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Abstract

The utility of reinforcement learning is limited by the alignment of reward functions with the
interests of human stakeholders. One promising method for alignment is to learn the reward
function from human-generated preferences between pairs of trajectory segments, a type of
reinforcement learning from human feedback (RLHF). These human preferences are typically
assumed to be informed solely by partial return, the sum of rewards along each segment. We find
this assumption to be flawed and propose modeling human preferences instead as informed by
each segment’s regret, a measure of a segment’s deviation from optimal decision-making. Given
infinitely many preferences generated according to regret, we prove that we can identify a reward
function equivalent to the reward function that generated those preferences, and we prove that
the previous partial return model lacks this identifiability property in multiple contexts. We
empirically show that our proposed regret preference model outperforms the partial return
preference model with finite training data in otherwise the same setting. Additionally, we find
that our proposed regret preference model better predicts real human preferences and also
learns reward functions from these preferences that lead to policies that are better human-
aligned. Overall, this work establishes that the choice of preference model is impactful, and our
proposed regret preference model provides an improvement upon a core assumption of recent
research. We have open sourced our experimental code, the human preferences dataset we
gathered, and our training and preference elicitation interfaces for gathering a such a dataset.

1 Introduction

GOAL GOAL
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Equal partial return 
Higher regret

Equal partial return 
Lower regret

Figure 1: Two segments in a task with ≠1 reward
each time step. The common partial return preference
model is indi�erent between these segments, because
each has a partial return of ≠2. However, only the right
segment consists only of optimal actions, whereas the
left segment is made of only suboptimal actions. Regret,
which our proposed preference model is based upon, is
designed to measure a segment’s deviation from optimal
decision making. The right segment is therefore more
likely to be preferred by a regret preference model. We
suspect our human readers will also tend to prefer the
right segment.

Improvements in reinforcement learning (RL) have led to no-
table recent achievements (Silver et al., 2016; Senior et al.,
2020; Vinyals et al., 2019; Bellemare et al., 2020; Berner et al.,
2019; Degrave et al., 2022; Wurman et al., 2022), increasing its
applicability to real-world problems. Yet, like all optimization
algorithms, even perfect RL optimization is limited by the
objective it optimizes. For RL, this objective is created in large
part by the reward function. Poor alignment between reward
functions and the interests of human stakeholders limits the
utility of RL and may even pose risks of financial cost and
human injury or death (Amodei et al., 2016; Knox et al., 2021).

Influential recent research has focused on learning reward
functions from preferences over pairs of trajectory segments, a
common form of reinforcement learning from human feedback
(RLHF). Nearly all of this recent work assumes that human
preferences arise probabilistically from only the sum of rewards
over a segment, i.e., the segment’s partial return (Christiano
et al., 2017; Sadigh et al., 2017; Ibarz et al., 2018; Bıyık et al.,
2021; Lee et al., 2021a;b; Ziegler et al., 2019; Wang et al.,
2022; Ouyang et al., 2022; Bai et al., 2022; Glaese et al., 2022;
OpenAI, 2022). That is, these works assume that people tend
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to prefer trajectory segments that yield greater accumulated rewards during the segment. However, this
preference model ignores seemingly important information about the segment’s desirability, including the
state values of the segment’s start and end states. Separately, this partial return preference model can prefer
suboptimal actions with lucky outcomes, like buying a lottery ticket.

This paper proposes an alternative preference model based on the regret of each segment, which is a measure
of how much each segment deviates from optimal decision-making. More precisely, regret is the negated sum of
an optimal policy’s advantage of each transition in the segment (Section 2.2). Figures 1 and 2 show intuitive
examples of when these two models disagree. Some examples of domains where the preference models will di�er
are those with constant reward until the end, including competitive games like chess, go, and soccer as well as
tasks for which the objective is to minimize time until reaching a goal.

For these two preference models, we first focus theoretically on a normative analysis (Section 3)—i.e., what
preference model would we want humans to use if we could choose one based on how informative its generated
preferences are—proving that reward learning on infinite, exhaustive preferences with our proposed regret
preference model identifies a reward function with the same set of optimal policies as the reward function with
which the preferences are generated. We also prove that the partial return preference model is not guaranteed
to identify such a reward function in three di�erent contexts: without preference noise, when trajectories of
di�erent lengths are possible from a state, and when segments consist of only one transition. We follow up
with a descriptive analysis of how well each of these proposed models align with actual human preferences by
collecting a human-labeled dataset of preferences in a rich grid world domain (Section 4) and showing that the
regret preference model better predicts these human preferences (Section 5). Finally, we find that the policies
ultimately created through the regret preference model tend to outperform those from the partial return model
learning—both when assessed with collected human preferences or when assessed with synthetic preferences
(Section 6). Our code for learning and for re-running our main experiments is publically available, alongside the
human preferences dataset we gathered and our interface for training subjects and for preference elicitation.1

In summary, our primary contributions are five-fold:

1. We propose a new model for human preferences that is based on regret instead of partial return.

2. We theoretically validate that this regret-based model has the desirable characteristic of reward
identifiability, and that the partial return model does not.

3. We empirically validate that when each preference model learns from a preferences dataset it created,
this regret-based model leads to better-aligned policies.

4. We empirically validate that, with a collected dataset of human preferences, this regret-based model
both better describes the human preferences and leads to better-aligned policies.

5. Overall, we show that the choice of preference model impacts the alignment of learned reward functions.

2 Preference models for learning reward functions

We assume that the task environment is a Markov decision process (MDP) specified by the tuple (S, A, T , “, D0,
r). S and A are the sets of possible states and actions, respectively. T is a transition function, T :S◊Aæp(·|s,a);
“ is the discount factor; and D0 is the distribution of start states. Unless otherwise stated, we assume all tasks
are undiscounted (i.e., “ =1) and have terminal states, after which only 0 reward can be received. Discounting
is considered in depth in Appendix B.2. r is a reward function, r :S◊A◊S æR, where the reward rt at time t is
a function of st, at, and st+1. An MDP\r is an MDP without a reward function.

Throughout this paper, r refers to the ground-truth reward function for some MDP; r̂ refers to a learned
approximation of r; and r̃ refers to any reward function (including r or r̂). A policy (fi :S◊Aæ [0,1]) specifies
the probability of an action given a state. Qfi

r̃ and V fi
r̃ refer respectively to the state-action value function and

state value function for a policy, fi, under r̃, and are defined as follows.
1References removed to maintain anonymity throughout the review process.
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V fi
r̃ (s)def= Efi[

Œÿ

t=0
r̃(st,at,st+1)|s0 =s]

Qfi
r̃ (s,a)def= Efi[r̃(s,a,sÕ)+V fi

r̃ (sÕ)]

An optimal policy fiú is any policy where V fiú

r̃ (s)ØV fi
r̃ (s) at every state s for every policy fi. We write shorthand for

Qfiú

r̃ and V fiú

r̃ as Qú
r̃ and V ú

r̃ , respectively. The optimal advantage function is defined as Aú
r̃(s,a),Qú

r̃(s,a)≠V ú
r̃ (s);

this measures how much an action reduces expected return relative to following an optimal policy.

Throughout this paper, the ground-truth reward function r is used to algorithmically generate preferences when
they are not human-generated, is hidden during reward learning, and is used to evaluate the performance of
optimal policies under a learned r̂.

2.1 Reward learning from pairwise preferences

A reward function can be learned by minimizing the cross-entropy loss—i.e., maximizing the likelihood—of
observed human preferences, a common approach in recent literature (Christiano et al., 2017; Ibarz et al., 2018;
Wang et al., 2022; Bıyık et al., 2021; Sadigh et al., 2017; Lee et al., 2021a;b; Ziegler et al., 2019; Ouyang et al.,
2022; Bai et al., 2022; Glaese et al., 2022; OpenAI, 2022).

Segments Let ‡ denote a segment starting at state s‡
0 . Its length |‡| is the number of transitions within

the segment. A segment includes |‡|+1 states and |‡| actions: (s‡
0 ,a‡

0 ,s‡
1 ,a‡

1 ,...,s‡
|‡|). In this problem setting,

segments lack any reward information. As shorthand, we define ‡t,(s‡
t ,a‡

t ,s‡
t+1). A segment ‡ is optimal with

respect to r̃ if, for every iœ{1,...,|‡|-1}, Qú
r̃(s‡

i ,a‡
i )=V ú

r̃ (s‡
i ). A segment that is not optimal is suboptimal.

Given some r̃ and a segment ‡, r̃‡
t , r̃(s‡

t ,a‡
t ,s‡

t+1), and the undiscounted partial return of a segment ‡ is
q|‡|≠1

t=0 r̃‡
t , denoted in shorthand as �‡ r̃.

Preference datasets Each preference over a pair of segments creates a sample (‡1,‡2,µ) in a preference
dataset Dº. Vector µ=Èµ1,µ2Í represents the preference; specifically, if ‡1 is preferred over ‡2, denoted ‡1 º‡2,
µ= È1,0Í. µ is È0,1Í if ‡1 ª‡2 and is È0.5,0.5Í for ‡1 ≥‡2 (no preference). For a sample (‡1,‡2,µ), we assume
that the two segments have equal lengths (i.e., |‡1|= |‡2|).

Loss function To learn a reward function from a preference dataset, Dº, a common assumption is that
these preferences were generated by a preference model P that arises from an unobservable ground-truth reward
function r. We approximate r by minimizing cross-entropy loss to learn r̂:

loss(r̂,Dº)=≠
ÿ

(‡1,‡2,µ)œDº

µ1logP (‡1 º‡2|r̂)+µ2logP (‡1 ª‡2|r̂) (1)

For a single sample where ‡1 º‡2, the sample’s likelihood is P (‡1 º‡2|r̂) and its loss is therefore ≠logP (‡1 º‡2|r̂).
If ‡1 ª‡2, its likelihood is 1≠P (‡1 º‡2|r̂). This loss is under-specified until P (‡1 º‡2|r̂) is defined, which is
the focus of this paper. We show that the common partial return model of preference probabilities is flawed and
introduce an improved regret-based preference model.

Preference models A preference model determines the probability of one trajectory segment being preferred
over another, P (‡1 º ‡2|r̃). P (‡1 º ‡2|r̃) + P (‡1 ≥ ‡2|r̃) + P (‡1 ª ‡2|r̃) = 1, and P (‡1 ≥ ‡2|r̃) = 0 for the
preference models considered herein. Preference models could be applied to model preferences provided by
humans or other systems. Preference models can also directly generate preferences, and in such cases we refer
to them as preference generators.
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2.2 Choice of preference model: partial return and regret

Partial return All aforementioned recent work assumes human preferences are generated by a Boltzmann
distribution over the two segments’ partial returns, expressed here as a logistic function.2

P�r(‡1 º‡2|r̃)= logistic
1

�‡1 r̃≠�‡2 r̃
2

. (2)

Regret We introduce an alternative preference model based on the regret of each transition in a segment. We
first focus on segments with deterministic transitions. For a transition (st,at,st+1) in a deterministic segment,
regretd(‡t|r̃),V ú

r̃ (s‡
t )≠[r̃t+V ú

r̃ (s‡
t+1)]. The subscript d in regretd signifies the assumption of deterministic

transitions. For a full deterministic segment,

regretd(‡|r̃),
|‡|≠1ÿ

t=0
regretd(‡t|r̃)=V ú

r̃ (s‡
0 )≠(�‡ r̃+V ú

r̃ (s‡
|‡|)), (3)

with the right-hand expression arising from cancelling out intermediate state values. Therefore, deterministic
regret measures how much the segment reduces expected return from V ú

r̃ (s‡
0 ). An optimal segment, ‡ú, always

has 0 regret, and a suboptimal segment, ‡¬ú, will always have positive regret, an intuitively appealing property
that also plays a role in the identifiability proof of Theorem 3.1.

Stochastic state transitions, however, can result in regretd(‡ú|r̂)>regretd(‡¬ú|r̃), losing the property above.
For instance, an optimal action can lead to worse return than a suboptimal action, based on stochasticity
in state transitions. To retain this property that optimal segments have a regret of 0 and suboptimal
segments have positive regret, we first note that the e�ect on expected return of transition stochasticity
from a transition (st,at,st+1) is [r̃t+V ú

r̃ (st+1)]≠Qú
r̃(st,at) and add this expression once per transition to get

regret(‡), removing the subscript d that refers to determinism. The regret for a single transition becomes
regret(‡t|r̃) = [V ú

r̃ (s‡
t )≠ [r̃t +V ú

r̃ (s‡
t+1)]]+ [[r̃t +V ú

r̃ (s‡
t+1)]≠Qú

r̃(s‡
t ,a‡

t )] = V ú
r̃ (s‡

t )≠Qú
r̃(s‡

t ,a‡
t ) = ≠Aú

r̃(s‡
t ,a‡

t ).
Regret for a full segment is

regret(‡|r̃)=
|‡|≠1ÿ

t=0
regret(‡t|r̃)=

|‡|≠1ÿ

t=0

Ë
V ú

r̃ (s‡
t )≠Qú

r̃(s‡
t ,a‡

t )
È

=
|‡|≠1ÿ

t=0
≠Aú

r̃(s‡
t ,a‡

t ). (4)

The regret preference model is the Boltzmann distribution over negated regret:

Pregret(‡1 º‡2|r̃), logistic
1

regret(‡2|r̃)≠regret(‡1|r̃)
2

. (5)

Lastly, we note that if two segments have deterministic transitions, end in terminal states, and have the same
starting state, in this special case the regret model reduces to the partial return model: Pregret(·|r̃)=P�r(·|r̃).

In this article, our normative results examine both tasks with deterministic transitions and tasks with stochastic
transitions. These normative results include the theoretical analysis in Section 3 and the empirical results
with synthetic data in Section 6.2 and Appendix F.2, with stochastic tasks specifically examined empirically
in Appendix F.2.4. We gather human preferences for a deterministic task, which allows us to investigate the
results with the more intuitive expression of regretd that includes partial return as a component.

Algorithms in this paper All algorithms in the body of this paper can be summarized as “minimize
Equation 1”. They di�er only in how the preference probabilities are calculated. All reward function learning via
partial return uses Equation 2, replicating the dominant algorithm in recent literature (Christiano et al., 2017;
Ibarz et al., 2018; Wang et al., 2022; Bıyık et al., 2021; Sadigh et al., 2017; Lee et al., 2021a;b; Ouyang et al.,
2022). We use two algorithms for reward function learning via regret. The theory in Section 3 assumes exact

2See Appendix B.1 for a derivation of this logistic expression from a Boltzmann distribution with a temperature of 1. Unless
otherwise stated, we ignore the temperature because scaling reward has the same e�ect when preference probabilities are not
deterministic. The temperature is allowed to vary for our theory in Section 3. Another context when the temperature parameter
would be useful is when learning a single reward function with a loss function that includes one or more loss terms in addition to
the formula in Equation 1; in such a case, scaling reward might undesirably a�ect the other loss term(s), whereas the varying the
Boltzmann temperature changes the preference entropy without a�ecting the other loss term(s).
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measurement of regret, using Equation 5. Section 6 introduces Equation 6 to approximate regret—replacing
Equation 5 to create another algorithm—and uses the resulting algorithm for our experimental results later in
that section. Appendix B introduces other algorithms that use Equation 1, as well as one in Appendix B.4 that
generalizes Equation 1.
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Figure 2: Two segments of a car moving at high speed
near a brick wall. On the left, a car moves toward a brick
wall; a bad crash is imminent, but has not yet occurred.
On the right, a car escapes an imminent crash against a
brick wall with only a scrape. Assume the right segment
is optimal and the left segment is suboptimal (as defined
in Sec. 2.1). The left segment has a higher sum of reward,
so it is preferred under the partial return preference model.
The right segment is preferred under the regret preference
model since optimal segments have minimal regret. If we
also assume deterministic transitions, then the regret model
includes the di�erence in values between the start state and
the end state (Equation 3), and the right segment would
tend to be preferred because it greatly improves its state
values from start to end, whereas the left segment’s state
values greatly worsen. We suspect our human readers will
also tend to prefer the right segment.

Regret as a model for human preference Pregret

makes at least three assumptions worth noting. First, it
keeps the assumption that human preferences follow a Boltz-
mann distribution over some statistic, which is a common
model of choice behavior in economics and psychology,
where it is called the Luce-Shepard choice rule (Luce, 1959;
Shepard, 1957). Second, Pregret implicitly assumes humans
can identify optimal and suboptimal segments when they
see them, which will be less true in domains where the
human has less expertise. This assumption is similar to
a common assumption of many algorithms for imitation
learning, that humans can provide demonstrations that are
optimal or noisily optimal (e.g., Abbeel & Ng (2004)).

Lastly, Pregret assumes that in stochastic settings where the
best outcome may only result from suboptimal decisions
(e.g., buying a lottery ticket), humans instead prefer optimal
decisions. We suspect humans are capable of expressing
either type of preference—based on decision quality or de-
sirability of outcomes—and can be influenced by training or
the preference elicitation interface. Curiously, for stochas-
tic tasks in which preferences are based upon segments’
observed outcomes, a preference model that uses determin-
istic regretd in Equation 5 appears fitting, since it does
not subtract out the e�ects of fortunate and unfortunate
transitions but does include segments’ start and end state
values.

In practice we determine that the regret model produces improvements over the partial return model (Section 6),
and its assumptions represent an opportunity for follow-up research.

3 Theoretical comparison

In this section, we consider how di�erent ways of generating preferences a�ect reward inference, setting aside
whether humans can be influenced to give preferences in accordance with a specific preference method. In
economics, this analysis—and all of our later analyses with synthetic preferences—could be considered a
normative analysis. In artificial intelligence, this analysis might be cast as a step towards defining criteria for a
rational preference model.

The theorems and proofs below focus on identifiability, a property which determines whether the parameters of
a model can be recovered from infinite, exhaustive samples generated by the model. A model is unidentifiable if
any two parameterizations of the model result in the same model behavior. In our setting, the model of concern
is a preference model and the parameters constitute the ground-truth reward function, r. A preference model is
identifiable if an infinite, exhaustive preferences dataset created by the preference model contains su�cient
information to infer a behaviorally equivalent reward function to r. Note that identifiability focuses on the

preference model alone as a preference generator, not on the learning algorithm that uses such a preference
model.

This section uses preference models that include discounting (see Appendix B.2). We allow for discounting to
make the theory more general and also because discounting is integral to Section 3.2.3. Here the notation for
Qú

r̃(s,a) and V ú
r̃ (s) is expanded to Qú

(r̃,“̃)(s,a) and V ú
(r̃,“̃)(s) respectively include the discount factor. To make
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the other content in this section specific to undiscounted tasks, simply assume all instances of “̃ =1, including
the ground-truth “ and the “̂ used during reward function inference and policy improvement.

Definition 3.1 (An identifiable preference model). For a preference model P , assume an infinite dataset Dº
of n-length pairs of segments is constructed by repeatedly choosing (‡1,‡2) and sampling a label µ≥P (‡1 º‡2|r),
using P as a preference generator. Further assume that, in this dataset, all possible n-length segment pairs

appear infinitely many times. For some M that is an MDP\(r,“)—an MDP with neither a reward function nor

a discount factor—let M(r̃,“̃) be M with the reward function r̃ and the discount factor “̃. Let �ú
(r̃,“̃) be the set

of optimal policies for M(r̃,“̃). Let problem-equivalence class R be the set of all pairs of a reward function and

a discount factor such that if (r1,“1),(r2,“2)œR then �ú
(r1,“1) =�ú

(r2,“2). Preference model P is identifiable
if, for any choice of segment length n and ground-truth M(r,“), any (r̂,“̂) = argmin(r̃,“̃)[loss(r̃,“̃,Dº)]—for

the cross-entropy loss (Eqn. 8, which is Eqn. 1 generalized to include discounting), with P as the preference

model—is in the same problem equivalence class as (r,“). I.e., �ú
(r,“) =�ú

(r̂,“̂).

3.1 The regret preference model is identifiable.

We first prove that our proposed regret preference model is identifiable.

Theorem 3.1 (Pregret is identifiable). Let Pregret be any function such that if regret(‡1|r̃,“̃)<regret(‡2|r̃,“̃),
Pregret(‡1 º ‡2|r̃,“̃) > 0.5, and if regret(‡1|r̃, “̃) = regret(‡2|r̃, “̃), Pregret(‡1 º ‡2|r̃,“̃) = 0.5. Pregret is

identifiable.

This class of regret preference models includes but is not limited to the Boltzmann distribution of Equation 5.
Additionally, it includes a version of the regret preference model that noiselessly always prefers the segment
with lower regret, as Theorem 3.2 considers for the partial return preference model.3

Consider reviewing the definitions of optimal segments and suboptimal segments in Section 2.1 before proceeding.

Proof Make all assumptions in Definition 3.1. Since (r̂,“̂) minimizes cross-entropy loss and is chosen from the
complete space of reward functions and discount factors, Pregret(·|r,“)=Pregret(·|r̂,“̂) for all possible segment
pairs. Also, by Equation 12 (which generalizes Equation 4 to include discounting) regret(‡|r̃,“̃) = 0 if and only
if ‡ is optimal with respect to r̃. And regret(‡|r̃,“̃)>0 if and only if ‡ is suboptimal with respect to (r̃,“̃).

With respect to some (r̃, “̃), let ‡ú be any optimal segment and ‡¬ú be any suboptimal segment.
regret(‡ú|r̃, “̃) < regret(‡¬ú|r̃, “̃), so Pregret(‡ú º ‡¬ú|r̃, “̃) > 0.5. Pregret(·|r̃, “̃) induces a total ordering
over segments, defined by regret(‡1|r̃,“̃) < regret(‡2|r̃,“̃) ≈∆ Pregret(‡1 º ‡2|r̃,“̃) > 0.5 ≈∆ ‡1 > ‡2 and
regret(‡1|r̃,“̃)=regret(‡2|r̃,“̃) ≈∆ Pregret(‡1 º‡2|r̃,“̃)=0.5 ≈∆ ‡1 =‡2. Because regret has a minimum (0),
there must be a set of segments which are ranked highest under this ordering, denoted �ú

(r̃,“̃). These segments
in �ú

(r̃,“̃) are exactly those that achieve the minimum regret (0) and so are optimal with respect to (r̃,“̃).

Since the dataset (Dº) contains all segments by assumption, �ú
(r̃,“̃) contains all optimal segments with respect

to (r̃,“̃). If a state-action pair (s,a) is in an optimal segment, then by the definition of an optimal segment
Qú

(r̃,“̃)(s,a) = V ú
(r̃,“̃)(s). The set of optimal policies �ú

r̃ for r̃ is all fi such that, for all (s,a), if fi(s,a) > 0,
then Qú

(r̃,“̃)(s,a) = V ú
(r̃,“̃)(s). In short, �ú

(r̃,“̃) determines the set of each state-action pair (s,a) such that
Qú

(r̃,“̃)(s,a)=V ú
(r̃,“̃)(s). This set determines �ú

(r̃,“̃). Therefore �ú
(r̃,“̃) determines �ú

(r̃,“̃), and we will refer to this
determination as the function g.

We now focus on the reward function and discount factor used to generate preferences, (r,“), and on the inferred
reward function and discount factor, (r̃,“̃). Since Pregret(·|r,“)=Pregret(·|r̂,“̂), (r,“) and (r̂,“̂) induce the same
total ordering over segments, and so �ú

(r,“) =�ú
(r̂,“̂). Therefore g(�ú

(r,“))=g(�ú
(r̂,“̂)). Since g(�ú

(r,“))=�ú
(r,“) and

g(�ú
(r̂,“̂))=�ú

(r̂,“̂), �ú
(r,“) =�ú

(r̂,“̂).

3Equations 2 and 5 can be extended to include such noiseless preference models by including the temperature parameter of the
Boltzmann distributions (after converting from their logistic formulations, reversing the derivation in Appendix B.1), where we
assume that setting the temperature to 0 results in a hard maximum. In other words, when the temperature is 0 the preference is
given deterministically to the segment with the higher partial return in Equation 2 or regret in Equation 5.
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The proof above establishes the identifiability of Pregret regardless of whether preferences are generated
noiselessly or stochastically.

3.2 The partial return preference model is not generally identifiable.

In this subsection, we critique the previous standard preference model, the partial return model P�r, by proving
that this model can be unidentifiable in three di�erent contexts.

• Given noiseless preference labeling by P�r in some MDPs, preferences never provide su�cient
information to recover the set of optimal policies.

• In variable-horizon tasks, which include common tasks that terminate upon reaching success or
failure states, reward functions that di�er by a constant can have di�erent sets of optimal policies. Yet
for two such reward functions, the preference probabilities according to partial return will be identical.

• With segment lengths of 1 (|‡| = 1), the discount factor “ does not a�ect the partial return
preference model and therefore will not be recoverable from the preferences it generates. Since di�erent
values of “ can determine di�erent sets of optimal policies, an inability to recover “ is a third type of
unidentifiability.

We now prove in each of these three contexts that the partial return preference model is not identifiable.

3.2.1 Partial return is not identifiable when preferences are noiseless.

Theorem 3.2 (Noiseless P�r is not identifiable). Let P�r be any function such that if �‡1 r̃>�‡2 r̃, P�r(‡1 º
‡2|r̃)=1 and if �‡1 r̃=�‡2 r̃, P�r(‡1 º‡2|r̃)=0.5. There exists an MDP in which P�r is not identifiable.

Below we present two proofs of Theorem 3.2. Each are proofs by counterexample. Though only one proof is
needed, we present two because each counterexample demonstrates a qualitatively di�erent category of how the
partial return preference model can fail to identify the set of optimal policies.
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Figure 3: A class of MDPs in which, if rwin > 0,
the partial return preference model fails the test for
identifiability.

Proof based on stochastic transitions: Assume the follow-
ing class of MDPs, illustrated in Figure 3. The agent always
begins at start state s0. From s0, action asafe always transitions
to ssafe, getting a reward of 0. From s0, action arisk transitions
to swin with probability 0.5, getting a reward of rwin, and tran-
sitions to slose with with probability 0.5, getting a reward of
≠10. In all MDPs in this class, rwin >0. All 3 possible resulting
states (ssafe, swin, and slose) are absorbing states, from which
all further reward is 0.

If rwin Ø 10, arisk is optimal in s0. If rwin Æ 10, asafe

is optimal in s0. Three single-transition segments exist:
(s0,asafe,ssafe), (s0,arisk,swin), and (s0,arisk,slose). By noiseless
P�r, (s0,arisk,swin) º (s0,asafe,ssafe) º (s0,arisk,slose), regard-
less of the value of rwin. In other words, P�r is insensitive to
what the optimal action is from s0 in this class of MDPs.

Now assume MDP M , where rwin = 11. In linear form, the
weight vector for the reward function rM can be expressed as
wrM1

=<≠10,0,11>. Let r̂M have wr̂M =<≠10,0,9>. Both rM and r̂M have the same preferences as above,
meaning that r̂M minimizes loss on an infinite preferences dataset Dº created by P�r, yet it has a di�erent
optimal policy. Therefore, noiseless P�r is not identifiable.

In contrast, note that by noiseless Pregret, the preferences are di�erent than those above for P�r. If rwin >10,
then (s0,arisk,swin) ≥ (s0,arisk,slose) º (s0,asafe,ssafe), If rwin < 10, then (s0,asafe,ssafe) º (s0,arisk,swin) ≥
(s0,arisk,slose). Intuitively, this di�erence comes from Pregret always giving higher preference probability to

7
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optimal actions, even if they result in bad outcomes. Another perspective can be found from the utility theory
of Von Neumann & Morgenstern (1944). Specifically, P�r gives preferences over outcomes, which in the terms
of utility theory can only be used to infer an ordinal utility function. Ordinal utility functions are merely
consistent with the preference ordering over outcomes and do not generally capture preferences over actions
when their outcomes are stochastically determined. The deterministic regret preference model, Pregretd , also has
this weakness in tasks with stochastic transitions. On the other hand, Pregret forms preferences over so-called
lotteries—the distribution over possible outcomes—and can therefore learn a cardinal utility function, which
can explain preferences over risky action. See Russell & Norvig (2020, Ch. 16) for more detail on these concepts
from expected utility theory.
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Figure 4: An MDP (M1) where �ú
r =�ú

r̂ is not guaranteed for the partial
return preference model, failing the test for identifiability with segments
of length 1. The ground-truth reward function is shown to the left, and an
MDP M Õ

1 with an alternative reward function is shown to the right. Under
partial return, both create the same set of preferences despite having di�erent
optimal actions from s0.
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Figure 5: An MDP (M2) where �ú
r =�ú

r̂ is not guaranteed for the partial
return preference model, failing the test for identifiability with segments of
length 2. The ground-truth reward function is shown in the top diagram,
and an MDP M Õ

2 with an alternative reward function is shown in the bottom
diagram. Under partial return, both create the same set of preferences
despite having di�erent optimal actions from s0.

Since the proof above focuses upon stochastic
transitions, we show the lack of identifiabil-
ity for noiseless P�r can be found for quite
di�erent reasons in a deterministic MDP.

Proof based on segments of fixed length:

Consider the MDP M1 in Figure 4 and as-
sume preferences are given over segments
with length 1 (i.e., containing one transi-
tion). The optimal policy for M1 is to move
rightward from s0, whereas optimal behav-
ior for M Õ

1 is to move downward from s0.
In both M1 and M Õ

1, preferences by P�r are
as follows, omitting the action for brevity:
(sa,s0) ≥ (sa,sterm) ≥ (s0,sa) º (s0,sterm).
As in the previous proof, P�r is insensitive to
certain changes in the reward function that
alter the set of optimal policies. Whenever
this characteristic is found, �ú

r = �ú
r̂ is not

guaranteed, failing the test for identifiabil-
ity. Here specifically, the reward function
for M Õ

1 would achieve the minimum possible
cross-entropy loss on an exhaustive prefer-
ence dataset created in M1 with the noiseless
preferences from the partial return prefer-
ence model, despite the optimal policy in M Õ

1
conflicting with the ground-truth optimal
policy.

The logic of this proof can be applied for tra-
jectories of length 2 in the MDP M2 shown
in Figure 5. Together, M1 and M2 suggest a
rule for constructing an MDP where �ú

r =�ú
r̂

is not guaranteed for P�r, failing the iden-
tifiability test for any fixed segment length,
|‡|: set the number of states to the right of
s0 to |‡| (not counting sterm), set the reward
rfail for (s0,sterm) such that rfail < 0, and
set the reward for each other transition to
c+rfail/(|‡|+1), where c>0. Given an MDP constructed this way, an alternative reward function that results
in the same preferences under P�r yet has a di�erent optimal action from s0 can then be constructed by changing
all reward other than rfail to c+rfail/(|‡|+1), where c now is constrained to c<0 and c◊|‡|<rfail. Note that
the set of preferences for each of these MDPs is the same even when including segments that reach terminal
state before |‡| transitions (which can still be considered to be of length |‡| if the terminal state is an absorbing
state from which reward is 0).

8
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Discussion of preference noise and identifiability Of the two proofs by example for Theorem 3.2, the
first proof’s example reveals issues when learning reward functions with stochastic transitions with either
P�r or deterministic Pregretd . These issues directly correspond to the need for preferences over distributions
over outcomes (i.e., lotteries) to construct a cardinal utility function (see Russell & Norvig (2020, Ch. 16)).
Correspondingly, when Skalse et al. (2022) consider reward identifiability with the partial return preference model,
they change the learning problem such that a training sample consists of preferences between distributions over
trajectories. Intuitively, Theorem 3.2 says that P�r is not identifiable without the distribution over preferences
providing information about the proportions of rewards with respect to each other. In contrast, to be identifiable,
the regret preference model does not require this preference error (though it can presumably benefit from it in
certain contexts).

3.2.2 Partial return is not identifiable in variable-horizon tasks.

Many common tasks have the characteristic of having at least one state from which trajectories of di�erent

lengths are possible, which we refer to as being a variable-horizon task. Tasks that terminate upon completing
a goal typically have this characteristic. In this context, we show another way that the partial return preference
model is not identifiable, a limitation that has arisen dramatically in our own experiments and is not limited to
noiseless preferences: adding a constant to a reward function will often change the set of optimal policies, but it

will not change the probability of preference for any two segments. Therefore, those preferences will not contain

information to recover the set of optimal policies.

We now explain why such a constant shift will not change the probability of preference based upon partial return.
Consider a constant value c and two reward functions, r1 and r2, where r1(st,at,st+1)≠r2(st,at,st+1)=c for all
transitions (st,at,st+1). The partial return of any segment of length |‡| will be c◊|‡| higher for r1 than for r2
(assuming an undiscounted task, “ =1). In the partial return preference model (Equation 2), this addition of
c◊|‡| to each segment’s partial return cancels out, having no e�ect on the di�erent in the segments’ partial
returns and therefore also having no e�ect on the preference probabilities. Consequently, adding c to a reward
function’s output will also not a�ect the distribution over preference datasets that the partial return preference
model would create via sampling from its preference probabilities.

If, for each state in an MDP, all possible trajectories from that state have the same length, then adding a
constant c to the output of the reward function does not a�ect the set of optimal policies. Specifically, the set of
optimal policies is preserved because the return for any trajectory from a state is changed by c◊|· |, where |· | is
the unchanging trajectory length from that state, so the ranking of trajectories by their returns is unchanged
and also the expected return of a policy from that state is unchanged. Continuing tasks and fixed-horizon tasks
have this property.

However, if trajectories from a state can terminate after di�erent numbers of transitions, then two reward
functions that di�er by a constant can have di�erent sets of optimal policies. Episodic tasks are often vulnerable
to this issue. To illustrate, consider the task in Figure 1, a simple grid world task that penalizes the agent with
≠1 reward for each step it takes to reach the goal. If this reward per step is shifted to +1 (or any positive value),
then any optimal policy will avoid the goal, flipping the objective of the task from that of reaching the goal. So,
for variable-horizon tasks, P�r is not generally identifiable.

Though identifiability focuses on what information is encoded in preferences, this issue has practical consequences
during learning from preferences over segments of length 1: for a preferences dataset, all reward functions that
di�er by a constant assign the same likelihood to the dataset, making the choice between such reward functions
arbitrary and the learning problem underspecified. Some past authors have acknowledged this insensitivity to a
shift (Christiano et al., 2017; Lee et al., 2021a; Ouyang et al., 2022; Hejna & Sadigh, 2023), and the common
practice of forcing all tasks to have a fixed horizon (Christiano et al., 2017; Gleave et al., 2022) may be partially
attributable to P�r’s lack of identifiability in variable-horizon tasks, leading to its low performance in such
tasks. In Appendix F.2.2, we propose a stopgap solution to this problem and also observe that in episodic grid
worlds that the partial return preference model performs catastrophically poorly without this solution, both
with synthetic preferences and human preferences.

9
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The regret preference model is appropriately a�ected by constant reward shifts. Here we give
intuition for why adding a constant c to the output of a reward function does not threaten the identifiability of
the regret preference model, as established in Theorem 3.1. As stated above, adding c to reward can change the
set of optimal policies. Any such change in what actions are optimal would likewise change the ordering of
segments by regret, so the likelihood of a preferences dataset according to the regret preference model would be
a�ected by such a constant shift in the learned reward function (as it should be).

3.2.3 Partial return is not identifiable for segment lengths of 1.

Arguably the most impactful application to date of learning reward functions from human preferences is to
fine-tune large language models. For the most notable of these applications, the segment length |‡|=1 (Ziegler
et al., 2019; OpenAI, 2022; Glaese et al., 2022; Ouyang et al., 2022; Bai et al., 2022).

Changing “ often changes the set of optimal policies, yet when |‡|=1, changing the discount factor does not
change preference probabilities based upon partial return preference model. We elaborate below.

Here we make an exception to this article’s default assumption that all tasks are undiscounted. As we describe in
Appendix B.2, the discounted partial return of a segment is

q|‡|≠1
t=0 “̃tr̃‡

t . We follow the standard convention that
00 =1. When |‡|=1, the partial return simplifies to the immediate reward, r̃‡

0 . Consequently the partial return
preference model is una�ected by the discount factor when |‡|=1. To remove this source of unidentifiability,
the preferences dataset would need to be presented to the learning algorithm with a corresponding discount
factor. Past work on identifiability in this setting (Skalse et al., 2022) has assumed that the discount factor is
given and not discussed further.

As with the other identifiability issues demonstrated in this subsection, this issue has practical consequences
during learning from preferences. When |‡| = 1, the choice of “̂ is arbitrary, making the learning problem
underspecified.

The regret preference model is identifiable even when the discount factor is unknown. In contrast,
the discounted regret of a segment—presented in Appendix B.2—does include the discount factor in its
formulation, regardless of segment length. Therefore, the discount factor used during preference generation
does impact what reward function is learned.

4 Creating a human-labeled preference dataset

To empirically investigate the consequences of each preference model when learning reward from human

preferences, we collected a preference dataset labeled by human subjects via Amazon Mechanical Turk. This
data collection was IRB-approved. Appendix D adds detail to the content below.

4.1 The general delivery domain

The delivery domain consists of a grid of cells, each of a specific road surface type. The delivery agent’s state is
its location. The agent’s action space is moving one cell in one of the four cardinal directions. The episode
can terminate either at the destination for +50 reward or in failure at a sheep for ≠50 reward. The reward
for a non-terminal transition is the sum of any reward components. Cells with a white road surface have a ≠1
reward component, and cells with brick surface have a ≠2 component. Additionally, each cell may contain a
coin (+1) or a roadblock (≠1). Coins do not disappear and at best cancel out the road surface cost. Actions
that would move the agent into a house or beyond the grid’s perimeter result in no motion and receive reward
that includes the current cell’s surface reward component but not any coin or roadblock components. In this
work, the start state distribution, D0, is always uniformly random over non-terminal states. This domain was
designed to permit subjects to easily identify bad behavior yet also to be di�cult for them to determine optimal

behavior from most states, which is representative of many common tasks. Note that this intended di�culty
forces some violation of the regret preference model’s assumption that humans always prefer optimal segments
over suboptimal ones, therefore testing its performance in non-ideal conditions.

10



Under review as submission to TMLR

4.1.1 The delivery task

Figure 6: The delivery task used to gather human
preferences. The yellow van is the agent and the
red inverted teardrop is the destination.

We chose one instantiation of the delivery domain for gathering
our dataset of human preferences. This specific MDP has a 10◊10
grid. From every state, the highest return possible involves reach-
ing the goal, rather than hitting a sheep or perpetually avoiding
termination. Figure 6 shows this task.

4.2 The subject interface and survey

This subsection describes the three main stages of each data col-
lection session. A video showing the full experimental protocol can
be seen at bit.ly/humanprefs.

Teaching subjects about the task Subjects first view in-
structions describing the general domain. To avoid the jargon of
“return” and “reward,” these terms are mapped to equivalent values
in US dollars, and the instructions describe the goal of the task
as maximizing the delivery vehicle’s financial outcome, where the
reward components are specific financial impacts. This information is shared amongst interspersed interactive
episodes, in which the subject controls the agent in domain maps that are each designed to teach one or two
concepts. Our intention during this stage is to inform the later preferences of the subject by teaching them
about the domain’s dynamics and its reward function, as well as to develop the subject’s sense of how desirable
various behaviors are. At the end of this stage, the subject controls the agent for two episodes in the specific
delivery task shown in Figure 6.

Preference elicitation After each subject is trained to understand the task, they indicate their preferences
between 40–50 randomly-ordered pairs of segments, using the interface shown in Figure 7. The subjects select
a preference, no preference (“same”), or “can’t tell”. In this work, we exclude responses labeled “can’t tell”,
though one might alternatively try to extract information from these responses.

Subjects’ task comprehension Subjects then answered questions testing their understanding of the task,
and we removed their data if they scored poorly. We also removed a subject’s data if they preferred colliding
the vehicle into a sheep over not doing so, which we interpreted as poor task understanding or inattentiveness.
This filtered dataset contains 1812 preferences from 50 subjects.

Figure 7: Interface shown to subjects during preference elicitation. The left trajectory shows the yellow van doubling back on
itself before hitting a sheep. The right trajectory shows the van hitting a road block.
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Figure 8: Proportions at which subjects preferred each segment in a pair, plotted by the di�erence in the segments’ changes in
state values (x-axis) and partial returns (y-axis). The diagonal line shows points of preference indi�erence for Pregret. Points of
indi�erence for P� lie on the x-axis. The shaded gray area indicates where the partial return and regret models disagree, each
giving a di�erent segment a preference probability greater than 0.5. Each circle’s area is proportional to the number of samples it
describes. A visual test of which preference model better fits the data is as follows: if the human subjects followed the partial
return preference model, the color gradient would be orthogonal to the x-axis. If they followed the regret preference model, the
color gradient would be orthogonal to the diagonal line, since regret on this plot is x+y. Visual inspection of the color gradient
reveals the latter color gradient, suggesting they more closely followed the regret preference model.

4.3 Selection of segment pairs for labeling

We collected human preferences in two stages, each with di�erent methods for selecting which segment pairs to
present for labeling. The sole purpose of collecting this second-stage data was to improve the reward-learning
performance of the partial return model, P�r. Without second-stage data, P�r compared even worse to Pregret

than in the results described in Section 6, performing worse than a uniformly random policy (see Appendix F.3.3).
Both stages’ data are combined and used as a single dataset. These methods and their justification are described
in Appendix D.3.

5 Descriptive results

This section considers how well di�erent preference models explain our dataset of human preferences.

5.1 Correlations between preferences and segment statistics

Recall that with deterministic transitions, the regret of a segment has 3 components: regretd(‡|r̃)=V ú
r̃ (s‡

0 )≠
(�‡ r̃+V ú

r̃ (s‡
|‡|)), one of which is partial return, �‡ r̃. We hypothesize that the other two terms—the values

of segments’ start and end states, which are included in Pregret but not in P�—a�ect human preferences,
independent of partial return. If this hypothesis is true, then we have more confidence that preference models
that include start and end state values will be more e�ective during inference of the reward functions.

The dataset of preferences is visualized in Figure 8. To simplify analysis, we combine the two parts of regretd(‡|r)
that are additional to �‡ r̃ and introduce the following shorthand: �‡Vr̃ ,V ú

r̃ (s‡
|‡|)≠V ú

r̃ (s‡
0 ).

Note that with an algebraic manipulation (see Appendix E.1), regretd(‡2|r̃) ≠ regretd(‡1|r̃) = (�‡1Vr̃ ≠
�‡2Vr̃)+(�‡1 r̃≠�‡2 r̃). Therefore, on the diagonal line in Figure 8, regretd(‡2|r)=regretd(‡1|r), making the
Pregretd preference model indi�erent. This plot shows how �‡Vr has influence independent of partial return by
focusing only on points at a chosen y-axis value; if the colors along the corresponding horizontal line reddens as
the x-axis value increases, then �‡Vr appears to have independent influence.

To statistically test for independent influence of �‡Vr on preferences, we consider subsets of data where
�‡1r≠�‡2r is constant. For �‡1r≠�‡2r =≠1 and �‡1r≠�‡2r =≠2, the only values with more than 30 samples
that also include informative samples with both negative and positive values of regret(‡1|r)≠regret(‡2|r), the
Spearman’s rank correlations between �‡Vr and the preferences are significant (r >=0.3, p<0.0001). This
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result indicates that �‡Vr influences human preferences independent of partial return, validating our hypothesis
that humans form preferences based on information about segments’ start states and end states, not only partial
returns.

5.2 Likelihood of human preferences under di�erent preference models

Preference model Loss
P (·)=0.5 (uninformed) 0.69
P�r (partial return) 0.62
Pregret 0.57

Table 1: Mean cross-entropy test loss
over 10-fold cross validation (n=1812)
from predicting human preferences.
Lower is better.

To examine how well each preference model predicts human preferences,
we calculate the cross-entropy loss for each model (Equation 1)—i.e., the
negative log likelihood—of the preferences in our dataset. Scaling reward
by a constant factor does not a�ect the set of optimal policies. Therefore,
throughout this work we ensure that our analyses of preference models are
insensitive to reward scaling. To do so for this specific analysis, we conduct
10-fold cross validation to learn a reward scaling factor for each of Pregret

and P�r. Table 1 shows that the loss of Pregret is lower than that of P�r,
indicating that Pregret is more reflective of how people actually express
preferences.

6 Results from learning reward functions

Evaluating a learned reward function

Ground 
truth 

Learned

evaluated by

Preferences dataset

Figure 9: The general design pattern used for learning a reward
function from preferences and evaluating that reward function. The
generic gridworld shown is for illustrative purposes only.

Analysis of a preference model’s predictions of hu-
man preferences is informative, but such predictions
are a means to the ends of learning human-aligned
reward functions and policies. We now examine
each preference model’s performance in these terms.
In all cases, we learn a reward function r̂ according
to Equation 1 and apply value iteration (Sutton &
Barto, 2018) to find the approximately optimal Qú

r̂
function. For this Qú

r̂ , we then evaluate the mean
return of the maximum-entropy optimal policy—
which chooses uniformly randomly among all optimal actions—with respect to the ground-truth reward function
r, over D0. This methodology is illustrated in Figure 9.

To compare performance across di�erent MDPs, the mean return of a policy fi, V fi
r , is normalized to (V fi

r ≠
V U

r )/V ú
r , where V ú

r is the optimal expected return and V U
r is the expected return of the uniformly random

policy (both given D0). Normalized mean return above 0 is better than V U
r . Optimal policies have a normalized

mean return of 1, and we consider above 0.9 to be near optimal.

6.1 An algorithm to learn reward functions with regret(‡|r̂)

Algorithm 1 is a general algorithm for learning a linear reward function according to Pregret. This regret-specific
algorithm only changes the regret-based algorithm from Section 2.2 by replacing Equation 5 with a tractable
approximation of regret, avoiding expensive repeated evaluation of V ú

r̂ (·) and Qú
r̂(·,·) to compute Pregret(·|r̂)

during reward learning. Specifically, successor features for a set of policies are used to approximate the optimal
state values and state-action values for any reward function. This algorithm straightforwardly applies general
policy iteration (GPI) with successor features to approximate optimal state and action values for arbitrary
reward functions, as described by Barreto et al. (2016).

Approximating Pregret with successor features Following the notation of Barreto et al., assume the
ground-truth reward is linear with respect to a feature vector extracted by „ : S ◊A◊S æRd and a weight
vector wr œRd: r(s,a,sÕ)=„(s,a,sÕ)€wr. During learning, wr̂ similarly expresses r̂ as r̂(s,a,sÕ)=„(s,a,sÕ)€wr̂.

Given a policy fi, the successor features for (s,a) are the expectation of discounted reward features from
that state-action pair when following fi: Âfi

Q
(s,a) = Efi[

qŒ
t=0 “t„(st, at, st+1)|s0 = s,a0 = a]. Therefore,

Qfi
r̂ (s,a)=Âfi

Q
(s,a)€wr̂. Additionally, state-based successor features can be calculated from the Âfi

Q
above as

Âfi
V

(s)=
q

aœAfi(a|s)Âfi
Q

(s,a), making V fi
r̂ (s)=Âfi

V
(s)€wr̂.
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Algorithm 1 Linear reward learning with regret preference model (Pregret), using successor features
1: Input: a set of policies
2: �Ω?
3: for each reward function policy fiSF in the input set do

4: estimate ÂfiSF
Q

and ÂfiSF
V

(if not estimated already during step 4)
5: add ÂfiSF

Q
to �Q

6: add ÂfiSF
V

to �V

7: end for

8: repeat

9: optimize wr̂ by loss of Eqn. 1, calculating P̃regret(‡1 º‡2|r̂) via Eqn. 6, using �Q and �V

10: until stopping criteria are met

11: return wr̂

Given a set �Q of state-action successor feature functions and a set �V of state successor feature func-
tions for various policies and given a reward function via wr̂, Qfiú

r̂ (s,a) Ø maxÂQ œ�
Q

[Âfi
Q

(s,a)€wr̂] and
V fiú

r̂ (s) Ø maxÂV œ�
V

[Âfi
V

(s)€wr̂] (Barreto et al., 2016), so we use these two maximizations as approxi-
mations of Qú

r̂(s,a) and V ú
r̂ (s), respectively. In practice, to enable gradient-based optimization with cur-

rent tools, the maximization in this expression is replaced with the softmax-weighted average, making
the loss function linear. Focusing first on the approximation of V ú

r̂ (s), for each ÂV œ �V , a softmax
weight is calculated for Âfi

V
(s): softmax�

V
(Âfi

V
(s)€wr̂) , [(Âfi

V
(s)€wr̂)1/T

]/[(
q

ÂÕ
V

œ�
V

ÂÕfi
V

(s)€wr̂)1/T
],

where temperature T is a constant hyperparameter. The resulting approximation of V ú
r̂ (s) is there-

fore defined as Ṽ ú
r̂ (s) , q

ÂV œ�
V

softmax�
V

(Âfi
V

(s)€wr̂)[Âfi
V

(s)€wr̂]. Similarly, to approximate
Qú

r̂(s, a), softmax�
Q

(Âfi
Q

(s, a)€wr̂) , [(Âfi
Q

(s, a)€wr̂)1/T
]/[(

q
ÂÕ

Q
œ� ÂÕfi

Q
(s, a)€wr̂)1/T

] and Q̃ú
r̂(s, a) ,

q
ÂQ œ�

Q
softmax�

Q
(Âfi

Q
(s,a)€wr̂)[Âfi

Q
(s,a)€wr̂]. Consequently, from Eqns. 4 and 5, the corresponding

approximation P̃regret of the regret preference model is:

P̃regret(‡1 º‡2|r̂)= logistic

3q|‡2|-1
t=0

Ë
Ṽ ú

r̂ (s‡2
t )≠Q̃ú

r̂(s‡2
t ,a‡2

t )
È
≠

q|‡1|-1
t=0

Ë
Ṽ ú

r̂ (s‡1
t )≠Q̃ú

r̂(s‡1
t ,a‡1

t )
È4

(6)

The algorithm In Algorithm 1, lines 8–11 describe the supervised-learning optimization using the
approximation P̃regret, and the prior lines create �Q and �V . Specifically, given a set of input policies (line 1),
for each such policy fiSF , successor feature functions �fiSF

Q
and �fiSF

V
are estimated (line 4), which by default

would be performed by a minor extension of a standard policy evaluation algorithm as detailed by Barreto et al.
(2016). Note that the reward function that is ultimately learned is not restricted to be in the input set of reward
functions, which is used only to create an approximation of regret.

One potential source of the input set of policies is a set of reward functions, where each input policy is the result
of policy improvement on one reward function. We follow this method in our experiments, randomly generating
reward functions and then estimating an optimal policy for each reward function. Specifically, for each reward
function, we seek the the maximum entropy optimal policy, which resolves ties among optimal actions in a state
via a uniform distribution over those optimal actions.

Further details of our instantiation of Algorithm 1 for the delivery domain can be found in Appendix F.1, along
with preliminary guidance for choosing an input set of policies (Appendix F.1.1) and for extending it to reward
functions that might be non-linear (Appendix F.1.2).

6.2 Results from synthetic preferences

Before considering human preferences, we first ask how each preference model performs when it correctly
describes how the preferences in its training set were generated. In other words, we investigate empirically how
well the preference model could perform if humans perfectly adhered to it. Recall that the ground-truth reward
function, r, is used to create these preferences but is inaccessible to the reward-learning algorithms.
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Figure 10: Performance comparison over 100 randomly generated deterministic MDPs when each preference model creates its
own training dataset and learns from it. Performance with the regret preference model is consistently better, regardless of training
set size or whether preferences are generated stochastically. The bottom-left and bottom-right plots are created from the top
plot. The bottom-left plot shows the ratio of between each preference model’s success rate. The bottom-right plot shows the ratio
between each preference model’s rate of failure to reach near-optimal performance. For easier visual comparison, the ratios of each
plot are chosen such that higher values indicate better performance by the regret preference model.

For these evaluations, either a stochastic or noiseless preference model acts a preference generator to create a
preference dataset. Then the stochastic version of the same model is used for reward learning, which prevents
the introduction of a hyperparameter. Note that the stochastic preference model can approach determinism
through scaling the reward function, so learning a reward function with the stochastic preference model from
deterministically generated preferences does not remove our ability to fit a reward function to those preferences.
For the noiseless case, the deterministic preference generator compares a segment pair’s �‡r values for P�r

or their regret(‡|r) values for Pregret. Note that through reward scaling the preference generators approach
determinism in the limit, so this noiseless analysis examines minimal-entropy versions of the two preference-
generating models. (The opposite extreme, uniformly random preferences, would remove all information from
preferences and therefore is not examined.) In the stochastic case, for each preference model, each segment pair
is labeled by sampling from that preference generator’s output distribution (Eqs 2 or 5), using the unscaled
ground-truth reward function.

We created 100 deterministic MDPs that instantiate variants of our delivery domain (see Section 4.1). To create
each MDP, we sampled from sets of possible widths, heights, and reward component values, and the resultant
grid cells were randomly populated with a destination, objects, and road surface types (see Appendix F.2
for details). Each segment in the preference datasets for each MDP was generated by choosing a start state
and three actions, all uniformly randomly. For a set number of preferences, each method had the same set of
segment pairs in its preference dataset. Figure 10 shows the percentage of MDPs in which each preference
model results in near-optimal performance. The regret preference model outperforms the partial return model
at every dataset size, both with and without noise. By a Wilcoxon paired signed-rank test on normalized mean
returns, p<0.05 for 86% of these comparisons and p<0.01 for 57% of them, as reported in Appendix F.2.

Further analyses can be found in Appendix F.2: with stochastic transitions, with di�erent segment lengths,
without segments that terminate before their final transition, and with additional novel preference models.
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6.3 Results from human preferences

We now consider the reward-learning performance of each preference model on preferences generated by humans
for our specific delivery task. We randomly assign human preferences from our gathered dataset to di�erent
numbers of same-sized partitions, resulting in di�erent training set sizes, and test each preference model on each
partition. Figure 11 shows the results. With smaller training sets (20–100 partitions), the regret preference
model results in near-optimal performance more often. With larger training sets (1–10 partitions), both
preference models always reach near-optimal return, but the mean return from the regret preference model is
higher for all of these partitions except for only 3 partitions in the 10-partition test. Applying a Wilcoxon paired
signed-rank test on normalized mean return to each group with 5 or more partitions, p<0.05 for all numbers
of partitions except 100 and p < 0.01 for 20 and 50 partitions. To summarize, we find that both the regret
and the partial return preference models achieve near-optimal performance when the dataset is su�ciently
large—although the performance of the regret preference model is nonetheless almost always higher—and we
also find that regret achieves near-optimal performance more often with smaller datasets.

Figure 11: Performance comparison over various amounts of
human preferences. Each partition has the number of preferences
shown or one less.

Using the human preferences dataset, Appendix F.3
contains further analyses: learning without segments
that terminate before their final transition, learning
via additional novel preference models, and testing
the learned reward functions on other MDPs with the
same ground-truth reward function.

7 Conclusion

Over numerous evaluations with human preferences,
our proposed regret preference model (Pregret) shows
improvements summarized below over the previous
partial return preference model (P�r). When each
preference model generates the preferences for its own
infinite and exhaustive training set, we prove that
Pregret identifies the set of optimal policies, whereas
P�r is not guaranteed to do so in multiple common
contexts. With finite training data of synthetic preferences, Pregret also empirically results in learned policies
that tend to outperform those resulting from P�r. This superior performance of Pregret is also seen with
human preferences. In summary, our analyses suggest that regret preference models are more e�ective both
descriptively with respect to human preferences and also normatively, as the model we want humans to follow if
we had the choice.

Independent of Pregret, this paper also reveals that segments’ changes in state values provide information about
human preferences that is not fully provided by partial return. More generally, we show that the choice of
preference model impacts the performance of learned reward functions.

This study motivates several new directions for research. Future work could address any of the limitations
detailed in Appendix A.1. Specifically, future work could further test the general superiority of Pregret or apply
it to deep learning settings. Additionally, prescriptive methods could be developed via the subject interface or
elsewhere to nudge humans to conform more to Pregret or to other normatively appealing preference models.
Lastly, this work provided conclusive evidence that the choice of preference model is impactful. Subsequent
e�orts could seek preference models that are even more e�ective with preferences from actual humans.
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