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ABSTRACT

We present our progress on overcoming key challenges in applying generative mod-
els to 3D ligand design, including generating high-quality binders and reducing
inference times. We introduce FLOWR, a flow matching framework for 3D ligand
generation conditioned on a protein pocket and a set of desired interaction between
the protein and the ligand. To thoroughly evaluate our model we also introduce
SPIRE, a refined dataset of high-quality protein-ligand complexes derived from
crystallographic data. Evaluations on this dataset show that FLOWR outperforms an
existing state-of-the-art diffusion model, while achieving up to a 50-fold speed-up
in inference time. We also propose an interaction-aware training and inference
strategy that enables the generation of novel ligands tailored to predefined interac-
tion profiles. Our findings suggest that FLOWR is an important step forward for
efficient, AI-driven de novo ligand generation.

1 INTRODUCTION

Structure-based drug design (SBDD) aims to design ligands which can bind to a desired protein
pocket in order to effectively modulate the protein’s biological function (Anderson, 2003; 2012).
Despite its successes, SBDD remains challenging due to the inherent complexity of molecular
interactions, the vast chemical space to be explored, and the difficulty in accurately predicting
ligand binding poses and affinities (Ferreira et al., 2015; Shoichet, 2004). Due to their ability to
accurately capture the geometric properties of protein-ligand interactions, generative models based
on diffusion approaches (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) have emerged
has a promising tool for 3D molecule generation (Guan et al., 2023; Schneuing et al., 2023; Le
et al., 2023; Cremer et al., 2024). However, existing diffusion-based models for SBDD have been
shown to generate molecules with strained conformations, uncommon substructures, and reduced
drug-likeness (Cremer et al., 2024), while suffering from very long sampling times compared to
other approaches (Irwin et al., 2024). Additionally, due to data leakage issues in commonly used
datasets (Škrinjar et al., 2025; Durairaj et al., 2024), assessing the ability of these models to generalise
to unseen data has been challenging.

In this work we present our progress on overcoming some of these key challenges. We introduce
FLOWR, a novel flow matching model for de novo 3D ligand generation conditioned on structural
constraints. Our approach allows ligands to be generated based on a protein pocket and, optionally, a
desired interaction profile between the pocket and the ligand. To train our model and to assess its
ability to generalise to unseen pockets we introduce SPIRE, a novel high-quality benchmark dataset
for SBDD, based on the recently introduced PLINDER (Durairaj et al., 2024) set. To construct SPIRE
we apply an extensive filtering and processing pipeline which cleans up many of the structural defects
that are present in existing datasets (Wang et al., 2024), infers atomic resolution protein-ligand
interaction profiles, and minimises data leakage between train and test sets. On this challenging
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Figure 1: Overview of the FLOWR model for 3D ligand generation. A protein pocket is encoded and
passed, along with the noisy ligand lt, into the ligand decoder, which is trained to produce a denoised
ligand l̃t. Optionally, a set of desired interactions can be incorporated for conditional generation. A
flow matching integration scheme is then used to push lt towards the data distribution and generate a
sample l̃1.

dataset FLOWR demonstrates superior performance over an existing state-of-the-art diffusion-based
method, while achieving up to 50-times faster inference times. Furthermore, we show that our method
for generating ligands conditioned on a desired interaction profile leads to a significant increase in
the number of generated ligands with interaction profiles that match that of the reference complex.

2 THE SPIRE DATASET

Modelling interactions between protein pockets and ligands has recently been gaining attention
as a method for evaluating the quality of binding poses and designing better small molecule drug
candidates (Errington et al., 2024; Harris et al., 2023). At the same time questions have been raised
about the quality of existing benchmark datasets – PDBBind (Wang et al., 2005) has been found to
contain covalently bound ligands, missing atoms in pockets, and steric clashes between the pocket
and the ligand (Wang et al., 2024). CrossDocked2020 (Francoeur et al., 2020), another commonly
used dataset for pocket-conditioned ligand generative models, is based on the PDBBind General set
and is also likely to share some of these structural defects. Additionally, questions have also been
raised as to how well temporal data splits, which are commonly used to create benchmark test sets,
are able to assess models’ abilities to generalise to unseen data since there are often close structural
similarities between complexes in the training and test sets.

To address the issues of data quality and information leakage, and to provide rich, fine-grained
information on the interactions between protein pockets and small molecule ligands, we present the
SPIRE (Small molecule Protein Interaction Refined) dataset. Using the recently proposed PLINDER
dataset (Durairaj et al., 2024) as a starting point we apply an extensive processing pipeline to produce
a set refined set of high-quality structures. Our processing begins by filtering the complexes from
PLINDER to retain only those containing single small molecule ligands and single proteins. We
then apply structural refinement, including adding missing atoms, assigning protonation states, and
performing energy minimisation. We also infer bond orders and atomic resolution protein-ligand
interactions and perform a final quality filtering step. Our final dataset contains 35,666 protein-ligand
complexes, making SPIRE the largest dataset of high-quality, refined structures derived directly from
crystallographic data. We include the full details of the SPIRE dataset processing in Appendix A.1.
We maintain the same data splits as PLINDER which were chosen to minimise data leakage between
train and test sets which allows realistic assessment of models’ generalisability to unseen data. Since
existing datasets often contain significant structural redundancy, we also experiment with two data
deduplication strategies, which we outline in Appendix A.2.

3 FLOWR – STRUCTURE-AWARE LIGAND GENERATION

We present FLOWR – a flow-based generative model for de novo ligand generation conditioned on a
protein pocket and desired interactions between the pocket and the ligand. We assume access to a
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Figure 2: Comparison of PILOT and FLOWR in terms of RDKit- and PoseBusters-validity (left) and
inference speed (right, log scale). Results for FLOWR are reported using three different inference step
settings: 20, 50, and 100 steps. For each of the 225 targets in the SPIRE test set, we generate 100
ligands and compute the average validity scores and inference time per target.

dataset containing tuples of a ligand l, a protein pocket P to which the ligand binds, and a matrix
I ∈ NM×N of atomic protein-ligand interactions which the binding pose satisfies, where M and N
refer to the number of atoms in the protein and ligand, respectively. In Fig 1 we show an overview of
how our model generates novel ligands based on protein pocket and interaction conditioning.

Built upon SemlaFlow (Irwin et al., 2024), FLOWR extends its E(3)-equivariant architecture with a
pocket encoder and a cross-attention module, enabling structural conditioning on P and I . The pocket
encoder processes P once per generation, ensuring efficiency, while improvements to self-attention
and feed-forward modules further enhance performance. Full architectural details are in Appendix B.

FLOWR jointly models continuous (coordinates) and discrete (atom types, bond orders) molecular
features. Training follows Irwin et al. (2024), using continuous flow matching (Tong et al., 2024) for
coordinates and discrete flow models (Campbell et al., 2024) for categorical properties. Ligand formal
charges are directly predicted. The model learns to recover l1 from lt via pθ1|t(l1|lt,P, I), minimizing
mean-squared error for coordinates and cross-entropy for categorical features (Appendix C).

Given P and optionally I, novel ligands are generated by iteratively refining an initial noisy ligand
l0 ∼ pnoise. The model follows a learned vector field vθt for continuous features and a discrete
integration scheme for categorical attributes (Campbell et al., 2024). Full sampling details are in
Appendix B.

4 EXPERIMENTS AND RESULTS

We compare FLOWR against PILOT, a recently proposed diffusion-based model (Cremer et al., 2024).
The authors of PILOT report significant improvements in distribution learning and ligand quality,
demonstrating superior performance compared to previous models such as TargetDiff (Guan et al.,
2023) and DiffSBDD (Schneuing et al., 2023). Given PILOT’s strong performance and its claimed
state-of-the-art results, we use it as the primary baseline for comparison, although we aim to work
towards benchmarking other models on the SPIRE dataset. Such an approach allows for a thorough
evaluation against PILOT, while ensuring that all results are fair and reproducible (more details in
Appendix B).

Due to the extra efficiency and scalability achieved by FLOWR we also investigate the impact of
generating hydrogen atoms in the ligand explicitly. Hydrogen bonds are a crucial element of protein-
ligand binding, but explicit ligand hydrogens have larger been neglected in prior studies. Finally,
we also evaluate a FLOWR model which has been trained to generate ligands conditioned on protein
pockets and desired interaction profiles.

4.1 RESULTS

In Fig. 2, we compare PILOT and FLOWR in terms of RDKit-validity, PoseBusters-validity (PB-
validity), and inference speed. Our results indicate that FLOWR generates ligands with significantly
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Table 1: Benchmark comparison of the proposed FLOWR model against the PILOT model using the
SPIRE test dataset, which consists of 225 targets. For FLOWR, results are reported for inference steps
of 20, 50, and 100. For both models, 100 ligands were sampled per target. The evaluation includes
strain energy and AutoDock-Vina scores. Additionally, we report the Wasserstein distance of the
generated ligands’ bond angle and bond length distributions relative to those in the SPIRE test set.

MODEL STRAIN ENERGY VINA SCORE VINA SCORE (MINIMIZED) BONDANGLESW1 BONDLENGTHSW1 [10−2]

TEST SET 30.07 ± 36.96 -7.69 ± 2.00 -7.88 ± 2.00 - -

PILOT 73.50 ± 64.30 -6.06 ± 0.95 -6.45 ± 0.95 1.71 ± 1.1 0.6 ± 0.01

FLOWR20 STEPS 98.80 ± 130.14 -6.12 ± 0.83 -6.55 ± 0.82 1.97 ± 1.2 0.7 ± 0.02
FLOWR50 STEPS 72.20 ± 72.78 -6.28 ± 0.82 -6.70 ± 0.82 1.49 ± 0.9 0.5 ± 0.01
FLOWR100 STEPS 64.61 ± 69.50 -6.36 ± 0.85 -6.80 ± 0.82 1.34 ± 0.9 0.4 ± 0.01

Table 2: Benchmark of the proposed FLOWR model against the PILOT model on the SPIRE test
dataset with explicit hydrogens in training and inference.

MODEL STRAIN ENERGY VINA SCORE VINA SCORE (MINIMIZED) BONDANGLESW1 BONDLENGTHSW1 [10−2]

TEST SET 30.07 ± 36.96 -7.69 ± 2.00 -7.88 ± 2.00 - -

PILOT 53.07 ± 22.84 -5.00 ± 0.65 -5.50 ± 0.66 2.81 ± 1.3 0.2 ± 0.02

FLOWR100 STEPS 54.11 ± 33.36 -6.48 ± 0.87 -6.86 ± 0.87 0.82 ± 0.8 0.1 ± 0.01

higher validity on average. While RDKit-validity is a 2D ligand-centric measure, the PoseBusters
suite (Buttenschoen et al., 2024) evaluates ligand conformations using well-established 3D ligand-
pocket-based metrics, providing a more comprehensive assessment of pose accuracy. FLOWR achieves
a substantial improvement over PILOT in both metrics, with an average RDKit-validity of 0.94 ± 0.24
vs. 0.82 ± 0.39 and an average PB-validity of 0.86 ± 0.21 vs. 0.75 ± 0.18, respectively. Notably,
FLOWR significantly improves inference speed, outperforming PILOT by a factor of 15 when using
100 inference steps, as shown in Fig. 2 (right). This efficiency gain is primarily attributed to FLOWR’s
model architecture; the protein pocket encoder requires only a single forward when integrating the
vector field. In contrast, prior models (Guan et al., 2023; Schneuing et al., 2023; Le et al., 2023;
Cremer et al., 2024) often recompute protein pocket embeddings at every sampling step. Notably, the
number of integration steps can be reduced as low as 20, achieving a 50-fold speed-up over PILOT
without significantly impacting model performance. We provide full results for various numbers of
integration steps in Appendix D.2

In Tab. 1 we compare PILOT and FLOWR in terms of strain energy, AutoDock-Vina score (used as an
approximate measure of pose quality and binding affinity (Eberhardt et al., 2021)), and their ability to
generalize to the test set distribution based on Wasserstein distance measures for bond angles and
bond lengths, following Vignac et al. (2023); Le et al. (2023). Both models exhibit reasonable strain
energy values, though on average, they are twice as high as the mean strain energy of the test set.
However, FLOWR outperforms PILOT in docking assessments, suggesting a higher pose accuracy.
Note, we use Vina’s scoring function with no re-docking applied. We also report the minimized
Vina score, where local energy minimisation is applied to the ligand. Additionally, in terms of bond
angle and bond length distances, FLOWR demonstrates significantly better generalization compared
to PILOT. A fully comprehensive overview of evaluation metrics can be found in Appendix D.1.

In Tab. 2, we repeat the same experiments while incorporating explicit hydrogens in the ligands for
both training and inference. Under these conditions, PILOT exhibits a clear decrease in performance,
while FLOWR maintains comparable results. For both models, validity drops significantly, with
RDKit-validity decreasing to 0.64 ± 0.48 for FLOWR and 0.52 ± 0.50 for PILOT, while PB-validity
declines to 0.60 ± 0.22 and 0.47 ± 0.14, respectively. However, since SPIRE provides limited coverage
of both chemical and conformational space, we hypothesize that increasing data availability will
alleviate this decline, particularly given the demonstrated learning efficiency of FLOWR.

Overall, FLOWR outperforms PILOT across all evaluated metrics, in some cases by large margins, indi-
cating a superior ability to learn and generalize over the distribution of ligand-pocket complexes. On
average, we observe a ∼10% increase in ligand and ligand-pocket validity, while Vina scores suggest
that FLOWR generates significantly better poses. Importantly, FLOWR achieves these improvements
while achieving a significant increase in inference speed.
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Figure 3: Comparison of PILOT and FLOWR on interaction recovery rates (left). Both models are
either trained without explicit hydrogens (no-Hs) or with explicit hydrogens (with-Hs). We also
show the results for interaction-conditional sampling with FLOWR (right). The success rate is the
percentage of ligands for which interaction fingerprints could be retrieved for 100 sampled ligands
for every test set target.

4.2 INTERACTION RECOVERY

In SBDD, understanding how a ligand engages with its target binding site at the atomic level is
essential for optimising potency, selectivity, and pharmacological properties (Salentin et al., 2015;
Jubb et al., 2016; Bouysset & Fiorucci, 2021). Ligand-pocket interactions, including hydrogen
bonds, hydrophobic contacts, π–π and π–cation stacking, salt bridges, and electrostatic or van der
Waals interactions, collectively determine binding affinity and specificity. To systematically identify
such interactions, protein-ligand interaction fingerprints (PLIFs) are commonly used (Bouysset &
Fiorucci, 2021; Errington et al., 2024). In Figure 3 we illustrate the distribution of interaction recovery
performance of FLOWR across the SPIRE test set targets, following the same evaluation setting as
above. We also report the success rate which refers to the proportion of RDKit- and PoseBusters-valid
ligands for which interactions could be identified. As shown, FLOWR consistently outperforms PILOT,
particularly when considering explicit hydrogen modelling, achieving an average interaction recovery
rate of 44%/42% with a success rate of 89%/62%, whereas PILOT achieves 42%/26% with a success
rate of 78%/50%.

However, to further improve interaction recovery, we propose an interaction-based masking for
training and inference that is applied onto the learned vector field, which ensures that ligand atoms
involved in pocket interactions are kept fixed. More details are given in Appendix C. Using this
strategy, we achieve an average interaction recovery rate of 72.2%/76.1%, while maintaining a high
success rate of 86%/61%. Notably, despite the guided generation process, the model retains its ability
to explore chemical space, with an average molecular diversity of 0.83/0.84 (compared to 0.86/0.87
for the unconditional model). Additionally, this approach significantly improves binding affinity,
as indicated by a decrease in Vina score to -6.93/-6.85 kcal/mol (vs. -6.36/-6.48 kcal/mol in the
unconditional setting).

5 CONCLUSION

We introduced FLOWR, a flow matching-based generative framework for structure-conditioned 3D
ligand design. Alongside FLOWR, we presented SPIRE, a refined dataset of high-quality protein-
ligand complexes along with their interaction profiles. In comparison to the recent state-of-the-art
diffusion-based PILOT model, FLOWR consistently demonstrates higher validity and improved ligand-
pocket interaction recovery rates. Notably, FLOWR achieves a 10% increase in PoseBusters-validity,
while offering up to a 30-fold improvement in inference speed. These results suggest that FLOWR
provides more reliable pose quality and more consistent pocket-specific interactions than existing
approaches. A key distinction of FLOWR is its ability to explicitly model hydrogens in ligand
molecules, addressing a critical factor for achieving physically plausible ligand-pocket interactions.
Unlike prior models, FLOWR is able to account for explicit hydrogen placement without a significant
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loss in model expressivity. Furthermore, we proposed a novel interaction-based training and inference
scheme, enabling the targeted generation of ligands that fulfill pre-specified interaction profiles. This
approach enhances FLOWR’s applicability in early-stage drug discovery, particularly in hit expansion
and lead optimization campaigns.
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A ADDITIONAL DETAILS ON THE SPIRE DATASET

A.1 PREPROCESSING PIPELINE

To create the SPIRE dataset, we began with the PLINDER dataset release 06/2024 (PLINDER version
2) and applied the following pre-processing pipeline:

1. Initial filtering. We remove all PLINDER systems which contain more than one ligand or
more than one protein chain in the pocket. We then remove all systems where the ligand
is marked as one or more of the following: ‘oligo’, ‘ion’, ‘cofactor’, ‘artifact’, ‘fragment’,
‘covalent’, or ‘other’.

2. Structure refinement. We use Schrodinger tools to refine the structure of the remaining
systems. These tools perform the following:

(a) Add missing atoms to partially filled residues in the protein.
(b) Convert some non-standard residue types to standard ones.
(c) Assign protonation states to heavy atoms and add hydrogen atoms to both the protein

and ligand.
(d) Infer bonds and formal charges for both the protein and ligand.
(e) Apply local energy minimisation to the protein-ligand complex.

3. Infer protein-ligand interactions. We use ProLIF to infer the interactions between the
protein and ligand at an atomic resolution, creating a binary matrix of shape NprotxNligx|S|,
where Nprot is the number of atoms in the protein, Nlig is the number of atoms in the ligand,
and S is the set of possible interaction types. We apply ProLIF with the default settings and
infer all supported interaction types, |S| = 13.

4. Quality filtering. Finally, we apply a final filtering step and accumulate the processed
systems into train, validation and testing splits. Here we ensure that all systems contain
RDKit valid ligands. We also filter out any system which contains atoms other than [H,
C, N, O, F, P, S, Cl, Se, Br] and any system with fewer than 5 residues in the pocket.
Additionally, we filter out all systems containing NAG ligands since we found these were
highly overrepresented which would likely create an unwanted bias for generative models.
We also filter out all systems derived from the PDB complex “1mvm” since it contains many
small DNA fragments and was not originally filtered by PLINDER.

A.2 DATASET DEDUPLICATION

Like existing datasets of protein-ligand complexes, the SPIRE training set contains many redundant
systems – systems which have significant structural similarity to another training system. Under-
standing the impact of this redundancy on model performance is a relatively unexplored topic but
could have an important influence on the design of future datasets. We therefore apply two data
deduplication strategies to SPIRE and report results on all three datasets. Deduplication is only
applied to the training data and all models are evaluated identically.

Our first deduplication strategy works by creating groups of systems such that all systems within
the group have identical ligands (based on their canonical SMILES after hydrogen atoms have been
removed) and identical pockets atoms where the pocket coordinates are within an RMSD of 1.0 of
some reference system for the group. We find that for system groups defined like this the distribution
of RMSD values to the reference is very close to zero, so the choice of reference system and the
RMSD threshold is not so important. In practice we iterate over all systems in the dataset, if a system
cannot be added to an existing group a new group is created with this system as the group’s reference
system. Once all systems in the training dataset have been grouped a single system is randomly
selected from each group to form the deduplicated training set. We refer to this dataset as SPIRERMSD.
We also explore an extension of this deduplication strategy which allows systems to be in the same
group if the sequence identity between a query pocket and the pocket of the reference system for a
group is greater than 90%. In this case the RMSD between the query and reference pockets is taken
by comparing the coordinates only on matching residues. Again, once groups have been constructed,
a single system is randomly sampled from each group to form the deduplicated training set. We refer
to this dataset as SPIRERMSD-SEQID. The sizes of the three versions of the dataset are shown in Table 3.
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Table 3: Sizes of train, validation and test dataset splits for the three proposed versions of the SPIRE
dataset.

Dataset Train Systems Val Systems Test Systems

SPIRE 35,373 68 225
SPIRERMSD 24,885 68 225
SPIRERMSD-SEQID 20,349 68 225

B ADDITIONAL MODEL DETAILS

B.1 BACKGROUND ON FLOW MATCHING

Here we provide a short introduction to the flow matching methods used in this paper and introduce
the notation we will use for the full training and inference details below.

Flow Matching for Continuous Data Flow matching (Lipman et al., 2023; Albergo & Vanden-
Eijnden, 2023; Liu et al., 2023) is a generative model framework which aims to transport samples
from an initial distribution p0 to a target distribution p1 by learning a vector field vθt (xt), which
induces a time-dependent density pt with p0 and p1 as endpoints. The key insight in flow matching is
that such a vector field can be learned by firstly sampling data x1 ∼ p1(x1), then sampling from a
conditional probability path xt ∼ pt|1(xt|x1), which has an associated vector field ut(xt|x1), and
finally regressing vθt (xt) against ut(xt|x1) (Tong et al., 2024).

Discrete Flow Models Frameworks for generating discrete sequences based on continuous-time
markov chains (CTMC) have recently been proposed as an extension of flow matching to categorical
data (Campbell et al., 2024; Gat et al., 2024). These methods work in a similar way to continuous
flow matching by firstly defining a conditional probability path pt|1(.|x1) and then learning a data
denoiser pθ1|t(.|xt) which is used during inference to push xt towards the data distribution. The full
details of the discrete flow model method we use in this paper can be found in (Campbell et al., 2024).

B.2 MODEL ARCHITECTURE

We base the neural network architecture for FLOWR off the recently proposed SemlaFlow model (Irwin
et al., 2024), which achieves state-of-the-art results on unconditional 3D molecular generation tasks.
SemlaFlow proposes Semla, an E(3)-equivariant architecture which includes a number of innovations
making it significantly more efficient and scalable than previous models. We extend the Semla
architecture to allow conditional generation by incorporating a separate pocket encoder and adding
a cross attention module within the ligand decoder. This module follows a similar design to the
attention module proposed by Semla, using a 2-layer MLP to produce attention scores. The module
takes invariant and equivariant embeddings of P and lt and, optionally, embeds I , therefore allowing
structural conditioning on the protein pocket and a set of desired protein-ligand interactions. We
make use of the latent attention operation proposed in (Irwin et al., 2024) to significantly increase the
efficiency of this operation. Notably, the pocket encoder module for FLOWR does not depend on t or
lt, meaning only one forward pass through the encoder is required when generating ligands, further
ensuring the efficiency of our approach.

In addition to extending the architecture to allow conditional generation we also made improve-
ments to various existing components within Semla, which we found we able to push the model’s
performance and efficiency even further. These improvements include:

• We replace the equivariant feed-forward module in Semla with a version based on a gating
component. Specifically, if the invariant and equivariant input features for the component
for atom i are denoted by hi ∈ Rdinv and xi ∈ R3×dequi , respectively, then the output
is given by xout

i = W2
θ x̂i where x̂i = σ(Φθ(hi, ||xi||)) ⊙ W1

θ xi. Here σ refers to
an elementwise sigmoid function applied to invariant features, ⊙ denotes elementwise
multiplication, W1

θ ∈ Rdequi×dequi and W2
θ ∈ Rdequi×dequi are both weight matrices, and Φθ is
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Figure 4: Overview of the equivariant architecture used by FLOWR. Our architecture extends the
Semla architecture by adding a pocket encoder and a cross attention module within the ligand decoder.
In addition to protein pockets, FLOWR also supports conditional generation based on protein-ligand
interaction profiles.

a two-layer MLP. We find this module is significantly faster than the equivariant feed-forward
block used by Semla.

• We pass bond embeddings into the self attention module on every layer, as opposed to only
passing them to the first layer as proposed by Semla. We found this change led to improved
validities of the generated molecules, while having only a very minor effect on inference
time.

We parameterise FLOWR with a 4-layer pocket encoder with denc
inv = 256 and a 12-layer ligand decoder

with ddec
inv = 384. dequi = 64 is the same for both encoder and decoder. For latent attention we use

a latent size of 64 with 32 attention heads. A full overview of the FLOWR architecture for ligand
generation conditioned on a pocket and interaction profile is shown in Figure 4.

B.3 TRAINING AND INFERENCE

We train FLOWR to generate novel ligands conditioned on a given structure. Since 3D molecular
graphs contain a mixture of continuous and categorical data types, FLOWR jointly generates continu-
ous and discrete distributions. Our approach follows a similar setup to Irwin et al. (2024). Specifically,
we apply the continuous flow matching framework from Tong et al. (2024) to learn ligand coordinates,
and the discrete flow models framework from Campbell et al. (2024) to learn atom types and bond
orders. Ligand formal charges are not learned through a flow, but simply predicted by the model.

Model Training Training proceeds by sampling ligand noise l0 ∼ pnoise, a ligand, pocket and
interaction tuple (l1,P, I) ∼ pdata, and a time t ∈ [0, 1]. We use Gaussian noise for coordinates and
uniform distributions for atom and bond types to create pnoise. We then sample a noisy ligand from
the same conditional probability path lt ∼ pt|1(lt|l1) used in Irwin et al. (2024) and is defined as
follows:

t ∼ Beta(α, β) xt ∼ N (tx1 + (1− t)x0, σ
2) (1)

at ∼ Cat(tδ(a1) + (1− t)
1

|A|
) bt ∼ Cat(tδ(b1) + (1− t)

1

|B|
) (2)

Where A and B are the sets of possible values for atom types and bond orders, respectively, and δ(.)
is the one-hot encoding operation applied to each item in a sequence individually. We use values
α = 2.0, β = 1.0, and σ = 0.2 for all FLOWR models.

Following (Vignac et al., 2023; Le et al., 2023; Cremer et al., 2024) we train FLOWR to predict
l1 directly by learning the distribution pθ1|t(l1|lt,P, I). This leads to the same loss function as
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Figure 5: Distribution of interaction types on the train, validation and test sets of the SPIRE data that
we considered in this work.

SemlaFlow (Irwin et al., 2024) – we apply a mean-squared error loss for ligand coordinates and
cross-entropy losses for atom types, bond orders and formal charges. In Appendix C we provide
more information on how we handle the case where the model is conditioned on both P and I.

Additionally, during training we apply self-conditioning (Chen et al., 2023) as a way of reusing the
model’s previous prediction of l1 and equivariant optimal transport (Klein et al., 2023) to reduce the
transport cost between pnoise and pdata. Full details of the training setup for self-conditioning and
equivariant optimal transport can be found in Irwin et al. (2024).

Generating Novel Ligands Given a protein pocket P and, optionally, a desired interaction profile
Ψ, we can generate samples from the learned data distribution by setting lt ← l0 where l0 ∼ pnoise
and pushing lt toward the data distribution by following the learned vector field. Specifically, for
molecular coordinates xt we follow the vector field vθt (xt) =

1
1−t (x̃1−xt) where x̃1 is the coordinate

component of l̃1 ∼ pθ1|t(l1|lt,P, I). We then integrate the vector field using an Euler solver with
step size ∆t as follows: x̃t+∆t = xt +∆t vθt (xt). We refer readers to Campbell et al. (2024) for
full details on the integration scheme for discrete types.

B.4 EVALUATION

To maintain consistency across models, we used identical random seeds for training, inference, and
data loading. Additionally, we applied the same sampling and evaluation scripts across all models.
For each of the 225 test set targets, we generated 100 ligand samples using a standardized size
sampling approach. Specifically, we determined native ligand sizes and applied a uniform sampling
scheme, allowing for a size deviation of -25% to +10%. This procedure was performed using the
same seed across all models to ensure direct comparability.

C INTERACTIONS

In SBDD, understanding how a ligand engages with its target binding site at the atomic level is
essential for optimising potency, selectivity, and pharmacological properties (Salentin et al., 2015;
Jubb et al., 2016; Bouysset & Fiorucci, 2021). Ligand-pocket interactions, including hydrogen bonds,
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hydrophobic contacts, π–π and π–cation stacking, salt bridges, and electrostatic or van der Waals
interactions, collectively determine binding affinity and specificity. Consequently, these protein-
ligand interactions—or more precisely, a ligand’s binding pose—are crucial for assessing biological
relevance and activity(Errington et al., 2024). To systematically identify such interactions, protein-
ligand interaction fingerprints (PLIFs) are commonly used (Bouysset & Fiorucci, 2021; Errington
et al., 2024). PLIFs encode key interaction features, including the interacting protein residue,
interaction type, and optionally, the ligand atom involved (Bouysset & Fiorucci, 2021; Errington
et al., 2024). In the context of 3D de novo ligand generation, an important validation step is to assess
whether the generated ligands recapitulate critical interactions known to be essential for activity, as
inferred from experimentally validated compounds. Recent studies indicate that deep learning-based
docking and co-folding tools perform poorly in recovering key interactions compared to traditional
docking methods (Errington et al., 2024). Docking-based approaches such as DiffDock(Corso et al.,
2023)—which operate by translating and rotating a valid molecular conformation while adjusting
dihedral angles—achieve only a 20% success rate when targeting an interaction recovery rate of
at least 50%(Errington et al., 2024). Following Errington et al. (2024), we consider a subset of
interaction types in this work extracted using ProLIF (Bouysset & Fiorucci, 2021), including H-bonds
(ligand acceptor and ligand donor), π-π stacking, halogen bonds (ligand donor), π-cation (ligand
π / protein +), cation-π (ligand + / protein π), anionic (ligand - / protein +), and cationic (ligand +
/ protein -) interactions. The distribution of these interactions within the SPIRE dataset is shown
in Fig. 5. Notably, interaction sparsity is high, with an average of 99.85% of ligand-pocket pairs
exhibiting no interactions. Note, the frequency of π-π stacking is inflated as every atom involved in
π-π stacking interactions has been counted.

C.1 INTERACTION-AWARE TRAINING AND SAMPLING

Let Xp = {xp,j ∈ R3 : j = 1, . . . , np} denote the 3D coordinates of the np pocket atoms,
X

(0)
l = {x(0)

l,i ∈ R3 : i = 1, . . . , nl} denote the ground-truth (native) 3D coordinates of the nl

ligand atoms, I ∈ {0, 1}np×nl×dI be an interaction tensor, where the entry Ij,i,k indicates whether
pocket atom j and ligand atom i participate in an interaction of type k (with dI possible interaction
channels).

We define a binary mask M ∈ {0, 1}nl by

Mi = I

{
np∑
j=1

dI∑
k=1

Ij,i,k > 0

}
, i = 1, . . . , nl.

This mask partitions the ligand atoms into: fixed atoms I = {i : Mi = 1} and free atoms to be
generated F = {i : Mi = 0}.
For atom coordinates (same applies to atom types in categorical space), we define a continuous
interpolation over time t ∈ [0, 1] between a prior distribution (noise from an isotropic Gaussian) at
t = 0 and the data distribution at t = 1.

For free atoms (i ∈ F): Let zi be a sample from the prior,

zi ∼ N (0, σ2I3).

The interpolation is:
xl,i(t) = (1− t) zi + tx

(0)
l,i .

For fixed atoms (i ∈ I): Since these atoms are conditioned to remain unchanged, we simply set

xl,i(t) = x
(0)
l,i for all t ∈ [0, 1].

Thus,
ẋl,i(t) = 0.

We train a FLOWR model Fθ that maps the ligand coordinates (at time t), the pocket coordinates, and
the time t to a vector in R3 for each ligand atom:

Fθ : (Xl(t), Xp, t) 7→ Rnl×3.
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The model is trained to match the target vector field:

For free atoms (i ∈ F):
Fθ

(
xl,i(t), Xp, t

)
≈ ẋl,i(t) = x

(0)
l,i

and for fixed atoms (i ∈ I):
Fθ

(
xl,i(t), Xp, t

)
≈ 0.

At test time, given the pocket Xp and a known native ligand geometry X
(0)
l (with fixed atoms

indicated by M ), we generate the free atoms by solving the following ODE:

d

dt
xl,i(t) = Fθ

(
xl,i(t), Xp, t

)
,

with the initial conditions

xl,i(0) =

{
zi, i ∈ F ,

x
(0)
l,i , i ∈ I,

and zi ∼ pprior.

For free atoms, integration from t = 0 to t = 1 transforms the prior samples into samples from the
data distribution while maintaining consistency with the interaction condition.

To ensure that the model efficiently explores chemical space and generates diverse ligands while
being conditioned on pre-specified interaction profiles, we train FLOWR using a mixed unconditional
and conditional setting. This approach provides downstream flexibility, allowing sampling to be either
unconditional or conditional at inference time, depending on the practitioner’s needs. To validate
this approach, we compare an unconditional model with a model trained in the mixed unconditional-
conditional setting. For the latter, we evaluate both unconditional and conditional sampling modes
(Tab. 4).

Table 4: Benchmarking an unconditional FLOWR model with an interaction-conditional model. The
latter can be used either for unconditional or interaction-conditional sampling

METRIC FLOWR FLOWRCOND
UNCOND FLOWRCOND

COND

RDKIT-VALIDITY 0.94 ± 0.24 0.93 ± 0.25 0.90 ± 0.30
PB-VALIDITY 0.92 ± 0.24 0.93 ± 0.23 0.90 ± 0.28

PLIF RECOVERY 0.44 ± 0.10 0.44 ± 0.10 0.71 ± 0.15
STRAIN ENERGY 64.61 ± 69.50 64.12 ± 91.85 88.68 ± 123.06
VINA SCORE -6.36 ± 0.85 -6.45 ± 0.84 -7.01 ± 1.25
VINA SCORE (MINIMIZED) -6.80 ± 0.82 -6.85 ± 0.81 -7.43 ± 1.23

ANGLESW1 1.34 1.25 1.51
BONDLENGTHSW1 [10−2] 0.4 ± 0.01 0.3 ± 0.01 0.3 ± 0.01
DISTANCE TO NATIVE CENTROID 1.00 ± 0.30 1.02 ± 0.30 0.83 ± 0.38

NOVELTY 0.94 ± 0.23 0.94 ± 0.23 0.93 ± 0.25
UNIQUENESS2D 0.94 ± 0.13 0.94 ± 0.13 0.85 ± 0.25
UNIQUENESS3D 0.50 ± 0.20 0.57 ± 0.25 0.39 ± 0.18
DIVERSITY2D 0.86 ± 0.05 0.86 ± 0.05 0.83 ± 0.08
DIVERSITY3D 0.21 ± 0.12 0.21 ± 0.17 0.07 ± 0.10

SA 0.67 ± 0.13 0.68 ± 0.13 0.67 ± 0.13
QED 0.52 ± 0.21 0.54 ± 0.21 0.51 ± 0.21
RINGS 2.68 ± 1.35 2.74 ± 1.39 3.05 ± 1.35
AROMATIC RINGS 1.52 ± 1.16 1.59 ± 1.16 1.77 ± 1.18
HACCEPTORS 6.67 ± 4.23 6.40 ± 3.95 6.85 ± 4.21
HDONORS 2.52 ± 1.68 2.41 ± 1.65 2.67 ± 1.63
LOGP 0.29 ± 3.31 0.63 ± 3.24 0.67 ± 3.45
MOLWT 350.10 ± 114.00 350.90 ± 112.67 376.70 ± 113.49
LIPINSKI 4.35 ± 1.05 4.41 ± 0.99 4.35 ± 1.05
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Figure 6: Comparison between unconditional and conditional FLOWR models. We identify eight
targets with the lowest (left) and highest (right) average interaction recovery rates under the uncon-
ditional FLOWR model. For these selected targets, we compare the performance of the conditional
model to assess the impact of conditioning on pocket-ligand interactions.

C.2 INTERACTIONS PER TARGET

To better evaluate the effectiveness of the proposed interaction-conditional training and sampling,
we compare the unconditional and conditional FLOWR models on a per-target basis. Given that the
test set comprises 225 targets, visualizing results for all targets is impractical. Instead, we select
M targets with the lowest and with the highest mean interaction recovery rates, as determined by
the unconditional model, and compare the corresponding results obtained using the conditional
model. This comparison is presented in Fig. 6. Notably, the conditional model consistently improves
interaction recovery across targets where the unconditional model struggled to generate ligands
with meaningful interactions. Additionally, it achieves significantly better results even for the top-
performing targets, demonstrating that interaction-conditional generation effectively enhances ligand
design with pre-specified interaction patterns.

Figure 7 presents an example of interaction profiling using the reference ligand of protein 6UUX
alongside three randomly selected ligands generated by the interaction-conditional FLOWR model.
The reference ligand forms two cationic interactions and one H-bond (ligand donor) interaction
with ASP149, as well as two H-bond (ligand donor) interactions with ASP93. Notably, all of these
interactions are successfully recovered in the generated ligands.

D ADDITIONAL EXPERIMENTAL RESULTS

Benchmarking newly proposed models and architectures in the context of structure-based drug design
requires careful consideration of multiple evaluation aspects. In addition to the results presented in
the main text, we provide a broader assessment using various metrics and evaluation settings in the
following sections. Specifically, we evaluate the novelty of generated ligands with respect to the
training set, as well as the average uniqueness and diversity among the 100 generated ligands per
target. To ensure a comprehensive analysis, we consider both SMILES string- and ECFP4-based
measures for uniqueness and diversity. Additionally, following Baillif et al. (2024), we extend this
analysis to include conformer-based uniqueness and diversity. As indicators of drug-likeness, we
report RDKit’s Quantitative Estimate of Drug-likeness (QED), the Synthetic Accessibility Score
(SAScore) (Ertl & Schuffenhauer, 2009), molecular weight, logP values, and compliance with
Lipinski’s Rule of Five. Furthermore, we assess model performance under a more restrictive ligand
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(a) Reference (b) Prediction

(c) Prediction (d) Prediction

Figure 7: Comparison of reference and predicted ligands on their interaction profiles for the pocket
of the protein with PDB id 6uux.

size setting, where ligand sizes are not sampled but fixed to match the sizes of the native ligands.
This evaluation provides insights into how the models perform when constrained to a stricter ligand
size distribution. Finally, we analyze the impact of reducing the number of inference steps in FLOWR,
which allows for further reductions in inference time.

D.1 EVALUATION

In Tab. 5 we report the results comparing PILOT and FLOWR for both settings, without explicit and
with explicit hydrogens in training and inference, respectively. On average, PILOT shows higher
novelty, uniqueness and diversity values of generated ligands. However, in light of the significantly
worse results across distribution and ligand-pocket centric metrics, it is likely that PILOT has a stronger
tendency to hallucinate and thus generates physically less plausible, but more diverse structures with
higher strains. Regarding RDKit-based ligand property metrics, both models show similar results,
while FLOWR shows in general a higher overlap with the test set values indicating better distribution
learning capabilities.
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Table 5: Benchmark of the proposed FLOWR model against the recent state-of-the-art diffusion-based
PILOT model on the SPIRE dataset. We report RDKit- and PoseBusters-validity of generated ligands,
the strain energy and the AutoDock-Vina score. We also state the Wasserstein distance of generated
ligands for the bond angles and bond lengths distribution to the SPIRE test set. Novelty, uniqueness
and diversity measure the capability of the model to explore the chemical space both in 2D and
3D. RDKit’s QED evaluation, SAScore, the molecular weight as well as the logP values evaluate
druglikeness of generated ligands. All presented values are mean values taken for 100 sampled
ligands per test set target. The test dataset comprises 225 test set targets. Ligand sizes were drawn
from a uniform distribution around the ground truth ligand size allowing for a deviation of -25% and
+ 10% with the same random seed for all models.

METRIC TEST SET PILOTNO-HS PILOTWITH-HS FLOWRNO-HS FLOWRWITH-HS

RDKIT-VALIDITY 1.00 ± 0.00 0.82 ± 0.39 0.52 ± 0.50 0.94 ± 0.24 0.64 ± 0.48
PB-VALIDITY 0.99 ± 0.02 0.75 ± 0.18 0.47 ± 0.14 0.86 ± 0.21 0.60 ± 0.22
STRAIN ENERGY 30.07 ± 36.96 73.50 ± 64.30 53.07 ± 22.84 64.61 ± 69.50 54.11 ± 33.36
VINA SCORE -7.69 ± 2.00 -6.06 ± 0.95 -5.00 ± 0.65 -6.36 ± 0.85 -6.48 ± 0.87
VINA SCORE (MINIMIZED) -7.88 ± 2.00 -6.45 ± 0.95 -5.50 ± 0.66 -6.80 ± 0.82 -6.86 ± 0.87
DISTANCE TO NATIVE CENTROID - 1.02 ± 0.40 1.53 ± 0.46 1.00 ± 0.30 0.98 ± 0.28
BONDANGLESW1 - 1.71 ± 1.1 2.81 ± 1.3 1.34 ± 0.9 0.82 ± 0.8
BONDLENGTHSW1 [10−2] - 0.6 ± 0.01 0.1 ± 0.02 0.4 ± 0.01 0.1 ± 0.01
NOVELTY 1.00 ± 0.00 0.99 ± 0.10 1.00 ± 0.00 0.94 ± 0.23 1.00 ± 0.00
UNIQUENESS2D 0.92 ± 0.10 0.99 ± 0.05 1.00 ± 0.02 0.94 ± 0.13 0.97 ± 0.07
UNIQUENESS3D - 0.66 ± 0.20 0.59 ± 0.19 0.50 ± 0.20 0.55 ± 0.17
DIVERSITY2D 0.92 ± 0.04 0.89 ± 0.03 0.90 ± 0.02 0.86 ± 0.05 0.87 ± 0.06
DIVERSITY3D - 0.25 ± 0.13 0.13 ± 0.19 0.21 ± 0.12 0.18 ± 0.11
SA 0.66 ± 0.12 0.63 ± 0.12 0.64 ± 0.10 0.67 ± 0.13 0.65 ± 0.10
QED 0.49 ± 0.22 0.51 ± 0.21 0.53 ± 0.18 0.52 ± 0.21 0.53 ± 0.21
RINGS 2.98 ± 1.42 2.52 ± 1.42 1.52 ± 0.98 2.68 ± 1.35 2.64 ± 1.43
AROMATIC RINGS 1.84 ± 1.31 1.12 ± 1.07 1.21 ± 0.95 1.52 ± 1.16 1.59 ± 1.22
HACCEPTORS 7.30 ± 4.49 6.19 ± 3.30 5.46 ± 2.21 6.67 ± 4.23 6.47 ± 3.64
HDONORS 2.62 ± 1.68 2.52 ± 1.65 1.55 ± 1.27 2.52 ± 1.68 2.66 ± 1.58
LOGP 0.29 ± 3.48 0.45 ± 3.08 -0.03 ± 2.33 0.29 ± 3.31 0.34 ± 2.99
MOLWT 390.43 ± 119.82 336.79 ± 107.86 337.30 ± 83.59 350.10 ± 114.00 336.09 ± 108.60
LIPINSKI 4.00 ± 1.34 4.45 ± 0.93 4.73 ± 0.55 4.35 ± 1.05 4.32 ± 1.05

D.2 NUMBER OF INFERENCE STEPS

Unlike diffusion models, empirical studies have shown that flow matching for molecular generation
allows for modifying the number of sampling steps during inference without a significant loss in
performance (Irwin et al., 2024). To evaluate this property, we benchmarked FLOWR using three
different sampling step settings: 30, 50, and 100 (default). In Tab. 6, we summarize the results and
compare them with PILOT, which requires 500 denoising steps. As expected, increasing the number
of sampling steps generally leads to improved performance. However, even with just 50 sampling
steps, FLOWR significantly outperforms PILOT across all evaluated metrics, achieving performance
comparable to the 100-step model while being twice as fast. Notably, FLOWR with only 20 sampling
steps still achieves performance close to PILOT, while offering a substantial efficiency gain, being
on average 30 times faster. These findings highlight the flexibility of flow matching in balancing
sampling efficiency and model performance, making it a promising approach for fast and scalable 3D
ligand generation.
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Table 6: We compare PILOT with FLOWR using different step sizes at sampling.

METRIC PILOT500 STEPS FLOWR20 STEPS FLOWR50 STEPS FLOWR100 STEPS

RDKIT-VALIDITY 0.82 ± 0.39 0.85 ± 0.35 0.92 ± 0.27 0.94 ± 0.24
PB-VALIDITY 0.75 ± 0.18 0.73 ± 0.17 0.83 ± 0.20 0.86 ± 0.21
PLIF RECOVERY 0.42 ± 0.31 0.43 ± 0.10 0.44 ± 0.10 0.44 ± 0.10
STRAIN ENERGY 73.50 ± 64.30 98.80 ± 130.14 72.20 ± 72.78 64.61 ± 69.50
VINA SCORE -6.06 ± 0.95 -6.12 ± 0.83 -6.28 ± 0.82 -6.36 ± 0.85
VINA SCORE (MINIMIZED) -6.45 ± 0.95 -6.55 ± 0.82 -6.70 ± 0.82 -6.80 ± 0.82
BONDANGLESW1 1.71 ± 1.1 1.97 ± 1.2 1.49 ± 0.9 1.34 ± 0.9
BONDLENGTHSW1 [10−2] 0.6 ± 0.01 0.7 ± 0.02 0.5 ± 0.01 0.4 ± 0.01
DISTANCE TO NATIVE CENTROID 1.02 ± 0.40 0.98 ± 0.29 0.99 ± 0.29 1.00 ± 0.30
NOVELTY 0.99 ± 0.10 0.96 ± 0.20 0.95 ± 0.22 0.94 ± 0.23
UNIQUENESS2D 0.99 ± 0.05 0.96 ± 0.10 0.95 ± 0.12 0.94 ± 0.13
UNIQUENESS3D 0.66 ± 0.20 0.51 ± 0.24 0.50 ± 0.23 0.50 ± 0.20
DIVERSITY2D 0.89 ± 0.03 0.87 ± 0.04 0.86 ± 0.05 0.86 ± 0.05
DIVERSITY3D 0.25 ± 0.13 0.32 ± 0.12 0.25 ± 0.15 0.21 ± 0.12
SA 0.63 ± 0.12 0.64 ± 0.13 0.66 ± 0.13 0.67 ± 0.13
QED 0.51 ± 0.21 0.52 ± 0.21 0.52 ± 0.21 0.52 ± 0.21
RINGS 2.52 ± 1.42 2.70 ± 1.41 2.70 ± 1.37 2.68 ± 1.35
AROMATIC RINGS 1.12 ± 1.07 1.22 ± 1.06 1.43 ± 1.12 1.52 ± 1.16
HACCEPTORS 6.19 ± 3.30 6.51 ± 3.95 6.62 ± 4.16 6.67 ± 4.23
HDONORS 2.52 ± 1.65 2.57 ± 1.66 2.53 ± 1.67 2.52 ± 1.68
LOGP 0.45 ± 3.08 0.28 ± 3.19 0.29 ± 3.25 0.29 ± 3.31
MOLWT 336.79 ± 107.86 344.07 ± 111.97 349.12 ± 114.23 350.10 ± 114.00
LIPINSKI 4.45 ± 0.93 4.38 ± 1.00 4.36 ± 1.04 4.35 ± 1.05
SAMPLING TIME PER POCKET 234.36 +- 75.7 4.02 +- 1.21 7.89 +- 2.34 15.23 +- 4.42

The role of data deduplication We evaluated FLOWR across all dataset versions and report the
results in Tab. 7. Interestingly, while overall model performance remains comparable across versions,
we observe significant differences in strain energy. We hypothesize that this variation arises from
the progressive reduction in available training data in the deduplicated versions. Specifically, the
default dataset contains 35,000 complexes, while the RMSD-deduplicated dataset includes 25,000,
and the RMSD-sequence-identity-deduplicated version is further reduced to 20,000. These findings
highlight the importance of dataset size in improving model performance and reliability. While larger
datasets contribute to enhanced overall learning, key aspects such as interaction recovery appear to
be well captured even in a low-data regime, provided that dataset quality remains high. This suggests
that while increasing dataset size is crucial for further advancements, careful dataset curation can
enable models to effectively learn critical molecular interactions even with limited data.

18



Published at the GEM workshop, ICLR 2025

Table 7: We investigate the role of data deduplication. We trained models on three different levels of
deduplication: no deduplication, RMSD-based deduplication and RMSD- and sequence ID-based
deduplication.

METRIC FLOWR FLOWRRMSD FLOWRRMSD-SEQID

RDKIT-VALIDITY 0.94 ± 0.24 0.93 ± 0.25 0.94 ± 0.24
PB-VALIDITY 0.86 ± 0.21 0.87 ± 0.22 0.86 ± 0.22
PLIF RECOVERY 0.44 ± 0.10 0.44 ± 0.15 0.43 ± 0.14
STRAIN ENERGY 64.61 ± 69.50 84.12 ± 49.69 90.91 ± 53.55
VINA SCORE -6.36 ± 0.85 -6.49 ± 1.16 -6.37 ± 1.10
VINA SCORE (MINIMIZED) -6.80 ± 0.82 -6.89 ± 1.11 -6.82 ± 1.07
ANGLESW1 1.34 ± 0.9 1.32 ± 0.8 1.39 ± 0.9
BONDLENGTHSW1 [10−2] 0.4 ± 0.01 0.4 ± 0.01 0.3 ± 0.01
DISTANCE TO NATIVE CENTROID 1.00 ± 0.30 0.99 ± 0.41 1.00 ± 0.40
NOVELTY 0.94 ± 0.23 0.95 ± 0.22 0.95 ± 0.22
UNIQUENESS2D 0.94 ± 0.13 0.94 ± 0.13 0.94 ± 0.12
UNIQUENESS3D 0.50 ± 0.20 0.57 ± 0.20 0.52 ± 0.18
DIVERSITY2D 0.86 ± 0.05 0.86 ± 0.06 0.86 ± 0.05
DIVERSITY3D 0.21 ± 0.12 0.23 ± 0.14 0.24 ± 0.17
SA 0.67 ± 0.13 0.68 ± 0.13 0.68 ± 0.13
QED 0.52 ± 0.21 0.53 ± 0.21 0.53 ± 0.21
RINGS 2.68 ± 1.35 2.75 ± 1.36 2.73 ± 1.34
AROMATIC RINGS 1.52 ± 1.16 1.61 ± 1.18 1.60 ± 1.16
HACCEPTORS 6.67 ± 4.23 6.42 ± 4.02 6.68 ± 4.19
HDONORS 2.52 ± 1.68 2.48 ± 1.64 2.48 ± 1.65
LOGP 0.29 ± 3.31 0.56 ± 3.19 0.43 ± 3.23
MOLWT 350.10 ± 114.00 348.87 ± 113.46 350.06 ± 114.40
LIPINSKI 4.35 ± 1.05 4.40 ± 0.97 4.36 ± 1.02

D.3 SAMPLING WITH FIXED MOLECULE SIZE

While sampling ligand sizes is a common practice in benchmarking SBDD models, it is also valuable
to assess model performance when ligand sizes are fixed rather than sampled. In this setting,
the model is tasked with generating ligands that match the size of the native ligand, enabling
a more direct comparison with the test set distribution. A model that effectively captures the
underlying data distribution should, on average, exhibit greater overlap with the test set. In Tab. 8,
we compare PILOT and FLOWR, each trained with and without explicit hydrogens, under this
fixed-size condition. The results indicate that FLOWR consistently outperforms PILOT in terms of
RDKit-validity and PoseBusters-validity, while also achieving a higher overlap with the test set
distribution. Notably, FLOWR improves the interaction recovery rate from 44In the case of sampled
ligand sizes, the generated molecules tend to be smaller on average than their native counterparts,
as the sampling procedure allows for a broader range of reductions in size. Conversely, under the
fixed-size condition, models are required to generate larger molecules on average, which may impact
performance. Interestingly, while PILOT exhibits a significant drop in validity (∼ 6%), FLOWR
maintains comparable results to its sampled-size setting, reinforcing the conclusion that FLOWR is
both more effective and more stable at inference.
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Table 8: We compare PILOT with FLOWR when the molecule size across targets is set to the native
ligand size. We sample 100 ligands per target as before and evaluate on the SPIRE test set.

METRIC PILOTFIX PILOTWITH-HS
FIX FLOWRFIX FLOWRWITH-HS

FIX

RDKIT-VALIDITY 0.83 ± 0.37 0.57 ± 0.42 0.93 ± 0.26 0.64 ± 0.48
PB-VALIDITY 0.74 ± 0.21 0.08 ± 0.06 0.83 ± 0.21 0.60 ± 0.16
PLIF RECOVERY 0.44 ± 0.10 0.28 ± 0.12 0.47 ± 0.11 0.42 ± 0.09
STRAIN ENERGY 92.75 ± 54.73 62.05 ± 20.33 82.35 ± 65.12 54.11 ± 33.36
VINA SCORE -6.33 ± 0.77 -4.58 ± 0.99 -6.65 ± 0.95 -6.48 ± 0.87
VINA SCORE (MINIMIZED) -6.74 ± 0.78 -5.17 ± 0.67 -7.12 ± 0.92 -6.86 ± 0.87
ANGLESW1 1.82 2.00 1.39 0.82
BONDLENGTHSW1 0.8 ± 0.02 0.2 ± 0.02 0.5 ± 0.02 0.1 ± 0.01
DISTANCE TO NATIVE CENTROID 0.99 ± 0.28 1.01 ± 0.31 0.95 ± 0.28 0.98 ± 0.28
NOVELTY 0.99 ± 0.10 1.00 ± 0.01 0.92 ± 0.27 1.00 ± 0.00
UNIQUENESS2D 0.98 ± 0.08 0.99 ± 0.02 0.89 ± 0.22 0.97 ± 0.07
UNIQUENESS3D 0.45 ± 0.06 0.74 ± 0.22 0.39 ± 0.25 0.55 ± 0.17
DIVERSITY2D 0.89 ± 0.03 0.90 ± 0.02 0.84 ± 0.07 0.87 ± 0.06
DIVERSITY3D 0.24 ± 0.07 0.29 ± 0.21 0.17 ± 0.13 0.18 ± 0.11
SA 0.61 ± 0.12 0.36 ± 0.11 0.66 ± 0.13 0.27 ± 0.10
QED 0.49 ± 0.21 0.52 ± 0.18 0.50 ± 0.21 0.53 ± 0.21
RINGS 2.88 ± 1.46 1.56 ± 1.06 3.01 ± 1.33 2.64 ± 1.43
AROMATIC RINGS 1.21 ± 1.12 1.11 ± 0.99 1.66 ± 1.19 1.59 ± 1.22
HACCEPTORS 6.78 ± 3.56 5.49 ± 2.09 7.19 ± 4.55 6.47 ± 3.64
HDONORS 2.69 ± 1.70 1.98 ± 1.54 2.65 ± 1.75 2.66 ± 1.58
LOGP 0.43 ± 3.23 -0.17 ± 2.42 0.31 ± 3.52 0.34 ± 2.99
MOLWT 366.58 ± 111.40 351.58 ± 76.31 378.68 ± 117.28 336.09 ± 108.60
LIPINSKI 4.35 ± 1.05 4.67 ± 0.61 4.24 ± 1.14 4.32 ± 1.05
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