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Abstract

Multimodal entity alignment (MMEA) inte-001
grates multi-source and cross-modal knowl-002
edge graphs, a crucial yet challenging task for003
data-centric applications. Traditional MMEA004
methods derive the visual embeddings of enti-005
ties and combine them with other modal data006
for alignment by embedding similarity compar-007
ison. However, these methods are hampered by008
the limited comprehension of visual attributes009
and deficiencies in realizing and bridging the010
semantics of multimodal data. To address011
these challenges, we propose MM-ChatAlign, a012
novel framework that utilizes the visual reason-013
ing abilities of MLLMs for MMEA. The frame-014
work features an embedding-based candidate015
collection module that adapts to various knowl-016
edge representation strategies, effectively fil-017
tering out irrelevant reasoning candidates. Ad-018
ditionally, a reasoning and rethinking module,019
powered by MLLMs, enhances alignment by ef-020
ficiently utilizing multimodal information. Ex-021
tensive experiments on four MMEA datasets022
demonstrate MM-ChatAlign’s superiority and023
underscore the significant potential of MLLMs024
in MMEA tasks. The source code is available025
at https://anonymous.4open.science/r/MMEA/.026

1 Introduction027

Multimodal entity alignment (MMEA) aligns028

equivalent entities across diverse multimodal029

knowledge graphs (MMKGs) (Zhu et al., 2022),030

playing a key role in synthesizing heterogeneous031

data for data-centric applications. Unlike tradi-032

tional entity alignment, MMEA necessitates the in-033

tegration of information across various modalities034

and MMKGs, thereby imposing higher demands035

on the visual reasoning ability of MMEA methods.036

Current representative MMEA methods (Liu037

et al., 2021; Lin et al., 2022; Zhu et al., 2023; Xu038

et al., 2023; Chen et al., 2023) mainly adopt knowl-039

edge representation learning (KRL) and measure040

the similarity of entity embeddings for MMEA.041

Figure 1: Comparison between the previous MMEA
and MM-ChatAlign.

As shown in Figure 1, these methods face critical 042

challenges. Firstly, their reliance on the represen- 043

tation learning approaches, which convert various 044

attributes of entities into embeddings respectively, 045

weakens the insight into underlying connections in 046

visual attributes. As shown in Figure 1, the left 047

image in ICEWS shows a scene of President Biden 048

talking to leaders from other countries, and the 049

right image in WIKI is a portrait of young Biden. 050

Although both images are related to Biden, they 051

have different embeddings for their contrasting rep- 052

resentation. Existing embedding-based MMEA 053

methods lack the visual reasoning capability to 054

explicitly recognize that two images represent vi- 055

sual attributes of Biden at different times. Sec- 056

ondly, high-quality MMEA demands the learning 057

of associations with visual, structural, literal, and 058

other information in MMKGs to achieve comple- 059

mentary information integration. However, dis- 060

crepancies in modal information within MMKGs 061

lead to cross-modal misalignment (Zheng et al., 062

2023), across different modalities may limit the ef- 063
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fectiveness of cross-modal information utilization064

achieved through feature fusion (Lin et al., 2022;065

Zhu et al., 2023; Xu et al., 2023; Chen et al., 2023).066

Multimodal large language models (MLLMs)067

have emerged as front-runners in comprehending068

visual information and integrating diverse modali-069

ties, especially in natural language generation and070

visual reasoning (Huang et al., 2023). These mod-071

els excel in deciphering the deep semantic infor-072

mation beyond the visual information, bringing073

a significant advantage to multimodal knowledge074

reasoning tasks (Huang et al., 2023). Crucially,075

the extensive background knowledge and advanced076

reasoning ability of MLLM open avenues for en-077

riching the entity information and bridging the se-078

mantic gap of various crossmodal attributes, show-079

casing their potential in adequately understanding080

and utilizing the breadth of multimodal data.081

In this paper, we propose MM-ChatAlign.082

Different from the representation learning-based083

MMEA paradigm of previous methods, this novel084

framework is designed to maximize the potential085

of MLLMs oriented to the MMEA task. MM-086

ChatAlign utilizes the entity set derived from087

embedding-based methods as candidates, enhanc-088

ing alignment accuracy through the visual rea-089

soning capabilities of MLLMs. The framework090

initially implements the MMKG-Code translation091

module to effectively represent MMKG in a code092

format (Yang et al., 2024) that is highly compatible093

with MLLMs, thus facilitating a better understand-094

ing of multi-modal information in the MMKG. Fur-095

thermore, MM-ChatAlign capitalizes on the back-096

ground knowledge and visual reasoning abilities097

of MLLMs by generating comprehensive descrip-098

tions for entities based on their images, names, and099

relational data, and reasons for alignment. The re-100

thinking phase evaluates the probabilities of entity101

pair alignment, revisits results, and potentially ex-102

pands the search scope via an iterative candidate103

collection process to ensure precise alignments. Ex-104

tensive experiment results over four representative105

MMEA datasets demonstrate the effectiveness of106

MM-ChatAlign and also highlight the feasibility of107

using MLLMs for the MMEA task.108

In general, our main contributions are as follows:109

(1) We introduce a new paradigm in MMEA by110

combining MLLMs with traditional embedding-111

based methods to leverage advanced multimodal112

reasoning and the extensive knowledge of MLLMs.113

(2) We design MM-ChatAlign, a framework that114

integrates MLLMs with KRL-based methods for115

enhancing the efficiency and accuracy of MMEA. 116

(3) We conduct experiments on four representa- 117

tive MMEA datasets to validate the effectiveness 118

of MM-ChatAlign and demonstrate the significant 119

potential of MLLMs in MMEA. 120

2 Methodology 121

In this paper, we propose the MM-ChatAlign, a ver- 122

satile plug-and-play MMEA framework that cap- 123

italizes on the advanced reasoning abilities and 124

background knowledge of MLLMs, while opti- 125

mizing both efficiency and accuracy. The overall 126

architecture of MM-ChatAlign is shown in Fig- 127

ure 2. The framework integrates an embedding- 128

based candidate collection module, configurable 129

across various KRL methods, designed to exclude 130

non-relevant candidates. Moreover, it features 131

a reasoning and rethinking module, powered by 132

MLLMs, that enhances alignment by effectively 133

leveraging multimodal information. 134

2.1 Task Formulation 135

Formally, the MMEA task refers to the process 136

of identifying correspondences between entities 137

across two different MMKGs, denoted as G1 = 138

(E1,V1,R1, T1) and G2 = (E2,V2,R2, T2). The 139

primary challenge in MMEA is to discover and 140

establish links between pairs of entities (e1, e2) 141

where e1 ∈ E1 and e2 ∈ E2, which are deemed to 142

be equivalent in the real-world context. This task 143

is intricate due to the necessity of integrating mul- 144

timodal data, especially the visual data contained 145

in V , to align entities between the MMKGs. 146

2.2 Embedding-based Candidate Collecting 147

To harness the strengths of embedding-based meth- 148

ods while incorporating the advanced capabilities 149

of MLLMs. MM-ChatAlign leverages its plug-and- 150

play capability to integrate seamlessly with exist- 151

ing embedding-based MMEA methods, such as 152

Simple-HHEA (Jiang et al., 2023) and XGEA (Xu 153

et al., 2023). The framework is further enhanced by 154

cross-modal matching techniques (Radford et al., 155

2021). Subsequently, it either directly generates 156

results or efficiently accumulates candidate entities. 157

This optimization is achieved through an iterative 158

process of candidate collection. 159

2.2.1 KRL-based Entity Embedding 160

This stage initializes entity embeddings as a com- 161

bination of the name, image, temporal, and struc- 162

tural features of the entity. Specifically, it utilizes 163
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Figure 2: The comprehensive framework of MM-ChatAlign, which is designed to efficiently harness the advanced
visual reasoning capabilities and intrinsic background knowledge of MLLMs.

BERT (Devlin et al., 2018) with a feature whitening164

transformation (Su et al., 2021) to obtain the entity165

name embedding {hname
n }Nn=1. The image features,166

denoted as {himg
n }Nn=1 , of entities are derived from167

the CLIP model (Radford et al., 2021). The frame-168

work encapsulates temporal characteristics with169

Time2Vec (Goel et al., 2020), which converts time170

into a learnable embedding {htime
n }Nn=1.171

The structural feature is integrated through a172

biased random walk (Wang et al., 2023) for precise173

one-hop and multi-hop relational modeling.174

Furthermore, considering the plug-and-play fea-175

ture of MM-ChatAlign, we have developed a vari-176

ant integrated with XGEA (Xu et al., 2023), which177

adopts the cross-modal graph attention mechanism178

with graph neural network to get the structural em-179

bedding hstruc of the entity. The culmination of180

these processes results in final embeddings that181

merge name, temporal, and structural features into182

a unified representation for entities, expressed as:183

{hmul
n }Nn=1 = {[hname

n ⊗ htime
n ⊗ hstrucn ]}Nn=1,

(1)184

where ⊗ denoted the concatenation operation. A185

detailed description of the KRL-based entity em-186

bedding can be found in Appendix A.3.187

The entity embedding is trained by employing188

margin ranking loss and cross-domain similarity189

local scaling (CSLS) (Conneau et al., 2017) for190

similarity measurement.191

2.2.2 Cross-modal Matching 192

During the candidate entity collection phase, 193

we employed the cross-modal retrieval model 194

CLIP (Radford et al., 2021) to expedite the com- 195

parison of cross-modal attributes between enti- 196

ties, taking into account efficiency considerations. 197

Given two entities, the cross-modal similarity 198

simCLIP is calculated by the maximum of image- 199

to-image, image-to-text, and text-to-image similar- 200

ities simi2i, simi2t, simt2i: 201

simCLIP = max
(
simi2i, simi2t, simt2i

)
(2) 202

In the context of MMKG, the max aggregation 203

mechanism facilitates effective cross-modal infor- 204

mation comparison even in instances where images 205

are compromised by noise or absent entirely. 206

Then, the entity similarity of the given entity 207

pairs is computed as follows: 208

sim = (1− α) · simembed + α · simCLIP , (3) 209

where simembed represents the similarity based on 210

the entity embeddings, α is the hyper-parameter to 211

balance the importance between the simembed and 212

simCLIP , and these combined similarity measures 213

are used for ranking the candidate entities. 214

2.3 MLLM-based Reasoning and Rethinking 215

To efficiently utilize the vast background knowl- 216

edge and visual reasoning abilities of MLLMs, we 217
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have integrated a multimodal reasoning module218

based on MLLM within the MM-ChatAlign frame-219

work, as depicted in the lower section of Figure 2.220

Given the target entity el, the framework first221

gathers the potential entities as candidates by lever-222

aging the similarity metric sim(el, {hrn}Nn=1). the223

MLLM is utilized for subsequent inference if the224

discrepancy in normalized similarity scores be-225

tween the top two ranked candidates denoted as226

simembed(el, er1)− simembed(el, er2), falls below227

a predetermined threshold β. This approach en-228

sures that MLLM is used only when necessary,229

enhancing both efficiency and accuracy to produce230

entity candidate list cand = {er1 , er2 , ...}.231

After selecting candidates, MM-ChatAlign con-232

ducts MMKG-Code translation and two-stage Rea-233

soning & Rethinking. Based on prompt engineer-234

ing, the MLLM estimates the alignment probability235

of entity pairs and decides whether to continue236

searching for additional candidates. The detailed237

pseudo-code is illustrated in Algorithm 1.238

Algorithm 1 MLLM-based Reasoning and Rethinking

Input: The KG pair to be aligned {KG1, KG2}
Output: Aligned entity pairs C

1: //Embedding-based Candidate Collecting
2: simembed← KRL-BASED ENTITY EMBEDDING(KG1,
KG2)

3: simCLIP ← CROSS MODAL MATCHING(KG1, KG2,
CLIP)

4: sim← (1− α) · simembed + α · simCLIP

5: if sim(el, er1) > β then Aligned entity pairs C ←
(el, er1)

6: else //MLLM-based Reasoning and Rethinking
7: for scope← {1, 10, 20} do
8: cand← COLLECT CANDIDATES(sim, scope)
9: align pair← REASONING(cand, KG1, KG2)

10: isSatisfied← RETHINKING(align pair)
11: if isSatisfied then
12: Aligned entity pairs C ← align pair
13: break
14: end if
15: end for
16: end if
17: return Aligned entity pairs C

2.3.1 MMKG-Code translation239

To represent MMKGs in a format that MLLMs240

can comprehend the visual information and other241

modalities. The MMKG-Code translation module242

of MM-ChatAlign plays a pivotal role, which has243

validated the effectiveness of MLLM for under-244

standing the MMKG (Yang et al., 2024) and im-245

proving the compatibility of MMKG with MLLMs.246

This module operates by encoding various modali-247

ties of the MMKG, such as entities, relations, and248

visual attributes into a structured code representa- 249

tion through the system prompt. 250

As shown in the MMKG-Code Translation 251

part in Figure 2, The __init__() function en- 252

ables MLLMs to process entity name, id, vi- 253

sual, and tuple information as input. Given an 254

entity, the get_neighbors(), get_relations(), 255

and get_temporal() functions enable MLLMs to 256

understand neighborhoods, relations, and temporal 257

information about entities in MMKGs. 258

2.3.2 Stage 1: Reasoning 259

The reasoning phase is designed to harness the 260

comprehensive background knowledge and visual 261

reasoning capabilities of MLLMs. As shown in 262

Figure 2, different from the cross-modal matching, 263

we first use MLLM to generate entity descriptions 264

by meticulously extracting the pivotal semantic 265

features in the image. Then we use the carefully 266

designed prompt template to generate textual de- 267

scriptions of entities based on the given images, 268

entity names and tuples with the help of the rich 269

knowledge from MLLM. 270

Subsequently, the MLLM conducts an in-context 271

learning procedure to compute alignment probabil- 272

ities between the target entity and its candidates. It 273

comprehensively considers a diverse set of features 274

for each entity pair at each step, including names, 275

images, temporal and structural information, and 276

generated descriptions by the MLLM. During this 277

reasoning phase, the MLLM assesses the alignment 278

scores for each candidate entity and re-ranks them 279

according to their probability of correct alignment, 280

thereby optimizing the candidate order to achieve 281

more accurate alignments. 282

2.3.3 Stage 2: Rethinking 283

The MLLM scores the current MMEA results from 284

the similarities of entity pairs within 4 dimensions: 285

name, description, structure, and image, and crit- 286

ically evaluates all dimensions together. If the re- 287

sults are not unsatisfactory, it will restart the candi- 288

date collection stage to re-evaluate the alignments 289

with more candidate entities (e.g., 1, 10, 20). This 290

iterative refinement of the candidate list can en- 291

sure that all possible alignments are evaluated and 292

improve the efficiency of reasoning. 293

3 Experiments 294

In this section, we conduct extensive experiments 295

to evaluate the effectiveness of MM-ChatAlign in 296
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MMEA tasks. Our investigation focuses on two297

key research questions:298

• RQ1: How does MM-ChatAlign perform in299

MMEA, and what is the impact of each compo-300

nent? We aim to assess the overall performance301

of the framework and the contributions of each302

module to understand their utility.303

• RQ2: Does MM-ChatAlign balance accuracy304

with efficiency in MMEA? This question ex-305

plores the capability of MM-ChatAlign to deliver306

high accuracy while maintaining efficiency.307

Considering the above research questions, we308

aim to provide comprehensive evaluations of MM-309

ChatAlign, highlighting its abilities for MMEA.310

3.1 Datasets311

We first conduct experiments on two bench-312

mark MMEA datasets, DBP15K(EN-FR) and FB-313

YAGO (Sun et al., 2020; Liu et al., 2021). These314

datasets have been widely used in previous MMEA315

works, Furthermore, we extend the ICEWS-WIKI316

and ICEWS-YAGO datasets (Jiang et al., 2023) to317

multi-modal versions. These versions are specifi-318

cally crafted to address the more demanding chal-319

lenges of practical MMEA. They showcase signifi-320

cant heterogeneity between MMKG pairs, which is321

evident in the variance in their structural and other322

modality features. For the dataset construction, we323

use entity images from Google Image Search for324

ICEWS. For WIKI and YAGO, we retrieve top-3325

relevant images from their Wikipedia pages. All326

images are manually verified to ensure quality and327

relevance. The detailed statistics of datasets are328

summarized in Appendix A.2.329

3.2 Baselines330

For a fair and comprehensive evaluation, we select331

12 state-of-the-art methods and categorize these332

into three groups: Single, Visual, and Literal.333

Single methods only utilize the structural infor-334

mation within MMKGs, including MTransE (Chen335

et al., 2017), BootEA (Sun et al., 2018), GCN-336

Align (Wang et al., 2018), and Dual-AMN (Mao337

et al., 2021). Visual methods enhance entity338

representations with images of entities, includ-339

ing EVA (Liu et al., 2021), MCLEA (Lin et al.,340

2022), MEAformer (Chen et al., 2023), XGEA (Xu341

et al., 2023), and MMIEA (Zhu et al., 2023). Lit-342

eral methods introduce entity names as supple-343

mentary features, including RDGCN (Chen et al.,344

2022), Dual-AMN (Mao et al., 2021), TEA (Zhao 345

et al., 2023), BERT-INT (Devlin et al., 2018), 346

MEAformer (Chen et al., 2023), XGEA (Xu et al., 347

2023), and MMIEA (Zhu et al., 2023). 348

To compare the impacts of different embedding- 349

based methods, we have established two versions 350

of MM-ChatAlign: MM-ChatAlign∗ refers to the 351

version that incorporates XGEA as its base, while 352

MM-ChatAlign uses Simple-HHEA as its base. To 353

ensure fair comparisons and to accommodate the 354

diverse modalities utilized by various methods, we 355

make specific adaptations in our approach. In the 356

visual track, MM-ChatAlign leverages structural 357

and visual information. Meanwhile, in the Literal 358

track, MM-ChatAlign additionally incorporates en- 359

tity name information. 360

3.3 Experiment Settings 361

In our experiment setup, we utilized GPT-4V (Yang 362

et al., 2023) for visual reasoning and LLAMA2- 363

70b-Chat (Touvron et al., 2023) for entity align- 364

ment during the MLLM selection stage. Ablation 365

studies were conducted using various LLMs as 366

shown in Table 3. Data was split in a 3:7 ratio 367

for training and testing. For image and name em- 368

beddings, we employed CLIP (Radford et al., 2021) 369

and BERT (Su et al., 2021), respectively. The eval- 370

uation metrics used were Hits@k (for k = 1, 10) 371

and Mean Reciprocal Rank (MRR). Detailed con- 372

figurations are available in Appendix A.4. 373

3.4 Main Experiment Results 374

In response to RQ1, in our main experiments, as 375

detailed in Table 1, we evaluate the performance 376

of MM-ChatAlign from two versions: visual and 377

literal, across the four datasets. 378

In the visual category, which only allows meth- 379

ods to leverage the structural and visual fea- 380

tures, MM-ChatAlign demonstrates superior per- 381

formance compared to other leading methods. 382

For instance, on the DBP15K(EN-FR) and FB- 383

YAGO datasets, MM-ChatAlign achieves a remark- 384

able Hits@1 score of 0.940 and 0.680, which is 385

a notable improvement over XGEA, the runner- 386

up method with a Hits@1 score of 0.889 and 387

0.616. This represents 5.7% and 6.4% increases 388

in performance. Similarly, in two challenging 389

datasets(ICEWS-WIKI and ICEWS-YAGO), MM- 390

ChatAlign scored a Hits@1 of 0.430 and 0.415, 391

significantly surpassing the next-highest score of 392

0.263 and 0.302 on Hits@1, marking a substantial 393

16.7% and 11.3% improvement. This trend of out- 394
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Models DBP15K(EN-FR) FB-YAGO15K ICEWS-WIKI ICEWS-YAGO
Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

Si
ng

le

MTransE 0.247 0.577 0.360 0.003 0.017 0.011 0.021 0.158 0.068 0.012 0.084 0.040
BootEA 0.653 0.874 0.731 0.323 0.579 0.410 0.072 0.275 0.139 0.020 0.120 0.056

GCN-Align 0.411 0.772 0.530 0.023 0.107 0.053 0.046 0.184 0.093 0.017 0.085 0.038
Dual-AMN 0.840 0.965 0.888 0.403 0.662 0.499 0.077 0.285 0.143 0.032 0.147 0.069

V
is

ua
l

EVA 0.793 0.942 0.847 0.171 0.417 0.260 0.081 0.203 0.119 0.019 0.075 0.038
MCLEA 0.834 0.975 0.885 0.388 0.641 0.474 0.253 0.494 0.336 0.231 0.412 0.295
XGEA 0.889 0.981 0.924 0.616 0.794 0.679 0.170 0.277 0.207 0.142 0.250 0.180

MMIEA 0.830 0.962 0.870 0.536 0.712 0.599 0.263 0.523 0.350 0.302 0.573 0.396
MEAformer 0.845 0.976 0.894 0.444 0.692 0.529 0.246 0.470 0.321 0.192 0.352 0.247

MM-ChatAlign∗ 0.940 0.999 0.952 0.680 0.915 0.910 0.430 0.930 0.548 0.415 0.630 0.479

L
ite

ra
l

RDGCN 0.873 0.950 0.901 0.466 0.708 0.549 0.064 0.202 0.096 0.029 0.097 0.042
Dual-AMN 0.954 0.994 0.970 0.540 0.711 0.607 0.083 0.281 0.145 0.031 0.144 0.068

TEA 0.987 0.996 0.990 0.612 0.770 0.730 0.610 0.894 0.718 0.657 0.891 0.740
BERT-INT 0.990 0.997 0.993 0.678 0.797 0.780 0.561 0.700 0.607 0.756 0.859 0.793

XGEA 0.991 1.000 0.996 0.835 0.915 0.869 0.549 0.628 0.575 0.314 0.421 0.351
MMIEA 0.992 0.997 0.994 0.793 0.830 0.809 0.562 0.716 0.616 0.745 0.857 0.787

MEAformer 0.996 1.000 0.998 0.748 0.887 0.798 0.644 0.842 0.713 0.698 0.878 0.762
Simple-HHEA 0.959 0.995 0.972 0.735 0.835 0.776 0.720 0.872 0.754 0.847 0.915 0.870

MM-ChatAlign∗ 0.995 1.000 0.996 0.880 0.915 0.896 0.650 0.700 0.669 0.535 0.570 0.554
MM-ChatAlign 0.965 1.000 0.977 0.795 0.845 0.819 0.945 0.966 0.948 0.930 0.965 0.943

Table 1: Main experiment results on the four datasets. Bold: the best result; Underline: the runner-up result.

performance by MM-ChatAlign demonstrates its395

robust capability in integrating visual reasoning.396

In the literal category, which extra allows397

methods to leverage the entity name fea-398

ture, MM-ChatAlign also excels other methods.399

On DBP15K(EN-FR) and FB-YAGO15K, MM-400

ChatAlign achieves a remarkable Hits@1 score of401

0.990 and 0.880, which is competitive with the402

best baseline method. In the ICEWS-WIKI and403

ICEWS-YAGO datasets, MM-ChatAlign achieves404

a remarkable Hits@1 score of 0.945 and 0.920,405

significantly outperforming the score of the best406

baseline method (0.720 and 0.847) with 22.5% and407

8.6%. This superior performance indicates profi-408

ciency of MM-ChatAlign in leveraging both visual409

and name information.410

Notably, both MM-ChatAlign and MM-411

ChatAlign∗ have demonstrated enhancements412

over their base models. These improvements413

are particularly pronounced in both visual and414

literal tracks, emphasizing the effectiveness of415

MM-ChatAlign. The enhancements observed in416

the ICEWS-WIKI and ICEWS-YAGO datasets417

underscore MM-ChatAlign’s versatility in han-418

dling complex scenarios across diverse settings.419

The notable performance gains in these modalities420

affirm the successful integration of MLLMs,421

effectively bridging the gap between different422

types of modality representations.423

Settings ICEWS-WIKI ICEWS-YAGO

Hits@1 MRR Hits@1 MRR

MM-ChatAlign 0.945 0.948 0.930 0.943
- w/o mllm reasoning 0.735 0.789 0.840 0.872
- w/o name 0.430 0.548 0.415 0.479
- w/o image 0.915 0.924 0.905 0.938
- w/o structure 0.925 0.942 0.885 0.902
- w/o temporal 0.875 0.896 0.895 0.911
- w/o code 0.885 0.897 0.845 0.890
- w/o description 0.870 0.881 0.810 0.881
- w/o clip 0.920 0.929 0.910 0.930

Table 2: Ablation study of MM-ChatAlign.

3.5 Ablation Study 424

To assess the contribution of each component in 425

MM-ChatAlign, we conduct ablation studies on the 426

ICEWS-WIKI and ICEWS-YAGO datasets. These 427

studies aim to determine the individual benefits 428

of components in MM-ChatAlign and investigate 429

their influence on the base MLLM’s performance. 430

The results are presented in Table 2. 431

3.5.1 Effectiveness of Each Component 432

To evaluate the impact of MLLMs, MM-ChatAlign 433

(w/o mllm reasoning) erases the MLLM compo- 434

nent, depending exclusively on entity embeddings 435

and cross-modal matching for MMEA. Compared 436

to this, MM-ChatAlign demonstrates substantial 437

performance improvements (with increases of 19% 438

and 9% in Hits@1), which underscores the crucial 439

contribution of MLLMs in the MMEA task. 440
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Figure 3: Performance comparison over different LLMs.

To determine the efficacy of MM-ChatAlign in441

utilizing name, image, and structure information,442

four variations are tested: MM-ChatAlign (w/o443

name, w/o image, w/o structure, and w/o temporal),444

excluding the corresponding features, respectively.445

In MM-ChatAlign (w/o code), the MMKG-Code446

translation module is substituted with the direct447

input of entity names and tuples to the LLM. This448

change leads to a notable reduction in performance,449

thereby affirming the effective role of the MMKG-450

Code translation module in aiding the LLM to com-451

prehend MMKGs effectively.452

MM-ChatAlign (w/o description) excludes entity453

descriptions and also shows a performance decline.454

This result indicates that generating entity descrip-455

tions using the MLLM’s visual reasoning ability456

and background knowledge effectively harnesses457

visual and contextual information about entities.458

In MM-ChatAlign (w/o clip), the CLIP is substi-459

tuted with the direct entity embedding for candidate460

selection, the drop in the performance compared461

with the original version demonstrated the contri-462

bution of cross-modal matching.463

In summary, this ablation study demonstrates464

how MM-ChatAlign capitalizes on MLLMs for465

MMEA. Additionally, it underscores the impor-466

tance of leveraging the MLLM’s extensive back-467

ground knowledge for effective MMEA.468

3.5.2 Influence Over Different LLMs469

Considering the versatile compatibility of MM-470

ChatAlign with diverse LLMs during the reason-471

ing and rethinking phase, this study focuses on472

evaluating the effect of various LLMs on their473

performance as depicted in Figure 3. The results474

show that MM-ChatAlign integrated with GPT-4V475

achieves the best performance, which can be at-476

tributed to the advanced capability of GPT-4V in477

boosting the framework’s effectiveness. Addition-478

ally, MM-ChatAligns with LLAMA2 at varying479

scales (13b, 70b) disclose a direct relationship be-480

Figure 4: Performance improvement of MM-ChatAlign
compared with the embedding-based method.

tween the model size and effectiveness of MM- 481

ChatAlign. The performance of LLAMA2-13b ex- 482

hibits a considerable reduction, suggesting a reeval- 483

uation of the constraints posed by smaller-scale 484

models in MMEA. This decline is evident in short- 485

comings related to reasoning and output formatting. 486

3.5.3 Influence Over Embedding Methods 487

Initially, through the analysis presented earlier, the 488

main experiments examining the integration of 489

MM-ChatAlign with XGEA and Simple-HHEA 490

demonstrated significant performance improve- 491

ments. Additionally, the ablation studies, which 492

involved removing the MLLM reasoning compo- 493

nent, have broadly confirmed that incorporating 494

MLLM significantly enhances performance across 495

different embedding-based MMEA methods. 496

To investigate whether introducing MLLMs into 497

MM-ChatAlign can enhance the performance over 498

traditional MMEA methods with varying quali- 499

ties of entity embeddings, we designed experi- 500

ments involving embedding noise. In these ex- 501

periments, random noise is injected into the di- 502

mensions of entity embeddings learned by MMEA 503

methods (i.e., Simple-HHEA), at ratios varying 504

from 0% to 60%. We chose Simple-HHEA as 505

the base to observe the performance improvement 506

brought by integrating MM-ChatAlign under vari- 507

ous embedding conditions. As shown in Figure 4, 508

as the noise ratio increases, the performance of 509

Simple-HHEA declines sharply, but the proportion 510

of performance improvement brought by introduc- 511

ing MM-ChatAlign expands, validating the effec- 512

tiveness and adaptability of MM-ChatAlign. 513

3.6 Case Study 514

In assessing the capabilities of our MM-ChatAlign, 515

we explore a case study from our experimental 516

evaluations. As illustrated in Figure 5, traditional 517

MMEA methods, which primarily depend on en- 518

tity embeddings, often lead to inaccuracies due to 519
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the misalignment of similar images, structures, and520

other modal information of entities. This is evident521

in their erroneous alignment of Joseph Robinette522

Biden Jr. with wrong case Hunter_Biden. In con-523

trast, MM-ChatAlign, as depicted in the reasoning524

process in Figure 5, initially utilizes MLLM to gen-525

erate integrated entity descriptions, incorporating526

images and other multimodal data. This approach527

effectively addresses the information loss typically528

associated with compressing images into embed-529

dings and capitalizes on the contextual knowledge530

in MLLMs. Subsequently, MM-ChatAlign exe-531

cutes a step-by-step reasoning process, synthesiz-532

ing information across various dimensions related533

to the entity. It not only results in the correct align-534

ment of Joseph Robinette Biden Jr. with Joe_Biden,535

but also enhances explainability. The case exempli-536

fies how MM-ChatAlign effectively leverages the537

MLLMs to achieve accurate and reliable MMEA.538

Figure 5: The case study of MM-ChatAlign, which over-
comes the inaccuracies of traditional MMEA methods
by integrating multimodal data with MLLMs.

3.7 Efficiency Analysis539

In response to RQ2, we discuss how MM-540

ChatAlign optimizes efficiency while maintaining541

MMEA accuracy. To optimize efficiency while542

maintaining accuracy, MM-ChatAlign implements543

a three-round iterative candidate collecting, intri-544

cately tailored to adapt to the complexities of dif-545

ferent datasets. As illustrated in Figure 6, with546

simpler datasets where neural methods perform bet-547

ter (i.e., DBP15K(EN-FR) and FB-YAGO), MM-548

ChatAlign tends to converge faster, leading to bet-549

ter utilization of resources and higher efficiency.550

Conversely, for more challenging datasets like551

ICEWS-WIKI/YAGO, the framework inclines to-552

wards collecting more candidates and conducting553

thorough analyses across additional iterations. This554

adaptive methodology guarantees the maintenance555

of accuracy while optimizing resource utilization.556

Additionally, the comparison between the original557

Figure 6: Proportions of iteration rounds of MM-
ChatAlign’s two-stage reasoning on different datasets.

Settings ICEWS-WIKI ICEWS-YAGO

avg.tokens avg.time avg.tokens avg.time

- w/ llama2-70b 13,162 84.5 7,276 50.6
- w/ llama2-13b 41,178 112.3 23,118 77.7
- w/ gpt-3.5 15,101 11.9 15,124 13.0
- w/ gpt-4 9,275 69.8 8,644 65.3
- w/o two-stage 62,825 403.3 54,403 378.1

Table 3: Efficiency analysis of MM-ChatAlign.
avg.tokens and avg.time respectively denote the average
tokens and time (seconds) cost per sample.

MM-ChatAlign and the w/o two-stage variant in 558

Table 3 also demonstrates the superiority of the 559

two-stage strategy in conserving over 80% comput- 560

ing resources and time consumption. Furthermore, 561

MM-ChatAlign is adaptive to different MLLMs, 562

which positions it to benefit from the ongoing evo- 563

lution of MLLMs. Given the efficiency challenges 564

associated with current MLLMs, from the perspec- 565

tive of application scenarios, MM-ChatAlign is 566

now suitable for settings where accuracy in MMEA 567

is crucial, often prioritizing result reliability over 568

speed. However, as the efficiency of LLM im- 569

proves, MM-ChatAlign’s efficiency and accuracy 570

are expected to enhance correspondingly, as evi- 571

denced in Figure 3 and 6. 572

4 Conclusion 573

This study introduces MM-ChatAlign, an innova- 574

tive framework for MMEA that leverages the ad- 575

vanced capabilities of MLLMs. By incorporating 576

a code-type transformation module for MMKGs 577

and a two-stage multimodal reasoning process, the 578

method realizes the efficient and effective MMEA. 579

Our experimental results not only validate MM- 580

ChatAlign’s superior performance on newly devel- 581

oped MMEA datasets and classical datasets but 582

also highlight the tremendous potential of MLLMs 583

in challenging MMEA tasks. Future work will 584

continue to focus on optimizing efficiency, further 585

unleashing the potential of MLLM in MMEA. 586
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5 Limitations587

Despite MM-ChatAlign’s high accuracy in MMEA588

through innovative architecture and LLM integra-589

tion, its application may be limited by substan-590

tial resource consumption and slow LLM infer-591

ence speeds, posing challenges in time-sensitive592

or resource-limited environments. While enhance-593

ments in the methodology have improved the bal-594

ance between precision and efficiency, further ad-595

vancements such as model distillation are necessary.596

Additionally, the system’s reduced effectiveness597

with smaller-scale models highlights the need for598

future iterations to explore techniques like sparse599

fine-tuning (SFT), enabling efficient performance600

without reliance on large model sizes.601

6 Ethics Statement602

To the best of our knowledge, this work does not603

involve any discrimination, social bias, or private604

data. All the datasets are constructed from open-605

source KGs such as Wikidata, YAGO, ICEWS, and606

DBpedia. Therefore, we believe that our study607

complies with the ACL Ethics Policy.608
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A Appendix764

A.1 Related Works of Entity Alignment765

Entity alignment (EA) has historically seen diverse766

methodologies. Translation-based methods such767

as MTransE (Chen et al., 2017), and BootEA (Sun768

et al., 2018), based on the TransE framework (Bor-769

des et al., 2013), excel in knowledge representation770

by embedding entities and relations. Graph Neural771

Network (GNN) (Kipf and Welling, 2016) based772

methods, such as GCN-Align (Wang et al., 2018),773

RDGCN (Chen et al., 2022), and Dual-AMN (Mao774

et al., 2021), leverage neighborhood aggregation775

mechanism for modeling structural information.776

Other methods, such as BERT-INT (Tang et al.,777

2020), TEA (Zhao et al., 2023), AttrGNN (Liu778

et al., 2020), SDEA (Zhong et al., 2022), address779

KG heterogeneity using multi-view information.780

Multimodal entity alignment (MMEA) extends781

EA to multimodal domains, which is more chal-782

lenging due to the request of modeling visual in-783

formation of entities. Current MMEA methods784

primarily employ representation learning models785

to calculate similarities between entity embed-786

dings based on multiple modalities, EVA (Liu787

et al., 2021) leverages visual similarities for pre-788

alignment and introduces a multimodal fusion mod-789

ule. MCLEA (Lin et al., 2022) and XGEA (Xu790

et al., 2023) capture cross-modal relationships for791

measuring entity similarity. MMIEA (Zhu et al.,792

2023) extends the BERT-INT to suit the MMEA793

task. MEAformer (Chen et al., 2023) proposes794

an attention mechanism that dynamically fosters795

modality preferences adaptable to entities.796

Despite their widespread adoption, these meth-797

ods heavily rely on the quality of input MMKG data798

and entity embeddings derived from knowledge799

representation learning (KRL). This phenomenon800

becomes a bottleneck, particularly evident in han-801

dling more challenging but practical EA scenar-802

ios (Jiang et al., 2023). Besides, MMKG-derived803

modal representations limit their ability to lever-804

age visual comprehension and broader background805

knowledge, underscoring the need for more ad-806

vanced MMEA methods. Consequently, there is a807

growing interest in exploring new paradigms for808

MMKG tasks, with MLLMs emerging as a promis-809

ing supplement. Leveraging extensive parametric810

knowledge and visual reasoning abilities, MLLMs811

offer potential solutions to overcome the limitations812

of previous methods, processing MMKGs without813

solely relying on KRL.814

A.2 Detailed Statistics of the MMEA datasets 815

The detailed statistics of the four MMEA datasets 816

in our experiments are shown in Table 4 817

A.3 Detailed KRL-based Entity Embedding 818

This stage initializes entity embeddings as a com- 819

bination of the name, image, temporal, and struc- 820

tural features of the entity. Specifically, it utilizes 821

BERT (Devlin et al., 2018) with a feature whitening 822

transformation (Su et al., 2021) to obtain the entity 823

name embedding {hname
n }Nn=1. The image features, 824

denoted as {himg
n }Nn=1 , of entities are derived from 825

the CLIP model (Radford et al., 2021). The frame- 826

work encapsulates temporal characteristics with 827

Time2Vec (Goel et al., 2020), which converts time 828

into a learnable embedding {htime
n }Nn=1. 829

Furthermore, the structural feature is integrated 830

through a biased random walk (Wang et al., 831

2023) for precise one-hop and multi-hop rela- 832

tional modeling. Let ej represent the node se- 833

lected at the j-th step of random walks, and de- 834

fine (e1, r1, e2, . . . , ej−1, rj−1, ej) as the path gen- 835

erated during this process. The selection probabil- 836

ity of an entity is as follows: 837

Pr (ej+1 | ej) =

{
β, d (ej−1, ej+1) = 2

1− β, d (ej−1, ej+1) = 1
, ej+1 ∈ Nej

−,

(4) 838

where Nej
− denotes the set of 1-hop neighbors 839

Nej of entity ej , excluding ej−1. d (ej−1, ej+1) 840

denotes the shortest path length between ej−1 and 841

ej+1. Here, β ∈ (0, 1) is a hyper-parameter that 842

balances BFS and DFS search strategies (Wang 843

et al., 2023). Then, the Skip-gram SkipGram(·) 844

is adopted to learn entity embeddings {hstrucn }Nn=1 845

based on the generated random walk paths. 846

Furthermore, considering the plug-and-play fea- 847

ture of our proposed framework, we have devel- 848

oped a variant integrated with XGEA (Xu et al., 849

2023), which adopts the cross-modal graph atten- 850

tion mechanism with graph neural network, ex- 851

pressed as: 852

hl+1
et ← AGG

∀(es,r,et)∈Q
(ATT(hl

es , h
l
r, h

l
et) · MSG (hl

es , h
l
et)),

(5)
853

where hl+1
et denotes the learned entity embed- 854

dings of et at layer l, MSG, ATT, and AGG denote 855

message passing, cross-modal attention, aggrega- 856

tion, and self-loop mechanism of XGEA (Xu et al., 857

2023), respectively. Finally, the output from the fi- 858
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Dataset #Entities #Relations #Facts Density #Anchors Image Temporal

DBP15K(EN-FR) EN 15,000 193 96,318 6.421
15,000

15,000 No
FR 15,000 166 80,112 5.341 15,000 No

FB-YAGO15K FB 14,951 1345 592,213 39.481
11,199

13,444 No
YAGO 15,404 32 122,886 8.192 11,194 No

ICEWS-WIKI(V) ICEWS 11,047 272 3,527,881 319.352
5,058

33,141 Yes
WIKI 15,896 226 198,257 12.472 47,688 Yes

ICEWS-YAGO(V) ICEWS 26,863 272 4,192,555 156.072
18,824

80,589 Yes
YAGO 22,734 41 107,118 4.712 68,202 Yes

Table 4: The detailed statistics of the datasets. Temporal denotes whether the dataset contains temporal information.

nal layer is used as the structural embedding hstruc859

of the entity.860

The culmination of these processes results in fi-
nal embeddings that merge name, temporal, and
structural features into a unified multi-view repre-
sentation for each entity, expressed as:

{hmul
n }Nn=1 = {[hname

n ⊗ htime
n ⊗ hstrucn ]}Nn=1,

where ⊗ denoted the concatenation operation.861

A.4 Detailed Experiment Settings862

A.4.1 Model Configuration863

For LLM selection, during the candidate collecting864

stage, we adopt CLIP (Radford et al., 2021) to865

realize cross-modal retrieval.866

For MLLM selection, during the reasoning &867

rethinking stage, we choose GPT-4V (Yang et al.,868

2023) to generate descriptions for visual reasoning869

of entities based on the given images and MLLM’s870

background knowledge. Then, we adopt the open-871

source LLAMA2-70b-Chat (Touvron et al., 2023)872

for aligning entities. We also validate other repre-873

sentative LLMs (i.e., directly adopt GPT-4V) for874

MMEA in ablation studies 3. To ensure fairness in875

our evaluation, baseline models are configured ac-876

cording to their original hyper-parameter settings,877

except for setting hidden dimensions of the learned878

entity embedding to 64. Through extensive experi-879

mentation, we respectively set the hyper-parameter880

α and β to 0.3 and 0.2 to achieve optimal perfor-881

mance. Datasets are split following a 3:7 ratio882

for training and testing, respectively, and identical883

preprocessing steps were applied to all models for884

initial feature. The experiments are conducted with885

four 40GB NVIDIA A100 GPUs.886

A.4.2 Initial Feature Setup887

For a fair comparison, all image embeddings are ob-888

tained by CLIP (Radford et al., 2021). All MMEA889

models that utilize entity names share the same890

name embeddings. For DBP15K(EN-FR), we ob- 891

tain entity names using machine translation. For 892

FB-YAGO, we map the IDs of Freebase and YAGO 893

into entity names. For ICEWS-WIKI/YAGO, we 894

use the original entity names. After that, we em- 895

ploy BERT (Su et al., 2021) to obtain the name 896

embeddings. Structure-based MMEA methods that 897

do not utilize entity name information were ini- 898

tialized according to their original method-specific 899

configurations. This process involved the random 900

initialization of embeddings. 901

A.4.3 Evaluation Metrics 902

In line with standard practices in prior MMEA 903

research, we use two metrics for evaluation: (1) 904

Hits@k, measuring the percentage of correct entity 905

alignments within the top k (k = 1, 10) matches. 906

(2) Mean Reciprocal Rank (MRR), reflecting the 907

average inverse ranking of correct results. Higher 908

values in both Hits@k and MRR indicate better 909

MMEA performance. 910

A.5 Detailed prompts of MM-ChatAlign 911

In this section, we illustrate the prompts of MM- 912

ChatAlign in Table, 5, 6, 7, and 8. 913

A.6 Details about the Case Study of 914

MM-ChatAlign 915

The details of the Case Study of MM-ChatAlign, 916

including input prompt and model output, are illus- 917

trated in Table 9 and 10. 918
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Table 5: Prompt for getting descriptions

Prompt for getting descriptions

Given following informations: 1.[Entity] {{ Name }}; 2.[Knowledge Tuples] = {{ Tuples }}; 3.IMAGES
related to [Entity]. Please answer the question:

[Question]: What is {{ Name }}? Please give a two-sentence brief introduction. The first sentence is to
simply describe what is {{ Name }}, combining the identity features in IMAGES. The second sentence
is to give additional description about {{ Name }} based on IMAGES, [Knowledge Tuples] and YOUR
OWN KNOWLEDGE. Give [answer] strictly in format: [Entity] is ......

[answer]:

Table 6: Prompt for rethinking

Prompt for rethinking

Now given the following entity alignments:
[Main Entity]: {{ Name }} -> {{ Align Pairs }}

Please answer the question: Do these entity alignments are satisfactory enough ([YES] or [NO])?

Answer [YES] if they are relatively satisfactory, which means the alignment score of the top-ranked
candidate meet the threshold, and is far higher than others; otherwise, answer [NO] which means we must
search other candidate entities to match with [Main Entity].

NOTICE, Just answer [YES] or [NO]. Your reasoning process should follow [EXAMPLE]s:

{{ Examples }}

Just directly answer [YES] or [NO], don’t give other text.
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Table 7: Prompt for reasoning

Prompt for reasoning

Now given [Main Entity] l_e = Entity( {{ ID, Name and Tuples }} ), and [Candidate Entity] r_e = Entity(
{{ ID, Name and Tuples }} ),

- Do [Main Entity] and [Candidate Entity] align or match? Think of the answer STEP BY STEP with
name, description, structure, time, YOUR OWN KNOWLEDGE:

Step 1, think of [NAME SIMILARITY] = A out of 5, using self.entity_name.

Step 2, think of [PROBABILITY OF DESCRIPTION POINTING SAME ENTITY] = B out of 5, using
get_description() and YOUR OWN KNOWLEDGE.

Step 3, think of [STRUCTURE SIMILARITY] = C out of 5, using self.tuples, get_neighbors() and
get_relation_information().

Step 4, think of [IMAGE SIMILARITY] = D out of 5, using self.images.

Step 5, think of [TIME SIMILARITY] = E out of 5, using get_time_information().

NOTICE, the information provided above is not sufficient, so use YOUR OWN KNOWLEDGE to
complete them.

Output answer strictly in format: [NAME SIMILARITY] = A out of 5, [PROBABILITY OF DESCRIP-
TION POINTING SAME ENTITY] = B out of 5, [STRUCTURE SIMILARITY] = C out of 5, [IMAGE
SIMILARITY] = D out of 5, [TIME SIMILARITY] = E out of 5.
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Table 8: Prompt for MMKG-Code translation, which is also the system prompt.

Prompt for MMKG-Code translation

A Knowledge Graph Entity is defined as follows:

Class Entity:
def __init__(self, name, id, tuples=[], images=[]):

self.entity_name = name
self.entity_id = id
self.tuples = tuples
self.images = images

def get_neighbors(self):
neighbors = set()
for head_entity, _, tail_entity, _, _ in self.tuples:

if head_entity == self.entity_name:
neighbors.add(tail_entity)

else:
neighbors.add(head_entity)

return list(neighbors)
def get_relation_information(self):

relation_info = []
for _, relation, _, _, _ in self.tuples:

relation_info.append(relation)
return relation_info

def get_time_information(self):
time_info = []
for _, _, _, start_time, end_time in self.tuples:

time_info.append((start_time, end_time))
return time_info

def get_description(self, LLM):
description = LLM(self.entity_name, self.tuples, self.images)
return description

You are a helpful assistant, helping me align or match entities of knowledge graphs according to
name information (self.entity_name), description information (get_description()), structure informa-
tion (self.tuples, get_neighbors(), get_relation_information()), image information (self.images), time
information (get_time_information()), YOUR OWN KNOWLEDGE.

Your reasoning process for entity alignment should strictly follow this case step by step:

{{ reasoning case }}

[Output Format]: [NAME SIMILARITY] = A out of 5, [PROBABILITY OF DESCRIPTION POINTING
SAME ENTITY] = B out of 5, [STRUCTURE SIMILARITY] = C out of 5, [IMAGE SIMILARITY] =
D out of 5, [TIME SIMILARITY] = E out of 5. NOTICE, A,B,C,D,E are in range [1, 2, 3, 4, 5], which
respectively means [VERY LOW], [LOW], [MEDIUM], [HIGH], [VERY HIGH]. NOTICE, you MUST
strictly output like [Output Format].
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Table 9: Detailed input prompt of the Case Study.

### PROMPT

Now given [Main Entity] l_e = Entity(’2846’, ’Joséphine_de_Bade’, ’Joséphine_de_Bade is Joséphine de
Bade, depicted here in a portrait showcasing her as a woman of nobility with a poised and elegant demeanor.
She was the consort of Charles-Antoine de Hohenzollern-Sigmaringen and the mother of Carol Ier, con-
tributing to the lineage of the Hohenzollern family.’, [(Charles-Antoine_de_Hohenzollern-Sigmaringen,
conjoint, Joséphine_de_Bade), (Joséphine_de_Bade, enfants, Carol_Ier), (Joséphine_de_Bade,
enfants, Stéphanie_de_Hohenzollern-Sigmaringen), (Marie_de_Hohenzollern-Sigmaringen, mère,
Joséphine_de_Bade), (Joséphine_de_Bade, sépulture, Hedingen)]),

and [Candidate Entity] r_e = Entity(’13346’, ’Princess_Josephine_of_Baden’, ’Princess_Josephine
_of_Baden is a historical figure depicted in a 19th-century photograph, dressed in attire typical
of European nobility of that era. She was a member of the Grand Duchy of Baden’s royal
family, married Karl Anton, Prince of Hohenzollern, and was the mother of Carol I of Ro-
mania and Princess Marie of Hohenzollern-Sigmaringen.’, [(Princess_Josephine_of_Baden, place-
OfBirth, Grand_Duchy_of_Baden), (Princess_Josephine_of_Baden, issue, Carol_I_of_Romania),
(Princess_Josephine_of_Baden, mother, Stéphanie_de_Beauharnais), (Princess_Josephine_of_Baden,
placeOfDeath, German_Empire), (Princess_Josephine_of_Baden, after, Infanta_Antónia_of_Portugal)]),

- Compared with other Candidate Entities, do [Main Entity] and [Candidate Entity] align or match? Think
of the answer STEP BY STEP with name, description, structure, images, YOUR OWN KNOWLEDGE:
Step 1, think of [NAME SIMILARITY] = A out of 5, using self.entity_name.
Step 2, think of [PROBABILITY OF DESCRIPTION POINTING SAME ENTITY] = B out of 5, using
self.entity_description.
Step 3, think of [STRUCTURE SIMILARITY] = C out of 5, using self.tuples, get_neighbors() and
get_relation_information().
Step 4, think of [IMAGE SIMILARITY] = D out of 5, using self.images.
NOTICE, the information provided above is not sufficient, so use YOUR OWN KNOWLEDGE to
complete them.
Output answer strictly in format: [NAME SIMILARITY] = A out of 5, [PROBABILITY OF DESCRIP-
TION POINTING SAME ENTITY] = B out of 5, [STRUCTURE SIMILARITY] = C out of 5, [IMAGE
SIMILARITY] = D out of 5.

16



Table 10: Detailed model output of the Case Study

### OUTPUT

[NAME SIMILARITY] = 4 out of 5,
[PROBABILITY OF DESCRIPTION POINTING SAME ENTITY] = 4 out of 5,
[STRUCTURE SIMILARITY] = 3 out of 5,
[IMAGE SIMILARITY] = 4 out of 5.

Explanation:

Step 1: NAME SIMILARITY
The names "Joséphine de Bade" and "Princess Josephine of Baden" are similar, with the same first name
and a similar surname. The difference in spelling between "Bade" and "Baden" is minor, and it is likely
that these names refer to the same person. Therefore, [NAME SIMILARITY] = 4 out of 5.

Step 2: PROBABILITY OF DESCRIPTION POINTING SAME ENTITY
The descriptions of both entities mention that they were members of the royal family and married to a
prince. They also mention that they had children, including a son named Carol I of Romania. These
similarities suggest that the two entities are likely to be the same person. Therefore, [PROBABILITY OF
DESCRIPTION POINTING SAME ENTITY] = 4 out of 5.

Step 3: STRUCTURE SIMILARITY
The structures of the two entities are similar in that they both have a parent-child relationship with a prince,
and they both have a child named Carol I of Romania. However, the difference in the spellings of the
names and the fact that one entity has an additional child, Princess Marie of Hohenzollern-Sigmaringen,
reduces the similarity score. Therefore, [STRUCTURE SIMILARITY] = 3 out of 5.

Step 4: IMAGE SIMILARITY
The images of the two entities are similar in that they have the same hairstyle and similar hair accessories,
and their facial features are also very similar. Although their clothing are different, the images suggest
they could represent the same indivisual, based on the high similarity in hairstyle and facial features.
Therefore, [IMAGE SIMILARITY] = 4 out of 5.

Overall, the combination of the similar names, descriptions, and structures suggests that [Main Entity]
Joséphine de Bade and [Candidate Entity] Princess Josephine of Baden are likely to be the same person.
Therefore, the answer is [NAME SIMILARITY] = 4 out of 5, [PROBABILITY OF DESCRIPTION
POINTING SAME ENTITY] = 4 out of 5, [STRUCTURE SIMILARITY] = 3 out of 5, [IMAGE
SIMILARITY] = 4 out of 5.
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