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Abstract

The integration of differential equations with neural networks has created powerful
tools for modeling complex dynamics effectively across diverse machine learning
applications. While standard integer-order neural ordinary differential equations
(ODEs) have shown considerable success, they are limited in their capacity to
model systems with memory effects and historical dependencies. Fractional cal-
culus offers a mathematical framework capable of addressing this limitation, yet
most current fractional neural networks use static memory weightings that cannot
adapt to input-specific contextual requirements. This paper proposes a generalized
neural Fractional Attention Differential Equation (FADE), which combines the
memory-retention capabilities of fractional calculus with contextual learnable at-
tention mechanisms. Our approach replaces fixed kernel functions in fractional
operators with neural attention kernels that adaptively weight historical states based
on their contextual relevance to current predictions. This allows our framework to
selectively emphasize important temporal dependencies while filtering less relevant
historical information. Our theoretical analysis establishes solution boundedness,
problem well-posedness, and numerical equation solver convergence properties of
the proposed model. Furthermore, through extensive evaluation on tasks such as
fluid flow, graph learning problems and spatio-temporal traffic flow forecasting,
we demonstrate that our adaptive attention-based fractional framework outper-
forms both integer-order neural ODE models and existing fractional approaches.
The results confirm that our framework provides superior modeling capacity for
complex dynamics with varying temporal dependencies. The code is available at
https://github.com/cuiwjTech/NeurIPS2025_FADE.

1 Introduction

Neural differential equations have emerged as powerful tools for modeling continuous-time dynamics
in various machine learning tasks. By integrating neural networks with differential equations, these
models can effectively learn the underlying dynamics of complex systems directly from data. The most
representative model in this category is the integer-order neural Ordinary Differential Equation (ODE)
[1–3], which formulates the evolution of hidden states as an integer-order ODE system. This approach
has demonstrated success in various machine learning tasks, including time series forecasting [4–7],
graph representation learning [8–10], physics modeling [11–13], adversarial robustness [14–16], and
generative modeling [17, 18].

Despite their success, traditional neural ODEs based on integer-order differential equations exhibit
inherent limitations in modeling long-range dependencies and memory effects. These stem from the
Markovian nature of ODEs, where the future state depends solely on the current state rather than on
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the trajectory’s history [19]. Such locality constrains the model’s ability to represent complex temporal
patterns essential in many real-world tasks. To address these limitations, researchers have explored
fractional-order differential equations (FDEs) as an alternative general mathematical framework.
FDEs extend the classical derivative operator d

dt to non-integer orders α, denoted dα

dtα , thereby
introducing a non-local memory term that naturally integrates past information. Thanks to this non-
local property, FDE-based models can capture long-term dependencies, making them well-suited
for systems with memory or long-range interactions. They have found applications across diverse
fields, including anomalous diffusion processes [20], viscoelastic materials [21], electromagnetic
wave propagation [22], and financial time series analysis [23]. In physics-informed machine learning,
fractional physics-informed neural networks (fPINNs) [24] enforce underlying physical laws via
FDEs, spawning further developments [25, 26]. Furthermore, recent works have incorporated FDEs
into neural network architectures, giving rise to fractional neural ODE models [19, 27–30]. For
instance, [19, 27] propose fractional graph neural ODE models with fractional diffusion and oscillator
mechanisms to propagate information over graphs, demonstrating improved task performance and
increased robustness compared to their integer-order counterparts [8, 9]. The work by [31] on
generative fractional diffusion models has indicated that the fractional method can achieve greater
pixel-level variation and overall image fidelity.

However, most existing fractional operators and derived neural models employ fixed fractional
kernels that assign predefined weights to historical states, thereby limiting adaptability to diverse
data patterns. For example, [19, 27, 29] use the Caputo fractional operator Dα with a fixed kernel
(t − τ)−α (where α is the fractional derivative order), which applies a non-adaptive weighting to
the trajectory. The main challenge in developing effective fractional neural models lies in designing
appropriate kernel functions that can adapt to the complex dynamics of different systems. Fixed
kernels with constant weights might not be optimal for capturing the varying importance of historical
states across different features and time points. Several works have adopted more flexible frameworks.
For example, the work [32] proposes the generalized ψ-Caputo fractional derivative with the kernel in
the form of (ψ(t)− ψ(τ))−α, where ψ(·) is an increasing continuously differentiable function. [33]
proposes a neural variable-order FDE network using the variable-order Caputo fractional derivative
D
α(t,x(τ))
t . This approach assumes a kernel of the form (t − τ)−α(t,x(τ)), where the derivative

order α(t,x(τ)) depends on hidden features x(τ), capturing complex feature-updating dynamics
with enhanced flexibility. However, those kernel functions still have limited capacity and does not
account for correlations between historical states. The work [7] combines the modeling capabilities of
integer-order neural ODEs with an attention mechanism applied to temporal partitions, capturing the
dynamic changes of continuous-time systems. This is distinct from our research, wherein we focus
on incorporating fractional operators for updating hidden features, modeled as a memory-inclusive
dynamical process.

To overcome the limitations of fixed kernels, this paper introduces the generalized fractional attention
differential equation (FADE). FADE generalizes fractional neural ODEs by incorporating learnable
attention mechanisms [34, 35] directly into the fractional operator’s kernel function. Instead of relying
on predefined, static/uncorrelated weightings for historical states, FADE employs neural attention
kernels that adaptively assign weights based on the contextual relevance of past information to the
current system dynamics. This allows the model to learn feature-dependent representations of history,
selectively emphasizing salient temporal dependencies while filtering less relevant information,
leading to more expressive and flexible modeling.

Main contributions. This paper introduces a new continuous neural network framework based on
generalized attention-based fractional operator kernels. Our key contributions include:

• We propose FADE, a novel fractional neural equation framework that integrates FDEs with
learnable neural attention kernels. This enables adaptive, context-aware memory mechanisms that
can selectively emphasize relevant historical dependencies while filtering less important temporal
information, advancing beyond existing approaches with static/uncorrelated memory weightings.

• We provide rigorous theoretical foundations for FADE by analyzing essential kernel properties,
including boundedness under both singular and nonsingular cases. We establish the well-posedness
of the resulting neural integral equations using Banach fixed-point arguments, ensuring solution
uniqueness under appropriate conditions. Additionally, we present a convergence analysis for the
numerical discretization solver, ensuring the framework’s practical implementability.
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• We conduct extensive experiments on fluid flow, graph learning problems, spatio-temporal traffic
forecasting, urban population mobility and biological neural spike trains tasks, demonstrating
that FADE consistently outperforms integer-order neural ODE models and existing fractional
approaches, confirming its superior capacity for modeling complex dynamics.

Related Work. Our work mainly focuses on Neural Differential Equations and neural network
attention mechanisms. The related work is presented below. For a detailed discussion, please refer to
Appendix A.

• Neural Differential Equations Neural Differential Equations (NDEs) unify neural networks and
differential equations for modeling continuous dynamics. Neural ODEs (NODEs) [2] and their
variants [36, 37] learn hidden state evolution by parameterizing ODEs. Yet, these use integer-order
calculus, limiting their ability to capture memory effects and historical dependencies. To address
this, FDE-based models [19, 33] have consequently been developed and widely applied. FROND
[19] employs FDEs in graph learning, alleviating oversmoothing. Subsequently, NvoFDE [33] and
DRAGON [38] were introduced to capture the distinct memory characteristics inherent in FDEs,
but still rely on fixed kernels with static historical weights. Our work advances this by designing
adaptive kernels within the FDE framework for richer spatio-temporal modeling.

• Attention Mechanisms in Neural Networks Attention mechanisms are central to modern deep
learning, allowing models to focus on informative inputs. The Transformer [34] introduced self-
attention, enabling efficient modeling of long-range dependencies across domains. In continuous-
time models, attention mechanisms have been integrated with NDEs to enhance their expressive-
ness, allowing the model to selectively focus on relevant parts of the input sequence [39]. Attention
mechanisms have also been applied to graph neural networks, resulting in Graph Attention Net-
works (GATs) [40]. However, the integration of attention with fractional-order models remains
largely underexplored. Attention-based kernels in fractional NDEs offer a promising direction
toward more flexible and adaptive modeling.

2 Preliminaries and Motivations

A distinctive strength of fractional calculus lies in its ability to model systems with non-local
interactions, where the future state of a system depends significantly on its historical trajectory
through specialized kernel functions. This section provides a concise overview of fractional calculus
and illustrates its relationship to traditional calculus. Additionally, we present a brief introduction to
both integer-order and fractional-order neural ODEs as foundational concepts for our work.

2.1 Fractional Calculus

We begin with a review of traditional calculus before introducing classical fractional-order integrals
and derivatives. Additionally, we present the recently developed generalized fractional derivative for-
mulation that incorporates a supplementary function ψ(·) within the kernel. For a more comprehensive
exploration of fractional calculus theory, please see Appendix B.

2.1.1 Traditional Calculus

Consider an d-dimensional function x(t) ∈ Rd with respect to (w.r.t.) time t. The traditional first-order
derivative, which quantifies the instantaneous rate of change, is defined as:

dx(t)

dt
:= lim

∆t→0

x(t+∆t)− x(t)

∆t
. (1)

Let J denote the classical integration operator over an interval [a, b], defined as Jx(t) :=
∫ t
a
x(τ) dτ .

For any positive integer m ∈ N+, we define the iterated integral operator Jm by J1 := J and
Jm := JJm−1 for m ≥ 2. Equivalently, applying integration by parts yields [41][Lemma 1.1.]:

Jmx(t) =
1

(n− 1)!

∫ t

a

(t− τ)m−1x(τ) dτ with m ∈ N+. (2)

2.1.2 Fractional Operators

The concepts of fractional-order integrals and derivatives generalize their integer-order counterparts.
The commonly used Riemann-Liouville fractional integral [41], denoted by RLJαa+ for a positive real
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order α ∈ R+, is defined as

RLJαa+x(t) :=
1

Γ(α)

∫ t

a

(t− τ)α−1x(τ) dτ, (3)

where Γ(α) is the gamma function. Unlike the integer-order m in traditional integrals, the order α
can take any positive real value.

The literature offers various definitions for fractional integrals and derivatives, e.g., Riemann-
Liouville, Hadamard, Erdélyi-Kober, and Caputo [42], which differ in how they weight historical
trajectories. We mainly consider the Caputo fractional derivative because it preserves the same initial
conditions as traditional integer-order differential equations. Throughout this work, we focus on
the left-sided fractional derivative; the corresponding results for the right-sided derivative can be
obtained analogously with appropriate modifications. We consider the case where the fractional order
α ∈ (0, 1], and the formulation for any α > 0 is presented in Appendix B.
Definition 1 (Classic Caputo Fractional Derivative). The Caputo fractional derivative of order
α ∈ (0, 1] for a function x(t) over an interval [a, b] is defined as follows [41]:

CDα
a+x(t) :=

1

Γ(1− α)

∫ t

a

(t− τ)−αx′(τ) dτ, (4)

where x′(τ) is the first-order derivative of x(τ).
Remark 1. When α = 1, the Caputo fractional derivative CDα

a+ coincides with the standard first-
order derivative d

dt (see [41] (Theorem 7.1)). Therefore, (4) generalizes (1). It is evident from (4)
that the fractional derivative incorporates the historical states of the function x(t) via the stationary
power-law kernel (t− τ)−α, highlighting its memory-dependent nature. In contrast, the integer-order
derivative only represents the local rate of change of the function.
Definition 2 (Variable-Order Caputo Fractional Derivative). When the fractional order α is allowed
to vary with time t, the generalized variable-order Caputo fractional derivative of x(t) is defined as:

CD
α(t)
a+ x(t) :=

1

Γ(1− α(t))

∫ t

a

(t− τ)−α(t)x′(τ) dτ, 0 < α(t) ≤ 1. (5)

Remark 2. Compared to the classic Caputo fractional derivative (4), the variable-order derivative
(5) employs a non-stationary power-law kernel. This allows it to dynamically adjust its memory
structure, enabling the characterization of more complex processes than (4) [43, 44]. In more general
settings, α(t) can be extended to depend on other parameters, e.g., α(t,x(t)).
Definition 3 (ψ-Caputo Fractional Derivative). Let ψ ∈ C1([a, b]) be a continuously differentiable
scalar function such that ψ(t) is increasing on [a, b]. The ψ-Caputo fractional derivative of x(t) of
order α ∈ (0, 1] is defined by [32]:

CDα,ψ
a+ x(t) :=

1

Γ(1− α)

∫ t

a

(ψ(t)− ψ(τ))−αx′(τ) dτ. (6)

Remark 3. When ψ(t) = t, the ψ-Caputo fractional derivative (6) reduces to the classic Caputo
fractional derivative (4). Therefore, the ψ-Caputo fractional derivative is also a natural generalization
of (4). The main difference is that the ψ-Caputo definition utilizes a generalized kernel (ψ(t) −
ψ(τ))−α, where the function ψ(·) offers greater flexibility in weighting past values of the function.

• Observation and Motivation: The preceding review of various Caputo fractional derivatives
highlights their defining feature: the use of distinct weighting kernels, which can be static or designed
to vary dynamically with time t. However, since these kernels depend only on t and τ and not on past
states x(τ), they cannot adjust their weighting based on the states correlation in the trajectory. In this
paper, we propose to overcome this limitation by developing a more generalizable learnable attention
kernel that extends beyond the capabilities of the above approaches, enabling memory weightings
based on both temporal information and the contextual relationships between past and current states.

2.2 Integer- and Fractional-Order Neural ODEs

In an integer-order neural ODE model, the process of transforming an initial feature vector x(0) =
x0 ∈ Rn into an output feature vector x(T ) ∈ Rn is dictated by the following first-order ODE:

dx(t)

dt
= fθ(t,x(t)) (7)
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In this equation, the neural network function fθ , which is parameterized by θ andmaps from [0,∞)×
Rd to Rd, defines the learnable dynamics responsible for updating the hidden features. The trajectory
x(t) illustrates the continuous change of the system’s hidden state over time.

When equation (7) is solved using the Euler discretization method, the update rule takes the form
x(t+∆t) = x(t) + ∆tfθ(t,x(t)). This structure shows a strong parallel to that of a ResNet with
skip connections [45], where the variable t can be seen as analogous to network depth or layer
count. Furthermore, when addressing tasks with a temporal component, the dimension t can directly
correspond to the actual time dimension. In such cases, the neural ODE can be interpreted as a
continuous-time recurrent neural network, as explored in studies such as [46–48].

Analogously, in a fractional-order neural ODE model [19, 29], feature dynamics are governed by:
CDα

a+x(t) = fθ(t,x(t)), 0 < α ≤ 1. (8)
In this formulation, fθ characterizes the trainable fractional derivatives governing the hidden state
dynamics. Starting from the initial condition x(0) = x0, the system state x(t) evolves up to
a predefined terminal time T . Computation of x(T ) is accomplished using a forward fractional
differential equation solver, such as the fractional explicit Adams–Bashforth–Moulton method [49].
Similar to integer-order models, the dimension t can serve as a continuous analog to discrete
layer indices or align directly with actual time dimensions in temporal tasks. However, rather than
employing simple skip connections as in integer-order ODEs, fractional-order ODEs exhibit inherently
dense connectivity patterns [50, 19].
Remark 4. Both the integer- and fractional-order neural ODEs presented in (7) and (8) can be
equivalently reformulated as integral equations, as we will demonstrate in Section 3.1. Motivated by
this equivalence, we propose the generalized FADE framework, which not only encapsulates these
formulations as special cases but also extends to scenarios where the fractional derivatives in (8)
are replaced by variable-order or ψ-Caputo fractional derivatives shown in (5) and (6). This unified
framework offers unprecedented flexibility in modeling complex continuous dynamics with adaptive
memory mechanisms.

3 Generalized Neural Fractional Attention Differential Equation

In this section, we introduce the FADE framework, a novel approach that generalizes fractional-
and integer-order neural ODEs by incorporating learnable attention mechanisms directly into the
fractional operator’s kernel function. We first present the comprehensive framework formulation in
Section 3.1, followed by a rigorous analysis of its theoretical properties in Section 3.2. Subsequently,
we develop the numerical discretization solver necessary for implementing FADE and provide a
detailed convergence analysis in Section 3.3. This systematic development establishes both the
theoretical foundations and practical implementability of our proposed framework for modeling
complex dynamics with adaptive memory mechanisms. All proofs are provided in Appendix C.

3.1 Framework

While it is possible to directly incorporate attention mechanisms that generalize the kernel functions
presented in the Caputo fractional derivative definitions (4) to (6), we instead opt for a more elegant
presentation by first transforming the integer-order and fractional-order neural ODEs in Section 2.2
into equivalent integration equations with different kernels. Specifically, the integer-order neural
ODE model (7) can be equivalently expressed as:

dx(t)

dt
= fθ(t,x(t)) ⇐⇒ x(t) = x(a) +

∫ t

a

fθ(t,x(τ)) dτ, (9)

with initial input x(a). Similarly, based on the relationship between fractional-order ODE and its
integral form [41][Lemma 6.2.], we have:

CDα
a+x(t) = fθ(t,x(t)) ⇐⇒ x(t) = x(a) +

∫ t

a

(x− t)α−1

Γ(α)
fθ(t,x(τ)) dτ. (10)

The neural variable-order fractional differential equation networks presented in [33] adopt the
following variable-order differential and integral equations:

CD
α(t,x(t))
a+ x(t) = fθ(t,x(t)) and x(t) = x (a) +

∫ t

a

(t− τ)α(t,x(t))−1

Γ(α(t,x(t)))
fθ(t,x(t)) dτ. (11)

5



Furthermore, if we consider the ψ-Caputo fractional derivative (6) with ψ(t) being a learnable
function w.r.t. t, we can propose the following ψ-fractional-order differential and integral equations:

CDα,ψ
a+ x(t) = fθ(t,x(t)) ⇐⇒ x(t) = x(a) +

∫ t

a

ψ′(t)(ψ(x)− ψ(t))α−1

Γ(α)
fθ(t,x(τ)) dτ, (12)

where the equivalence can be established from [32].

To gain further insight, we rewrite the aforementioned integral equations in a unified formulation as:

x(t) = x(a) +

∫ t

a

K(t, τ,x(t))fθ(t,x(τ)) dτ, (13)

where K(t, τ,x) is a kernel function, with examples (9) to (12). This motivates us to study this
integral equation and unveil its underlying relation to neural network architecture design. We find
that the integral equation is essentially a continuous form of the following discrete iterative relation:

x(tn) = x(t0) +

n−1∑
j=0

∫ tj+1

tj

K (tn, t,x(tn)) dτ × fθ(tj ,x(tj)), (14)

where {tj}Nj=0 is a grid of [a, b] and x(tj), 0 ≤ j ≤ n − 1, are sampled points from the trajectory
x(t). It is observed that this discrete iterative relation shares a similar structure with the attention
mechanism in Transformers [34] if we consider {x(tj)}n−1

j=0 as input, {fθ(tj ,x(tj))}n−1
j=0 as values

and
∫ tj+1

tj
K(tn, t,x(tn)) dτ as weights derived from query and key.

From the discussions above, a natural relationship between the integral equations and the attention
mechanism in Transformers is established. However, this direct analogy highlights several limitations.
The kernels in (9) and (10) utilize fixed, non-learnable weights. While the kernel in (11) allows
its fractional order α(t,x(t)) to respond to the current time t and state x(t), its structure does not
inherently learn complex correlations between different states along the trajectory. Similarly, the
kernel in (12), despite incorporating learnable temporal features through ψ(t), primarily accounts for
temporal differences and does not adapt its weighting based on the evolving state vectors (e.g., x(τ)
or x(t)). These factors can potentially restrict their modeling capacity and performance in practical
applications.

Inspired by this insight, we propose the FADE framework, which is based on the following neural
integral equation featuring an attention kernel:

x(t) = x(a) +

∫ t

a

K(t, τ,x(t),x(τ))fθ(t,x(τ)) dτ, (15)

where K(t, τ,x(t),x(τ)) ≥ 0. This formulation also corresponds to proper masking in self-attention
layers in the Transformer decoder [34], ensuring that each step only attends to previous steps and
thereby preserving the causal, auto-regressive nature of the integral equation.
Remark 5. Instead of relying on static or uncorrelated weightings for historical states, FADE
employs neural attention kernels that adaptively assign weights by assessing the contextual relevance
of past information to the current system dynamics. Compared to the specific kernels presented in
(9) to (12), FADE provides a unified formulation where the kernels are constructed based on both
temporal information and the contextual relationships between past and current states. This approach
allows the model to selectively emphasize salient temporal dependencies while filtering out less
relevant information, leading to more expressive and flexible modeling capabilities than (9) to (12).

3.1.1 Attention Kernel Examples

In contrast to the predefined kernels from (9) to (12), which possess limited adaptivity, we now
introduce several flexible forms of the attention kernel K(t, τ,x(t),x(τ)) that explicitly leverage
attention mechanisms.
Scaled Dot-Product Attention: Motivated by [34], the kernel K can be set as

K(t, τ,x(t),x(τ)) = σ

(
x(t)⊤x(τ)√

d

)
(16)
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where d is the dimension of x(t). σ is the softmax function. In the continuous setting, it implies
a normalization of attention weights across the relevant range of τ for a given t. Specifically, if
s(t, τ) = x(t)⊤x(τ)√

dx
is the score, then σ(s(t, τ)) could be interpreted as exp(s(t,τ))∫ t

a
exp(s(t,s′))ds′

to ensure
weights integrate to 1. In discretized numerical solvers, the softmax is applied over the set of sampled
past states {x (τj)}.

Fractional Attention Kernel: Motivated by the structure of fractional integral operators seen in (10)
to (12), the kernel K can be set as

K(t, τ,x(t),x(τ)) =
ψ′(τ)(ψ(t)− ψ(τ))α−1

Γ(α)
K̃(x(t),x(τ)), (17)

Here, the term ψ′(τ)(ψ(t)−ψ(τ))α−1

Γ(α) introduces a fractional memory component and can be regarded as
positional encoding weighting. ψ(t) is a learnable, monotonically increasing function of time, which
can be interpreted as a reparameterization of the time axis, allowing the model to learn problem-
specific memory decay rates. The parameter α represents the fractional order. K̃(x(t),x(τ)) is itself
an attention function that depends on the states x(t) and x(τ). This K̃ can be, for instance, the scaled
dot-product attention described above or an additive attention mechanism [51]. This hybrid kernel
thus allows the model to leverage both the structured memory of fractional operators and the dynamic,
input-dependent weighting of attention mechanisms.

Position Augmented Attention Kernel: A common method for incorporating positional information,
introduced in the original Transformer [34], involves adding positional encodings directly to the
input representations. For a given position t, the sinusoidal positional encoding vector PE(t) is
defined in [34][Sec 3.5.]. In this approach, the state vectors x(t) and x(τ) are first augmented as
x̃(t) = x(t) + PE(t) and x̃(τ) = x(τ) + PE(τ). They can then be projected using learnable linear
transformation matrices, Wq for the query and Wk for the key. The attention kernel is computed as:

K(t, τ,x(t),x(τ)) = σ

(
(Wqx̃(t))

⊤(Wkx̃(τ))√
n

)
. (18)

The product of Wq and Wk can be initialized as a single learnable matrix in the implementation.

3.2 Well-posedness of FADE

We begin with properties of kernel integral. The attention kernel employed in this work depends
explicitly on the system states x(t) and x(τ). We analyze the properties of the integral operator:

IKx(t) :=

∫ t

a

K(t, τ,x(t),x(τ))x(τ)dτ. (19)

This integral encompasses several well-known aforementioned operators as special cases. These
special cases result in linear, bounded operators that satisfy the semigroup property, crucial for
deriving equivalent differential forms [41, 32]. Generally, the semigroup property does not hold for
the attention kernels defined here, typically leading to nonlinear operators. Nonetheless, boundedness,
which is essential for ensuring well-posedness, remains valid. Below, we discuss an important singular
scenario and leave other interesting cases in Appendix D. That is, we foucs on the kernel that admits
the decomposition

K(t, τ,x(t),x(τ)) =
(ψ(t)− ψ(τ))α−1ψ′(τ)

Γ(α)
K̃(x(t),x(τ)), 0 < α < 1.

Lemma 1 (Boundedness of the Kernel Integral Operator (19)). Suppose that ψ(t) monotone increas-
ing and K̃ continuous and bounded, then IK remains bounded and satisfies ∥IKx∥ ≤ C∥x∥.

Now we are ready to consider well-posedness. Ensuring well-posedness (i.e., uniqueness and robust-
ness) of neural integral equations is crucial for their practical reliability and theoretical robustness.

Theorem 1 (Uniqueness and Stability). Suppose that K̃ satisfying the Lipschitz condition, fθ(τ,x)
is bounded and globally Lipschitz continuous in x. The integral equation (15) admits a unique
continuous solution in interval [a, a+ ϵ] some ϵ > 0. Moreover, we have

∥x(t)− x̃(t)∥2 ≤ C∥x(a)− x̃(a)∥2, a < t ≤ b,

which implies that the solution is stable or robust with respect to the perturbation of initial data.
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3.3 Solving FADE

The integral equation (15) is a nonlinear equation which can be solved using linearized technique or
iterative method. Here, we adopt the latter one. Taking x = tj and approximating the integral in (15)
using the trapezoidal rule yields

x (tj) = ϕ (x (tj)) , ϕ (x (tj)) = x (t0) +

j−1∑
k=0

K (tj , tk,x (tj) ,x (tk)) fθ (tk,x (tk))h. (20)

For above nonlinear problems, we apply basic iteration method to solve it. The procedure of this
method and related analysis are discussed below.

Basic Iteration Method. Given an initial guess x(0) (tj) = x (tj−1), we iteratively compute
x(L) (tj) = ϕ

(
x(L−1) (tj)

)
, where L ≥ 1.

Convergence Criterion. The convergence of the above iterative method relies on the following
condition: If ϕ : Rd → Rd satisfies a Lipschitz condition with a Lipschitz constant C < 1, then the
iterative methods converge for any initial guess x(0) ∈ [a, b]d.

Given that the assumptions of Theorem 1 are satisfied with appropriate generic constant C, it can be
directly verified that basic iteration method proposed here will converge.

Convergence Rate. Define the iteration error e(L) = x(L) − x(L−1). An iterative method has order
of convergence p if there exists a constant C ̸= 0 such that limL→∞

∥∥e(L+1)
∥∥ /∥∥e(L)∥∥p = C.

For Basic Iteration method, applying the Lipschitz property of ϕ, we obtain
∥∥e(L)∥∥ / ∥∥e(L−1)

∥∥ =∥∥ϕ (x(L−1)
)
− ϕ

(
x(L−2)

)∥∥ /∥∥x(L−1) − x(L−2)
∥∥ < 1, indicating a linear convergence rate.

3.4 FADE Examples

FADE is a general framework that extends the applicability of both integer- and fractional-order
models. This section mainly presents several FADE variants designed for graph learning tasks. The
details of the new continuous models based on FADE are presented in Appendix E.

4 Experiments

We carry out extensive experiments to validate the performance of our proposed approach on fluid
flow, node classification on graphs, traffic forecasting, urban population mobility and biological neural
spike trains. Experiments for urban population mobility and biological neural spike train dynamics
are shown in Appendix I. All implementations are developed using the PyTorch framework[52] on a
single NVIDIA RTX4090 24GB GPU.

4.1 Fluid Flow Prediction

Datasets and Methods. We evaluated the proposed FADE on turbulent boundary-layer flow [53],
with velocity fields measured using particle image velocimetry at five Reynolds numbers (Re = 600,
980, 1370, 1780, 2220), each containing approximately 6,000 snapshots. We trained on four Reynolds
numbers and tested on the fifth. Models observed 6 consecutive snapshots to predict the next 6, using
a CNN encoder–decoder for spatial feature extraction and LSTM, Transformer, Neural ODE, or our
FADE for latent state temporal evolution. Turbulent flows exhibit strong memory effects due to the
cascade of energy across different scales and the persistence of coherent structures. The non-local
temporal dependencies in turbulence make it an ideal testbed for our attention-based fractional
framework, which can adaptively weight historical flow states based on their relevance to current
dynamics.

Performance and Analysis. The preliminary prediction results are summarized in Table 1, demon-
strating that FADE’s adaptive memory mechanism effectively captures the nonlinear multi-scale
temporal dependencies inherent in turbulent flows, outperforming other approaches. The GPU mem-
ory usage of FADE is slightly higher than the baseline LSTM and ODE models, but comparable to
the Transformer. This is expected since the extra computational complexity and memory usage from
the attention mechanism are inevitable and standard. Importantly, with nearly the same GPU memory
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Table 1: Average prediction error and memory consumption of different models on turbulent vector
field prediction.

Model LSTM+CNN Transformer+CNN ODE+CNN FADE+CNN (ours)

RMSE 1.5035 0.4701 0.5962 0.3215
MAE 0.6027 0.3532 0.2799 0.2041
Training Memory 11372MiB 14142MiB 11250MiB 14722MiB

usage, FADE performs much better than the Transformer. In fact, due to the flexibility of FADE, one
can incorporate efficient attention mechanisms such as [54] to alleviate GPU memory usage, which
can reduce the computational cost from O

(
L2

)
to O(L logL) in practice.

4.2 Node Classification on Graph

Datasets and Methods. We evaluate our approach on a variety of datasets with different graph
structures. For the Airport dataset, we adopt preprocessing protocols from [55]. For the others, we
follow the protocols from GRAND [56], specifically using random splits applied to the largest
connected component. We compare our method against several established GNN models, including
GCN [57], HGCN [55], GIL [58], GRAND [56], FROND [19], DRAGON [38] and NvoFDE [33],
which are detailed in Appendix F. GRAND, FROND, DRAGON, and NvoFDE adopt specific kernel
functions as listed in (9) to (12). We primarily utilize the Fractional Attention Kernel presented in
Section 3.1.1. We examine two variants of FADE: FADE-l and FADE-nl provided in Appendix E.
Taking the Cora dataset as an example to illustrate the experimental parameter settings, we set time =
25, step size = 1, learning rate = 0.01, weight decay = 0.05, epoch = 800 and dim = 256. For more
details regarding the dataset and extended experimental results, please refer to Appendix G.

Table 2: Node classification results (%) for random train-val-test splits. The best result is highlighted
in red.

Model Cora Citeseer Pubmed CoauthorCS Computer Photo CoauthorPhy ogbn-arxiv Airport

GCN[57] 81.5±1.3 71.9±1.9 77.8±2.9 91.1±0.5 82.6±2.4 91.2±1.2 92.8±1.0 72.2±0.3 81.6±0.6
HGCN[55] 78.7±1.0 65.8±2.0 76.4±0.8 90.6±0.3 80.6±1.8 88.2±1.4 90.8±1.5 59.6±0.4 85.4±0.7
GIL[58] 82.1±1.1 71.1±1.2 77.8±0.6 89.4±1.5 – 89.6±1.3 – – 91.5±1.7

GRAND-l[56] 83.6±1.0 73.4±0.5 78.8±1.7 92.9±0.4 83.7±1.2 92.3±0.9 93.5±0.9 71.9±0.2 80.5±9.6
F-GRAND-l[19] 84.8±1.1 74.0±1.5 79.4±1.5 93.0±0.3 84.4±1.5 92.8±0.6 94.5±0.4 72.6±0.1 98.1±0.2
D-GRAND-l[38] 85.1±1.3 74.5±1.1 79.6±2.6 93.2±0.3 87.3±1.3 93.1±0.8 94.6±0.2 – 98.5±0.1
Nvo-GRAND-l[33] 86.0±0.5 75.6±0.8 80.8±1.2 93.4±0.2 87.9±0.8 94.1±0.2 94.7±0.2 71.8±0.1 98.7±0.2
FADE-l (ours) 86.4±0.5 76.1±0.6 80.7±0.7 93.5±0.1 88.3±0.9 94.4±0.2 94.7±0.2 72.0±0.2 98.8±0.1

GRAND-nl[56] 82.3±1.6 70.9±1.0 77.5±1.8 92.4±0.3 82.4±2.1 92.4±0.8 91.4±1.3 71.2±0.2 90.9±1.6
F-GRAND-nl[19] 83.2±1.1 74.7±1.9 79.2±0.7 92.9±0.4 84.1±0.9 93.1±0.9 93.9±0.5 71.4±0.3 96.1±0.7
D-GRAND-nl[38] 83.9±1.3 74.8±1.6 79.5±2.6 93.1±0.3 87.1±1.0 93.4±0.5 94.3±0.6 – 97.7±0.4
Nvo-GRAND-nl[33] 85.4±1.0 75.9±0.6 80.6±0.7 93.4±0.2 87.2±1.4 94.0±0.3 94.6±0.2 72.0±0.2 98.4±0.2
FADE-nl (ours) 86.0±0.4 76.2±0.8 80.6±0.7 93.4±0.2 87.7±0.9 94.1±0.3 94.8±0.2 72.0±0.1 98.6±0.1

Performance and Analysis. The results presented in Table 2 show that our FADE model achieves
the best results on most datasets. Compared to GRAND, F-GRAND and D-GRAND models, FADE
demonstrates superior performance. For example, on Cora, Pubmed and Photo datasets, FADE-l
shows performance gains of 1.3%–2.8%, 1.1%–2.0%, and 1.1%–2.1%, respectively, while FADE-nl
achieves improvements of 2.1%–3.7%, 1.1%–3.1%, and 0.7%–1.7%, respectively. Against Nvo-
GRAND, both FADE variants consistently deliver competitive or better results across all datasets.
These results highlight the strong performance advantage of FADE, demonstrating its ability to
effectively capture complex graph dynamics.

4.3 Traffic Forecasting

Datasets and Methods. To further validate the effectiveness of the FADE model, we conduct
experiments on time-series forecasting tasks using four real-world traffic datasets: PeMSD7(M),
PeMSD7(L), PeMS04, and PeMS08. These datasets are collected in real time every 30 seconds
by the Caltrans Performance Measurement System (PeMS) [59]. A more detailed description can
be found in Appendix H. Maintaining consistency with [4], we train all datasets for 200 epochs
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using the Adam optimizer and a batch size of 64. An early stopping strategy is applied, with a
patience of 15 iterations on the validation dataset. For performance evaluation, we employ three
widely-used metrics: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean
Absolute Percentage Error (MAPE), which collectively provide a comprehensive assessment of the
prediction accuracy. For comparative analysis, we select several baseline models, including HA[60],
VAR[60], TCN[61], DSANet[62], AGCRN[63], STFGNN[64], Z-GCNETs[65], STGODE[6] and
STG-NCDE[4]. Following [4], we refer to our model as spatio-temporal FADE (STG-FADE) in this
part.

Performance and Analysis. The results presented in Table 3 reveal that the proposed STG-FADE gen-
erally outperforms other models in forecasting accuracy across the PeMSD4, PeMSD8, PeMSD7(M),
and PeMSD7(L) datasets. STG-FADE achieves the lowest MAE and RMSE values on PeMSD4,
PeMSD8, and PeMSD7(M) alongside competitive MAPE performance. On PeMSD7(L), STG-FADE
shows excellent results in all three metrics with the best MAPE value, highlighting its generalization
on large-scale traffic datasets. More experimental results are presented in Appendix H. Overall, STG-
FADE exhibits superior and stable performance, effectively capturing the spatio-temporal information
inherent in traffic forecasting.

Table 3: Forecasting error on PeMSD4, PeMSD8, PeMSD7(M), and PeMSD7(L). The best and the
second-best results are highlighted in red and blue, respectively.

Model
PeMSD4 PeMSD8 PeMSD7(M) PeMSD7(L)

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

HA[60] 38.03 59.24 27.88% 34.86 59.24 27.88% 4.59 8.63 14.35% 4.84 9.03 14.90%
VAR[60] 24.54 38.61 17.24 % 19.19 29.81 13.10% 4.25 7.61 10.28% 4.45 8.09 11.62%
TCN[61] 23.22 37.26 15.59% 22.72 35.79 14.03% 4.36 7.20 9.71% 4.05 7.29 10.43%

DSANet[62] 22.79 35.77 16.03% 17.14 26.96 11.32% 3.52 6.98 8.78% 3.66 7.20 9.02%
AGCRN[63] 19.83 32.26 12.97% 15.95 25.22 10.09% 2.79 5.54 7.02% 2.99 5.92 7.59%
STFGNN[64] 20.48 32.51 16.77% 16.94 26.25 10.60% 2.90 5.79 7.23% 2.99 5.91 7.69%

Z-GCNETs[65] 19.50 31.61 12.78% 15.76 25.11 10.01% 2.75 5.62 6.89% 2.91 5.83 7.33%

STGODE[6] 20.84 32.82 13.77% 16.81 25.97 10.62% 2.97 5.66 7.36% 3.22 5.98 7.94%
STG-NCDE[4] 19.21 31.09 12.76% 15.45 24.81 9.92% 2.68 5.39 6.76% 2.87 5.76 7.31%

STG-FADE (ours) 19.17 31.01 12.77% 15.29 24.67 10.12% 2.69 5.39 6.71% 2.91 5.81 7.20%

5 Conclusion
In this paper, we propose the generalized neural fractional attention differential equation (FADE),
a novel continuous neural network framework that integrates fractional calculus with learnable
neural attention kernels. By replacing the fixed kernel with adaptive attention, FADE effectively
emphasizes relevant historical dependencies while filtering out less important information. Our
analysis establishes boundedness, well-posedness, and convergence, ensuring the soundness of
the proposed framework. Extensive experiments confirm FADE superior performance and stability.
Overall, FADE advances continuous-depth learning by combining fractional calculus long-memory
modeling with adaptive attention, enabling effective learning from complex temporal data.
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Introduction

This supplementary document provides extended explanations and additional results that support the
claims presented in the main paper. The content is organized as follows.

1. A comprehensive related work is detailed in Appendix A.
2. Preliminaries on fractional calculus are presented in Appendix B.
3. All theoretical proofs in this paper are presented in Appendix C.
4. Nonsingular scenario for the kernel is shown in Appendix D.
5. FADE examples are presented in Appendix E.
6. Graph differential equation models are given in Appendix F.
7. Datasets and more experiments on the graph are available in Appendix G.
8. Datasets and more experiments for traffic forecasting are discussed in Appendix H.
9. Experiments for urban population mobility and biological neural spike train dynamics are

provided in Appendix I.
10. Limitations and broader impact are discussed in Appendix J.

A Related Work

Our work builds on research in fractional differential equations, neural integer-order and fractional-
order ODE models, and neural network attention mechanisms. We will present the related work from
the following aspects.

A.1 Fractional Differential Equations

Fractional Differential Equations (FDEs) generalize classical differential equations by allowing the
order of differentiation to be a non-integer, thereby providing a powerful framework for modeling
systems with memory and hereditary properties. The mathematical foundations of FDEs have been
rigorously studied, with seminal contributions from [67–69]. Among the most prominent formulations
are the Riemann–Liouville and Caputo derivatives [70], both of which use power-law kernels to
encode memory effects. However, such power-law kernels often impose restrictions when modeling
systems with heterogeneous or scale-dependent dynamics. To address these limitations, alternative
definitions have been proposed, such as the Caputo–Fabrizio derivative with an exponential decay
kernel [68], and the Atangana–Baleanu derivative with a Mittag-Leffler-based kernel [71]. These
generalizations retain the core non-local structure of fractional calculus while enhancing modeling
flexibility. More recently, variable-order fractional derivatives have attracted considerable attention
due to their ability to reflect more flexible and complex dynamic memory mechanism in real-world
phenomena [72, 43]. In these systems, the fractional order α is time-dependent, denoted as α(t),
enabling a more precise representation of evolving dynamic behaviors.

In addition to the rich theoretical results, FDEs have found broad applicability across a wide range of
fields. For instance, the authors offered a foundational overview of its practical uses in areas such as
signal processing, system modeling and automatic control [73]. The authors showed that fractional
calculus has emerged as a powerful mathematical framework for modeling complex systems in traffic
forecasting [74]. The authors highlighted its role in viscoelasticity, illustrating how fractional-order
models effectively capture the memory and hereditary characteristics inherent in such materials
[75]. Meanwhile, FDEs have also been widely utilized to improve the performance of graph neural
networks [76, 19, 33]. Despite considerable progress in both theory and applications, the design
of kernel functions for fractional calculus remains largely underexplored. Particularly in neural
differential equations, adaptive kernel functions can learn to assign appropriate weights to historical
states based on relevance, which is still in infancy.

A.2 Neural Differential Equations

Neural Differential Equations (NDEs) offer a unified framework that integrates neural networks
with differential equations to model continuous-time dynamic systems, bridging the gap between
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deep learning and classical dynamical systems. Among the various types of NDEs, Neural Ordinary
Differential Equations (NODEs) and Neural Fractional Differential Equations (NFDEs) are more
closely related to our work. Introduced by [2], NODEs model the evolution of hidden states by
parameterizing the right-hand side of an ODE using neural networks. This model allows for adaptive
computation in continuous time, offering memory efficiency and interpretability. To enhance the
expressiveness of NODEs, several variants have been proposed. Augmented NODEs [36] expand the
hidden state space with additional dimensions to improve the representational power and alleviate
topological constraints that limit standard NODEs. Neural Controlled Differential Equations (NCDEs)
[48] further generalize the NODEs framework to handle controlled systems in modeling irregular
time series data, such as in finance or healthcare. Graph NODEs [37] have demonstrated strong
performance on graph-structured data by integrating graph convolutional operations with continuous
dynamics. Spatio-temporal graph NCDE [4] achieves significant performance improvements in traffic
forecasting by integrating two NCDEs for temporal and spatial processing.

Despite their flexibility, NODEs-based models are limited by integer-order calculus, restricting their
ability to capture memory and long-range dependencies, thus motivating interest in fractional-order
extensions. Inspired by Graph NODEs, the FROND framework introduces a generalized fractional-
order continuous GNN model using Caputo derivatives to capture non-local, memory-dependent
dynamics, offering improved performance and mitigating oversmoothing in graph learning tasks [19].
Then, the DRAGON framework is proposed, which shows a distributed-order fractional continuous
GNN that learns a superposition of derivative orders, enabling flexible and non-Markovian feature
updating dynamics [27]. Recently, the NvoFDE framework introduces variable-order fractional
differential operators into neural networks, enabling learnable and adaptive derivative orders based on
time and hidden features [33]. However, most existing fractional neural models use fixed kernels with
predefined weights assigned to historical states, limiting their flexibility and adaptability. Our work
addresses this gap by introducing adaptive kernel functions into the fractional differential equation
framework for improved temporal representation.

A.3 Attention Mechanisms in Neural Networks

Attention mechanisms have emerged as a fundamental component of modern deep learning archi-
tectures, enabling models to dynamically prioritize informative parts of the input. The transformer
architecture [34] introduces self-attention, which computes pairwise interactions between elements
in a sequence, allowing for efficient modeling of long-range dependencies. This innovation has had
transformative impacts across a variety of domains, including natural language processing, computer
vision and time-series forecasting [77, 78]. In continuous-time systems, attention mechanisms have
been integrated into neural differential equations to enhance the representational power. For exam-
ple, Continuous Self-Attention Neural ODEs [39] extend Neural ODEs framework by integrating a
lightweight self-attention mechanism, resulting in more flexible and interpretable dynamics. Similarly,
attention-based Neural ODEs have been employed in spatio-temporal prediction tasks [79].

In Graph Neural Networks (GNNs), attention mechanisms have unlocked unprecedented flexibility in
neighbor weighting and hierarchical feature propagation. Graph Attention Networks (GATs) [40]
use self-attention to assign adaptive weights to neighboring nodes during aggregation, improving
performance in scenarios with heterogeneous node importance. Extensions of GATs, such as multi-
head and hierarchical attention models [80, 81], further enhance the model’s ability to capture
structural nuances. Despite these advances, the integration of attention with fractional-order models
remains largely underexplored. Fractional calculus, known for its inherent memory and non-local
properties, offers a natural framework to capture long-range dependencies. Combining it with attention
mechanisms could lead to a new class of flexible and adaptive neural operators.

B Preliminaries on Fractional Calculus

This section offers additional material on fractional calculus theory, with key details presented in the
main text of Section 2. Different from [38], we present results in terms of ψ-fractional derivative
that is quite general than previous work (ψ(t) = t). For more detailed information, please refer to
[32, 41]. We begin with the basic definitions.

Definition 4 (ψ-Caputo Fractional Derivative). Let α > 0, n ∈ N, and I be an interval such that
−∞ ≤ a < b ≤ ∞. Let f, ψ ∈ Cn(I) be two functions such that ψ is increasing and ψ′(x) ̸= 0 for
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all x ∈ I . The left ψ-Caputo fractional derivative of f of order α is defined by

CDα,ψ
a+ f(x) :=

1

Γ(n− α)

∫ x

a

ψ′(t)(ψ(x)− ψ(t))n−α−1f
[n]
ψ (t) dt,

and the right ψ-Caputo fractional derivative is given by

CDα,ψ
b− f(x) :=

(−1)n

Γ(n− α)

∫ b

x

ψ′(t)(ψ(t)− ψ(x))n−α−1f
[n]
ψ (t) dt,

where f [n]ψ (t) :=
(

1
ψ′(t)

d
dt

)n
f(t), n = [α] + 1 if α /∈ N, and n = α if α ∈ N.

For α ∈ (0, 1), the left and right ψ-Caputo fractional derivatives reduce to

CDα,ψ
a+ f(x) =

1

Γ(1− α)

∫ x

a

(ψ(x)− ψ(t))−αf ′(t) dt,

and

CDα,ψ
b− f(x) =

−1

Γ(1− α)

∫ x

a

(ψ(x)− ψ(t))−αf ′(t) dt,

respectively. For specific choices of the function ψ, the ψ-Caputo fractional derivative reduces to
several well-known operators [82]. Throughout this work, we focus on the left-sided fractional
derivative. The corresponding results for the right-sided derivative can be obtained analogously with
appropriate modifications.

To get some intuition, we provide a specific example below.

Lemma 2. Given β ∈ R with β > n, consider the following function:

f(x) = (ψ(x)− ψ(a))β−1, g(x) = (ψ(b)− ψ(x))β−1.

For α > 0, we have:
CDα,ψ

a+ f(x) =
Γ(β)

Γ(β − α)
(ψ(x)− ψ(a))β−α−1,

CDα,ψ
b− g(x) =

Γ(β)

Γ(β − α)
(ψ(b)− ψ(x))β−α−1.

Now we present the relation between fractional order derivative and integer order counterparts. This
can be readily seen from the following theorem that is derived mainly using integration by parts.

Theorem 2. Suppose that f, ψ ∈ Cn+1[a, b]. Then, for all α > 0,

CDα,ψ
a+ f(x) =

(ψ(x)− ψ(a))n−α

Γ(n+ 1− α)
f
[n]
ψ (a) +

1

Γ(n+ 1− α)

∫ x

a

(ψ(x)− ψ(t))n−α
d

dt
f
[n]
ψ (t)dt,

and

CDα,ψ
b− f(x) = (−1)n

(ψ(b)− ψ(x))n−α

Γ(n+ 1− α)
f
[n]
ψ (b)

− 1

Γ(n+ 1− α)

∫ b

x

(ψ(t)− ψ(x))n−α(−1)n
d

dt
f
[n]
ψ (t)dt.

From this theorem, it is found that

lim
α→n−

CDα,ψ
a+ f(x) = f

[n]
ψ (t).

We next present the relation between integration and differentiation of ψ-Caputo fractional function
that is vital for the equivalent transformation between differential form and its integral form.
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Theorem 3. Given a function f ∈ Cn[a, b] and α > 0, we have:

Iα,ψa+

(
CDα,ψ

a+ f(x)
)
= f(x)−

n−1∑
k=0

f
[k]
ψ (a)

k!
(ψ(x)− ψ(a))k,

Iα,ψb−

(
CDα,ψ

b− f(x)
)
= f(x)−

n−1∑
k=0

(−1)kf
[k]
ψ (b)

k!
(ψ(b)− ψ(x))k.

Theorem 4. Given a function f ∈ C1[a, b] and α > 0, we have
CDα,ψ

a+ Iα,ψa+ f(x) = f(x) and CDα,ψ
b− Iα,ψb− f(x) = f(x).

Obviously, one can simply apply Iα,ψa+ on both sides of the differential equations to get its integral
form. On the other hand, we can apply CDα,ψ

a+ directly to integral equations in order to recover
differential equations.

Lastly, we will show the semigroup law for the ψ-Caputo fractional derivative. Similar to classical
fractional derivative [41], semigroup law does not hold in general for fractional derivative but it is
indeed true for integrals. In what follows, we present a case that allows semigroup law.
Theorem 5. If f ∈ Cm+n[a, b] for some m ∈ N and α > 0, then for all k ∈ N we have(

Iα,ψa+

)k (
CDα,ψ

a+

)m
f(x) =

(
CDα,ψ

a+

)m
f(c) · (ψ(x)− ψ(a))kα

Γ(kα+ 1)
,(

Iα,ψb−

)k (
CDα,ψ

b−

)m
f(x) =

(
CDα,ψ

b−

)m
f(d) · (ψ(b)− ψ(x))kα

Γ(kα+ 1)
,

for some c ∈ (a, x) and d ∈ (x, b).

C All theoretical proofs

Proof of Lemma 1. Since

∥IKx∥ ≤ C

∫ t

a

(ψ(t)− ψ(τ))α−1ψ′(τ)

Γ(α)
∥x∥dτ ≤ C

(ψ(t)− ψ(a))α

Γ(1 + α)
∥x∥,

it is immediately seen that this operator is bounded.

Proof of Theorem 1. We shall prove the uniqueness as well as stability. To show the uniqueness, we
define the operator as

T [x](t) = x(a) +

∫ t

a

(ψ(t)− ψ(τ))α−1ψ′(τ)

Γ(α)
K̃(x(t),x(τ))fθ(τ,x(τ))dτ,

The Lipschitz properties of K̃ and f lead to:

∥T [x1]− T [x2]∥ ≤ C
(ψ(t)− ψ(a))α

Γ(1 + α)
∥x1 − x2∥ ,

Again, selecting a suitable ϵ > 0 and invoking the Banach fixed-point theorem ensures a unique
solution. To prove the stability, from (15), we shall get

∥x(t)− x̃(t)∥2 ≤ ∥x(a)− x̃(a)∥2 + C

∫ t

a

(ψ(t)− ψ(τ))α−1ψ′(τ)

Γ(α)
∥x(τ)− x̃(τ)∥2dτ.

Applying fractional Grönwall inequality [41, Lemma 6.19], we derive the stability result.

• Observation and Motivation: The preceding review of various Caputo fractional derivatives
highlights their defining feature: the use of distinct weighting kernels, which can be static or designed
to vary dynamically with time t. For high-dimensional states x(t), we can extend this idea by
introducing a learnable vector ψ(t) = (ψ1(t), . . . , ψn(t)), where each ψi(t) defines a component-
wise kernel in a ψ-Caputo framework, enabling adaptive, dimension-specific memory modeling.
However, since these kernels depend only on t and τ and not on past states x(τ) or the current
state x(t), they cannot adjust their weighting based on the states correlation in the trajectory. In
this paper, we propose to overcome this limitation by developing a more generalizable learnable
attention kernel that extends beyond the capabilities of the ψ-based approach. Our framework will
incorporate mechanisms that can adapt memory weightings based on both temporal information and
the contextual relationships between past and current states.
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C.1 Solving FADE

The integral equation (15) is a nonlinear equation which can be solved using linearized technique or
iterative method. Here, we adopt the latter one. Taking x = tj and approximating the integral in (15)
using the trapezoidal rule yields

x(tj) = x(t0) +

j−1∑
k=0

K(tj , tk,x(tj),x(tk))fθ(tk,x(tk))h. (21)

The iterative method for above nonlinear problems works as follows: taking the initial guess x(t(0)j ) =

x(tj−1), then we conduct iterations based on

x(t
(L)
j ) = x(t0) +

j−1∑
k=0

K(tj , tk,x(t
(L−1)
j ),x(tk))fθ(tk,x(tk))h, L ≥ 1.

This procedure will lead to a good approximation of x(tj) after a few iterations. To address it, define

x (tj) = ϕ (x (tj)) , where ϕ (x (tj)) = x (t0) +

j−1∑
k=0

K (tj , tk,x (tj) ,x (tk)) fθ (tk,x (tk))h,

for the sake of simplicity. The proposed iterative solution to the discretized equation can formulated
as the Basic Iteration method.

Basic Iteration Method. Given an initial guess x(0) (tj) = x (tj−1), we iteratively compute

x(L) (tj) = ϕ
(
x(L−1) (tj)

)
, L ≥ 1.

C.1.1 Convergence Criterion

The convergence of the above iterative method relies on the following condition: If ϕ : Rd → Rd
satisfies a Lipschitz condition with a Lipschitz constant C < 1, namely,

∥ϕ(x)− ϕ(y)∥ ≤ C∥x− y∥, ∀x,y ∈ [a, b]d,

then the iterative methods converge for any initial guess x(0) ∈ [a, b]d.

Given that the assumptions of Theorem 1 are satisfied with appropriate generic constant C, it can be
directly verified that basic iteration method proposed here will converge. The essence is to make sure
that the constant is less than 1.

C.1.2 Convergence Rate

Define the iteration error e(L) = x(L) − x(L−1). An iterative method has order of convergence p if
there exists a nonzero constant C such that

lim
L→∞

∥∥e(L+1)
∥∥∥∥e(L)∥∥p = C.

For the Basic Iteration method, applying the Lipschitz property of ϕ, we obtain

∥∥e(L)∥∥∥∥e(L−1)
∥∥ =

∥∥ϕ (x(L−1)
)
− ϕ

(
x(L−2)

)∥∥∥∥x(L−1) − x(L−2)
∥∥ ≤ C < 1,

indicating a linear (first-order) convergence rate.
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D Nonsingular scenario for the Kernel

Suppose that the kernal K is bounded, Lipschitz continuous with respect to the last two variables. We
find that the operator is bounded that is immediately seen from the boundedness of K. Besides, the
integral equation is well-posed. The proof is as follows:
Uniqueness. Define operator:

T [x](t) = x(a) +

∫ t

a

K(t, τ,x(t),x(τ))fθ(τ,x(τ))dτ,

Using the Lipschitz assumptions, we obtain

∥T [x1]− T [x2]∥ ≤ C(t− a) ∥x1 − x2∥ .
Choosing ϵ > 0 small enough that Cϵ < 1 and applying the Banach fixed-point theorem [83] yields
a unique solution.

Stability. From (Eq. (15).), using the Lipschitz assumptions again as well as boundedness of K, it is
readily seen that

∥x(t)− x̃(t)∥2 ≤ ∥x(a)− x̃(a)∥2 + C

∫ t

a

∥x(τ)− x̃(τ)∥2dτ,

which gives the desired result by classical Grönwall inequality [84, Lemma B.9].

As in singular case, one can also show that the basic iteration method works well for the nonsingular
case, that is, it is convergent with first order.

E FADE Examples

Here shows multiple FADE variants based on graph learning tasks. Inspired by the models in [19],
we develop two variants, including Kat-GRAND and Kat-CDE. Similar to [8], Kat-GRAND includes
two versions. One is Kat-GRAND-nl:∫ t

a

K(t, τ,Y(t))
(
(A(Y(t))− I)Y(t)

)
dτ = Y(t), (22)

where A(Y(t)) = (ai,j(t)) is given by a nonlinear attention mechanism. The other version is
Kat-GRAND-l: ∫ t

a

K(t, τ,Y(t)) (−LY(t)) dτ = Y(t), (23)

where L is a time-invariant matrix, which is a linear FDE.

Furthermore, based on the CDE model [10], the Kat-CDE model has the following expression:∫ t

a

K(t, τ,Y(t))
(
A(Y(t))− I)Y(t) + div(V(t) ◦Y(t)

)
dτ = Y(t), (24)

where the divergence operator div(·) is introduced by [85], and ◦ stands for the element-wise product,
also known as the Hadamard product. This model is crafted to handle heterophilic graphs, where
connected nodes typically belong to different classes or exhibit distinct features.

F Graph Differential Equation Models

To better understand baseline models, this section primarily introduces several dynamic comparison
networks based on graph learning tasks, namely GRAND [56], CDE [10], FROND [19], DRAGON
[38] and NvoFDE [33].

GRAND [56]: The Graph Neural Diffusion (GRAND) model is a graph neural network framework
inspired by the heat diffusion process, where information spreads across graph nodes similarly to
how heat diffuses through a medium. Its governing differential equation is given by:

dX(t)

dt
= (A(X(t))− I)X(t), (25)
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where A(X(t)) is a learnable attention-based adjacency matrix, and I is the identity matrix. There are
two variants. The update in (25) defines the GRAND-nl model, where the adjacency matrix A(X(t))
is nonlinear. Let di =

∑n
j=1Wij and define the diagonal matrix D with Dii = di. The random walk

Laplacian is L = I−WD−1. Thus in the simple case, we have the following GRAND-l model:

dX(t)

dt
= (WD−1 − I)X(t) = −LX(t). (26)

CDE [10]: In heterophilic graph, nodes often have diverse features, posing significant challenges for
graph information processing. To address this issue, the authors introduced the convection-fiffusion
equations (CDE) into GNNs,and then proposed the Neural CDE model. This model adaptively
regulates the rate of information propagation between nodes, enabling selective information sharing
among dissimilar neighbors. The corresponding mathematical formulation is given by:

dX(t)

dt
= (A(X(t))− I)X(t) + div(V(t) ◦X(t)), (27)

where V(t) denotes the velocity field, ◦ indicates the element-wise product, and div(·) represents the
divergence operator.

FROND [19]: The FROND framework extends traditional integer-order graph neural differential
equations to fractional-order dynamics using the Caputo derivative:

Dα
t X(t) = F(W,X(t)), α > 0, (28)

where F defines the graph dynamics. By leveraging the non-local nature of fractional calculus,
FROND captures long-range dependencies in node features. Similar to (25), (26) and (27), FROND
has the following corresponding variants:

(1) F-GROND-nl
Dα
t X(t) = (A(X(t))− I)X(t), 0 < α ≤ 1. (29)

(2) F-GROND-l
Dα
t X(t) = −LX(t), 0 < α ≤ 1. (30)

(3) F-CDE

Dα
t X(t) = (A(X(t))− I)X(t) + div(V(t) ◦X(t)), 0 < α ≤ 1. (31)

DRAGON [38]: Unlike conventional continuous GNNs that rely on fixed integer or single fractional-
order derivatives, DRAGON adopts a learnable distribution over derivative orders:∫ b

a

DαX(t) dµ(α) = F(W,X(t)), (32)

where [a, b] defines the domain of α, µ is a learnable distribution, and F denotes the graph dynamics.
Similar to (25), (26) and (27), DRAGON has the following corresponding variants:
(1) D-GRAND-nl ∫ 1

0

DαX(t) dµ(α) = (A(X(t))− I)X(t). (33)

(2) D-GRAND-l ∫ 1

0

DαX(t) dµ(α) = LX(t). (34)

(3) D-CDE ∫ 1

0

DαX(t) dµ(α) = (A(X(t))− I)X(t) + div(V(t) ◦X(t)). (35)

NvoFDE [33]: NvoFDE extends neural differential equation models by introducing a learnable
variable-order derivative α(t, x(t)) that dynamically adapts over time and feature space.

D
α(t,x(t))
t X(t) = F(W,X(t)), 0 < α(t,X(t)) ≤ 1. (36)
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where F defines the graph dynamics. Similar to the above, there exist the following variants:

(1) Nvo-GROND-nl
D
α(t,x(t))
t X(t) = (A(X(t))− I)X(t), 0 < α(t,X(t)) ≤ 1. (37)

(2) Nvo-GROND-l
D
α(t,x(t))
t X(t) = −LX(t), 0 < α(t,X(t)) ≤ 1. (38)

(3) Nvo-CDE
D
α(t,x(t))
t X(t) = (A(X(t))− I)X(t) + div(V(t) ◦X(t)), 0 < α(t,X(t)) ≤ 1. (39)

G Datasets and More Experiments on Graph for FADE Model

G.1 Datasets and Setting

The datasets used in this paper are provided separately in Table 4 and Table 5.

Table 4: Dataset statistics used in Table 1 of the main text

Dataset Type Classes Features Nodes Edges
Cora citation 7 1433 2485 5069

Citeseer citation 6 3703 2120 3679
PubMed citation 3 500 19717 44324

Coauthor CS co-author 15 6805 18333 81894
Computers co-purchase 10 767 13381 245778

Photo co-purchase 8 745 7487 119043
CoauthorPhy co-author 5 8415 34493 247962
OGB-Arxiv citation 40 128 169343 1166243

Airport tree-like 4 4 3188 3188

Table 5: Dataset statistics used in Table 6

Dataset Nodes Edges Classes Node Features

Roman-empire 22662 32927 18 300
Wiki-cooc 10000 2243042 5 100

Minesweeper 10000 39402 2 7
Questions 48921 153540 2 301
Workers 11758 519000 2 10

Amaon-ratings 24492 93050 5 300

The authors revealed critical limitations in the commonly used benchmark datasets for evaluating
models on heterophilic graphs [86]. To address this, they introduced several new datasets, such as
Roman-empire, Wiki-cooc, Questions, Workers and Amazon-ratings. These datasets, sourced from
different fields, have low homophily scores and display a variety of structural properties. We follow
the experimental setup specified in the CDE model [10]. For the Workers, and Questions datasets,we
employ the ROC-AUC score as the evaluation metric, as these tasks involve binary classification.
Using the Amazon-ratings dataset as an example to reveal the experimental parameter settings, we
set time = 3, step size = 1, learning rate = 0.001, weight decay = 0.0005, epoch = 1000 and dim =
128. The performance of our FADE-CDE model, is evaluated against several well-known baselines,
including TDE-GNN[87], GRAND [56], GraphBel [85], NSD [88], ACMP[89], CDE [10], F-CDE
[19], D-CDE[38] and Nvo-CDE[33].

G.2 Node Classification on Heterophilic Graph

Performance and Analysis: In Table 6, we present experimental results on heterophilic graph
datasets. It is evident that our model FADE-CDE achieves competitive or better performance, demon-
strating its effectiveness. On Workers and Amazon-ratings datasets, FADE-CDE achieves the best
performance among all compared models, outperforming the Nvo-CDE model by approximately
0.7% on both datasets. This advantage stems from the framework’s flexibility in kernel function
design, enabling it to capture more complex feature-updating dynamics.
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Table 6: Node classification results(%). The best and the second-best result for each criterion are
highlighted in red and blue, respectively.

Model Roman-empire Wiki-cooc Questions Workers Amazon-ratings

TDE-GNN[87] 64.29±0.58 84.95±0.78 68.94±1.69 75.13±0.81 40.33±1.37
GRAND-l[56] 69.24±0.53 91.58±0.37 68.54±1.07 75.59±0.86 48.99±0.35
GRAND-nl[56] 71.60±0.58 92.03±0.46 70.67±1.28 75.33±0.84 45.05±0.65
GraphBel[85] 69.47±0.37 90.30±0.50 70.79±0.99 73.02±0.92 43.63±0.42
NSD[88] 77.50±0.67 92.06±0.40 69.25±1.15 79.81±0.99 37.96±0.20
ACMP[89] 71.27±0.59 92.68±0.37 71.18±1.03 75.03±0.92 44.76±0.52

CDE[10] 91.64±0.28 97.99±0.38 75.17±0.99 80.70±1.04 47.63±0.43
F-CDE[19] 93.06±0.55 98.73±0.68 75.17±0.99 82.68±0.86 49.01±0.56
D-CDE[38] 93.87±0.41 98.58±0.12 75.53±0.98 83.02±0.86 49.43±1.26
Nvo-CDE[33] 93.42±0.22 99.32±0.28 74.87±0.23 83.33±0.65 50.09±0.40
FADE-CDE (ours) 93.46±0.32 98.94±0.12 75.10±0.11 84.02±0.38 50.75±0.45

H Datasets and More Experiments for Traffic Forecasting

H.1 Datasets and Setting

We evaluate the effectiveness of STDDE using five real-world traffic datasets: PeMSD7(M),
PeMSD7(L), PeMS04, PeMS07, and PeMS08. These datasets are sourced from the Caltrans Perfor-
mance Measurement System [59], which collects traffic flow data every 30 seconds. For analysis,
the data is aggregated into 5-minute intervals, resulting in 288 time steps one day. A summary of
the dataset statistics can be found in Table 7. These datasets are pre-divided into training, validation,
and testing sets using a 6:2:2 ratio. The training procedure and hyperparameter settings are kept
consistent with those reported in [4]. For instance, the model is trained for 200 epochs using the
Adam optimizer.

Table 7: Datasets for Trafffic Forecasting

Datasets Sensors Edges Time Steps
PeMS04 307 340 16992
PeMS07 883 866 28224
PeMS08 170 295 17856
PeMS07(M) 228 1132 12672
PeMS07(L) 1026 10150 12672

Table 8: Forecasting error on PeMSD7

Model
PeMSD7

MAERMSE MAPE

HA[60] 45.12 65.64 24.51%
VAR[60] 50.22 75.63 32.22%
TCN[61] 32.72 42.23 14.26%

DSANet[62] 31.36 49.11 14.43%
AGCRN[63] 22.37 36.55 9.12%
STFGNN[64] 23.46 36.60 9.21%

Z-GCNETs[65] 21.77 35.17 9.25%

STGODE[6] 22.59 37.54 10.14%
STG-NCDE[4] 20.53 33.84 8.80%

STG-FADE (ours)20.46 33.70 8.94%
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Figure 1: Traffic forecasting visualization in PeMSD4 and PeMSD8

H.2 Experimental Results

From Table 8, our model STG-FADE achieves generally the best performance on PeMSD7 dataset.
Compared to NDEs-based models, it demonstrates a stronger ability to capture complex dynamics.
Figure 1 illustrates the predicted traffic flow from STG-FADE in comparison with STG-NCDE and
the ground truth on PeMSD4 and PeMSD8 datasets. The horizontal axis denotes the time steps
(5-minute intervals), and the vertical axis represents the traffic flow. A total of 288 time steps are
selected, covering an entire 24-hour period.

Each subfigure corresponds to a specific node and is annotated with a zoomed-in region to highlight
prediction differences in more dynamic or complex traffic periods. Overall, both models demonstrate
a strong ability to follow the ground truth trends. However, the proposed STG-FADE consistently
achieves closer alignment with the ground truth, especially in rapidly changing regions.

Particularly in Figure 1:

• Node 211 and Node 111 in PeMSD4 (top row) show that STG-FADE better captures sudden
increases and local peaks, maintaining smoother yet accurate transitions.

• Node 167 and Node 123 in PeMSD8 (bottom row) further validate STG-FADE superiority,
with visibly reduced error margins in congested and fluctuating segments, as shown in the
zoom-in windows.

These results support the quantitative findings discussed in the main text and demonstrate the
robustness and generalization capacity of STG-FADE across different traffic environments.

H.3 Parameter Analysis

Hidden Dimension Analysis: Figure 2 presents the performance of STG-FADE on the PeMSD8
dataset with varying input feature dimensions: 16, 32, 64, and 128. It can be observed that as
the feature dimension increases, the model’s performance improves consistently across all three
metrics. In particular, the lowest RMSE and MAE are achieved at dimension 128, indicating that
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Figure 2: Performance comparison of STG-
FADE with varying feature dimensions on the
PeMSD8 dataset.

Table 9: Forecasting error metrics (MAE, RMSE,
MAPE) for different step sizes on PeMSD4 and
PeMSD8 datasets.

Step size
PeMSD4 PeMSD8

MAE RMSE MAPE MAE RMSE MAPE

0.5 19.48 31.34 12.94% 17.45 27.55 11.07%
1.0 19.88 31.83 13.14% 17.10 26.83 10.66%

higher-dimensional representations help capture more complex spatiotemporal patterns in traffic data.
Notably, the improvement becomes more pronounced when increasing the dimension from 32 to
64, and then stabilizes between 64 and 128. These findings suggest that while increasing feature
dimensionality benefits performance, the marginal gain diminishes beyond a certain point.

Step Size Analysis: Table 9 reports the forecasting error metrics of STG-FADE on the PeMSD4
and PeMSD8 datasets, evaluated with varying step sizes. As the step size increases, MAE increases
from 19.48 to 19.88, and RMSE from 31.34 to 31.83 on PeMSD4; while on PeMSD8, MAE changes
marginally from 17.45 to 17.10 and RMSE slightly decreases from 27.55 to 26.83. The experiments
suggest that a moderately larger step size contributes to improved performance on PeMSD8, while it
has the opposite effect on PeMSD4.

I Experiments for Urban Population Mobility and Biological Neural Spike
Train Dynamics

I.1 Urban Population Mobility Prediction

Post-disaster urban mobility dynamics exhibit complex patterns driven by both the disruptive disaster
context and underlying habitual mobility. The original population mobility data from SafeGraph
records daily movements between Census Block Groups (CBGs) during the period from August 1 to
September 10, 2019. The authors aggregated these inter-CBG flows at the county level to obtain daily
within-county and between-county population flows, representing intra-regional and inter-regional
population flows on nodes and edges, respectively [90]. Based on this, we evaluated FADE on
Florida’s population mobility data during Hurricane Dorian. This dataset records daily inter-regional
movements within Florida.

We compared FADE against baselines including LSTM [91], AGCRN [63], NDCN [92], CG-
ODE [93], STG-NCDE [4], PatchTST [94] and CDGON [90]. Following [90], we utilize multiple
evaluation metrics, including Mean Absolute Error (MAE), Normalized Root-Mean-Square Error
(NRMSE), and Coefficient of Determination (R2). As shown in Table 10, FADE achieves state-of-
the-art performance. This is a quintessential use case for FADE: the fractional operator enables long
memory, while the adaptive attention kernel allows dynamic weighing of recent disaster-related vs.
routine historical patterns. The model can down-weight pre-disaster commuting patterns during the
hurricane and re-integrate them during recovery.

I.2 Biological Neural Spike Train Dynamics

We next tested FADE on biological time-series data of neural spike trains from multiple animals
and brain regions. Neural systems are inherently history-dependent: the evolution of a neuron’s
membrane potential is influenced by prior inputs and spike events, and downstream firing patterns are
shaped by this accumulated temporal context. We tested the experimental results on spiking datasets
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Table 10: Average prediction error of different models on post-disaster urban mobility

Model MAE NRMSE R2

LSTM 302884.0938 0.6689 0.5526
AGCRN 273478.9062 0.5377 0.7109
NDCN 406064.2812 0.3987 0.8411
CG-ODE 224787.1250 0.2936 0.9138
STG-NCDE 226016.1562 0.6683 0.5533
PatchTST 96736.0547 0.1632 0.9734
CDGON 59767.4805 0.0724 0.9948
FADE (ours) 24040.9355 0.0506 0.9974

Allen and Retina [95]. The Allen dataset contains spike train data from various brain regions and
is designed to evaluate models for temporal and spatiotemporal neural activity classification. The
Retina dataset provides spike trains from salamander retinal ganglion cells under four visual stimuli
for stimulus-type classification. We compared FADE against baseline models, primarily including
LSTM and Neural ODE [2]. As Table 11 shows, FADE outperforms standard recurrent and neural
ODE models, highlighting its advantage in modeling nonlinear and temporally dependent neural
systems.

Table 11: Test Accuracy of different models on neuron spike train classification %

Dataset LSTM Neural ODE FADE (ours)

Allen 85.05 85.05 86.03
Retina 90.36 92.25 94.79

J Limitations and Broader Impact

Our key contribution is using a flexible kernel-attention fractional neural ODE that replaces fixed
power-law memory kernels in traditional fractional differential equations. This framework FADE
effectively unifies and extends integer-order, variable-order, and ψ-Caputo dynamics within a single
continuous-depth framework. At the same time, we have validated its effectiveness and applicability
across various real-world domains. However, there are some limitations of FADE. First, FADE is
based on a deterministic equation. In practice, we often need to handle stochastic data and outputs with
confidence intervals, which the current framework does not support. Second, the spatial interaction
(i.e., the spatial partial differential components) at a given time is not explicitly included in the
framework with direct incorporation of physical laws. To make FADE more generally applicable,
future work should explicitly include spatial interactions and consider stochastic models instead of a
purely deterministic formulation. From a broader societal perspective, FADE also carries potential
risks of misuse or unintended consequences, such as in the transportation field. Therefore, it is
essential to ensure that technological advancements lead to positive outcomes while keeping the
application of FADE aligned with social values and ethical standards.
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