.

R(xi) =
1

d

d∑
i=1

log
(
λx′

i + 1
)

(7)

4 DEEP METRIC LAYER

From the implementation point of view, the formulation involved in the calculus of det(∂fθ(x)
∂x )

is intractable for traditional neural networks. To alleviate this problem, we design an non-linear
projection layer for whom the determinant of its Jacobian matrix is easy to solve. Here, we adopt
the deep neural network used in Normalizing Flows Rezende & Mohamed (2015) where it is efficient
to solve det(∂fθ(x)

∂x ).

Let h(·; θ) : R → R be a bijection parameterized by θ. Then, the desired projection is g : RD →
RD, which projects each sample x ∈ RD as y = g(x). Let the t-th entries of x and y be xt and yt,
the projection is defined as

yt = h(xt; Θt(x1:t−1)) (8)
where x1:t = (x1, · · · , xt). For t = 2, · · · , D we choose arbitrary functions Θt(·) mapping Rt−1 to
the set of all parameters, and Θ1 is a constant.

The jacobian matrix of the Eq.(9) is triangular. Each output yt only depends on x1:t and so the
determinant is just the product of its diagonal entries,

det(Dg) = ΠD
t=1det

(
∂yt
∂xt

)
(9)

The structure of Normalizing Flows is an invertible projection which can not be used to reduce the
dimension of the input samples. So the input of the Normalizing Flows can not be images, thus we
need employ a backbone based on convolutional neural networks to extract the features of images
and at last those features are fed into the Normalizing Flow layers. Therefore, the regularization pre-
sented in the previous section can not be used to constrain the Lipschitz constant of the convolutional
neural networks. Let us consider the Eq.(5), we find that if we only constrain the Lipschitz constant
of the structure of Normalizing Flows, two results may occur. (1) the Lipshcitz constant of whole
structure of our deep neural network will be reduced. (2) the Lipschitz constant of the convolutional
neural works will be larger. To avoid the second situation, we use a dueling Normalizing Flows
architecture connecting to the backbone. For the first one, the regularization is minimized, while
for the second one, its regularization term is maximized. During the inference, only the minimizing
deep metric layer are used. By doing this, we can let the Lipschitz constant of the backbone be stable
while reducing Lipschitz constant of the combined network. The Structure of the proposed method
is depicted in the Figure 2. According to the property of the invertible structure of normalizing flow,
the Jacobi matrix ∂yt

∂xt
is an upper triangle matrix. Thus, there is an equation that

R(xi) =
1

d

d∑
i=1

log
(
λx′

i + 1
)
==

1

d
log

(
∂yt
∂xt

+ I
)

(10)

where I is an identity matrix.

Because the R(xi) is a function of xi. If we have the sample set Z = {z1, · · · , zn}, then we can use
R(Z) = 1

n

∑n
i=1 R(zi).

The Eq.(11) lets the regularization of the Lipscthiz constant be small for each training sample. How-
ever it does not reduce the Lipscthiz constant between dissimilar samples. To solve this problem,
we use sample augmentation to reduce Lipschitz constant in those regions.
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Figure 2: Structure of the dueling deep metric neural network used to reduce the overall Lipschitz
constant of the network.

Sample augmentation. Let zi = fθ(xi) be the output feature embedding of the backbone. Then, for
a point {zi}, we can be compute the direction eij = zi − zj . Then, a new sample can be generated
sampling from zij = zi+ εeij . By selecting an appropriate value ε, we can find that the new sample
zij belongs to the blank region between zi and zj . In this way, if we minimize the Lipschitz constant
on the generated samples, we can reduce the Lipscthiz constant of points within the cluster of each
class. In order to efficiently select the number of samples, we only select the samples xj in the
neighborhood of xi. In this way, we produce extra training samples for the batch. Because those
augmented samples are located between two similar samples, if the distance between the samples
is reduced, the distance between the augmented sample and each of the two similar ones also does.
Therefore, there is no need to perform the distance metric learning on the augmented samples.

Thus, the objective function of the proposed distance metric learning is presented as follows.

min
(θ1,θ2,θ3)

N∑
i=1

loss((xi,Si,Di), θ) + λ1Rθ2(Z1)− λ2R(Z2) (11)

where θ1 is the learnable parameter of the backbone, θ2 is the learnable parameter of the parameter of
the first deep metric layer, θ3 is the second deep metric layer. λ1 > 0 and λ2 > 0 are the coefficient
factors of the regularization terms. Z1 is the training samples and their augmented samples for the
first invertible neural network, and Z2 is the training samples and the augmented samples for the
second invertible neural network.

After the training of the model, the outputs of the first invertible networks are considered as the
features of images.

5 EXPERIMENTS

We evaluate the effectiveness of the proposed method on four datasets for fine-grained image re-
trieval. In the conducted experiments we compare the performance of the proposed regularization
factor when applied on current state-of-the-art models in DML.

5.1 SETTINGS

Fine-grained image retrieval. We benchmark our model in four datasets on fine-grained image
retrieval: Cars196, CUB-200-2011, Standord Online Products (SOP) and In-Shop Clothes Retrieval.
CARS-196 contains 16,183 images from 196 classes of cars. The first 98 classes are used for training
and the last 98 classes are used for testing. CUB-200-2011 contains 200 different class of birds. We
use the first 100 class with 5,864 images for training and the last 100 class with 5,924 images for
testing. SOP is the largest dataset and consists of 120,053 images belonging to 22,634 classes
of online products. The training set contains 11,318 classes and includes 59,551 images, the rest
11,316 classes with 60,499 images are used for testing. Lastly, the In-shop dataset consists of a total
of 54,642 images which are divided in 25,882 images from 3997 classes for training and 28,760
images for testing.
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Table 1: Comparison of the Recall@k (in percentile) on the CUB-200-2011 and the Cars-196 fine-
grained image datasets. The backbone network is denoted by: G for GoogleNet, R50 for ResNet50
and BN for Inception with Batch Normalization. The superscript indicates the size of the final
embedding layers used in the backbone network. Source: Kim et al. (2020).

CUB-200-2011 Cars-196

Recall k=1 k=2 k=4 k=8 k=1 k=2 k=4 k=8

Clustering64 BN 48.2 61.4 71.8 81.9 58.1 70.6 80.3 87.8
Proxy-NCA64 BN 49.2 61.9 67.9 72.4 73.2 82.4 86.4 87.8
Smart Mining64 G 49.8 62.3 74.1 83.3 64.7 76.2 84.2 90.2
MS64 BN 57.4 69.8 80.0 87.8 77.3 85.3 90.5 90.2
SoftTriple64 BN 60.1 71.9 81.2 88.5 78.6 86.6 91.8 95.4
Proxy-Anchor64 BN 61.7 73.0 81.8 88.8 78.8 87.0 92.2 95.5
Margin128 R50 63.6 74.4 83.1 90.0 79.6 86.5 91.9 95.1
HDC384 G 53.6 65.7 77.0 85.6 73.7 83.2 89.5 93.8
A-BIER512 G 57.5 68.7 78.3 86.2 82.0 89.0 93.2 96.1
ABE512 G 60.6 71.5 79.8 87.4 85.2 90.5 94.0 96.1
HTL512 BN 57.1 68.8 78.7 86.5 81.4 88.0 92.7 95.7
RLL-H512 BN 57.4 69.7 79.2 86.9 74.0 83.6 90.1 94.1
MS512 BN 65.7 77.0 86.3 91.2 84.1 90.4 94.0 96.5
SoftTriple512 BN 65.4 76.4 84.5 90.4 84.5 90.7 94.5 96.9
Proxy-Anchor512 BN 68.4 79.2 86.8 91.6 86.1 91.7 95.0 97.3
Ours512 BN 69.1 80.1 87.2 92.2 87.2 92.2 95.3 97.4

5.2 IMPLEMENTATION DETAILS

We use Inception as the backbone for our model. Similar to previous works in the literature, we
use a pre-trained model on ImageNet for classification and we select a final 512-D embedding layer
that would correspond to the dimension of the hidden layers on the deep metric model. For the
backbone we freeze the batch normalization layers during the training and we add an activation
layer for the connection to the deep metric layers. The deep metric layer we use are invertible
normalizing flows layers, as the determinat of the Jacobian matrix required in the regularization
factor is efficient to compute. Particularly, we rely on Real-NVP Dinh et al. (2016), a model that
implements normalizing flows using affine coupling layers that combine a scaling term with a shit
term in the transformation. Despite its simplicity Real-NVP has shown to be effective estimating
complex density distributions without requiring a high number of layers. In our experiment we
rely on 12 layers for each of the dueling deep metric modules to capture the radial distribution
proceed by the cosine similarity in DML. Finally, we use L2-normalization on the final output of the
normalizing flows.

Regarding the loss function, we rely on the state-of-the-art Proxy Anchor loss Kim et al. (2020) for
our experimentation. Proxy Anchor proposes a proxy-based anchor method that associates the en-
tire data in the batch with proxies for each class. This method has shown advantages w.r.t. previous
proxy-based method that do not exploit data-to-data relations and it has also shown to be more effi-
cient than pair-based methods. In particular, we define the same number of proxies as classes in the
dataset. The loss function is completed with the determinant-based regularization factor presented
Eq. (11).

Training: To train our model we rely on the weight decay AdamW optimizer Loshchilov & Hutter
(2017). The initial learning rate is 10−4 for the backbone network and 10−3 for the metric learning
layers and the proxies. We use a linear decay in both cases and we train the model for 30 epochs.
Similarly to Kim et al. (2020) we initialize the proxies using a normal distribution and a bigger
learning rate is used on them for a faster convergence.

We maintain the hyperparameters δ for the margin and α scaling factor of Proxy Anchor to 32 and
0.1, respectively, in all experiments. We set the coefficients λ1 and λ2 to 0.05 for the dueling deep
metric layers.
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Table 2: Comparison of the Recall@k (in percentile) on the Standord Online Products (SOP).

SOP

Recall k=1 k=10 k=100 k=1000

Clustering64 67.0 83.7 93.2 -
Proxy-NCA64 73.7 - - -
MS64 74.1 87.8 94.7 98.2
SoftTriple64 76.3 89.1 95.3 -
Proxy-Anchor64 76.5 89.0 95.1 98.2
Margin128 72.7 86.2 93.8 98.0
HDC384 69.5 84.4 92.8 97.7
A-BIER512 74.2 86.9 94.0 97.8
ABE512 76.3 88.4 94.8 98.2
HTL512 74.8 88.3 94.8 98.4
RLL-H512 76.1 89.1 95.4 -
MS512 78.2 90.5 96.0 98.7
SoftTriple512 78.3 90.3 95.9 -
Proxy-Anchor512 79.1 90.8 96.2 98.7
Ours512 79.0 90.7 96.1 98.7

Table 3: Comparison of the Recall@k (in percentile) on the In-Shop Clothes Retrieval dataset.

In-shop

Recall k=1 k=10 k=100 k=1000

HDC384 62.1 84.9 89.0 92.3
HTL128 80.9 94.3 95.8 97.4
MS128 88.0 97.2 98.1 98.7
Proxy-Anchor128 90.8 97.9 98.5 99.0
FashionNet4096 53.0 73.0 76.0 79.0
A-BIER512 83.1 95.1 96.9 97.8
ABE512 87.3 96.7 97.9 98.5
MS512 89.7 97.9 98.5 99.1
Proxy-Anchor512 91.5 98.1 98.8 99.1
Ours512 91.5 98.2 98.7 99.1

5.3 RESULTS

To evaluate the benefits of the proposed regularization factor we follow Kim et al. (2020) and per-
form an experimentation on the CUB200-2011, Cars-196, Standord Online Products and In-Shop
Clothes Retrieval datasets for an image size of 224×224 pixels.

The results for the CUB-200-2011 and the Cars-196 datasets are summarize in Table 1. Our method
achieves competitive results on both dataset, improving the recall@k metric of the baseline imple-
mentation of Proxy Anchor. Significant results are obtained on both cases, where we beat by a
margin of 0.7% the recall@1 in the CUB-200-2011 dataset and by a margin of 1.1 in the Cars-196.
We recreate the Table 1 for Kim et al. (2020) to put in perspective the obtained results. In the SOP
dataset, the model shows slightly worse performance that the baseline, the results are summarized in
Table 2. We attribute these results to the fact that the SOP dataset is the largest of the four. Despite
this fact we expect that with further tunning of the parameters this result can be also improved. At
last, the results on the In-shop dataset are also modest in comparison to the baseline scenario (see
Table 3), and we cannot attribute a significant benefit on applying the regularization factor in that
case.
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5.4 ABLATION STUDIES

Deep metric layers. In the ablation studies we test two types of Normalizing Flows for the distance
metric layers: Real-NVP Dinh et al. (2016) and NICE (Non-linear Independent Component Esti-
mation) Dinh et al. (2014) considered the predecessor of Real-NVP. We observe a slight benefit in
using Real-NVP and therefore this is the metric that we report in the experimentation.

Coefficients of regularization. Regarding the regularization coefficient, we perform a test com-
prising the following values of λ ∈ {0.01, 0.05, 0.1, 0.2, 0.5}. Particularly, we observe better results
when the coefficients λ1 and λ2 of the dueling deep metric layers take the same value. The reported
results correspond to a value of λ1 = λ2 = 0.05 that achieved overall best performance.

Data augmentation. Finally we also experiment with different values for the ϵ-coefficient in the
generation of new samples for data augmentation. The ϵ-coefficient controls how far from the cur-
rent sample is the augmented one be created. Because the last layer applies an L2-normalization,
the output samples are restricted to be in the unitary hyper-sphere and the data augmentation occurs
in the tangent hyperplane to it. We test several coefficients ϵ ∈ {0.01, 0.05, 0.1, 0, 2, 0.4, 0.6, 0.8}
ranging from the close proximity of the original sample to the neighbour sample. In order to fur-
ther increase the generalization we should carefully select the ϵ, in our experimentation ϵ = 0.4
corresponds to the value that achieved best performance.

We keep the ablation studies concise because the aim in the experimentation is to determine whether
the regularization benefits the proxy-anchor algorithm used as a baseline. Therefore, in the shake
of presenting a fair comparison, we maintain the same 512-D embedding dimension as the original
work does, and also we report the same values for the margin δ = 0.1 and scaling factor α = 32 of
Proxy Anchor.

6 CONCLUSIONS

This paper presents a novel learning paradigm for Distance Metric Learning (DML). Differently
from the other DML methods that only focus on designing different loss functions, our work focuses
on regularizing the Lipschitz constant as a way to improve the generalization capabilities of DML
models. We adopt invertible layers from Normalizing Flows to construct a deep metric model in
which the computation the Jacobian matrix is efficient. At last, we minimize the determinant of
Jacobian matrix to reduce the Lipschitz constant of the deep neural network. Conducted experiments
on fine-grained Cars196, CUB-200-2011, Standord Online Products (SOP) and In-Shop Clothes
Retrieval datasets show that the proposed architecture benefits the baselines proxy-based architecture
on achieving better generalization.
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