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Abstract

Generative models have emerged as powerful tools for antibody sequence design,
with recent studies demonstrating that log-likelihood scores from these models
can correlate with binding affinity and potentially serve as effective ranking met-
rics. In this work, we investigate the biochemical basis of these model-derived
log-likelihoods by comparing them with classical evolutionary similarity met-
rics. We find that BLOSUM similarity scores between designed and parental
antibody sequences correlate strongly with measured binding affinity—on par with
the predictive performance of a state-of-the-art diffusion-based generative model.
Moreover, these BLOSUM scores also align closely with log-likelihoods from
multiple generative models, suggesting that such models may be implicitly learning
evolutionary priors encoded in substitution matrices. In contrast, similarity scores
based on position weight matrices (PWMs) and position-specific scoring matrices
(PSSMs) that do not require the knowledge of the parental sequence show weaker
and less consistent alignment with binding affinity, with performance depending
on the source of the background sequence data. Additionally, using consensus
sequences in place of parental sequences to compute BLOSUM scores largely
eliminates the observed correlation with affinity, underscoring the context-specific
nature of the correlations. These findings highlight the potential of interpretable,
evolution-inspired metrics to complement generative modeling in antibody design,
offering insights into both model behavior and biological relevance.

1 Introduction

Antibody design continues to be a critical area of research for both therapeutic and diagnostic
applications, where the goal is to target antibodies toward a predetermined epitope of interest,
optimize binding affinity and specificity, and improve overall developability of antibody candidates.
Computational methods, particularly generative models trained on large-scale antibody sequence
datasets, have shown significant promise in accelerating this process. These models can propose
candidate sequences that adhere to learned patterns of natural antibody repertoires, potentially
capturing features relevant to biological function and molecular recognition. A major challenge,
however, lies in the development of reliable in silico metrics to rank designed sequences by their
likelihood of exhibiting high binding affinity.

Among available metrics, log-likelihood scores derived from generative models trained solely on
structural and/or sequence data have recently been shown to correlate with experimentally measured
binding affinity [Ucar et al., 2024], indicating their potential as a practical tool for prioritization. Yet
the biochemical basis of this correlation remains poorly understood. It is not clear whether these
scores reflect meaningful biophysical or evolutionary constraints, or whether they serve merely as
model-specific heuristics.
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In this work, we investigate the biochemical grounding of model-derived scores by examining their
relationship with classical sequence similarity metrics. Specifically, we assess whether these scores
align with metrics grounded in evolutionary substitution dynamics, including BLOcks SUbstitution
Matrix (BLOSUM) similarity [Henikoff and Henikoff, 1992], position weight matrices (PWM)
[Stormo et al., 1982], and position-specific scoring matrices (PSSM) [Gribskov et al., 1987]. These
metrics are computed using different strategies: BLOSUM similarity is evaluated between designed
sequences and various types of reference sequences, while PWM and PSSM scores are derived from
amino acid frequency profiles obtained from large antibody datasets.

By comparing these scores with both measured binding affinities and log-likelihoods from multiple
generative models—including a diffusion-based model DiffAbXL-A [Ucar et al., 2024], an inverse
folding model AntiFold [Hgie et al., 2023], and a language model IgL.M [Shuai et al., 2023], we
aim to clarify whether such models capture biologically meaningful substitution patterns. Our
results highlight the importance of context-specific similarity metrics and suggest that interpretable,
evolution-inspired scores can complement generative models by improving the transparency and
reliability of model-guided antibody design pipelines.

2 Related Work

Generative models have become increasingly important in protein and antibody design, leveraging
advancements in deep learning to generate novel sequences with desirable properties. These models
typically fall into three broad categories: large language models (LLMs) trained on sequence data
[Malherbe and Ucgar, 2024], graph-based models that capture spatial and topological properties [Kong
et al., 2023], and diffusion-based models that simulate denoising processes over sequence and/or
structure spaces [Ucar et al., 2024]. Each approach differs in how it represents and generates protein
information—ranging from purely sequence-based generation to more complex structure-aware
co-design frameworks.

While much of the recent focus has been on improving generative quality and integrating structure
prediction tools (e.g., AlphaFold [Jumper et al., 2021], RoseTTAFold [Baek et al., 2021]), a parallel
challenge lies in evaluating and ranking generated designs. Commonly used in silico metrics include
structural scores (e.g., RMSD, ipTM, pAE) [Abramson et al., 2024] and sequence-based scores such
as amino acid recovery (AAR) or log-likelihood under pretrained models [Ucar et al., 2024, Luo
et al., 2022]. However, these metrics are not explicitly optimized to reflect functional outcomes like
binding affinity, which limits their utility in candidate prioritization.

Recent studies have begun to explore whether log-likelihood scores from generative models can serve
as more functionally meaningful evaluation metrics. For instance, Shanehsazzadeh et al. [2023b]
observed that higher-likelihood sequences generated by IgMPNN yielded higher proportions of
binders, though the correlation was indirect and assessed via enrichment metrics. Other work in
general protein fitness prediction has used zero-shot likelihood ranking across mutational scans
[Truong Jr and Bepler, 2023], but the results have varied across assay types. Specifically for
antibodies, Chungyoun et al. [2024] found that log-likelihood does not always align with functional
readouts such as binding or expression, suggesting that model scores alone may be insufficient.

More recently, Ucar et al. [2024] systematically evaluated log-likelihood scores from a diffusion-based
antibody generative model (DiffAbXL-A), finding that these scores consistently and significantly
correlate with measured binding affinity across diverse datasets. This supports the view that generative
models can internalize biophysical and evolutionary constraints relevant to antigen binding, even
without explicit supervision on affinity labels.

Moreover, BLOSUM matrices have long been used to quantify functional similarity between se-
quences and are known to reflect evolutionary constraints. Prior efforts have used such metrics for
sequence alignment and clustering but not explicitly for affinity ranking in design contexts [Altschul
et al., 1990]. This work builds on prior studies by directly investigating the biochemical basis of log-
likelihood as a scoring function. We examine whether classical evolutionary similarity metrics—such
as those derived from BLOSUM, PWM, and PSSM—are predictive of binding affinity and whether
they correlate with the scores produced by generative models.
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3 Method

We evaluate the relationship between log-likelihood scores from generative models and classical evo-
lutionary metrics for predicting antibody binding affinity. Specifically, we compare four approaches:
(1) log-likelihoods from three representative generative models — a diffusion-based model, an inverse
folding model, and a language model [Ucar et al., 2024, Hgie et al., 2023, Shuai et al., 2023], (ii)
BLOSUM-based scoring [Henikoff and Henikoff, 1992], (iii) PWM-derived scores [Stormo et al.,
1982], and (iv) PSSM—derived scores [Gribskov et al., 1987]. All methods are evaluated across
multiple datasets with experimentally measured affinities.

Scoring Region Masking. To ensure consistent comparison across scoring methods, we define
a dataset-specific mutation mask M that identifies positions relevant for scoring. For BLOSUM,
PWM, and PSSM-based evaluations, we first align all sequences using the AHo numbering scheme
[Honegger and PluEckthun, 2001], and include a position in M if it differs between the parental
sequence and any of its variants. In contrast, for log-likelihood—based scoring using the Diff AbXL-A
and IgL.M models, no alignment is performed; the mask is computed directly from raw sequence
positions that differ from the parental sequence. For AntiFold, which uses IMGT numbering internally
to define complementarity-determining regions (CDRs), we provide the model with the specific list of
CDRs designed in each library to define M. This approach maintains compatibility with how these
generative models process input and ensures that each method is evaluated in its appropriate context.

Log-likelihood scoring. We evaluate log-likelihoods using three different generative models:
DiffAbXL-A, AntiFold, and IgLM.

DiffAbXL-A. DiffAbXL-A is a scaled variant of the diffusion-based model DiffAb [Luo et al.,
2022], trained to generate all six complementarity-determining regions (CDRs) of an antibody given
structural context. The model is trained on an expanded synthetic dataset with longer input lengths,
improving its generalization ability [Ucar et al., 2024]. Log-likelihoods are computed in De Novo
(DN) mode, where both sequence and structure are masked over the scoring region. We refer to this
mode as Diff AbXL-A-DN. For a designed sequence s, and positions j in the mutation mask M, we
define the score:

LL = > log(P;(s; | U) +¢), (1)

JjEM

where P;(s; | U) is the probability of residue s; predicted by the model given unmasked context U/,
and ¢ is a small constant (e.g., 10~?) for numerical stability.

AntiFold. AntiFold is an inverse folding model based on ESM-IF1 [Hgie et al., 2023], which
autoregressively predicts sequence from structure. To compute log-likelihoods, we first pass either the
parental or mutant sequence along with its backbone structure into the model to obtain per-position
log-probabilities. We then gather the log-probabilities corresponding to the mutant amino acids at the
mutated positions M. In the main analysis, we use the parental sequence for context (AntiFoldp, ).
The log-likelihood is defined as:

LLpy = Zlog mut|5<j,8)—|—g)7 2)
JEM

where S is the structure, 53““‘

sequence.

is the mutant residue at position j, and s ; 1s the prefix of the parental

IgIM. Igl.M is a decoder-only language model trained with a masked span infilling objective on
antibody sequences [Shuai et al., 2023]. We evaluate log-likelihood using two scoring modes:
preceding context only ([pre]) and bidirectional context ([bi]). In both cases, we use the parental
sequence as context in the main experiments. Mutation regions may consist of one or more contiguous
spans (e.g., individual or multiple CDRs), each of which is scored independently in bidirectional
context case.

Preceding context only ([pre]):
IgLM[pre]pA Smut; Spa Z log p(s mm | S?f,% 3)
teM

where the parental sequence sy, is passed to the model to obtain logits, and the mutant sequence Spy
is used to select log-probabilities at mutation sites ¢t € M.
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Bidirectional context ([bi]):

IgLM[bilp, (s™"; 8pa) = Z Z log p(sy™ | sZ4, %), 4)
k teSk

where each mutated span S}, is a contiguous region (e.g., a CDR) that is masked in the parental se-
quence, and the model predicts the mutant residues using bidirectional context. Multiple spans can be
masked and evaluated independently if the mutation mask covers disjoint regions. Furthermore, since
IgLLM is trained to model masked spans using bidirectional context, scoring based on bidirectional
information is better aligned with its training objective and has been empirically shown to produce
lower perplexity than scoring based solely on preceding context [Shuai et al., 2023].

Results for scoring using the mutant sequence as context (IgLM[pre]yuyr, IgLM[bi]lmyr, and
AntiFoldyyr), along with additional details on how the scores are computed, are provided in Sections
D - G of the Appendix.

BLOSUM similarity scoring. BLOSUM similarity is computed using substitution matrices (e.g.,
BLOSUM45, 62, 80, and 90). For each designed sequence, similarity is calculated with respect to
one of the following reference sequences: (1) the parental sequence from the same dataset (denoted
as BLOSUMp,); (2) a global consensus sequence derived from two antibody datasets—either
human antibodies from the Observed Antibody Space (OAS) or antibody-antigen complexes from
SAbDab—denoted as BLOSUMg,,, and BLOSUMg,,,,,..» respectively; or (3) a consensus sequence
derived from the antibody variants within each dataset, referred to as dataset-specific (DS) and
denoted as BLOSUMpg. For (2), separate consensus sequences are constructed for heavy, kappa,
and lambda chains using AHo numbering [Honegger and PluEckthun, 2001]. The similarity score is
defined as:

ScoreBLOSUM = \M| Zj € MB(s] o s,), (5)

where s““'t is the residue at position j in the reference sequence, s; is the corresponding residue in the

de51gned sequence, and B(a, b) is the substitution score from the chosen BLOSUM matrix.

PWM-based similarity scoring. Position weight matrices (PWMs) are constructed from aligned
human antibody sequences in the OAS and SAbDab databases. Sequences are split by chain type
(heavy, kappa, and lambda) and aligned using AHo numbering. From these alignments, we compute
amino acid frequency distributions at each position, producing normalized matrices in which each
column sums to 1.

For each designed sequence, we compute the PWM score as the sum of amino acid frequencies at the
mutated positions, matched by chain type:

ScorePWM = Y " j € Mufu(j.s;) + »_j € MLfL(j,s;), (6)

where fr(j,s;) and fr.(j,s;) are the amino acid frequencies at position j in the heavy and light
chain PWMs, respectively, and M g, M, are the subsets of M corresponding to the heavy and light
chains.

PSSM-based similarity scoring. Position-specific scoring matrices (PSSMs) are computed from
aligned antibody sequences, where each entry reflects the log-odds score of observing amino acid a
at position j relative to background. We derive PSSMs from three sources: (1) human antibodies
from the OAS repertoire, (2) the SAbDab database, and (3) the sequences within each experimental
dataset, where a separate PSSM is constructed for each dataset using only its constituent sequences.
We refer to this third approach as dataset-specific PSSMs (PSSMpg). As with PWMs, sequences are
aligned using AHo numbering and split by chain type.

For each designed sequence, we compute the PSSM score as:
ScorePSSM = Y " j € MpuSu(j,s;) + > j € MLSL(j, s;), (7

where Sy (7, s;) and S1.(j, s;) denote the log-odds substitution scores from the PSSMs for the heavy
and light chains, respectively. Higher scores indicate higher evolutionary preference for the observed
amino acids at those positions. Additional details on the construction of PSSMs and PWMs can be
found in Section C of the Appendix.
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Figure 1: Correlation between BLOSUM45 and —log K p: a) HER2 Zero-Shot (ZS), b) ACVR2B,
¢) IL36R, d) TNFRSF9, e) C5. *, **_ *** indicate p-values under 0.05, 0.01 and 1le-4 respectively.
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Figure 2: Correlation between BLOSUM45 and the log-likelihood scores of DiffAbXL-A-DN: a)
HER2 Zero-Shot (ZS), b) FXI, ¢) IL36R, d) IL7, e) HEL. *, **_ *** indicate p-values under 0.05,
0.01 and 1e-4 respectively.

Hydrophobicity and rigidity scoring. To evaluate coarse-grained biophysical trends, we compute
the average hydrophobicity and rigidity of mutated residues using the Kyte-Doolittle [Kyte and
Doolittle, 1982] and Karplus-Schulz [Karplus and Schulz, 1985] scales, respectively:

1 1 1
ScoreHydro = —— » j € MH(s;), ScoreRigid=——» j€eM——, (8)
M| 2 ! M| 2 F(s;)

where H (s;) and F(s;) denote the hydrophobicity and flexibility value of amino acid s;.

Affinity correlation analysis. After computing all scores, we evaluate their correlation with exper-
imental binding affinities, expressed as — log(K p) or equivalent (e.g., — log(IC50)). Spearman’s
rank correlation coefficient (p) and Kendall’s tau (7) are computed to assess the predictive power and
biological relevance of each scoring method. We also examine correlations between statistical simi-
larity scores and log-likelihoods to probe whether generative models implicitly capture evolutionary
constraints.

4 Empirical Evaluation

4.1 Datasets

In this study, we use fourteen datasets drawn from four sources: Absci HER2 [Shanehsazzadeh et al.,
2023b], IgDesign [Shanehsazzadeh et al., 2023a], Nature [Porebski et al., 2024], and proprietary
datasets from AstraZeneca (AZ).

Absci HER2. These datasets involve HCDR re-designs of Trastuzumab, an antibody that targets
HER?2. Sequence generation was performed using a two-step pipeline: first, machine learning models
were used to predict HCDR loop structures conditioned on the HER2 backbone (PDB:1N8Z, Chain
C), the Trastuzumab framework, and the known epitope; second, sequences were generated via
inverse folding on the predicted structures. While HCDR3 lengths ranged from 9 to 17 residues, we
focus on sequences with HCDR3 length 13, consistent with the native antibody. HCDR1 and HCDR2
were fixed at 8 residues. Binding affinities (K p) were measured using a FACS-based ACE assay. We
analyze two datasets: (1) a "zero-shot binders" set, and (2) an SPR-validated "control" set containing
both binders and non-binders.

IgDesign. This set includes seven antigen targets—FXI, IL36R, C5, TSLP, IL17A, ACVR2B, and
TNFRSF9. Antibodies were designed by mutating either the HCDR3 alone or all three CDRs on the
heavy chain. Each design library was synthesized and experimentally tested using SPR.
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Table 1: Spearman correlations of log-likelihood scores of Diff AbXL-A-DN, biophysical features,
PWM, PSSM, and BLOSUM scores with binding affinity. *, **, **%* indicate p-values under 0.05,
0.01, and 1e-4, respectively. The measurements are qACsg for AZ Target-1, IC50 for IL7, and Kp
for the rest.

Absci HER2 Nature AZ Absci IgDesign

Approach | Model Zero Shot | Control | HEL | IL7 | HERZ | Target-1 | Target-2 | ILI7A [ ACVRZB | FXT | TNFRSF9 | TL36R | C5 | TSLP
Diffusion DiffAbXL-A-DN 0.43%%% 0225 770.62%% | -0.79%%% 0.37% -0.11 0.4T%F 0.62%F 0.54% 0.18 0.18 0.14 -0.32 -0.02
Biophysical [ydrophobicity -0.17% 0.04 -0.13 0.57% -0.38 0.30 0.14 0.49 0.49 -0.30% 0.4T% 0.70¢ 032 -0.05
Rigidity 000 | 045+ | 018 | 033 | 037 | o1 006 | 049 | o049 | 022 | 016 015 | 019 | 012
PWMons 0307 [ 0.02F 0 |03 | 007 | 023 [ 017 0% [ 05 [ 01 [ 00 016 [ 003 | 015
PWMsabpab 0.30%%% 0.10% 0.35% -0.49% 0.43* 0.24 0.16 -0.10 0.42 -0.23 0.29 -0.32% -0.31 0.03
PSSMoas 0.36° 0.22%%F 0.28 -0.07 0.20 -0.02 0.05 -0.13 0.11 -0.20 0.06 -0.29 -0.10 -0.103
PSSMosuan 040+ | 029+ | 019 | 040 | 031 038 010 | 010 | o0ds* | 018 | 028 | -0.39% | 032 | -005
PSSMps 050+ | o4z | 052+ | 008 | 016 | 029 | 024 | 001 | 024 | 053 | 005 026 | 000 | 011
Statistical | BLOSUMASg,e | 0367 | 003 | 026 | -059% | 026 | -052% | 007 | 000 | 003 | 0.29% | 003 027 0235 | 03655
BLOSUMdSgoy, | 039%%% | 0095 | 022 |-080%¢ | 034 | -021 | 016 | -039 | -0006 |-042%* | 026 027 | 032 | 034
BLOSUM45,5 0.46%%* 0.31%%% | (),52%% 0.69%* -0.32 0.43* 0.30%* 0.01 0.47% 0.52%% 0.17 0.38% 0.10 -0.29%%
BLOSUMO0p, 0.48%%% | 025555 | 0.57%% | 086+ | 0745 | 000 | 026* | 077 | 063 | 032 | 041x | 0575 | 0.57% | 0.19%
BLOSUMS0p, 0dgFEE | 0267 | 0585 | 085% | 073 | 000 | 024% | 077 | 073 | 032 | 042+ | 058% | 0.64%% | 020%
BLOSUM62p, 0dsFEE | 026+ | 0575 | 0856 | 072% | 006 | 026% | 077 | 071% | 032 | 0.38% | 058% | 0.60%% | 021%
BLOSUMd5p, 050555 | 0290 | 059+ | 0g7eer | 071 | 008 | 030%% | 077 | 073 | 033 | o0dg*r | 0500 | 0.62%% | 022+

Nature. We also include datasets reported by Porebski et al. [2024], covering HER2, IL7, and HEL.
Mutations in anti-HER?2 are limited to HCDR3, while anti-IL7 involves LCDR1 and LCDR3. The
HEL dataset consists of nanobodies with mutations across all three CDRs. Dataset sizes range from
19 to 38 sequences. We use K p values for HER2 and HEL, and IC’5 for IL7. For structure-based
methods, parental structures were predicted using ImmuneBuilder2 (HER2), IgFold (IL7), and
NanoBodyBuilder2 (HEL) [Abanades et al., 2023, Ruffolo et al., 2023] as described in [Ucar et al.,
20241].

AZ These proprietary datasets consist of two antibody libraries targeting separate antigens. The
first target includes 24 variants, generated via rational design across four regions (HCDR1-3 and
LCDR3). The second comprises 85 sequences drawn from three design strategies: two rationally
designed libraries (one mutating heavy chain CDRs, the other light chain CDRs) and a third created
using a machine learning model introducing changes across all six CDRs. Binding measurements
are reported as ¢ AC5o for Target-1 and K p for Target-2. For models requiring structure, we use the
corresponding crystal structures for both targets.

4.2 Results

Benchmarking predictive power across scoring methods. We assess the correlation between several
scoring methods—including Diff AbXL-A log-likelihoods, BLOSUM similarity, PWM similarity, and
PSSM similarity—and experimentally measured binding affinities across fourteen benchmark datasets.
DiffAbXL-A was selected based on prior findings that its log-likelihood scores exhibit the strongest
correlation with experimental binding affinity in [Ucar et al., 2024]. Spearman’s rank correlation
coefficients (p) are summarized in Table 1, and correlation statistics between log-likelihoods and
BLOSUM or statistical similarity scores are shown in Table 2. Log-likelihood scores derived from
the DiffAbXL-A model in De Novo (DN) mode show consistent and often promising correlations
with binding affinity across diverse design tasks. For example, we observe p = 0.43 on Absci HER2
Zero Shot, p = 0.62 on Nature HEL, and p = 0.62 on IgDesign IL17A. These results suggest that
the model is capturing sequence features that are predictive of functional binding, even though it was
not trained on the specific antibody libraries present in these datasets or on binding affinity prediction
tasks. On the Nature IL7 dataset, where inhibition rather than binding affinity is measured (via ICjsg),
a strong negative correlation is observed (p = —0.79). However, ICj5q reflects the concentration
needed to achieve 50% inhibition of a biological response, and is influenced by multiple factors
beyond binding—such as receptor expression levels, signaling kinetics, and assay-specific artifacts.
Unlike Kp, which directly measures molecular interaction strength, 1C5 integrates downstream
effects and may vary substantially even when two molecules have similar affinities. As a result,
correlations involving ICsg should be interpreted cautiously.

BLOSUM similarity scores align strongly with binding affinity. Across the board, BLOSUM-
based similarity—particularly using BLOSUM45—shows good correlation with binding affinity.
This trend holds across nearly all datasets, including Absci HER2, Nature HEL, and several IgDesign
targets. For instance, BLOSUM45 achieves p = 0.50 on Absci HER2 Zero Shot, p = 0.59 on
Nature HEL, and p = 0.73 on IgDesign ACVR2B. This finding supports the idea that evolutionary
closeness to the parental (reference) sequence is a strong indicator of retained binding functionality.
The consistent performance of BLOSUM matrices, especially those calibrated for more distant
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Table 2: Spearman correlations between DiffAbXL-A-DN log-likelihoods and sequence-similarity
scores (BLOSUM45, PWM, and PSSM). *, **_*** indicate p-values under 0.05, 0.01, and le-4,
respectively.

Method Absci HER2 Nature AZ Absci IgDesign

Zs Ctrl HEL L7 HER2 | T-1 T2 IL17A" ACVR2B FXI TNFRSF9  TL36R Cs TSLP
BLOSUM45p, | 0.71%%% 0.81T%% | 0.71%% 0.85%* 024 | 0.48% 0.56% [ 0.88**  0.64™* 0.75%%* 0.41* 0.85% % —0.61%%  0.46%F
PSSMps 0.80%F% —0.73%%F | 0,79%F* 0.07 —0.12 | -0.47%  0.23* -0.25 0.49% 0.38%F —0.01 0.63%F% 0, 73%F% 0,27
PSSMisabbab 0.77%%%  0.55%%% | (.45%% 0.46* 0.38 -0.05  0.70%** 0.09 0.24 -0.617%%% -0.18 =069 0.36™ 0277
PSSMoas 0.76%%%  0.51%%* | 0.57%% 0.12 0.40* | -0.16 047 | —0.11 0.13 =0.637 0.02 =0.69%*  —0.41%  0.38%%*
PWMsbpah 0.807%F% 0.52%%* [ 0,55%F  0.58%* 0.25 0.02  0.56%%F 0.19 0.687F -0.17 —0.12 =0.71%%F 0.48%%  .55%F
PWMoas 0.77%+%%  0.48%%% | 0.56%* -0.18 0.12 0.48*  0.31%* 0.20 041 -0.04 0.10 =0.72%%% 0. 48%* (.33

homologs (e.g., BLOSUMA45), suggests they capture robust patterns relevant to antigen recognition
and molecular stability. We note that across all datasets examined, the parental antibody—used
as the reference for computing BLOSUM scores and thus assigned the highest similarity score by
design—is consistently among the strongest binders. We expected that if this were not true, the
correlation between BLOSUM similarity and binding affinity would be substantially weaker.

Consensus-based BLOSUM scores lose predictive power. In contrast, when BLOSUM similarity
is computed between designed sequences and global consensus sequences—either from OAS or
SAbDab—the correlation with binding affinity largely disappears. For example, BLOSUM45¢,,,
shows weak or negative correlations on many datasets, with significant drops observed on most
datasets. This suggests that global evolutionary priors do not substitute well for dataset-specific
reference sequences in affinity prediction.

PWM similarity shows modest utility, with SAbDab outperforming OAS. PWM scores based on
the OAS repertoire show weak and inconsistent correlation with binding affinity, with meaningful
results limited to the Absci HER2 datasets (e.g., p = 0.30 on Zero Shot). However, when PWMs
are computed from the SAbDab dataset, the correlation improves slightly. In addition to Absci
HER2, we observe positive correlations on Nature HEL (p = 0.35) and Nature HER2 (p = 0.43),
suggesting that structure-based databases such as SAbDab may better reflect the selective pressures
acting on antibody binding regions since they contain antibody-antigen complexes. Nonetheless,
performance remains below that of BLOSUM and DiffAbXL-A. This may be due to the local and
repertoire-specific nature of the PWM used, which reflects background amino acid usage rather than
target-specific substitution effects. Because PWMs are constructed from observed frequencies rather
than substitution dynamics, they may fail to capture functionally relevant mutations, especially when
applied outside their source distribution.

PSSM similarity improves with data-specific priors. PSSM scores show variable performance
depending on how the matrices are derived. Global PSSMs constructed from the OAS or SAbDab
datasets yield modest correlations with binding affinity, with improvements observed for SAbDab-
based PSSMs in some datasets (e.g., Absci HER2 and IgDesign ACVR2B). However, when PSSMs
are constructed specifically from the dataset under evaluation (PSSMpg), correlation improves
substantially. For example, PSSMpg yields p = 0.50 on Absci HER2 Zero Shot and p = 0.52
on Nature HEL, both surpassing the performance of global PSSMs. These results highlight the
importance of local sequence context in capturing meaningful constraints for affinity prediction and
suggest that dataset-specific PSSMs can serve as useful tools when sufficient in-distribution sequence
data are available.

Log-likelihood scores correlate with BLOSUM, PSSM, and PWM similarity metrics. We observe
strong correlations between DiffAbXL-A log-likelihood scores and BLOSUM45 similarity across
most datasets (Table 2), with 12 out of 14 cases exceeding a Spearman p of 0.4, and several surpassing
0.8 (e.g., IL17A, IL36R, IL7). This suggests that the generative model is implicitly learning amino
acid substitution patterns that align closely with established evolutionary priors. Similar, though
generally weaker, correlations are observed with PWM-based scores. Notably, PWMs derived from
SAbDab show stronger alignment with log-likelihoods than those from OAS, especially in datasets
such as IL7 (p = 0.58) and ACVR2B (p = 0.68). PSSM similarity also correlates with model scores,
particularly when computed from dataset-specific (PSSMpg) or SAbDab-based matrices, supporting
the view that the model internalizes substitution preferences.

Biophysical scores show target-specific utility. Two coarse-grained biophysical metrics—Kyte-
Doolittle hydrophobicity and Karplus-Schulz rigidity—were also evaluated. Hydrophobicity content
correlates positively with binding affinity on Nature IL7 (p = 0.57) and IgDesign IL36R (p = 0.70),
suggesting a potential link between hydrophobic residues and binding affinity in these datasets.
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Table 3: Spearman correlations between the model log-likelihoods (LLs) and Kp values as well
as between LLs and BLOSUM45p, scores for DiffAbXL-A-DN, AntiFold and IgLM. *, *% %%
indicate p-values under 0.05, 0.01, and 1le-4, respectively.

Model Metric Absci HER2 Nature Absci IgDesign
ZS Ctrl HEL HER2 | ILT7A°  ACVR2B FXI TNFRSF9  TL36R C5 TSLP
DiffAbXL-A-DN LL vs Kp 0.43%F%0.22%%% [ 0.62%%  0.37% | 0.62%F 0.54* 0.18 0.18 0.14 -0.32 —0.02
LL vs BLOSUM45py | 0.71%%%  (.81%% | 0.71%%  -0.24 | 0.88%%  (.64%* 0.75%#% 0.41* 0.85%%%  —0.61%*  0.46%**
AntiFold LL vs Kp 0.45%F% 0,15%% | 0.64"F% 038 | -0.79%F 0.29 0.02 0.04 0.18 -0.01 0.247
A LL vs BLOSUM45p, | 0.61%% 0,61+ | 0.76***  0.60** | —0.39 -0.04 0.14 0.657%* -0.22 0.01 0.80%%
IeLM[pre] LL vs Kp -0.09  0.22%FF | 0.35% 0.02 0.12 0.16 0.31% 0.12 =063 —0.26 0.23%
gLVipreles LL vs BLOSUM45p, | -0.22%%  —0.07 0.57**  -0.33 0.16 -0.36 0.60%+% 0.11 =0.43%*  —0.82%**  (,51%**
IgLM[bi] LL vs Kp 0.26%*  -0.05 0.59%F  —0.12 0.14 -0.01 -0.11 -0.09 0.24 -0.21 —0.08
e PA LL vs BLOSUM45p, | 0.35%%  0.14%F | 0.73%  (.43* 0.56* 0.48* —0.58%#% 0.38* -0.04 =0.59%*  0.36%**

Rigidity shows a moderate correlation only on Absci HER2 Control (p = 0.45), with little signal
elsewhere. These results indicate that such physicochemical scores may capture some target-specific
trends but are not general-purpose predictors of affinity.

Consistent evolutionary signatures in log-likelihoods from diverse generative models. As
with DiffAbXL-A, log-likelihoods from both AntiFold and Igl.M show strong correlations with
BLOSUM45 similarity scores (Table 3). For example, AntiFoldpa log-likelihoods correlate with
BLOSUM similarity at p = 0.76 on Nature HEL and p = 0.80 on IgDesign TSLP. Similarly,
IgLM|bi]pa achieves p = 0.73 on Nature HEL and shows moderate-to-strong alignment on multiple
other datasets. These findings further support the hypothesis that generative models implicitly learn
substitution preferences that align with classical evolutionary priors. We also note that when log-
likelihoods (LLs) correlate with binding affinity (/K p), they almost always exhibit an even stronger
correlation with BLOSUM similarity. However, the converse does not necessarily hold: a strong
LL-BLOSUM correlation does not imply a meaningful LL-K, correlation.

5 Conclusion

We examined the connection between generative model scores and classical evolutionary similarity
metrics in the context of antibody design. Across fourteen datasets of experimentally characterized
antibody variants, BLOSUM similarity to the wild type (WT)—particularly using matrices such
as BLOSUM45—showed strong and consistent correlation with binding affinity, often rivaling or
exceeding the performance of model-based log-likelihood scores. Among generative models, the
diffusion-based model DiffAbXL-A showed the highest correlation with affinity values, consistent
with prior findings in [Ucar et al., 2024]. Moreover, evaluations of AntiFold and IgL.M revealed
that their log-likelihood scores also align with BLOSUM similarities, even when their correlation
with binding affinity is weaker. This reinforces the idea that generative models may implicitly learn
substitution patterns shaped by evolutionary pressure, even without explicit supervision.

In contrast, PWM-based scores exhibited limited and variable performance, particularly when derived
from general antibody repertoires. Slight improvements were observed with PWMs constructed from
antibodies in complex with antigens, though these still underperformed relative to BLOSUM simi-
larities over the parental antibody sequence in each dataset. PSSM-based scores showed somewhat
stronger and more stable correlations than PWMs, especially when constructed from dataset-specific
alignments, occasionally matching the predictive power of BLOSUM and log-likelihood scores.
However, their performance was less consistent when based on broad repertoires such as OAS or
structure databases such as SAbDab. Simple biophysical descriptors such as hydrophobicity and
rigidity captured some signal in a few cases but lacked generalizability.

These findings highlight the utility of interpretable, evolution-derived metrics such as BLOSUM
and underscore the importance of contextual information—such as reference sequence choice—in
score interpretation. They also suggest that generative models encode evolutionary signals that
can be leveraged for scoring and prioritization tasks. As generative models continue to improve,
understanding the extent to which their internal representations align with biological priors will
be essential for advancing robust and interpretable generative models for designing therapeutic
antibodies.
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Appendix

A Impact Statement

This research advances the use of machine learning in antibody engineering by investigating the
predictive power of statistical models such as BLOSUM and PWM for ranking antibody designs
based on binding affinity as well as studying their relationship with the log-likelihood scores of
diffusion-based generative models. By demonstrating an association between derived scores and
real-world experimental data, this work provides a pathway to accelerate therapeutic antibody
discovery while minimizing costly trial-and-error experimentation. Ethical and societal impacts,
such as improved healthcare outcomes and broader accessibility of life-saving treatments, mirror the
established considerations in the broader field of machine learning-driven drug discovery.

B License Information

IgDesign datasets [Shanehsazzadeh et al., 2023a] are released under MIT license. Absci Her2 datasets
[Shanehsazzadeh et al., 2023b] are released under BSD License. SAbDab and OAS datasets are
available under a CC-BY 4.0 license. We will release our code upon the acceptance of our paper with
Apache 2.0 license.

C Construction of PWM and PSSM

To analyze amino acid preferences at each structurally equivalent position, we first aligned all
sequences using the AHo numbering scheme, which provides a consistent positional framework
across antibody variable domains. Each sequence was mapped into an AHo-labeled position-residue
dictionary, and alignment matrices were constructed accordingly.

We computed the Position Weight Matrix (PWM) by counting the occurrences of each amino
acid (including gaps) at each AHo-defined position across all aligned sequences. To prevent zero
probabilities and ensure numerical stability, a Laplace pseudocount of 1 was added to each residue
count. The resulting frequency f; , of amino acid a at position ¢ was computed as:

Nia +1

fi,a: ’Ill—‘rk’

where n; , is the count of amino acid a at position ¢, n; is the total number of observations at that
position (including gaps), and k = 21 is the number of possible residue types (20 amino acids plus
the gap character). The PWM thus represents a normalized probability distribution over residues at
each position.

To construct the Position-Specific Scoring Matrix (PSSM), we first estimated background frequencies
q, for each amino acid a across the entire aligned dataset, again applying Laplace pseudocounts:

_ngt+1
qaiN—&—k‘

where n,, is the total count of amino acid « in the full alignment, N is the total number of observed
residues across all positions and sequences (including gaps), and k = 21 as before.

The log-odds score .S; , for each residue a at position ¢ was then calculated as:

Si,a = logy (fla>
Ga

This score reflects how much more (or less) likely a residue is to appear at a specific position compared
to its global background expectation. The final PSSM was stored as a position-by-residue matrix of
log-odds scores. To summarize the most likely residue at each position, a consensus sequence was
derived by selecting the amino acid with the highest frequency in the PWM.
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D Additional Results

Table 4: Spearman correlations between the model log-likelihoods (LLs) and Kp values as well
as between LLs and BLOSUM45p, scores for Diff AbXL-A-DN, AntiFold and IgL.M. *, *%_ #%*
indicate p-values under 0.05, 0.01, and 1e-4, respectively.

Model Metric Absci HER2 Nature Absci IgDesign
75 Cirl HEL HERZ | ILI7TA ACVRZB FXI TNFRSF9 1L36R  C5  TSLP
DIffAbXL-A-DN L Vs Kp 0.43FFF  0.22%FF | 0.62%F 037 | 0.62%F 0.54% 0.18 0.18 0.14 032 —0.02
LL vs BLOSUM45py | 0.71%%% 081+ | Q71%%% 024 | 0.88%%%  (.64%F  .75%%¢ 0.41% 0854 0.61%F 046+
AntiFold LLvsKp 045FFF  0.I5%F | 0.64%FF 038 | 0.79%% 0.29 0.02 0.04 0.18 —0.01 0.24%F
A LL vs BLOSUM45p, | 0.61%%%  0.61%** | 0.76%**  0.60%* | —0.39 —0.04 0.14 0,654+ -0.22 0.01 0.80%#%
AntiFold LLvsKp —031FFF 031%FF | 033 0.05 0.17 0.34 0.13 —0.34% —0.05 0.39% 0.29%F
nukoldmur LL vs BLOSUMd5p, | —0.29%%% _0.27%%% |  (.42% 0.18 0.12 0.25 0.28 0.19 -0.02 0.39* 0.00
TeLMipre] LLvsKp —0.09  0.22%FF 0.35% 0.02 0.12 0.16 0.31F 0.12 —0.63%FF 026 0.23%
gLviprele LL vs BLOSUM45p, | —0.22%*  —0.07 057+ 033 0.16 —0.36 0,60 0.11 043 Q.82 (51w
TeLMipre] LLvsKp —0.33FFF _043%FF | 0.05 020 | 046 —0.20 —0.00 —0.30 0.47%F 0.03 —0.06
SLVIPTEIMUT I vs BLOSUM4Sp, | —0.17%  —0.17%* 0.22 036 | -0.64* —0.06 —0.27 —0.36* 0744 0.56%%  —0.73wxx
TgLM[bi] LLvsKp 0.26%F —0.05 059%  0.12 0.14 —0.01 —0.11 —0.09 024 —0.21 —0.08
e PA LL vs BLOSUM45p, | 0.35%#%  0.14%% | 0.73%#*  043* | 0.56* 0.48%  —0.58% 0.38* —0.04 059 0.36%+
TgLM[bi] LLvsKp 0.25%F —0.08 —0.53%F  0.12 | 0.3 —0.10 —0.15 —0.24 —0.23 —0.29 0.19%
e MuT LL vs BLOSUM45p, | 0.39%#%  0.25%%% | —0.66*** 0.55%* | 0.48 0.56%%  —0.54%xx (.57 037  —0.54%% .53

E Log-Likelihood Scoring

E.1 Setup and Notation
Let an antibody sequence be denoted by

S = (31,52,...,57“),

where each s; represents one of the 20 canonical amino acids. A left-to-right autoregressive language
model (e.g., GPT-2) defines the sequence probability via the factorization

T
p(s) = Hp(st | s<t)y, S<t=1(S1,---,8t—1)
t=1

Let £;(-) € R?Y denote the unnormalized logits output by the model at position ¢. The corresponding
conditional log-probability is computed as

log p(s¢ | s<¢) = log [softmax(ft_l)]&, t>2.

For t = 1, either a special start-of-sequence token or a uniform prior may be used.
E.2 Full Sequence Log-Likelihood
The total log-likelihood of a sequence s is given by

T
logp(s) = Zlogp(st | s<t).
t=1

This quantity can be computed from a single forward pass through the model. The following
pseudocode illustrates the computation using transformers-style APIs:

# Tokenize and run one forward pass

input_ids = tokenizer.encode(seq) # shape [1, T]
logits = model (input_ids).logits # shape [1, T, 20]
log_probs = softmax(logits, dim=-1).log()

# Shift so that log_probs[*, t-1, *] = log p(s_t | s_<t)
shifted = log_probs[:, :-1, :]
labels = input_idsl[:, 1:]

# Gather and sum
token_11 = shifted.gather (-1, labels.unsqueeze(-1)).squeeze(-1)
total_11 = token_11.sum()
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E.3 Single Contiguous Masked Region

To compute the log-likelihood of a contiguous span (s, - - ., 8,) conditioned on its left context, we
can use

1ng(8a7"'78b | s<a) :Zlogp(St | s<t)7 1 SGSbST

Given the vector of log-probabilities computed above, the relevant entries are summed as follows:

# token_11[i] = log p(s_{i+1} | s_<=1i)
span_11 = token_11[(a - 1) : bl.sum()

E.4 Multiple Disjoint Masked Regions

Consider a collection of K disjoint spans {[ay, bx]}}1_,. The total log-likelihood over these regions is

K b
Z Z log p(set | s<t).

k=1t=ag

This is equivalent to summing over the union of all token positions in the selected spans:

K
M= |J{an,... . bi}.
k=1

positions = []

for (a, b) in spans:
positions.extend(range(a - 1, b))

multi_11 = token_1ll[positions].sum()

E.5 Context Choice for Library Scoring: LLy;yT vs. LLpa

For a designed antibody library derived from a common parental sequence, the log-likelihood of each
designed sequence can be computed using one of two distinct approaches:

Mutation-context likelihood (LLy;uT). In this setting, the model is conditioned directly on each
designed (mutant) sequence to compute its own log-likelihood:

LLmuT (Smut) Zlogp i s2E),
teP

where P denotes the set of mutated positions. This approach reflects the model’s confidence in the
mutant sequence given the full autoregressive context of the design.

Parent-context likelihood (LLpa). Alternatively, model logits may be obtained from the original
parental sequence sy,, and the log-likelihood is then evaluated using the designed sequence sy by
gathering log-probabilities only at mutated positions:

LLPA Smut; spd ZIng e | s<t)
teP

In practice, the parental sequence is passed to the model to obtain the sequence of conditional
distributions, and the designed sequence is used only to select which token probabilities to score at
positions t € P.

Implementation notes. Let input_pa denote the tokenized parental sequence, and input_mut
denote the mutant sequence. Then:
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# For LL_MUT

logits_mut = model (input_mut).logits

log_probs_mut = softmax(logits_mut, dim=-1).log()

# Use positions P on token_ll_mut to compute LL_MUT

# For LL_PA

logits_pa = model(input_pa).logits

log_probs_pa = softmax(logits_pa, dim=-1).log()
# Gather log_probs_pa at positions t in P,

# using tokens from input_mut for indexing

Use cases. LLyy reflects how likely a full designed sequence is under the model’s distribution,
incorporating all mutated residues and their autoregressive influence. In contrast, LLpa measures
how well the mutated residues are supported by the local sequence context inherited from the parent,
isolating the evaluation to mutation sites without considering their downstream impact.

Summary.

* LLyur: evaluates mutant sequence under its own autoregressive context.

* LLpa: evaluates mutant residues in the fixed parental context.

F IgLM Log-Likelihood Scoring

F.1 Preceding vs. Bidirectional Context Scoring

IgLM is a decoder-only Transformer model trained with an infilling objective designed for antibody
sequence modeling [Shuai et al., 2023]. Instead of standard left-to-right language modeling, IgL.M
is trained to reconstruct masked spans within a sequence using both left and right flanking context.
During training, a contiguous span of amino acids is removed and replaced with a special [MASK]
token. The remaining prefix and suffix of the sequence are concatenated, separated by a [SEP]
token, and the removed span is appended after this context, followed by an [ANS] token to indicate
the end of the span. This reordered sequence is used as input to the model, which is then trained
to autoregressively predict the span tokens (and the [ANS] terminator), conditioned on the entire
flanking context.

Formally, for a sequence s = (sq, ..., s7) with a masked span S = (ss, ..., s.), IgLM constructs
an input of the form:

[CHAIN] [SPECIES] si,...,Ss_1, [MASK], Sei1,..., 57, [SEP], Ss,...,5., [ANS]
where [CHAIN] and [SPECIES] are fixed metadata tokens indicating chain type and species.

During evaluation, IgLM supports two log-likelihood computation strategies:
* Preceding context (autoregressive) scoring ([pre]): left-to-right log-likelihoods are computed
over the full sequence.
* Bidirectional context (infilling-based) scoring ([bi]): log-likelihoods are computed using
bidirectional context, consistent with the training setup.

Both strategies can be used with either the mutant or parental sequence as input context. For example,
IgLM[pre]mur uses the mutant sequence for autoregressive scoring, while IgLM [bi] yyr uses the
mutant sequence for bidirectional infilling.

Preceding-Context Scoring. In the [pre] setting, the full sequence (mutant or parental) is passed to
the model, and token-level log-likelihoods are computed left-to-right. For a given context sequence
sCTX_ and mutant target s™", the log-likelihood is:

LLpre(s™;85™) = >~ logp(s™ | s5%),
teM

where M is the set of mutated positions, and CTX € {MUT, PA} indicates the context source.
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Bidirectional (Infilling-Based) Scoring. In the [bi] setting, IgL.M uses its span-infilling mechanism
to evaluate masked spans with bidirectional context. For each mutated span Sy = (sq,, .. ., S, ), the
span is masked in the context sequence, and the corresponding mutant residues are passed as the
target:

CTX) CTX CTX
LLp;i(s™"s Z Z log p(si™ | 23, sS40).
k t=ag
As before, CTX indicates whether the context is the parental or mutant sequence.

Implementation Considerations. The Igl.M implementation supports both evaluation protocols.
For autoregressive scoring, the model processes the entire context sequence once and gathers log-
probabilities at mutation sites. For infilling-based scoring, the model must be called separately for
each mutated span: the corresponding region is masked in the context sequence, and the mutant
tokens are appended as the infill segment. The model then computes log-probabilities for these tokens
after the [SEP] marker, consistent with its training objective.

As Igl.M was trained to model masked spans using bidirectional context, the infilling-based scoring
([bi]) is more aligned with the model’s architecture and is empirically reported to yield lower perplex-
ity than autoregressive scoring. However, both modes are supported and yield useful comparisons
when paired with either mutant or parental input.

Summary.

* LLyrc: computes log-likelihood using the full sequence as input, relying only on autoregres-
sive left context.

* LLy;: computes log-likelihood of the designed regions using IgL.M’s infilling mechanism,
conditioned on bidirectional context from the sequence.

G AntiFold Log-Likelihood Scoring:

AntiFold is an antibody-specific inverse folding model based on the ESM-IF1 architecture, trained
to predict sequences given fixed backbone structures [Hgie et al., 2023]. Given a structure input,
AntiFold generates amino acid sequences autoregressively from N- to C-terminus using a decoder-
only Transformer architecture with causal attention. This means each position attends only to its
preceding sequence positions and not to future residues. However, AntiFold conditions globally on
the full backbone structure, which is processed separately and fed as a contextual embedding at each
decoding step.

During evaluation, AntiFold outputs the log-probability assigned to each of the 20 amino acids at each
sequence position. These per-position log-probabilities can be used to compute the log-likelihood of
any specified subset of residues, including disjoint masked regions.

Mutation-context likelihood (LLy;yT). In the first evaluation strategy, the model is run using the
full mutant sequence as input, along with the associated structure'. Per-position log-probabilities are
extracted from the model output, and the log-likelihood of the mutant residues is computed over the
specified masked positions:

LLyuT (Smut) Zlog p(sP™ | sTY, structure),
teP
where P denotes the indices of mutated residues. Because the input sequence is the mutant itself, the
decoder conditions on the correct mutated left context for each position in P.

Parent-context likelihood (LLps). Alternatively, log-probabilities can be computed using the
parental sequence as input. In this case, the model is conditioned on the original (pre-mutation) left
context, and the mutant amino acids are scored using the model’s output:

t
LLpA (Smut; Spa) Zlogp | s, structure).
teP

'Backbone structure of mutant sequence is assumed to be same as the parental sequence
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This formulation assesses how well the mutant residues fit into the structural and sequential context
defined by the parent. However, since the decoder is causal, any mutations occurring at early positions
can affect the correctness of conditioning for later positions if the full mutant context is not used.

Implementation details. AntiFold outputs a matrix of per-position log-probabilities in CSV format.
Given a mutant sequence and set of mutated positions P, the log-likelihood is computed by gathering
the model’s log-probability for each mutant residue at the corresponding position:

# For LL_MUT
log_probs_mut = antifold(model_input=mutant.pdb)
11_mut = sum([log_probs_mut[t][s_mut([t]] for t in P])

# For LL_PA
log_probs_pa = antifold(model_input=parent.pdb)
11 _pa = sum([log_probs_palt][s_mut[t]] for t in PJ])

Here, s_mut[t] refers to the amino acid at position ¢ in the mutant sequence, and
log_probs[t] [aa] gives the log-probability assigned to amino acid aa at position t.

Summary.

e LLyur: scores the mutant using its own autoregressive context.
* LLpa: scores the mutant residues using log-probabilities from the parent context.
* In both cases, log-likelihood is computed by summing over specified mutated regions.
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