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ABSTRACT

While deep learning is effective to learn features/representations from data, the
distributions of samples in feature spaces learned by various architectures for dif-
ferent training tasks, e.g., latent layers of Autoencoders (AEs) and feature vectors
in Convolutional Neural Network (CNN) classifiers, have not been well-studied
or compared. We hypothesize that the feature spaces of networks trained by var-
ious architectures (AEs or CNNs) and tasks (supervised, unsupervised, or self-
supervised learning) share some common subspaces, no matter what types of ar-
chitectures or whether the labels have been used in feature learning. To test our
hypothesis, through Singular Value Decomposition (SVD) of feature vectors, we
demonstrate that one could linearly project the feature vectors of the same group
of samples to a similar distribution, where the distribution is represented as the top
left singular vector (i.e., principal subspace of feature vectors), namely P-vector.
We further assess the convergence of feature space learning using angles between
P-vectors obtained from the well-trained model and its checkpoint per epoch dur-
ing the learning procedure, where a quasi-monotonic converging trend from nearly
orthogonal to smaller angles (e.g., 10◦) has been observed. Finally, we carry
out case studies to connect P-vectors to the data distribution, and generalization
performance. Extensive experiments with practically-used Multi-Layer Percep-
tron (MLP), AE and CNN architectures for classification, image reconstruction,
and self-supervised learning tasks on MNIST, CIFAR-10 and CIFAR-100 datasets
have been done to support our claims with solid evidences.

1 INTRODUCTION

Blessed by the capacities of feature learning, deep neural networks (DNNs) (LeCun et al., 2015) have
been widely used to perform learning tasks, ranging from classification, to generation (Goodfellow
et al., 2014; Radford et al., 2015), in various settings (e.g., supervised, unsupervised, and self-
supervised learning). To better analyze the features learned by deep models, numerous works have
studied on interpreting the features spaces of the well-trained models (Simonyan et al., 2013; White,
2016; Zhu et al., 2016; Bau et al., 2017; 2019; Jahanian et al., 2020; Zhang & Wu, 2020).

Invariance beyond the use of architectures and labels. While existing studies primarily focus
on the interpolation of a given model to discover mappings from the feature space to outputs of
the model (e.g., classification (Bau et al., 2017) and generation (Jahanian et al., 2020)), the work
is so few that compares the feature spaces learned by deep models of varying architectures (e.g.,
MLP/CNN classifiers versus Autoencoders) for different learning paradigms (Chen et al., 2020;
Khosla et al., 2020; Spinner et al., 2018). More specifically, we are particularly interested in whether
there exists certain “statistical invariance” in the feature space, no matter what type of architectures
or whether label information (e.g., supervised vs. unsupervised vs. self-supervised (Chen et al.,
2020) learning) are used in feature learning with the same training dataset.

Hypotheses. It is not difficult to imagine that the feature spaces of well-trained DNN classifiers in
supervised learning setting might share some linear subspace (Vaswani et al., 2018). When models
are well fitted to the same training set, the feature vectors of training samples should be projected
to the ground-truth labels after a Fully-Connected Layer (i.e., a linear transform), while such lin-
ear subspace are supposed to distribute samples in a discriminative manner. We doubt that such
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Figure 1: The Common Feature Subspace and Converging Trends of P-vector Angles with
CIFAR-10. Figure 1. (a)–(b) present cosine (in the range of [0,1]) of angles between the P-vectors
of well-trained models of various architectures under different learning paradigms, using training
and testing datasets respectively. A well-trained model here is the one trained under the suggested
settings after 200 epochs for supervised/self-supervised CNN classifiers and 100 epochs for unsu-
pervised AEs. Figure 1. (c)–(h) present angles of P-vectors between the well-trained model and its
checkpoint per training epoch of three learning paradigms, where the converging trends of P-vector
angles from nearly-orthogonal to smaller ones have been observed in all models, no matter whether
the feature extractors of these models are trained with / without labels. Note that we carried out ex-
periments with different random seeds in 5 independent trials to obtain the averaged results above.
More discussion are provided in Section 4.

subspace might be not only shared by supervised learners but also with AEs which are trained to
reconstruct input data without any label information in an unsupervised manner, or even shared
with self-supervised DNN classifiers (e.g., SimCLR (Chen et al., 2020)) which train (1) CNN fea-
ture extractor (using contrastive loss without labels) and (2) linear classifiers (using discriminative
loss based on labels) separately in an ad-hoc manner. More specifically, we hypothesize that (H.I:)
there exists certain common feature subspaces shared by well-trained deep models using the same
training dataset, even though the architectures (MLPs, CNNs, and AEs) and the learning paradigms
(supervised, unsupervised, and self-supervised) are significantly different. Further, as the training
procedure usually initializes the DNN models from random weights and learns features from the
training set step-by-step, we hypothesize that (H.II:) the training procedure gradually shapes the
feature subspace over training iterations and asymptotically converge to the common subspace in
certain statistical measure. Finally, we hypothesize that (H.III) the convergence to the common fea-
ture subspace would connect to the data distribution and performance of models, as such behavior
indicates how well the features are learned from data. This hypothesis is motivated by the observa-
tion that when the DNN model tends to be linear the DNN feature subspace should be close to the
data subspace, while the well-trained DNN models should be locally linear (Zhang & Wu, 2020) or
piecewise linear (Arora et al., 2018).

Contributions. To test above three hypotheses, this work makes contributions in proposing new
measures to the DNN features, namely P-vectors, and conducting extensive experiments for empir-
ical studies. We train deep models using various DNN architectures, multiple learning paradigms,
and datasets, with the checkpoint restored per epoch. Then, we extract the feature vectors for either
training or testing sample sets, from the model (Please see Section 3 for details) and discover some
interesting relationships or associations as discussed below.

I. P-vector and Convergence: Given the matrix of feature vectors (#samples1×#features) for ei-
ther training or testing samples, we perform the singular value decomposition (SVD) to obtain left
and right singular vectors, characterizing the subspaces that samples distribute and the projection
of features to subspaces respectively. We observe that deep models well-trained using the same

1We follow the convenience that denotes # as the term “the number of” for short.
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dataset share similar top left-singular vectors (referring to the principal subspace of feature vectors),
namely P-vector in this study. For example, Figure 1 (a)–(b). show the high cosine similarity (close
to 1) between the P-vectors of any two well-trained DNNs for eight different deep learning archi-
tectures/tasks. This observation well backups H.I, where the common subspace in feature spaces
shared by models trained with different architectures/paradigms has been observed. With check-
points obtained along the training procedure, we estimate the angle that compares P-vectors of the
checkpoint per epoch and the well-trained one. We find such angle decrease over the number of
epochs (in an overall manner) and would converge2 to smaller ones. For example, Figure 1 (c)–(h).
demonstrate the consistent converging trends of angles between P-vectors of the well-trained model
and its checkpoints in progress of training for eight different deep learning architectures/tasks. This
observation supports H.II, where convergence to the common feature subspace are expected.

II. Data Distribution and Performance: To connect to the data distributions, we intend to compare
feature vectors and original data vectors of samples using P-vectors. In addition to the P-vector es-
timated from the feature vectors of a deep model (namely a “model P-vector”), We simply form the
sample vectors (either for training or testing) into a #samples×#data dimension matrix and perform
SVD to obtain the top left singular vector as the P-vector of samples (namely a “data P-vector”).
We estimate the angles between the model and dataP-vectors, and find a trend of convergence (from
nearly orthogonal to relatively small angles), where we can see the well-trained models would in-
corporate smaller angles than ones in the early stage of training processes. We further correlate such
angles with training and testing accuracy of the models, where we observe significant negative cor-
relations in most cases of experiments. The trends show that the model with a smaller angle between
the model and data P-vectors would enjoy better performance. The evidences backup H.III.

2 RELATED WORK

In this section, we first present the preliminaries in understanding feature learning of DNNs, then
discuss the most relevant works to our studies.

As early as 2013, (Simonyan et al., 2013) proposed to visualize the features learned by deep con-
volutional neural networks (CNN) and made sense of discriminative learning via deep feature ex-
traction. For generative models, (White, 2016; Zhu et al., 2016) studied the interpolation of latent
spaces while (Zhu et al., 2016) discovered an user-controlled way to manipulate the images gener-
ated through the surrogation of latent spaces via manifolds. Later, (Bau et al., 2017) presented the
visual concepts learned in the feature spaces of discriminative models through network dissection
on specific datasets while the same group of researchers also proposed GAN dissection (Bau et al.,
2019) – an interactive way to manipulate the semantics and style of image synthesis. (Richardson
& Weiss, 2018) compared GAN and Gaussian Mixture Models (GMMs) to understand the capacity
of distribution learning in GAN. (Berthelot et al., 2019) proposed to improve understanding and
interpolation of Autoencoders using adversarial regularizer while (Spinner et al., 2018) compared
AEs with its variational derivatives to interpret the latent spaces. More recently, (Saxe et al., 2019)
mathematically analyzed the process of neural representation construction from the perspectives of
learning dynamics of deep neural networks. (Jahanian et al., 2020) studied the “steerability” of
GAN, where it discovered point-to-point editing paths for content/style manipulation. (Zhang &
Wu, 2020) uncovered the phenomena that DNN classifiers with piecewise linear activation tend to
map the input data to linear subregions. Other impressive studies in this line of research include
(Nguyen et al., 2016; Arvanitidis et al., 2018; Sercu et al., 2019).

Discussion. The most relevant studies to our work are (Bau et al., 2017; Zhang & Wu, 2020; Saxe
et al., 2019; Lee et al., 2019). For discriminative models, (Bau et al., 2017) recovered visual features
learned by CNN classifiers with a priorly labeled dataset, and quantified then compared the feature
learning capacities (namely “interpretability” in the work) of different DNN models through patterns
matching with the ground truth. Compared to (Bau et al., 2017), we carry out the empirical studies on
a wide range of datasets without any prior information on their features and observe consistent phe-
nomena in the distribution of samples in the feature spaces. Furthermore, while (Zhang & Wu, 2020)

2In our research, we name convergence as the decreasing trend of P-vector angles from a larger one to a
smaller one (e.g., 10◦ for supervised CNN classifiers and SimCLR, ≤ 10◦ for ConvAEs/DenoiseAEs, and 30◦

for SupCon) over training epochs. For reference, Cosine(10◦)=0.985 is close to 1.0
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Figure 2: Obtain P-vectors of deep neural networks using a group of samples

studied the properties of regions where a supervised DNN classifier with piecewise linear activation
behaves linearly, our work observes the common linear subspaces shared by the features learned by
the networks that are trained with different architectures (e.g., MLP/CNN classifiers and AEs with
ReLU activation) and paradigms (e.g., supervised, unsupervised, and self-supervised learning). Fur-
thermore, both our work and (Saxe et al., 2019) propose to compare feature/representation learning
by various models through SVD, while we perform SVD to investigate the distribution of samples in
feature space and (Saxe et al., 2019) uncovered the latent structures in input-and-output of neurons.

To understand the latent space of generative models, some statistical/mathematical tools (Richardson
& Weiss, 2018; Lee et al., 2019) have been introduced. Through comparisons between GAN and
GMM, (Richardson & Weiss, 2018) uncovered GAN’s superiority in feature/texture reconstruction
and in the meanwhile its incompetence in distribution learning, while (Lee et al., 2019) provides
some analytical insights on the structure of latent spaces. In our work, we propose P-vectors to
model the distribution of samples in the feature/latent spaces of DNN classifiers and AEs. To the
best of our knowledge, we make unique contributions compared to the above work.

3 METHODOLOGIES: FEATURE VECTORS, SINGULAR VALUE
DECOMPOSITION, AND P -VECTORS

As mentioned in Section. 1, we carry out extensive experiments on analyzing the feature vectors
of DNN models with various architectures and different training paradigms through the newly-
proposed P-vectors. In this section, we present the design of experiments in details, where we
cover three key procedures of the experiment as shown in Figure 2.

Feature Vector Extraction. Given a model, either the well-trained one or a checkpoint obtained
during the training process, we extract the feature vector for every sample, with respect to the archi-
tectures. For DNN classifiers (either under supervised/self-supervised learning), we use the output
of CNN feature extractor (i.e., the input to the Fully-Connected Layer) as the feature vector of the
given sample, while we vectorize the output bottleneck layer as the feature vector for AEs. Note
that, in our research, we consider AEs with symmetric architectures of encoders and decoders only.

Singular Value Decomposition with Feature Vectors. Given the feature vector for every sample,
we form a #samples×#features matrix and perform SVD to obtain the top left singular vector as
the P-vector. Furthermore, there is no need to solve the singular vectors of the complete spectrum,
as only the top singular vector is requested for P-vector estimation. In this way, we propose to
use Randomized SVD (Halko et al., 2011) that compresses the feature domain and approximate the
low-rank structure of SVD for acceleration purpose. Actually, we compare the numerical solution
of Randomized SVD and Common SVD for ResNet-50 on CIFAR-10 dataset (#features=256 and
#samples= 50,000), where we need to perform SVD on a #samples×#features matrix and the P-
vector/top left singular vector should be with dimensions. Compared to the vanilla SVD, around
109x (from 44.88 seconds to 0.41 seconds) speedup has been achieved by Randomized SVD while
no significant numerical errors having been found in the results.

P-vectors, Principal Subspace, and the Distribution of Samples in Feature Spaces. The top
left singular vector of #samples×#feature matrix represents the principal subspace (Jolliffe, 2002)
that samples are distributed into a one-dimensional space (with the maximal variances) by the pro-
jection of principal component (Abdi & Williams, 2010) of features. In this way, we can compare
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and measure the divergence between the feature spaces of two DNNs through assessing the angle
between their P-vectors based on the same set of samples.
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Discussion. We plan to
discuss the properties or P-
vectors from the aspects as
follow.

Significance of P-vectors.
A possible threat to valid-
ity of using P-vectors to
analyze the feature space
of DNN is that P-vectors
might fail to capture the necessary information to represent the features learned. To validate the
capacity of P-vectors to represent the feature space, we carried out Singular Value Decomposition
on the matrix of feature vectors, using CIFAR-10 and CIFAR-100 datasets both based on ResNet-50
models, and obtain the distribution of singular values over indices. More specifically, we compute
the distributions of singular values for the feature matrices obtained in the 1st, 60th, 120th, 160th
and 200th epochs to monitor the change of singular value distributions throughout the training pro-
cedure. It has been observed in Figures 3(a) and (b) that a “cliff” pattern in the distribution becomes
more and more significant after epochs of training for both CIFAR-10 and CIFAR-100 datasets – a
very small number (less than 10) of top singular values might dominate the whole distribution. In
Figure 3(c), we plot the curve of explained variance ratio σ2

k/
∑d

j=1 σ
2
j for every pair of singular

vectors, using well-trained models of 200 epochs based on CIFAR-10 and CIFAR-100, where σk
refers to the kth singular value and d is the rank of matrix. The explained variance ratio of the top-1
singular vectors (i.e., the P-vector and the top-1 right singular vector) is more than 50% while the
second top singular vectors are less than 10%. Results show the use of P-vectors could represent
the features learned. In addition to the use of top-1 singular vectors (the P-vector), in Appendix
(A.7), we also discuss the results of including more singular vectors in analysis, where no consistent
observations have been obtained.
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Figure 4: Distribution of Values in the P-Vector

Distribution of Values in a P-vector.
As a singular vector, a P-vector
should be a unit-vector, where the
sum of squared value on every di-
mension of the vector should be 1.
To take a closer look at the P-vector,
we first retrieve the value on every di-
mension of the vector and count the
frequency that each value appears.
We normalize the frequency with the
total counts and plot the smoothed probability density of the distributions (of the values in the P-
vector) in Figure 4 (a) and (b) for CIFAR-10 and CIFAR-100 datasets. Specifically, we plot the
distribution for P-vectors obtained in different epochs throughout the training procedure, where a
clear “concentration” process could be observed. In the beginning, probably due to the random ini-
tialization, the values are flatten in a wider range. With the training epochs, the distributions in the
both figures would be “concentrated” into narrow ones with reduced ranges. We could observe the
peak shifts over training epochs in both figures, while the distributions based on two datasets are sig-
nificant different from both magnitudes and ranges’ perspectives. Examples on the raw frequency of
values in P-vector is included in Appendix (A.6), where same trends could be observed. Note that
two P-vectors are not necessary to be close, when their distributions (of values) are close. Because
the specific value assigned to every sample in the P-vector could be significantly different. Thus,
analyzing the distribution of values in P-vectors with respect to the distribution of data might be a
part of future work.

Ways to compare P-Vector. Given the same set of samples, P-vectors of the two DNNs should be
in the equal length, as they are both the top singular vectors in the sample side. Furthermore, we
can easily measure their divergence via Cosine of two vectors. A larger cosine of two vectors (e.g.,
close to 1.0) usually refers to the evidence that the two networks share subspace in their features.
Note that, in high-dimensional spaces, the chance of orthogonality between two random vectors
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Figure 5: Cosine of angles between the P-vectors of well-trained models

appears more frequently, due to the curse of dimensionality (Pestov, 1999). Thus, given a sample
set such as CIFAR-10 with more than 60,000 samples, when the cosine measure close to 1.0 or
the angle between the two P-vectors (with 60,000 dimensions) is small, we can conclude that the
two networks would share a subspace in the feature spaces in high confidence. Of-course, there
might exist other ways to perform analysis using P-vectors. In our future work, we plan to leverage
advanced numerical tools Björck & Golub (1973) to estimate the angles between the subspaces of
DNN models in general dimensions.

4 UNCOVERING COMMON FEATURE SUBSPACE WITH P -VECTORS
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(i) Self. vs Self-Sup.
Figure 6: P-vector angles between checkpoint per epoch
and well-trained models using CIFAR-10.

Common Subspaces. To demon-
strate the existence of common sub-
spaces, we propose to measure the
angles between the P-vectors ex-
tracted from well-trained models us-
ing the same datasets. For any
two models, a small angle between
the two P-vectors refers to the facts
that the two models would project
these samples to similar principal
subspaces in feature spaces, as the
P-vectors are estimated as the top
left singular vector of the feature ma-
trix (i.e., #samples×#features) SVD
based on the same group of samples.
Figure. 1 (a)–(b) presents the co-
sine of angles between the P-vectors
of well-trained models (trained with
various architectures and tasks using
CIFAR-10 dataset). To generalize our
observations, we propose to compare
the P-vectors of models using the
feature matrices based on the training
and testing samples in Figures. 1 (a)
and (b) respectively. We carry out the same experiments on CIFAR-10 and CIFAR-100 datasets, and
present the cosine of angles between the P-vectors of well-trained models in Figure 5. All experi-
ments demonstrate that, with a relatively large cosine (close to 1), the models well-trained using the
same dataset, no matter what types of architectures or whether labels has been used in the feature
learning of various tasks, share a common subspace.

Converge to the Common Subspace To understand the dynamics of feature learning that shapes
the common subspace from scratch, we measure the change of angles over epochs between the P-
vectors of training models (i.e., checkpoint in the epoch) and well-trained ones in comparisons. In
Figure 1 (c)–(h), for every model of various tasks, we present angles between the P-vectors of the
well-trained model and itself’s training checkpoint per epoch. A consistent convergence could be
observed. As the P-vectors of well-trained models are close to each others (see in Figures 1 and 5),
we can conclude the feature vectors extracted by these models would evolve on time and gradually
converge to share the common subspace during the learning procedure.
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We carry out a more comprehensive model-to-model comparison using CIFAR-10 dataset. Fig-
ures. 6 (a)–(c) present the convergence of P-vector angles between the well-trained supervised
models and the checkpoints per epoch of supervised, unsupervised, and self-supervised learning
models, where we use the well-trained Wide-ResNet28 (trained with 200 epochs under suggest set-
tings) as the reference of supervised models. Figures. 6 (d)–(f) present P-vector angles between
the well-trained ConvAE (trained with 100 epochs under suggest settings as the reference of unsu-
pervised learning) and the checkpoints per epoch of supervised, unsupervised, and self-supervised
learning models. Figures. 6 (g)–(i) present the P-vector angles between the well-trained SimCLR
representations (trained under suggest settings (Chen et al., 2020) as the reference of self-supervised
learning) and the checkpoints per epoch of supervised, unsupervised, and self-supervised learning
models. The trends of convergence in all comparison further validate our hypotheses.
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(c) Self-Sup.
Figure 7: Angles between the P-vectors of the training and
well-trained models over the number of iterations in the first
epoch using CIFAR-10.

Discussion. To better visualize ev-
ery comparison, we use the maxi-
mal angles achieved during the first
epoch to represent the angles between
P-vectors corresponding to the first
epoch in Figures 1 and 6. Actually, in
the first epoch, there would incorpo-
rate some non-monotonic trends for
the angles varying over the number
of iterations. Figure 7 presents the
angles between the P-vectors of the
training and well-trained models over the number of iterations in the first epoch in three settings of
learning, where we use CIFAR-10 dataset for the experiments. In this way, we recover the proce-
dure that the learning procedure shapes the feature space – with the random weight initialization,
the angles of P-vectors between the initial models and the well-trained models are large, the angles
drop down and rebound in a zigzag trend quickly in all three learning paradigms. In the rest of
learning procedure, the angles between the P-vectors drop down and converge to smaller ones over
the number of iterations. (H.II)

Note that in Appendix (A.7), we include the comparison between the top singular vectors other than
the P-vectors, i.e., the angles of top-2, 3, 4, 5 and 6 left singular vectors between models, where we
cannot observe the converging trends.

5 CASE STUDIES ON P -VECTORS WITH DATA DISTRIBUTIONS AND MODEL
PERFORMANCE
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Figure 8: Angles between the model and data P-vectors per
training epoch. C10: CIFAR-10, C100: CIFAR-100

In this section, we intend to ex-
tend our observations to connect P-
vector with the (raw) data distribu-
tions and the generalization perfor-
mance of models.

Correlation to Data P-vectors.
Given the raw data matrix, i.e., a
#samples×#data dimensions matrix,
we obtain the Data P-vector3 of these
samples using the top left singular
vector of the raw data matrix, which
represents the principal subspace of
data (or the position of every sample
projected by the principal component
of the data). To understand the con-
nection between models and data, We

3We use the term “model P-vector” to represent the P-vector estimated using the feature vectors of a deep
model, while using “data P-vector” as the top left singular vector of the raw data matrix.
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Figure 9: Strong and consistent correlations between the model performance (training and test-
ing accuracy) and the angels between model and data P-vectors using CIFAR-10 and CIFAR-100
datasets. VN: VggNet, RN: ResNet, C10: CIFAR-10, and C100: CIFAR-100.

carry out the case study using CIFAR-10 dataset, so as to measure the angles between the model P-
vector and the data P-vector and how the angles change over the number of training epochs.

Figure.8 shows the convergence of P-vector angles between the raw data and the checkpoints per
epoch of supervised, unsupervised, and self-supervised learning models. The angles between the
data and model P-vectors start from about orthogonal and generally decrease and converge to about
50◦ degree to 60◦ degree. Note that the angle points corresponding to the first epoch on the curves
are the largest P-vector angles during the training procedure of the first epoch from the random
scratch. The results indicate that the principal subspace of the well-trained models are more close to
the principal subspace of the raw data, no matter what type of architectures is used for what kind of
learning tasks and whether the labels are used for training.

Correlation to Deep Learning Performance. We further explore the relationship between the
performance of the various models on different datasets and the angles between P-vectors and
data P-vectors. Experiments are delivered using ResNet-20/56/110 and VGG-16 on CIFAR-10/100
datasets. As shown in Fig.9, there exists a strong and consistent correlation between the train-
ing/testing accuracy of models and the angles between the model and data P-vectors. Note that
in these experiments, we use the samples in the training dataset to estimate the model and data P-
vectors while avoiding the use of validation information, so as the demonstrate the connection of
P-vectors all based on training samples to the generalization performance. For CIFAR-100 dataset,
we use ResNets with pre-activation enabled.

To avoid the dominance of some outliers, we conduct correlation analysis between the rank of model
performance and the rank of angles by the use of Spearman’s coefficients and p-values. With 0.05
as the threshold for significance, we find significance in the correlations between the angles be-
tween model and data P-vectors and the training/testing accuracy for all above cases, except the
correlation between the angles and training accuracy on ResNet-100 using CIFAR-100 dataset (p-
value=0.0927). In Appendix (A.8), we also include an additional correlation analysis based on
log-log plots, where we can further validate our observation. In this way, we could conclude that
(1) both training and testing accuracy are correlated to the angles between the model and data P-
vectors, (2) the strong correlations between angles and the testing accuracy might not be caused by
the correlations between the angles and training accuracy, as the earlier ones are even stronger, (3)
the angles between the model and data P-vectors would be a reasonable performance indicator, as
they are strongly, consistently, and significantly correlated to the testing accuracy. This observation
coincides our intuition that a significant (locally) linear term exists in the well-trained model (Zhang
& Wu, 2020), which makes DNN feature principal subspace correlate to the data principal subspace.
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Methods Prediction Score
VC Dimension (Vapnik, 2013) 0.020
Jacobian norm w.r.t intermediate layers (Jiang et al.) 2.061
Angles between the model and data P-vectors 3.325
Distance to Initialization (Nagarajan & Kolter, 2019) 4.921
Distance from Initialization + Angles between the model and data P-vectors 4.971
Sharpness of the convergence point (Jiang et al., 2019) 10.667
Pseudo validation accuracy 13.531
Pseudo validation accuracy + Angles between the model and data P-vectors 15.618

Table 1: Scores of different method to predict the generalization gap using CIFAR-10 and SHVN.

Applications to Generalization Performance Prediction. To further demonstrate the feasibility
of using the P-vector as a “validation-free” measure of generalization performance, we use the ex-
periment settings of “Predicting Generalization in Deep Learning Competition” at NeurIPS 2020 to
evaluate P-vectors on predicting the generalization performance of a wide range of models using the
training dataset. The competition offers a large number of deep models trained with various hyper-
parameters and DNN architectures, while the official evaluator for the competition first predicts the
generalization performance of every model using the proposed measure, then verify the prediction
results through the mutual information (the higher the better) between the proposed measures and
the (observable) ground truth of generalization gaps.

In the experiments, we propose to use the angles between the model and data P-vectors using the
training dataset as the metrics of generalization performance. In the comparisons with the proposed
P-vectors, we include several baseline measures in generalization performance predictors, including
VC Dimension (Vapnik, 2013), Jacobian norm w.r.t intermediate layers (Jiang et al.), Distance from
the convergence point to initialization (Nagarajan & Kolter, 2019), and the Sharpness of conver-
gence point (Jiang et al., 2019). In addition to these methods, we also propose “Pseudo Validation
Accuracy” as a measure for comparisons, where this measure first uses random data augmentation
apply to the original set of training data to generate a set of “pseudo validation samples”, then tests
the accuracy of the model using “pseudo validation samples”.

Table 1 presents the comparisons between the proposed measures and baselines. It shows that when
the proposed measure – angles between the model and data P-vectors – stands alone, the measures
significantly outperform the baseline methods including Jacobian norm w.r.t intermediate layers and
the VC dimensions. However, through complementing with other metrics, the metrics based on
P-vector angles could be further improved in predicting the generalization performance and finally
outperform all baseline methods when combining with “Pseudo validation accuracy”. Note that we
combine the results of two metrics through weighted aggregation (Pihur et al. (2009), with a constant
weight 0.05) of two ranking lists that are sorted according to the two metrics respectively.

All above experiment results in three case studies backup our hypothesis that the P-vectors of the
model feature spaces would connect to the data distribution and performance of models (H.III).

6 CONCLUSION

In this work, we propose the P-vector, defined as the top left singular vector of the feature ma-
trix (the #samples×#features matrix) through SVD, to characterize the principal subspace of the
feature space founded by the samples. We observe that, no matter what type of DNN architec-
tures or whether the labels have been used to train the models, the angle of P-vectors between any
two models would decrease to smaller ones (e.g., around 10◦ for most models in this study and
cosine(10◦)=0.985), when the models are well trained with the same dataset. We conclude that the
feature spaces all well-trained DNN models using the same training dataset would share a prin-
cipal subspace. Furthermore, during the training procedure from the random scratch, the model
P-vector would slowly approach to the data P-vector (defined as the top left singular vector of the
raw data matrix, i.e., #samples×#data dimensions), where the data and model P-vectors start from
an almost-orthogonal status while the angles between the data and model P-vectors overall decrease
and converge to smaller ones (e.g., 50◦–60◦). Finally, we find that angles between the model and
data P-vectors are strongly correlated to the performance of models (i.e., both training/testing ac-
curacy) while they are capable of predicting generalization performance, even when the model and
data P-vectors are all estimated using training dataset only. As was discussed, we believe the em-
pirical observations obtained here are partially due to the local linearity of DNN models (Zhang &
Wu, 2020); our future work may focus on the theoretical understanding to these phenomena.
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Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley interdisciplinary reviews:
computational statistics, 2(4):433–459, 2010.

Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding deep neural
networks with rectified linear units. In International Conference on Learning Representations,
2018.

Georgios Arvanitidis, Lars Kai Hansen, and Søren Hauberg. Latent space oddity: On the curvature
of deep generative models. In International Conference on Learning Representations, 2018.

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection:
Quantifying interpretability of deep visual representations. In Conference on Computer Vision
and Pattern Recognition, 2017.

David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou, Joshua B. Tenenbaum, William T. Freeman,
and Antonio Torralba. Gan dissection: Visualizing and understanding generative adversarial net-
works. In International Conference on Learning Representations, 2019.

David Berthelot, Colin Raffel, Aurko Roy, and Ian Goodfellow. Understanding and improving inter-
polation in autoencoders via an adversarial regularizer. In International Conference on Learning
Representations, 2019.
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A APPENDIX

A.1 COMPARISON OF ANGLES BETWEEN MODEL AND WELL-TRAINED P -VECTOR USING
DIFFERENT ARCHITECTURES ON CIFAR-100

In the main text, we presented the result on CIFAR-10 dataset. To generalize the observations, we
repeated the experiments on CIFAR-100 dataset to validate our hypothesis of the convergence of the
angles between model checkpoints and well-trained model P-vectors. We investigate the change
of angles over the P-vectors of training model checkpoints per epoch with comparison to the P-
vectors of well-trained models (model of epoch 200 in our case). As shown in Fig.10, a gradually
decreasing manner of the curves for the angle between P-vectors and all angles between P-vectors
cross models with different supervisory manners generally converge to a value that smaller than
10◦ degree. We can conclude that the hypothesis of the existence of common subspace during the
learning procedure also stands on the experiments with CIFAR-100 dataset.
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Figure 10: Convergence to the Common Feature Subspace with CIFAR-100. Curves of angles of
P-vectors between the well-trained model and its checkpoint per training epoch of three learning
supervisory manners. The trends of convergence for the angles can be observed in all models.

A.2 THE MON-MONOTONIC TREND WITHIN THE FIRST EPOCH

The variation of angles between P-vectors for the well-trained model and its checkpoint per training
epoch of each iteration in the first epoch. The non-monotonic trends within the first epoch also
incorporate in the experiments on CIFAR-100 datasets. Fig.11 shows the curves indicating the
variation of angles between the training model P-vectors and the well-trained model P-vectors in
the iterations in the first epoch. As we use 128 as the batch size in training procedure, the number of
iterations for updates is 391 per epoch. We obtain the observation of a non-monotonic trend that the
angle first rises with the random initialization and drop down. And in the rest of training process,
the angles keeps the approximately monotonically decreasing and converging to small values. The
experiments shows consistent result and conclusion on CIFAR-100 dataset with the discussion in
section 4.

A.3 MODEL-TO-MODEL COMMON SUBSPACE

We also test and verify the model-to-model common subspace shared by models trained with dif-
ferent supervisory manners on CIFAR-100 dataset. Experiments carried out to evaluate the angles
between P-vectors for checkpoints of all models and P-vectors for well-trained supervised, unsu-
pervised and self-supervised models, where we use the well-trained Wide-ResNet28/Convolution
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Figure 11: Angles between the P-vectors of the training and well-trained models over the number
of iterations in the first epoch using CIFAR-100.
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Figure 12: Convergence of P-vector angles between checkpoint per epoch and well-trained models
using CIFAR-100.

13



Under review as a conference paper at ICLR 2021

Auto-encoder and SimCLR model (trained with 200 epochs under suggest settings) as the reference
of supervised, unsupervised and self-supervised models, respectively. As shown in Fig.12, a con-
sistent convergence for the curves of the angles can be observed and support our hypothesis that the
dynamics learning procedure construct the common subspace gradually.

A.4 THE NON-MONOTONIC TREND IN THE FIRST EPOCH OF COMPARISON OF ANGLES
BETWEEN MODEL AND RAW DATA P -VECTORS

We also explore the construction procedure for the common subspace share between feature vectors
and the raw data during the training process. Experiments are carried out to compare the space of
models and raw data P-vectors on the training dataset. As shown in Fig.13, we observe a non-
monotonic trend that the angle first rises with the random initialization and drop down. The an-
gles keeps the approximately monotonically decreasing and converging to small values in following
training epochs. The experiments shows consistent result on both CIFAR-10 and 100 dataset. Note
that we follow the default random data augmentation policy to pre-process the training dataset.
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Figure 13: Angles between the P-vectors of the training and well-trained models over the number
of iterations in the first epoch using CIFAR-10 /CIFAR-100.

A.5 CASE STUDIES ON THE ANGLE VARIETY BETWEEN MODEL AND RAW DATA FOR EACH
LAYER

To explore the dynamic variation process by zooming in to every layer variation in each epoch, we
perform the case study using Resnet-18 structure on CIFAR-10 dataset. As shown in Fig.14, we
give the angles according to layers of 5 different epochs, where the x-axis indicating the indices of
residual blocks in the network structure and y-axis refers to the angles between the model checkpoint
and raw data P-vectors. We observed that in early training stage, the angles between the model
checkpoint and raw data P-vectors keeps an increasing manner when the features passing though
layers and turn into a decrease trend towards the stacked layers in the late training stage. This set
of experiments further support our hypothesis that the dynamics learning procedure construct the
common subspace gradually through training process.

A.6 DISTRIBUTION OF VALUES IN THE P -VECTOR

Please refer to Figure 15 for the results of experiments carried out on CIFAR-10 and CIFAR-100
datasets using ResNet-50.

14



Under review as a conference paper at ICLR 2021

0 2 4
layer

48.0

48.5

49.0

49.5

50.0

50.5

51.0

51.5

52.0

an
gl

e

epoch5

(a) Epoch 5.

0 2 4
layer

48.00

48.25

48.50

48.75

49.00

49.25

49.50

49.75

an
gl

e

epoch45

(b) Epoch45

0 2 4
layer

48.0

48.5

49.0

49.5

50.0

50.5

an
gl

e

epoch85

(c) Epoch85.

0 2 4
layer

48.00

48.25

48.50

48.75

49.00

49.25

49.50

49.75

an
gl

e

epoch125

(d) Epoch125.

0 2 4
layer

48.00

48.25

48.50

48.75

49.00

49.25

49.50

49.75

50.00

an
gl

e

epoch165

(e) Epoch165.
Figure 14: Angles changes through layer between the P-vectors of the training and raw data over
the number of iterations in the first epoch using CIFAR-10.
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Figure 15: Frequency distributions of the P-vector values over training epochs.
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(a) Top 1 singular vector. (b) Top 2 singular vector. (c) Top 3 singular vector.

(d) Top 4 singular vector. (e) Top 5 singular vector. (f) Top 6 singular vector.

Figure 16: Angles between the top-k left singular vector (k = 1 is the P-vector) of the training and
well-trained models over the number of epochs in the training process (Resnet-50, CIFAR-10). Note
the first plot point refers to the feature matrix after trained for one epoch.
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Figure 17: Log-Log Plots: Strong and consistent correlations between the model performance (train-
ing and testing accu racy in log range) and the angels (in log range) between model and data P-
vectors using CIFAR-10 datasets. VN: VggNet, RN: ResNet, C10: CIFAR-10.

A.7 NO CONVERGENCE FOUND IN COMPARISONS BETWEEN THE TOP SINGULAR VECTORS
OTHER THAN THE P -VECTORS

Please refer to Figure 16 for the results of experiments carried out on CIFAR-10 datasets using
ResNet-50.

A.8 LOG-LOG PLOTS THAT CORRELATE THE P -VECTOR ANGLES AND THE MODEL
PERFORMANCE

Please refer to Figure 17 for the log-log plot of the results based on on CIFAR-10 datasets.
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