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Abstract

The Linear Representation Hypothesis (LRH)001
states that neural networks learn to encode con-002
cepts as directions in activation space, and a003
strong version of the LRH states that models004
learn only such encodings. In this paper, we005
present a counterexample to this strong LRH:006
when trained to repeat an input token sequence,007
gated recurrent neural networks (RNNs) learn008
to represent the token at each position with009
a particular order of magnitude, rather than a010
direction. These representations have layered011
features that are impossible to locate in distinct012
linear subspaces. To show this, we train in-013
terventions to predict and manipulate tokens014
by learning the scaling factor corresponding to015
each sequence position. These interventions016
indicate that the smallest RNNs find only this017
magnitude-based solution, while larger RNNs018
have linear representations. These findings019
strongly indicate that interpretability research020
should not be confined by the LRH.021

1 Introduction022

It has long been observed that neural networks en-023

code concepts as linear directions in their represen-024

tations (Smolensky, 1986), and much recent work025

has articulated and explored this insight as the Lin-026

ear Representation Hypothesis (LRH; Elhage et al.027

2022; Park et al. 2023; Guerner et al. 2023; Nanda028

et al. 2023; Olah 2024). A strong interpretation029

of the LRH says that such linear encodings are en-030

tirely sufficient for a mechanistic analysis of a deep031

learning model (Smith, 2024).032

In this paper, we present a counterexample to033

the Strong LRH by showing that recurrent neural034

networks with Gated Recurrent Units (GRUs; Cho035

et al. 2014) learn to represent the token at each po-036

sition using magnitude rather than direction when037

solving a simple repeat task (memorizing and gen-038

erating a sequence of tokens). This leads to a set of039

layered features that are impossible to locate in dis-040
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(d) Onion for (a, c, c, d).

Figure 1: We find that GRUs solve a repeat task by
learning a scaling factor corresponding to each sequence
position, leading to layered onion-like representations.
In this simplified illustration, the learned token embed-
dings (a) are rescaled to have magnitudes proportional
to their sequence positions (b). To change an element of
the sequence, remove (c) and replace (d) the token em-
bedding at the given positional magnitude. The layered
nature of the representations makes them non-linear;
any direction will cross-cut multiple layers of the onion.

tinct linear subspaces. We refer to the resulting hid- 041

den states as ‘onion representations’ to evoke how 042

sequence position can be identified by iteratively 043

peeling off these magnitude changes from the posi- 044

tions before it (Figure 1). In our experiments, this 045

is the only solution found by the smallest networks 046

(hidden size 48, 64); the larger networks (128, 512, 047

1024) learn to store input tokens in position-specific 048

linear subspaces, consistent with the LRH, though 049

we find these linear representations are compatible 050

with onion-based mechanisms as well. 051

We made this surprising finding in a hypothesis- 052

driven fashion. Our Hypothesis 1 was that GRUs 053

would store each token in a linear subspace. To 054
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test this hypothesis, we employed a variant of055

distributed alignment search (DAS; Geiger et al.056

2024b; Wu et al. 2023) that uses a Gumbel softmax057

to select dimensions for intervention. This revealed058

that the larger GRUs do in fact have linear sub-059

spaces for each position, but we found no evidence060

of this for the smaller ones (section 5). This led061

to Hypothesis 2: GRUs learn to represent input bi-062

grams in linear subspaces. A DAS-based analysis063

supports this for the medium-sized models but not064

for the smallest ones (section 6). This left the task065

success of the smallest models to be explained.066

For the smallest models, we observed that the067

update gates of the GRUs got gradually lower as068

the sequence progressed. This led to Hypothesis 3:069

onion representations. To evaluate this hypothesis,070

we learned interventions on the hidden vector en-071

coding a sequence of tokens that replaces token A072

with token B at position j. The intervention adds073

the scaled difference of learned embeddings for A074

and B, where the scaling factor is determined by075

the position j with learned linear and exponential076

terms. Across positions, this intervention works077

with ≈90% accuracy, demonstrating the existence078

of layered features stored at different scales.079

The existence of non-linear representations is a080

well-formed theoretical possibility. For example,081

under the framework of Geiger et al. (2024a) and082

Huang et al. (2024), any bijective function can be083

used to featurize a hidden vector, and interventions084

can be performed on these potentially non-linear085

features. However, the typical causal analysis of086

a neural networks involves only interventions on087

linear representations (see Section 2 for a brief088

review of such methods). We hope that our coun-089

terexample to the strong version of the LRH spurs090

researchers to consider methods that fall outside of091

this class, so that we do not overlook concepts and092

mechanisms that our models have learned.093

2 Related Work094

The Linear Representation Hypothesis Much095

early work on ‘word vectors’ was guided by the096

idea that linear operations on vectors could identify097

meaningful structure (Mikolov et al., 2013; Arora098

et al., 2016; Levy and Goldberg, 2014). More re-099

cently, Elhage et al. (2022) articulated the Linear100

Representation Hypothesis (LRH), which says that101

(1) features are represented as directions in vector102

space and (2) features are one-dimensional (see103

also Elhage et al. 2022; Park et al. 2023; Guerner104

et al. 2023; Nanda et al. 2023). Engels et al. 2024 105

challenged (2) by showing some features are ir- 106

reducibly multi-dimensional. Olah (2024) subse- 107

quently argued that (1) is the more significant as- 108

pect of the hypothesis, and it is the one that we 109

focus on here. Smith (2024) adds important nuance 110

to the LRH by distinguishing a weak version (some 111

concepts are linearly encoded) from a strong one 112

(all concepts are linearly encoded). 113

Our concern is with the strong form; there is 114

ample evidence that linear encoding is possible, 115

but our example shows that other encodings are 116

possible. In onion representations, multiple con- 117

cepts can be represented in a linear subspace by 118

storing each concept at a different order of magni- 119

tude, i.e., a ‘layer’ of the onion, and any direction 120

will cross-cut multiple layers of the onion. 121

Intervention-based Methods Recent years have 122

seen an outpouring of new methods in which inter- 123

ventions are performed on linear representations, 124

e.g., entire vectors (Vig et al., 2020; Geiger et al., 125

2020; Finlayson et al., 2021; Wang et al., 2023), 126

individual dimensions of weights (Csordás et al., 127

2021) and hidden vectors (Giulianelli et al., 2018; 128

De Cao et al., 2020; Davies et al., 2023), linear 129

subspaces (Ravfogel et al., 2020; Geiger et al., 130

2024b; Belrose et al., 2023), or linear features from 131

a sparse dictionary (Marks et al., 2024; Makelov 132

et al., 2024). These methods have provided deep in- 133

sights into how neural networks operate. However, 134

the vast and varied space of non-linear representa- 135

tions is woefully underexplored in a causal setting. 136

RNNs Recurrent Neural Networks (RNNs) were 137

among the first neural architectures used to process 138

sequential data (Elman, 1990, 1991). Many vari- 139

ants arose to help networks successfully store and 140

manage information across long sequences, includ- 141

ing LSTMs (Hochreiter and Schmidhuber, 1997) 142

and GRUs (Cho et al., 2014). Bidirectional LSTMs 143

provided the basis for one of the first large-scale 144

pretraining efforts (ELMo; Peters et al. 2018). With 145

the rise of Transformer-based models (Vaswani 146

et al., 2017), RNNs fell out of favor somewhat, 147

but the arrival of structured state-space models 148

(Gu et al., 2021b,a; Gu and Dao, 2023; Dao and 149

Gu, 2024) has brought RNNs back into the spot- 150

light, since such models seek to replace the Trans- 151

former’s potentially costly attention mechanisms 152

with recurrent connections. We chose GRUs for our 153

studies, with an eye towards better understanding 154

structured state space models as well. 155
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N = 48 N = 64 N = 128 N = 256 N = 512 N = 1024

Exact-Match Accuracy 0.95 ± 0.01 0.97 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Table 1: Exact-match accuracy (mean of 5 runs; ± 1 s.d.) for GRUs of different sizes trained on the repeat task.

3 Models156

In this paper, we focus on how RNNs solve the157

repeat task. As noted in section 2, this question has158

taken on renewed importance with the development159

of structured state-space models that depend on160

recurrent computations and are meant to provide161

efficient alternatives to transformers.162

Define an RNN as ht = f(ht−1,xt), h0 = 0,163

where f(·, ·) is the state update function, t ∈164

{1, . . . , T} is the current timestep, xt ∈ RN is165

the current input, and ht ∈ RN is the state after166

receiving the input xt. The output of the model is167

yt = g(ht). Vectorized inputs xt are obtained with168

a learned embedding E ∈ RNS×N , using the index-169

ing operator xt = E[it], where it ∈ {1, . . . , NS}170

is the index of the token at timestep t.171

In our experiments, we use GRU cells over the172

more widely-used LSTM cells because they have a173

single state to intervene on, as opposed to the two174

states of the LSTM. GRU-based RNNs defined as:175

zt = σ (Wzxt +Uzht + bz) (1)176

rt = σ (Wrxt +Urht + br) (2)177

ut = tanh (Whxt +Uh(rt ⊙ ht) + bh) (3)178

ht = (1− zt)⊙ ht−1 + zt ⊙ ut (4)179

For output generation, we use g(ht) =180

softmax(htWo + bo). The learned parameters are181

weights W∗,U∗ ∈ RN×N , and biases b∗ ∈ RN .182

We will investigate how the final hidden state183

hL of a GRU represents an input token sequence184

i = i1, i2, . . . iL. The final state is a bottle-neck185

between the input token sequence and the output.186

4 Repeat Task Experiments187

Our over-arching research question is how different188

models learn to represent abstract concepts. The re-189

peat task is an appealingly simple setting in which190

to explore this question. In this task, the network191

is presented with a sequence of random tokens192

i = i1, i2, . . . , iL, where each ij is chosen with re-193

placement from a set of symbols NS and the length194

L is chosen at random from {1 . . . Lmax}. This is195

followed by a special token, iL+1 = ‘S’, that in-196

dicates the start of the repeat phase. The task is197

to repeat the input sequence: yL+1+j = ij . The 198

variables in this task will represent positions in the 199

sequence and take on token values. 200

As a preliminary step, we evaluate RNN models 201

on the repeat task. The core finding is that all of the 202

models solve the task. This sets us up to explore 203

our core interpretability hypotheses in sections 5–7. 204

4.1 Setup 205

For our experiments, we generate 1M random se- 206

quences of the repeat task. The maximum sequence 207

length is Lmax = 9, and the number of possible 208

symbols is NS = 30. For testing, we generate an 209

additional 5K examples using the same procedure, 210

ensuring that they are disjoint at the sequence level 211

from those included in the train set. 212

We use the same model weights during both the 213

input and decoding phases. During the input phase, 214

we ignore the model’s outputs. No loss is applied to 215

these positions. We use an autoregressive decoding 216

phase: the model receives its previous output as 217

input in the next step. We investigate multiple 218

hidden state sizes, from N = 48 to N = 1024. 219

We train using a batch size of 256, up to 40K it- 220

erations, which is sufficient for each model variants 221

to converge. We use an AdamW optimizer with a 222

learning rate of 10−3 and a weight decay of 0.1. 223

4.2 Results 224

Table 1 reports on model performance at solving 225

the repeat task. It seems fair to say that all the mod- 226

els solve the task; only the smallest model comes 227

in shy of a perfect score, but it is at 95%. Overall, 228

these results provide a solid basis for asking how 229

the models manage to do this. This is the question 230

we take up for the remainder of the paper. 231

5 Hypothesis 1: Unigram Variables 232

Intuitively, to solve the repeat task, the token at 233

each position will have a different feature in the 234

state vector hL (the boundary between the input 235

and output phrases). In line with the LRH, we 236

hypothesize these features will be linear subspaces. 237
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Intervention N = 48 N = 64 N = 128 N = 256 N = 512 N = 1024

Linear Unigram 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.18 ± 0.03 0.91 ± 0.08 1.00 ± 0.00
Linear Bigram 0.01 ± 0.00 0.01 ± 0.00 0.54 ± 0.05 0.97 ± 0.05 1.00 ± 0.00 1.00 ± 0.00
Onion Unigram 0.83 ± 0.03 0.87 ± 0.03 0.89 ± 0.04 0.91 ± 0.08 0.95 ± 0.01 0.94 ± 0.04

Table 2: Intervention accuracy (mean of 5 runs; ± 1 s.d.) for GRUs of different sizes trained on the repeat task.

5.1 Interchange Intervention Data238

In causal abstraction analysis (Geiger et al., 2021),239

interchange interventions are used to determine240

the content of a representation by fixing it to the241

counterfactual value it would have taken on if a242

different input were provided. These operations243

require datasets of counterfactuals. To create such244

examples, we begin with a random sequence y of245

length L consisting of elements of our vocabulary.246

We then sample a set of positions I ⊆ {1, . . . , L},247

where each position k has a 50% chance of being248

selected. To create the base b, we copy y and then249

replace each bk with a random token, for k ∈ I .250

To create the source s, we copy y and then replace251

each sj with a random token, for j /∈ I . Here is a252

simple example with I = {1, 3}:253

y = b d a c254

b = X d Y c255

s = b 4 a 1256

Our core question is whether we can replace repre-257

sentations obtained from processing b with those258

obtained from processing s in a way that leads the259

model to predict y in the decoding phase.260

5.2 Method: Interchange Interventions on261

Unigram Subspaces262

Our goal is to localize each position k in the input263

token sequence to a separate linear subspaces Sk of264

hL. We will evaluate our success using interchange265

interventions. For each position in k ∈ I , we re-266

place the subspace Sk in the hidden representation267

hb
L for base input sequence b with the value it takes268

in hs
L for source input sequence s. The resulting269

output sequence should exactly match y. If we suc-270

ceed, we have shown that the network has linear271

representations for each position in a sequence.272

There is no reason to assume that the subspaces273

will be axis-aligned. Thus, we use Distributed274

Alignment Search (DAS) and train a rotation ma-275

trix R ∈ RN×N to map h into a new rotated space276

h̄. However, a remaining difficulty is to determine277

which dimensions in the rotated space belong to278

which position. The size of individual subspaces279

may differ: for example, the first input of a repeated 280

sequence, b1, is always present, and the probability 281

of successive inputs decreases due to the random 282

length of the input sequences. Thus, the network 283

might decide to allocate a larger subspace to the 284

more important variables that are always present, 285

maximizing the probability of correct decoding for 286

popular sequence elements. 287

To solve this problem, we learn an assignment 288

matrix A ∈ {0, 1}N×(L+1) that assigns dimen- 289

sions of the axis-aligned representation h̄ with at 290

most one sequence position. Allowing some di- 291

mensions to be unassigned provides the possibility 292

for the network to store other information that is 293

outside of these positions, such as the input length. 294

We can learn this assignment matrix by defining 295

a soft version of it Â ∈ RN×(L+1), and taking the 296

hard gumbel-softmax (Jang et al., 2017; Maddison 297

et al., 2017) with straight-through estimator (Hin- 298

ton, 2012; Bengio et al., 2013) over its columns for 299

each row (r ∈ {1 . . . N}) independently: 300

A[r] = gumbel_softmax(Â[r]) (5) 301

For intervening on the position k ∈ N, we re- 302

place dimensions of the rotated state h̄, that are 1 303

in A[·, v]. Specifically, intervention ĥb is defined: 304

h̄b = Rhb (6) 305

h̄s = Rhs (7) 306

ˆ̄hb = A[·, v]⊙ h̄s + (1−A[·, v])⊙ h̄b (8) 307

ĥb = R⊺ ˆ̄hb (9) 308

When learning the rotation matrix R and assign- 309

ment matrix A, we freeze the parameters of the 310

already trained GRU network. We perform the 311

intervention on the final state of the GRU, after 312

encoding the input sequences, and use the original 313

GRU to decode the output sequence ŷ from the 314

intervened state ĥb
L. We update R and A by back- 315

propogating with respect to the cross entropy loss 316

between the output sequence ŷ and the expected 317

output sequence after intervention y. 318
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5.3 Results319

We use the same training set as the base model to320

train the intervention model, and we use the same321

validation set to evaluate it. The first row of Table 2322

shows the accuracy of the unigram intervention. It323

works well for “big” models, with N ≥ 512. In324

these cases, we can confidentially conclude that325

the model has a separate linear subspace for each326

position in the sequence.327

5.4 Discussion328

The above results suggest that the model prefers329

to store each input element in a different subspace330

if there is “enough space” in its representations331

relative to the task. However, Hypothesis 1 seems332

to be incorrect for autoregressive decoders where333

N < 512. Since these models do solve our task,334

we need to find an alternative explanation for how335

they succeed. This leads us to Hypothesis 2.336

6 Hypothesis 2: Bigram Variables337

Our second hypothesis is a minor variant of Hypoth-338

esis 1. Here, we posit that, instead of representing339

variables for unigrams, the model instead stores340

tuples of inputs (it, it+1) we call bigram variables.341

6.1 Intervention Data342

We create counterfactual pairs using the same343

method as we used for Hypothesis 1 (section 5.1).344

In this case, each token it affects two bigram vari-345

ables (if present). Thus, the subspace replacement346

intervention must be performed on both of these347

variables. This also means that, for each k ∈ I , the348

tokens sk−1 and sk+1 in the source sequence input349

must match bt−1 and bt+1 in the base sequence,350

because the bigram at position t − 1 depends on351

(it−1, it) and the bigram at t depends on (it, it+1).352

6.2 Method: Interchange Interventions on353

Bigram Subspaces354

For a sequence of length L, there are L − 1 bi-355

gram variables. To try to identify these, we use the356

same interchange intervention method described357

in section 5.2. Because targeting a single position358

in the base input sequence requires replacing two359

bigram variables, we intervene on only a single to-360

ken at a time. Otherwise, the randomized sequence361

could be too close to the original, and most of the362

subspaces would be replaced at once, thereby arti-363

ficially simplifying the task.364

6.3 Results 365

We show the effectiveness of bigram interventions 366

in the middle row of Table 2. The intervention is 367

successful on most sizes, but fails for the smallest 368

models (N ≤ 64). 369

6.4 Discussion 370

We hypothesize that the models prefer to learn bi- 371

gram representations because of their benefits for 372

autoregressive input: the current input can be com- 373

pared to each of the stored tuples, and the output 374

can be generated from the second element of the 375

tuple. This alone would be enough to repeat all 376

sequences which have no repeated tokens. Because 377

our models solve the task with repeat tokens, an ad- 378

ditional mechanism must be involved. Regardless, 379

bigrams could provide a powerful representation 380

that is advantageous for the model. 381

Two additional remarks are in order. First, suc- 382

cessful unigram interventions entail successful bi- 383

gram interventions; a full argument is given in Ap- 384

pendix E.1. Second, one might worry that our 385

negative results for smaller models trace to limita- 386

tions of DAS on the small models. Appendix E.2 387

addresses this by showing DAS succeeding on a 388

non-autoregressive control model (N ≤ 64) that 389

solves the copy task. This alleviates the concern, 390

suggesting that the small autoregressive model does 391

not implement the bigram solution and highlighting 392

the role of autoregression in the bigram solution. 393

However, we still do not have an explanation 394

for how the smallest models (N ≤ 64) manages 395

to solve the repeat task; Hypotheses 1 and 2 are 396

unsupported as explanations for this model. This 397

in turn leads us to Hypothesis 3. 398

7 Hypothesis 3: Onion Representations 399

In an effort to better understand how the smallest 400

GRUs solve the repeat task, we inspected the gate 401

values zt as defined in equation 1 from the GRU 402

definition (section 3). 403

Figure 2a visualizes the first 64 input gates for 404

the N = 1024 model (Appendix figure 5 is a larger 405

diagram with all the gates). The x-axis is the se- 406

quence (temporal dimension) and the y-axis de- 407

picts the gate for each dimension. One can see 408

that this model uses gates to store inputs by clos- 409

ing position-dependent channels sharply, creating a 410

position-dependent subspace for each input. (This 411

gating pattern is consistent across all inputs.) 412

Figure 2b shows all the gates for the N = 64 413
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(a) The first 64 channels of GRU with N = 1024. The
model learns to store variables in different, axis-aligned sub-
spaces. Gates close sharply, freezing individual subspaces at
different times. For all channels, please refer to Figure 5 in
the Appendix.
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(b) GRU with N = 64 learns a “onion representation”,
using different scales of the same numbers to represent the
variables. The gates close gradually and synchronously in
the input phase, providing the exponentially decaying scaling
needed to represent different positions in the sequence.

Figure 2: The input gate zt in GRUs learning different representations Yellow is open; dark blue is closed; y-axis is
the channel; x axis is the position. Both models use input gates to let in different proportions of each dimension
across the sequence in order to store the positions of the input tokens. The large model (left) sharply turns off
individual channels to mark position; in contrast, the small model (right) gradually turns off all channels.

model. Here, the picture looks substantially differ-414

ent. This model gradually closes its gates simul-415

taneously, suggesting that the network might be416

using this gate to encode token positions. This led417

us to Hypothesis 3: RNNs learn to encode each418

position in a sequence as a magnitude.419

This hypothesis relies heavily on the autoregres-420

sive nature of the GRU, the discriminative capacity421

of the output classifier g(ht), and the sequential na-422

ture of the problem. Multiple features can be stored423

in the same subspace, at different scales. When424

the GRU begins to generate tokens at timestep425

t = L + 2, if the scales st′ associated with po-426

sition t′ > t are sufficiently small (st′ ≪ st), the427

output classifier yt = g(ht) will be able to cor-428

rectly decode the first input token i1. In the follow-429

ing step, i1 is fed back to the model as an input,430

and the model is able to remove the scaled repre-431

sentation corresponding to i1 from ht, obtaining432

ht+1. In this new representation, the input with433

the next largest scale, i2, will be dominant and will434

be decoded in the next step. This can be repeated435

to store a potentially long sequence in the same436

subspace, limited by the numerical precision. We437

call these ‘onion representations’ to invoke peeling438

back layers corresponding to sequence positions.439

Hypothesis 3 falls outside of the LRH. In lin-440

ear representations, tokens are directions and each 441

position has its own subspace. All positions are in- 442

dependently accessible; tokens can be read-out and 443

manipulated given the right target subspace. Onion 444

representations have very different characteristics. 445

First, tokens have the same direction regardless 446

of which position they are stored in; the magnitude 447

of the token embedding determines the position 448

rather than its direction. As a result, if multiple po- 449

sitions contain the same token, the same direction 450

will be added twice with different scaling factors 451

(see figure 1d where the token c occurs in positions 452

2 and 3). Second, because the memory is the sum 453

of the scaled token embeddings, it is impossible to 454

isolate the position associated with a given scale. 455

Only the token with the most dominant scale can 456

be extracted at a given time, by matching it to a dic- 457

tionary of possible token directions. This is done 458

by the final classifier for our GRUs. The autore- 459

gressive feedback for GRUs in effect peels off each 460

layer, clearing access to the next variable. 461

Appendix F provides a toy implementation of the 462

onion solution to elucidate the underlying concepts. 463

7.1 Intervention Data 464

For the causal analysis of onion representations, 465

we do not use interchange interventions. Instead, 466

we learn an embedding matrix for each token that 467
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a
b

c d

ac
c d

Figure 3: The intervention described by Equations 10–
13 where the input sequence is (a, b, c, d) and the inter-
vention is to fix the second position to be the token c.

encodes how the model represents that token in468

its hidden state vector. To replace a token in a469

sequence i1 . . . iL, we add the difference of the470

embeddings for a new îj and old ij token scaled471

according to the target position j. Our goal is to472

intervene upon the hidden representation ĥL so473

that the sequence decoded is i1 . . . îj . . . iL. We474

randomly sample îj and use inputs from the GRU475

training data.476

7.2 Method: Onion Interventions477

To replace token ij with token îj , we add the dif-478

ference of the corresponding token embeddings479

scaled by a factor determined by the position j. We480

parameterize this as:481

x = E[ij ] (10)482

x̂ = E [̂ij ] (11)483

s = gγj + βj + b (12)484

h′ = ĥ+ s⊙ (x̂− x) (13)485

where E ∈ RNS×N is the embedding for the to-486

kens (distinct from the the GRU input embedding,487

learned from scratch for the intervention), and488

g,γ,β, b ∈ RN are learned scaling parameters.489

Intuitively, s is the scale used for the token in posi-490

tion j. Its main component is the exponential term491

γ. In order to replace the token in the sequence,492

compute the difference of their embeddings, and493

scale them to the scale corresponding to the given494

position. Different channels in the state h ∈ RN495

might have different scales. Figure 3 depicts an496

example intervention, extending figure 1.497

7.3 Results498

The last row of Table 2 shows that our onion in-499

tervention achieves significantly better accuracy500

on the small models compared to the alternative501

unigram and bigram interventions. For example,502

for N = 64, the onion intervention achieves 87%503

accuracy compared to the 1% of the bigram inter-504

vention. As a control, if we fix γ = 1 and β = 1,505

we only reach 21% accuracy.506

Linear MLP Onion GRU - AR. GRU - No in.

Probe

0

100

A
cc

ur
ac

y
[%

]

Figure 4: Accuracy of different probes on the final repre-
sentation hL of GRUs with N = 64 and autoregressive
input (mean of 5 runs; ± 1 s.d.). Only the probes that
use autoregressive denoising can successfully decode
the sequence.

7.4 Discussion 507

Why do GRUs learn onion representations? In 508

order to distinguish NS tokens stored in Lmax pos- 509

sible positions, the model needs to be able to dis- 510

tinguish between NS × Lmax different directions 511

in the feature space. In our experiments this is 300 512

possible directions, stored in a 64-dimensional vec- 513

tor space. In contrast, for onion representations, 514

they only have to distinguish between NS = 30 515

directions at different orders of magnitude. 516

Onion representations require unpeeling via au- 517

toregression. We train a variety of probes to de- 518

code the final representation hL after encoding 519

the input sequence of GRUs with N = 64, which 520

learn onion representation. We show our results 521

in figure 4. The linear and MLP probes predict 522

the entire sequence at once by mapping the hidden 523

vector hL ∈ RN to the logits for each timestep 524

yall ∈ RNS×Lmax . The GRU Autoregressive (GRU – 525

AR) probe is equivalent to the original model, and 526

we use it as a check to verify that the decoding is 527

easy to learn. The GRU – No input probe is similar, 528

but unlike the original decoder of the model, it does 529

not receive an autoregressive input. 530

The probe results confirm that it’s not merely 531

a free choice whether the decoder uses an autore- 532

gressive input or not: if an onion representation 533

is learned during the training phase, it is impossi- 534

ble to decode it with a non-autoregressive decoder, 535

contrary to the same-size models that are trained 536

without an autoregressive input, shown in Table 4 537

in Appendix E.3. We also show the special probe 538

we designed for onion representations in a similar 539

spirit to the intervention described in section 7.2, 540

which performs almost perfectly. More details can 541

be found in Appendix E.3. 542

What is the feature space of an onion represen- 543

tation? Together, the embeddings E learned for 544

each token and the probe P that predicts the to- 545
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ken sequence form an encoder F that projects the546

hidden vector hL into a new feature space:547

F(hL) =⟨E[P(hL)1], . . . ,548

E[P(hL)L],hL −
L∑

j=2

E[P(hL)j ] · sj⟩549

where the first L features are the token embeddings550

corresponding to the token sequence predicted by551

the probe and the final feature is what remains552

of the hidden state after those embeddings are re-553

moved. The inverse is a simple weighted sum:554

F−1(f) = fL+1 +

L∑
j=1

fj · sj555

If the probe had perfect accuracy, this inverse556

would be perfect. Since our probe has 98% ac-557

curacy, there is a reconstruction loss when apply-558

ing the featurizer and inverse featurizer (similar559

to sparse autoencoders, e.g., Bricken et al. 2023;560

Huben et al. 2024).561

This onion feature space is parameterized by562

an embedding for each token, a dynamic scaling563

factor, and a probe. In contrast, a single linear564

feature is just a vector. However, because F is565

(approximately) bijective, we know that F (approx-566

imately) induces an intervention algebra (Geiger567

et al., 2024a) where each feature is modular and can568

be intervened upon separately from other features.569

Our embedding-based interventions are equiva-570

lent to onion interchange interventions. We eval-571

uated the linear representations of large networks572

with interchange interventions that fixed a linear573

subspace to the value it would have taken on if a574

different token sequence were input to the model.575

There is a corresponding interchange intervention576

for onion representations. However, it turns out that577

these onion interchange interventions are equiva-578

lent to the scaled difference of embeddings used in579

our experiments (see Appendix B).580

Why do Onion interventions also work on581

large models? Surprisingly, the onion interven-582

tion works well on the big models that have linear583

representations of position (N ≥ 256). We hypoth-584

esize that this is possible because all of the models585

start with gates open before closing them in a mono-586

tonic, sequential manner as the input sequence is587

processed. This enables the scaling-based onion588

intervention to simulate the actual gating pattern589

sufficiently closely to be able to perform the in-590

tervention well enough. The intervention cannot591

express arbitrarily sharp gate transitions but can 592

compensate for them by creating an ensemble with 593

different decay factors for the different channels. 594

From Table 5 in the Appendix, it can be seen 595

that the onion intervention achieves significantly 596

worse performance on the small non-autoregressive 597

models that use linear representations compared to 598

the autoregressive ones. This is expected, as the 599

onion intervention cannot express an arbitrary gat- 600

ing pattern that might be learned by these models. 601

8 Discussion and Conclusion 602

The preceding experiments show that GRUs learn 603

highly structured and systematic solutions to the 604

repeat task. It should not be overlooked that two of 605

these solutions (those based in unigram and bigram 606

subspaces) are consistent with the general guiding 607

intuitions behind the LRH and so help to illustrate 608

the value of testing hypotheses in that space. How- 609

ever, our primary goal is to highlight the onion 610

solution, as it falls outside the LRH. 611

Our hope is that this spurs researchers working 612

on mechanistic interpretability to consider a wider 613

range of techniques. The field is rapidly converg- 614

ing around methods that can only find solutions 615

consistent with the LRH, as we briefly reviewed 616

in section 2. In this context, counterexamples to 617

the LRH have significant empirical and theoretical 618

value, as Olah (2024) makes clear: 619

But if representations are not mathemati- 620

cally linear in the sense described above 621

[in a definition of the LRH], it’s back 622

to the drawing board – a huge number 623

of questions like “how should we think 624

about weights?” are reopened. 625

Our counterexample is on a small network, but 626

our task is also very simple. Very large networks 627

solving very complex tasks may also find solutions 628

that fall outside of the LRH. 629

There is also a methodological lesson behind our 630

counterexample to the LRH. Much interpretability 631

work is guided by concerns related to AI safety. 632

The reasoning here is that we need to deeply under- 633

stand models if we are going to be able to certify 634

them as safe and robust, and detect unsafe mecha- 635

nisms and behaviors before they cause real harm. 636

Given such goals, it is essential that we analyze 637

these models in an unbiased and open-minded way. 638
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9 Limitations639

The generality of onion representations. Onion640

representations are well fit for memorizing a se-641

quence in order or in reverse order, but they cannot642

provide a general storage mechanism with arbitrary643

access patterns. It is unclear if such representa-644

tions are useful in models trained on more complex645

real-world tasks.646

Using GRU models. Our exploration is limited to647

GRU models, which themselves might have less648

interest in the current Transformer-dominated state649

of the field. However, we suspect that the same rep-650

resentations are beneficial for other gated RNNs as651

well, such as LSTMs. Although we have a reason652

to believe that such representations can emerge in653

Transformers and state space models as well, we654

do not verify this hypothesis empirically.655

Onion representations only emerge in small656

models. This might indicate that onion represen-657

tations are not a problem for bigger models used658

in practice. However, this might not be the case:659

LLMs, which are much bigger, operate on an enor-660

mous feature space using a relatively small residual661

stream. Thus, the pressure to compress representa-662

tions and the potential for similar representations663

to emerge could be well motivated there as well.664

Numerical precision. The number of elements665

that can be stored in onion representations depends666

on the numerical precision of the data type used for667

the activations. We found that the network finds it668

easy to use these representations even with 16-bit669

floating point precision (bf16), potentially because670

multiple redundant channels of the state can be671

used as an ensemble. It remains unclear what the672

capacity of such representations is.673
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Variant N = 48 N = 64 N = 128 N = 256 N = 512 N = 1024

Autoregressive 0.95 ± 0.01 0.97 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
No input 0.88 ± 0.11 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Table 3: Exact-match accuracy (mean of 5 runs; ± 1 s.d.) for GRUs of different sizes trained on the repeat task
results, with and without autoregressive input during the decoding.

Appendix926

A Performance of the Non-Autoregressive GRUs927

We show the performance of all our models in Table 3, both autoregressive and those that do not928

receive autoregressive feedback during the decoding phase. All models solve the task well, except929

the smallest N = 48 model without autoregressive decoding. The model finds it hard to distinguish930

between NS × Lmax = 300 different directions in the 48-dimensional space. On the other hand, onion931

representations learned with autoregressive decoding work well even in these small models.932

B Onion Interchange Interventions933

For position j and input token sequences a1, . . . , aL and b1, . . . , bM , define the onion interchange934

intervention to be935

fa = F(ha)936

f b = F(hb)937

ĥa = F−1(fa1 , . . . , f
b
j , . . . f

a
L, f

a
L+1)938

However, observe that that is simply the intervention of adding in the difference of the embeddings bj and939

aj scaled according to the position j from Equations 10–13:940

ĥa = F−1(fa1 , . . . , f
b
j , . . . f

a
L, f

a
L+1)941

= F−1(E[a1], . . . ,E[bj ], . . .E[aL], f
a
L+1)942

= faL+1 +

L∑
k=1

sk ·E[ak] + (E[bj ]−E[aj ]) · sj943

= ha + (E[bj ]−E[aj ]) · sj944

945

This means the success of our intervention ĥ to replace the token in a1, . . . , aL at position j with a new946

token t entails the success of any onion interchange interventions where we patch from an input sequence947

b1, . . . , bM with bj = t. The learned token embeddings for onion representations creates a semantics for948

tokens that is externtal to the underlying model, so interchange interventions on the feature space have to949

do with the token embeddings rather than the representations actually created on the given source input.950

This is not the case for linear interchange interventions, where the value of the subspace intervention that951

must be performed is computed directly from the hidden representation created for the second input token952

sequence.953

C Probe Accuracy For All Models954

We show the accuracy of all of our probes in all models that we trained in Table 4. Linear and MLP955

probes work well when the learned solution respects LRH. Onion probes work well even for our smallest956

autoregressive models. We can see that autoregressive GRU can successfully decode all sequences, as957

expected, proving that relearning the decoding phase is a relatively easy learning problem. However,958

non-autoregressive GRUs are unable to decode sequences from onion representations. For more details,959

refer to sections 5–7.960
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Decoder Variant N = 48 N = 64 N = 128 N = 256 N = 512 N = 1024

Linear
Autoregressive 0.01 ± 0.00 0.01 ± 0.00 0.31 ± 0.03 0.89 ± 0.03 0.97 ± 0.00 0.99 ± 0.01
No input 0.31 ± 0.10 0.89 ± 0.05 0.98 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

MLP
Autoregressive 0.02 ± 0.00 0.04 ± 0.00 0.55 ± 0.04 0.98 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
No input 0.53 ± 0.25 0.95 ± 0.04 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Onion
Autoregressive 0.92 ± 0.02 0.97 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
No input 0.76 ± 0.08 0.96 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

GRU - autoregressive
Autoregressive 0.97 ± 0.01 0.98 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
No input 0.92 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

GRU - no input
Autoregressive 0.10 ± 0.02 0.25 ± 0.08 0.86 ± 0.01 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
No input 0.77 ± 0.07 0.98 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Table 4: Probe accuracy (mean of 5 runs; ± 1 s.d.).

Intervention N = 48 N = 64 N = 128 N = 256 N = 512 N = 1024

Linear Unigram 0.06 ± 0.07 0.37 ± 0.17 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.01
Linear Bigram 0.18 ± 0.04 0.95 ± 0.06 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Onion Unigram 0.24 ± 0.02 0.41 ± 0.04 0.76 ± 0.01 0.92 ± 0.01 0.96 ± 0.01 0.98 ± 0.00

Table 5: Intervention accuracy for GRUs without an autoregressive input in the decoding phase, with different sizes,
trained on the repeat task (mean of 5 runs; ± 1 s.d.).

D GRU Models Without Autoregressive Decoding 961

In principle, RNN models do not need an autoregressive feedback loop during the decoding phase to be 962

able to produce a consistent output. Given that we found that the network often relies on storing bigrams 963

(section 6) or on onion representations (section 7), both of which benefit from autoregressive feedback, we 964

asked what representation the models learn without such a mechanism. Thus, we changed our GRU model 965

to receive only special PAD tokens during the decoding phase. We show the intervention accuracies in 966

Table 5. We can see that the model is heavily based on storing unigrams, and the intervention now works 967

down to N = 1024. For the N = 64 case, the models store bigrams. No intervention works well for the 968

N = 48 non-autoregressive model, but that model also does not perform well on the validation set (see 969

Table 3). The model is unable to to learn onion representation at any scale, since the autoregressive input 970

is required for that, as shown in figure 4. This experiment also confirms that our subspace intervention 971

method introduced in section 5.2 works well even for models with N = 64. 972

E Additional Discussion of the Bigram Interventions 973

E.1 Successful Unigram Interventions Entail Successful Bigram Interventions 974

With bigram interventions, in addition to copying a token to the randomized sequence, we also copy its 975

neighborhood and replace two variables. In contrast, unigram interventions only move the corrupted token 976

and replace its corresponding variable. Thus, the unigram intervention performs a subset of movements 977

performed by the bigram. This means that if the unigram intervention is successful, it is guaranteed that 978

the bigram intervention will be successful as well. 979

E.2 Verifying the Expressivity of the Subspace Intervention 980

Obtaining negative results for the unigram intervention on smaller models (N < 512) might raise the 981

question of whether our intervention is expressive enough to capture the relatively small subspaces of 982

these models. In order to verify this, we trained a GRU model without autoregressive input (Appendix D) 983

during the decoding phase. By doing this, we eliminate some of the advantages provided by bigram 984

representations. Since GRUs are RNNs, they can learn a decoding state machine without relying on seeing 985

the output generated so far. We confirm this in Table 3. In these modified networks, unigram interventions 986

are successful down to N = 128, and the bigram intervention is successful on all scales. We show the 987
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Figure 5: All 1024 channels of the GRU gate zt shown in Figure 2a. All channels follow similar patterns.
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detailed results in Table 5. 988

E.3 The Onion-probe 989

We designed a probe for onion representations similarly to the intervention described in section 7.2. We 990

take the final representation after encoding the sequence, hL, and decode yL + 1 = i1 . . . y2L = iL from 991

it as follows: 992

st = gγt−L + β(t− L) + b (14) 993

yt = argmaxg(ht−1) (15) 994

ht = ht−1 − stE[yt] (16) 995

As a denoising classifier g(h) we use a 2 layer MLP with a layernorm (Ba et al., 2016) on its inputs 996

g(h) = softmax (Wo2 max(0,LN(hWo1 + bo1)) + bo2), where LN(·) is the layernorm. Layernorm is 997

not strictly necessary, but it greatly accelerates the learning of the probe, so we decided to keep it. 998

F Toy Model Implementing Onion Representations 999

To show more clearly how a model can learn to represent sequence elements in different scales, we 1000

constructed a toy model that uses prototypical onion representations: 1001

st =


1, if t = 1

−1, if t = L+ 1

γst−1 otherwise

(17) 1002

h1 = 0 (18) 1003

ht+1 = ht + stxt (19) 1004

yt = softmax (htWo + bo) (20) 1005

where st ∈ R is a scalar state representing the current scale, γ ∈ R represents the difference in the scales 1006

used for different variables, and ht ∈ RN is the vector memory. In a real RNN, both the vector memory 1007

and the current scale are part of a single state vector. In our experiments, we use a fixed γ = 0.4. The 1008

inputs are embedded in the same way as for our GRU model: xt = E[it], where it ∈ N is the input 1009

token and E ∈ RNS×N is the embedding matrix. The only learnable parameters of this model are the 1010

embedding matrix, E and the parameters of the output projection, Wo ∈ RN×N and bo ∈ RN . 1011

The idea behind this model is based on the fact that a linear layer followed by a softmax operation 1012

is able to ‘denoise’ the representation ht. γ is chosen as < 0.5, because in that case the contribution to 1013

the hidden state ht of all future t′ > t positions will be lower than the contribution of input xt. Thus, 1014

xt will dominate all ht′ for all t′ > t. Thus, when decoding from ht′ , Eq. 20, followed by the argmax 1015

used in greedy decoding, the model will always recover the first, most dominant it that is not yet decoded 1016

from the model. Then, this token is autoregressively fed back to the next step, where it is subtracted from 1017

ht′ , letting the next token dominate the representation ht′+1. This allows storing an arbitrary sequence 1018

at different scales of the representation ht. All 5 seeds of this model that we trained achieve perfect 1019

validation accuracy. 1020
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