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Abstract

Generative models have emerged as powerful tools for antibody sequence design,1

with recent studies demonstrating that log-likelihood scores from these models2

can correlate with binding affinity and potentially serve as effective ranking met-3

rics. In this work, we investigate the biochemical basis of these model-derived4

log-likelihoods by comparing them with classical evolutionary similarity met-5

rics. We find that BLOSUM similarity scores between designed and parental6

antibody sequences correlate strongly with measured binding affinity—on par with7

the predictive performance of a state-of-the-art diffusion-based generative model.8

Moreover, these BLOSUM scores also align closely with log-likelihoods from9

multiple generative models, suggesting that such models may be implicitly learning10

evolutionary priors encoded in substitution matrices. In contrast, similarity scores11

based on position weight matrices (PWMs) and position-specific scoring matrices12

(PSSMs) that do not require the knowledge of the parental sequence show weaker13

and less consistent alignment with binding affinity, with performance depending14

on the source of the background sequence data. Additionally, using consensus15

sequences in place of parental sequences to compute BLOSUM scores largely16

eliminates the observed correlation with affinity, underscoring the context-specific17

nature of the correlations. These findings highlight the potential of interpretable,18

evolution-inspired metrics to complement generative modeling in antibody design,19

offering insights into both model behavior and biological relevance.20

1 Introduction21

Antibody design continues to be a critical area of research for both therapeutic and diagnostic22

applications, where the goal is to target antibodies toward a predetermined epitope of interest,23

optimize binding affinity and specificity, and improve overall developability of antibody candidates.24

Computational methods, particularly generative models trained on large-scale antibody sequence25

datasets, have shown significant promise in accelerating this process. These models can propose26

candidate sequences that adhere to learned patterns of natural antibody repertoires, potentially27

capturing features relevant to biological function and molecular recognition. A major challenge,28

however, lies in the development of reliable in silico metrics to rank designed sequences by their29

likelihood of exhibiting high binding affinity.30

Among available metrics, log-likelihood scores derived from generative models trained solely on31

structural and/or sequence data have recently been shown to correlate with experimentally measured32

binding affinity [Ucar et al., 2024], indicating their potential as a practical tool for prioritization. Yet33

the biochemical basis of this correlation remains poorly understood. It is not clear whether these34

scores reflect meaningful biophysical or evolutionary constraints, or whether they serve merely as35

model-specific heuristics.36
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In this work, we investigate the biochemical grounding of model-derived scores by examining their37

relationship with classical sequence similarity metrics. Specifically, we assess whether these scores38

align with metrics grounded in evolutionary substitution dynamics, including BLOcks SUbstitution39

Matrix (BLOSUM) similarity [Henikoff and Henikoff, 1992], position weight matrices (PWM)40

[Stormo et al., 1982], and position-specific scoring matrices (PSSM) [Gribskov et al., 1987]. These41

metrics are computed using different strategies: BLOSUM similarity is evaluated between designed42

sequences and various types of reference sequences, while PWM and PSSM scores are derived from43

amino acid frequency profiles obtained from large antibody datasets.44

By comparing these scores with both measured binding affinities and log-likelihoods from multiple45

generative models—including a diffusion-based model DiffAbXL-A [Ucar et al., 2024], an inverse46

folding model AntiFold [Høie et al., 2023], and a language model IgLM [Shuai et al., 2023], we47

aim to clarify whether such models capture biologically meaningful substitution patterns. Our48

results highlight the importance of context-specific similarity metrics and suggest that interpretable,49

evolution-inspired scores can complement generative models by improving the transparency and50

reliability of model-guided antibody design pipelines.51

2 Related Work52

Generative models have become increasingly important in protein and antibody design, leveraging53

advancements in deep learning to generate novel sequences with desirable properties. These models54

typically fall into three broad categories: large language models (LLMs) trained on sequence data55

[Malherbe and Uçar, 2024], graph-based models that capture spatial and topological properties [Kong56

et al., 2023], and diffusion-based models that simulate denoising processes over sequence and/or57

structure spaces [Ucar et al., 2024]. Each approach differs in how it represents and generates protein58

information—ranging from purely sequence-based generation to more complex structure-aware59

co-design frameworks.60

While much of the recent focus has been on improving generative quality and integrating structure61

prediction tools (e.g., AlphaFold [Jumper et al., 2021], RoseTTAFold [Baek et al., 2021]), a parallel62

challenge lies in evaluating and ranking generated designs. Commonly used in silico metrics include63

structural scores (e.g., RMSD, ipTM, pAE) [Abramson et al., 2024] and sequence-based scores such64

as amino acid recovery (AAR) or log-likelihood under pretrained models [Ucar et al., 2024, Luo65

et al., 2022]. However, these metrics are not explicitly optimized to reflect functional outcomes like66

binding affinity, which limits their utility in candidate prioritization.67

Recent studies have begun to explore whether log-likelihood scores from generative models can serve68

as more functionally meaningful evaluation metrics. For instance, Shanehsazzadeh et al. [2023b]69

observed that higher-likelihood sequences generated by IgMPNN yielded higher proportions of70

binders, though the correlation was indirect and assessed via enrichment metrics. Other work in71

general protein fitness prediction has used zero-shot likelihood ranking across mutational scans72

[Truong Jr and Bepler, 2023], but the results have varied across assay types. Specifically for73

antibodies, Chungyoun et al. [2024] found that log-likelihood does not always align with functional74

readouts such as binding or expression, suggesting that model scores alone may be insufficient.75

More recently, Ucar et al. [2024] systematically evaluated log-likelihood scores from a diffusion-based76

antibody generative model (DiffAbXL-A), finding that these scores consistently and significantly77

correlate with measured binding affinity across diverse datasets. This supports the view that generative78

models can internalize biophysical and evolutionary constraints relevant to antigen binding, even79

without explicit supervision on affinity labels.80

Moreover, BLOSUM matrices have long been used to quantify functional similarity between se-81

quences and are known to reflect evolutionary constraints. Prior efforts have used such metrics for82

sequence alignment and clustering but not explicitly for affinity ranking in design contexts [Altschul83

et al., 1990]. This work builds on prior studies by directly investigating the biochemical basis of log-84

likelihood as a scoring function. We examine whether classical evolutionary similarity metrics—such85

as those derived from BLOSUM, PWM, and PSSM—are predictive of binding affinity and whether86

they correlate with the scores produced by generative models.87
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3 Method88

We evaluate the relationship between log-likelihood scores from generative models and classical evo-89

lutionary metrics for predicting antibody binding affinity. Specifically, we compare four approaches:90

(i) log-likelihoods from three representative generative models — a diffusion-based model, an inverse91

folding model, and a language model [Ucar et al., 2024, Høie et al., 2023, Shuai et al., 2023], (ii)92

BLOSUM-based scoring [Henikoff and Henikoff, 1992], (iii) PWM–derived scores [Stormo et al.,93

1982], and (iv) PSSM–derived scores [Gribskov et al., 1987]. All methods are evaluated across94

multiple datasets with experimentally measured affinities.95

Scoring Region Masking. To ensure consistent comparison across scoring methods, we define96

a dataset-specific mutation mask M that identifies positions relevant for scoring. For BLOSUM,97

PWM, and PSSM-based evaluations, we first align all sequences using the AHo numbering scheme98

[Honegger and PluÈckthun, 2001], and include a position in M if it differs between the parental99

sequence and any of its variants. In contrast, for log-likelihood–based scoring using the DiffAbXL-A100

and IgLM models, no alignment is performed; the mask is computed directly from raw sequence101

positions that differ from the parental sequence. For AntiFold, which uses IMGT numbering internally102

to define complementarity-determining regions (CDRs), we provide the model with the specific list of103

CDRs designed in each library to define M. This approach maintains compatibility with how these104

generative models process input and ensures that each method is evaluated in its appropriate context.105

Log-likelihood scoring. We evaluate log-likelihoods using three different generative models:106

DiffAbXL-A, AntiFold, and IgLM.107

DiffAbXL-A. DiffAbXL-A is a scaled variant of the diffusion-based model DiffAb [Luo et al.,108

2022], trained to generate all six complementarity-determining regions (CDRs) of an antibody given109

structural context. The model is trained on an expanded synthetic dataset with longer input lengths,110

improving its generalization ability [Ucar et al., 2024]. Log-likelihoods are computed in De Novo111

(DN) mode, where both sequence and structure are masked over the scoring region. We refer to this112

mode as DiffAbXL-A-DN. For a designed sequence s, and positions j in the mutation mask M, we113

define the score:114

LL =
∑
j∈M

log (Pj(sj | U) + ε) , (1)

where Pj(sj | U) is the probability of residue sj predicted by the model given unmasked context U ,115

and ε is a small constant (e.g., 10−9) for numerical stability.116

AntiFold. AntiFold is an inverse folding model based on ESM-IF1 [Høie et al., 2023], which117

autoregressively predicts sequence from structure. To compute log-likelihoods, we first pass either the118

parental or mutant sequence along with its backbone structure into the model to obtain per-position119

log-probabilities. We then gather the log-probabilities corresponding to the mutant amino acids at the120

mutated positions M. In the main analysis, we use the parental sequence for context (AntiFoldPA).121

The log-likelihood is defined as:122

LLPA =
∑
j∈M

log
(
Pj(s

mut
j | spa

<j ,S) + ε
)
, (2)

where S is the structure, smut
j is the mutant residue at position j, and spa

<j is the prefix of the parental123

sequence.124

IgLM. IgLM is a decoder-only language model trained with a masked span infilling objective on125

antibody sequences [Shuai et al., 2023]. We evaluate log-likelihood using two scoring modes:126

preceding context only ([pre]) and bidirectional context ([bi]). In both cases, we use the parental127

sequence as context in the main experiments. Mutation regions may consist of one or more contiguous128

spans (e.g., individual or multiple CDRs), each of which is scored independently in bidirectional129

context case.130

Preceding context only ([pre]):131

IgLM[pre]PA(smut; spa) =
∑
t∈M

log p(smut
t | spa

<t), (3)

where the parental sequence spa is passed to the model to obtain logits, and the mutant sequence smut132

is used to select log-probabilities at mutation sites t ∈ M.133
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Bidirectional context ([bi]):134

IgLM[bi]PA(s
mut; spa) =

∑
k

∑
t∈Sk

log p(smut
t | spa

<t, s
pa
>t), (4)

where each mutated span Sk is a contiguous region (e.g., a CDR) that is masked in the parental se-135

quence, and the model predicts the mutant residues using bidirectional context. Multiple spans can be136

masked and evaluated independently if the mutation mask covers disjoint regions. Furthermore, since137

IgLM is trained to model masked spans using bidirectional context, scoring based on bidirectional138

information is better aligned with its training objective and has been empirically shown to produce139

lower perplexity than scoring based solely on preceding context [Shuai et al., 2023].140

Results for scoring using the mutant sequence as context (IgLM[pre]MUT, IgLM[bi]MUT, and141

AntiFoldMUT), along with additional details on how the scores are computed, are provided in Sections142

D - G of the Appendix.143

BLOSUM similarity scoring. BLOSUM similarity is computed using substitution matrices (e.g.,144

BLOSUM45, 62, 80, and 90). For each designed sequence, similarity is calculated with respect to145

one of the following reference sequences: (1) the parental sequence from the same dataset (denoted146

as BLOSUMPA); (2) a global consensus sequence derived from two antibody datasets—either147

human antibodies from the Observed Antibody Space (OAS) or antibody-antigen complexes from148

SAbDab—denoted as BLOSUMGOAS and BLOSUMGSAbDab , respectively; or (3) a consensus sequence149

derived from the antibody variants within each dataset, referred to as dataset-specific (DS) and150

denoted as BLOSUMDS. For (2), separate consensus sequences are constructed for heavy, kappa,151

and lambda chains using AHo numbering [Honegger and PluÈckthun, 2001]. The similarity score is152

defined as:153

ScoreBLOSUM =
1

|M|
∑

j ∈ MB(sref
j , sj), (5)

where sref
j is the residue at position j in the reference sequence, sj is the corresponding residue in the154

designed sequence, and B(a, b) is the substitution score from the chosen BLOSUM matrix.155

PWM-based similarity scoring. Position weight matrices (PWMs) are constructed from aligned156

human antibody sequences in the OAS and SAbDab databases. Sequences are split by chain type157

(heavy, kappa, and lambda) and aligned using AHo numbering. From these alignments, we compute158

amino acid frequency distributions at each position, producing normalized matrices in which each159

column sums to 1.160

For each designed sequence, we compute the PWM score as the sum of amino acid frequencies at the161

mutated positions, matched by chain type:162

ScorePWM =
∑

j ∈ MHfH(j, sj) +
∑

j ∈ MLfL(j, sj), (6)

where fH(j, sj) and fL(j, sj) are the amino acid frequencies at position j in the heavy and light163

chain PWMs, respectively, and MH , ML are the subsets of M corresponding to the heavy and light164

chains.165

PSSM-based similarity scoring. Position-specific scoring matrices (PSSMs) are computed from166

aligned antibody sequences, where each entry reflects the log-odds score of observing amino acid a167

at position j relative to background. We derive PSSMs from three sources: (1) human antibodies168

from the OAS repertoire, (2) the SAbDab database, and (3) the sequences within each experimental169

dataset, where a separate PSSM is constructed for each dataset using only its constituent sequences.170

We refer to this third approach as dataset-specific PSSMs (PSSMDS). As with PWMs, sequences are171

aligned using AHo numbering and split by chain type.172

For each designed sequence, we compute the PSSM score as:173

ScorePSSM =
∑

j ∈ MHSH(j, sj) +
∑

j ∈ MLSL(j, sj), (7)

where SH(j, sj) and SL(j, sj) denote the log-odds substitution scores from the PSSMs for the heavy174

and light chains, respectively. Higher scores indicate higher evolutionary preference for the observed175

amino acids at those positions. Additional details on the construction of PSSMs and PWMs can be176

found in Section C of the Appendix.177
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Figure 1: Correlation between BLOSUM45 and −logKD: a) HER2 Zero-Shot (ZS), b) ACVR2B,
c) IL36R, d) TNFRSF9, e) C5. *, **, *** indicate p-values under 0.05, 0.01 and 1e-4 respectively.

200 180 160 140 120 100 80 60
Log-likelihood

20

0

20

40

60

80

BL
O

SU
M

45

Kendall : 0.53***
Spearman : 0.71***

(a) Absci HER2 ZS

220 210 200 190 180
Log-likelihood

100

120

140

160

180

200

BL
O

SU
M

45

Kendall : 0.56***
Spearman : 0.75***

(b) FXI

250 240 230 220 210 200 190 180
Log-likelihood

110

120

130

140

150

160

170

180

BL
O

SU
M

45

Kendall : 0.68***
Spearman : 0.85***

(c) IL36R

290 280 270 260
Log-likelihood

100

110

120

130

140

150

160

BL
O

SU
M

45

Kendall : 0.67***
Spearman : 0.84***

(d) IL7

540 520 500 480
Log-likelihood

50

100

150

200

250

BL
O

SU
M

45

Kendall : 0.47**
Spearman : 0.71***

(e) HEL

Figure 2: Correlation between BLOSUM45 and the log-likelihood scores of DiffAbXL-A-DN: a)
HER2 Zero-Shot (ZS), b) FXI, c) IL36R, d) IL7, e) HEL. *, **, *** indicate p-values under 0.05,
0.01 and 1e-4 respectively.

Hydrophobicity and rigidity scoring. To evaluate coarse-grained biophysical trends, we compute178

the average hydrophobicity and rigidity of mutated residues using the Kyte-Doolittle [Kyte and179

Doolittle, 1982] and Karplus-Schulz [Karplus and Schulz, 1985] scales, respectively:180

ScoreHydro =
1

|M|
∑

j ∈ MH(sj), ScoreRigid =
1

|M|
∑

j ∈ M 1

F (sj)
, (8)

where H(sj) and F (sj) denote the hydrophobicity and flexibility value of amino acid sj .181

Affinity correlation analysis. After computing all scores, we evaluate their correlation with exper-182

imental binding affinities, expressed as − log(KD) or equivalent (e.g., − log(IC50)). Spearman’s183

rank correlation coefficient (ρ) and Kendall’s tau (τ ) are computed to assess the predictive power and184

biological relevance of each scoring method. We also examine correlations between statistical simi-185

larity scores and log-likelihoods to probe whether generative models implicitly capture evolutionary186

constraints.187

4 Empirical Evaluation188

4.1 Datasets189

In this study, we use fourteen datasets drawn from four sources: Absci HER2 [Shanehsazzadeh et al.,190

2023b], IgDesign [Shanehsazzadeh et al., 2023a], Nature [Porebski et al., 2024], and proprietary191

datasets from AstraZeneca (AZ).192

Absci HER2. These datasets involve HCDR re-designs of Trastuzumab, an antibody that targets193

HER2. Sequence generation was performed using a two-step pipeline: first, machine learning models194

were used to predict HCDR loop structures conditioned on the HER2 backbone (PDB:1N8Z, Chain195

C), the Trastuzumab framework, and the known epitope; second, sequences were generated via196

inverse folding on the predicted structures. While HCDR3 lengths ranged from 9 to 17 residues, we197

focus on sequences with HCDR3 length 13, consistent with the native antibody. HCDR1 and HCDR2198

were fixed at 8 residues. Binding affinities (KD) were measured using a FACS-based ACE assay. We199

analyze two datasets: (1) a "zero-shot binders" set, and (2) an SPR-validated "control" set containing200

both binders and non-binders.201

IgDesign. This set includes seven antigen targets—FXI, IL36R, C5, TSLP, IL17A, ACVR2B, and202

TNFRSF9. Antibodies were designed by mutating either the HCDR3 alone or all three CDRs on the203

heavy chain. Each design library was synthesized and experimentally tested using SPR.204

5



Table 1: Spearman correlations of log-likelihood scores of DiffAbXL-A-DN, biophysical features,
PWM, PSSM, and BLOSUM scores with binding affinity. *, **, *** indicate p-values under 0.05,
0.01, and 1e-4, respectively. The measurements are qAC50 for AZ Target-1, IC50 for IL7, and KD

for the rest.

Approach Model Absci HER2 Nature AZ Absci IgDesign
Zero Shot Control HEL IL7 HER2 Target-1 Target-2 IL17A ACVR2B FXI TNFRSF9 IL36R C5 TSLP

Diffusion DiffAbXL-A-DN 0.43*** 0.22*** 0.62** -0.79*** 0.37* -0.11 0.41** 0.62** 0.54* 0.18 0.18 0.14 -0.32 -0.02

Biophysical Hydrophobicity -0.17* 0.04 -0.13 0.57* -0.38 0.30 0.14 0.49 0.49 -0.39* 0.41* 0.70*** 0.32 -0.05
Rigidity 0.09 0.45*** -0.18 0.33 -0.37 0.18 0.06 0.49 0.49 -0.22 -0.16 0.15 0.19 -0.12

Statistical

PWMOAS 0.30*** 0.12* 0.29 0.34 0.17 -0.23 0.17 -0.24 0.13 -0.14 0.02 -0.16 -0.03 -0.15
PWMSAbDab 0.30*** 0.10* 0.35* -0.49* 0.43* 0.24 0.16 -0.10 0.42 -0.23 0.29 -0.32* -0.31 0.03
PSSMOAS 0.36*** 0.22*** 0.28 -0.07 0.20 -0.02 0.05 -0.13 0.11 -0.20 0.06 -0.29 -0.10 -0.103
PSSMSAbDab 0.40*** 0.29*** 0.19 -0.40 0.31 0.38 0.10 -0.10 0.48* -0.18 0.28 -0.39* -0.32 -0.05
PSSMDS 0.50*** 0.47*** 0.52** -0.18 -0.16 0.29 0.24* -0.01 0.24 0.53** 0.05 0.26 0.00 -0.11
BLOSUM45GOAS 0.36*** 0.03 0.26 -0.59** 0.26 -0.52** -0.07 0.10 0.03 0.29* 0.03 -0.27 -0.25 -0.36***
BLOSUM45GSAbDab 0.39*** 0.095 0.22 -0.80*** -0.34 -0.21 0.16 -0.39 -0.006 -0.42** 0.26 -0.27 -0.32 -0.34**
BLOSUM45DS 0.46*** 0.31*** 0.52** 0.69** -0.32 0.43* 0.30** 0.01 0.47* 0.52** 0.17 0.38* 0.10 -0.29**
BLOSUM90PA 0.48*** 0.25*** 0.57** -0.86*** -0.74*** -0.09 0.26* 0.77 0.63** 0.32 0.41* 0.57** 0.57** 0.19*
BLOSUM80PA 0.48*** 0.26*** 0.58** -0.85*** -0.73*** -0.10 0.24* 0.77 0.73** 0.32 0.42* 0.58** 0.64** 0.20*
BLOSUM62PA 0.48*** 0.26*** 0.57** -0.85*** -0.72*** -0.06 0.26* 0.77 0.71** 0.32 0.38* 0.58** 0.60** 0.21*
BLOSUM45PA 0.50*** 0.29*** 0.59** -0.87*** -0.71*** -0.08 0.30** 0.77 0.73** 0.33 0.48** 0.50** 0.62** 0.22*

Nature. We also include datasets reported by Porebski et al. [2024], covering HER2, IL7, and HEL.205

Mutations in anti-HER2 are limited to HCDR3, while anti-IL7 involves LCDR1 and LCDR3. The206

HEL dataset consists of nanobodies with mutations across all three CDRs. Dataset sizes range from207

19 to 38 sequences. We use KD values for HER2 and HEL, and IC50 for IL7. For structure-based208

methods, parental structures were predicted using ImmuneBuilder2 (HER2), IgFold (IL7), and209

NanoBodyBuilder2 (HEL) [Abanades et al., 2023, Ruffolo et al., 2023] as described in [Ucar et al.,210

2024].211

AZ These proprietary datasets consist of two antibody libraries targeting separate antigens. The212

first target includes 24 variants, generated via rational design across four regions (HCDR1–3 and213

LCDR3). The second comprises 85 sequences drawn from three design strategies: two rationally214

designed libraries (one mutating heavy chain CDRs, the other light chain CDRs) and a third created215

using a machine learning model introducing changes across all six CDRs. Binding measurements216

are reported as qAC50 for Target-1 and KD for Target-2. For models requiring structure, we use the217

corresponding crystal structures for both targets.218

4.2 Results219

Benchmarking predictive power across scoring methods. We assess the correlation between several220

scoring methods—including DiffAbXL-A log-likelihoods, BLOSUM similarity, PWM similarity, and221

PSSM similarity—and experimentally measured binding affinities across fourteen benchmark datasets.222

DiffAbXL-A was selected based on prior findings that its log-likelihood scores exhibit the strongest223

correlation with experimental binding affinity in [Ucar et al., 2024]. Spearman’s rank correlation224

coefficients (ρ) are summarized in Table 1, and correlation statistics between log-likelihoods and225

BLOSUM or statistical similarity scores are shown in Table 2. Log-likelihood scores derived from226

the DiffAbXL-A model in De Novo (DN) mode show consistent and often promising correlations227

with binding affinity across diverse design tasks. For example, we observe ρ = 0.43 on Absci HER2228

Zero Shot, ρ = 0.62 on Nature HEL, and ρ = 0.62 on IgDesign IL17A. These results suggest that229

the model is capturing sequence features that are predictive of functional binding, even though it was230

not trained on the specific antibody libraries present in these datasets or on binding affinity prediction231

tasks. On the Nature IL7 dataset, where inhibition rather than binding affinity is measured (via IC50),232

a strong negative correlation is observed (ρ = −0.79). However, IC50 reflects the concentration233

needed to achieve 50% inhibition of a biological response, and is influenced by multiple factors234

beyond binding—such as receptor expression levels, signaling kinetics, and assay-specific artifacts.235

Unlike KD, which directly measures molecular interaction strength, IC50 integrates downstream236

effects and may vary substantially even when two molecules have similar affinities. As a result,237

correlations involving IC50 should be interpreted cautiously.238

BLOSUM similarity scores align strongly with binding affinity. Across the board, BLOSUM-239

based similarity—particularly using BLOSUM45—shows good correlation with binding affinity.240

This trend holds across nearly all datasets, including Absci HER2, Nature HEL, and several IgDesign241

targets. For instance, BLOSUM45 achieves ρ = 0.50 on Absci HER2 Zero Shot, ρ = 0.59 on242

Nature HEL, and ρ = 0.73 on IgDesign ACVR2B. This finding supports the idea that evolutionary243

closeness to the parental (reference) sequence is a strong indicator of retained binding functionality.244

The consistent performance of BLOSUM matrices, especially those calibrated for more distant245
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Table 2: Spearman correlations between DiffAbXL-A-DN log-likelihoods and sequence-similarity
scores (BLOSUM45, PWM, and PSSM). *, **, *** indicate p-values under 0.05, 0.01, and 1e-4,
respectively.

Method Absci HER2 Nature AZ Absci IgDesign
ZS Ctrl HEL IL7 HER2 T-1 T-2 IL17A ACVR2B FXI TNFRSF9 IL36R C5 TSLP

BLOSUM45PA 0.71*** 0.81*** 0.71*** 0.85*** –0.24 0.48* 0.56*** 0.88*** 0.64** 0.75*** 0.41* 0.85*** –0.61** 0.46***
PSSMDS 0.80*** 0.73*** 0.79*** 0.07 –0.12 –0.47* 0.23* –0.25 0.49* 0.38** –0.01 0.63*** –0.73*** 0.27**
PSSMSAbDab 0.77*** 0.55*** 0.45** 0.46* 0.38 –0.05 0.70*** 0.09 0.24 -0.61*** -0.18 –0.69*** 0.36* 0.27**
PSSMOAS 0.76*** 0.51*** 0.57** 0.12 0.40* –0.16 0.47*** –0.11 0.13 –0.63*** 0.02 –0.69*** –0.41* 0.38***
PWMSAbDab 0.80*** 0.52*** 0.55** 0.58** 0.25 0.02 0.56*** 0.19 0.68** –0.17 –0.12 –0.71*** 0.48** 0.55***
PWMOAS 0.77*** 0.48*** 0.56** –0.18 0.12 0.48* 0.31** 0.20 0.41 –0.04 0.10 –0.72*** –0.48** 0.33**

homologs (e.g., BLOSUM45), suggests they capture robust patterns relevant to antigen recognition246

and molecular stability. We note that across all datasets examined, the parental antibody—used247

as the reference for computing BLOSUM scores and thus assigned the highest similarity score by248

design—is consistently among the strongest binders. We expected that if this were not true, the249

correlation between BLOSUM similarity and binding affinity would be substantially weaker.250

Consensus-based BLOSUM scores lose predictive power. In contrast, when BLOSUM similarity251

is computed between designed sequences and global consensus sequences—either from OAS or252

SAbDab—the correlation with binding affinity largely disappears. For example, BLOSUM45GOAS253

shows weak or negative correlations on many datasets, with significant drops observed on most254

datasets. This suggests that global evolutionary priors do not substitute well for dataset-specific255

reference sequences in affinity prediction.256

PWM similarity shows modest utility, with SAbDab outperforming OAS. PWM scores based on257

the OAS repertoire show weak and inconsistent correlation with binding affinity, with meaningful258

results limited to the Absci HER2 datasets (e.g., ρ = 0.30 on Zero Shot). However, when PWMs259

are computed from the SAbDab dataset, the correlation improves slightly. In addition to Absci260

HER2, we observe positive correlations on Nature HEL (ρ = 0.35) and Nature HER2 (ρ = 0.43),261

suggesting that structure-based databases such as SAbDab may better reflect the selective pressures262

acting on antibody binding regions since they contain antibody-antigen complexes. Nonetheless,263

performance remains below that of BLOSUM and DiffAbXL-A. This may be due to the local and264

repertoire-specific nature of the PWM used, which reflects background amino acid usage rather than265

target-specific substitution effects. Because PWMs are constructed from observed frequencies rather266

than substitution dynamics, they may fail to capture functionally relevant mutations, especially when267

applied outside their source distribution.268

PSSM similarity improves with data-specific priors. PSSM scores show variable performance269

depending on how the matrices are derived. Global PSSMs constructed from the OAS or SAbDab270

datasets yield modest correlations with binding affinity, with improvements observed for SAbDab-271

based PSSMs in some datasets (e.g., Absci HER2 and IgDesign ACVR2B). However, when PSSMs272

are constructed specifically from the dataset under evaluation (PSSMDS), correlation improves273

substantially. For example, PSSMDS yields ρ = 0.50 on Absci HER2 Zero Shot and ρ = 0.52274

on Nature HEL, both surpassing the performance of global PSSMs. These results highlight the275

importance of local sequence context in capturing meaningful constraints for affinity prediction and276

suggest that dataset-specific PSSMs can serve as useful tools when sufficient in-distribution sequence277

data are available.278

Log-likelihood scores correlate with BLOSUM, PSSM, and PWM similarity metrics. We observe279

strong correlations between DiffAbXL-A log-likelihood scores and BLOSUM45 similarity across280

most datasets (Table 2), with 12 out of 14 cases exceeding a Spearman ρ of 0.4, and several surpassing281

0.8 (e.g., IL17A, IL36R, IL7). This suggests that the generative model is implicitly learning amino282

acid substitution patterns that align closely with established evolutionary priors. Similar, though283

generally weaker, correlations are observed with PWM-based scores. Notably, PWMs derived from284

SAbDab show stronger alignment with log-likelihoods than those from OAS, especially in datasets285

such as IL7 (ρ = 0.58) and ACVR2B (ρ = 0.68). PSSM similarity also correlates with model scores,286

particularly when computed from dataset-specific (PSSMDS) or SAbDab-based matrices, supporting287

the view that the model internalizes substitution preferences.288

Biophysical scores show target-specific utility. Two coarse-grained biophysical metrics—Kyte-289

Doolittle hydrophobicity and Karplus-Schulz rigidity—were also evaluated. Hydrophobicity content290

correlates positively with binding affinity on Nature IL7 (ρ = 0.57) and IgDesign IL36R (ρ = 0.70),291

suggesting a potential link between hydrophobic residues and binding affinity in these datasets.292
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Table 3: Spearman correlations between the model log-likelihoods (LLs) and KD values as well
as between LLs and BLOSUM45PA scores for DiffAbXL-A-DN, AntiFold and IgLM. *, **, ***
indicate p-values under 0.05, 0.01, and 1e-4, respectively.

Model Metric Absci HER2 Nature Absci IgDesign
ZS Ctrl HEL HER2 IL17A ACVR2B FXI TNFRSF9 IL36R C5 TSLP

DiffAbXL-A-DN LL vs KD 0.43*** 0.22*** 0.62** 0.37* 0.62** 0.54* 0.18 0.18 0.14 –0.32 –0.02
LL vs BLOSUM45PA 0.71*** 0.81*** 0.71*** -0.24 0.88*** 0.64** 0.75*** 0.41* 0.85*** –0.61** 0.46***

AntiFoldPA
LL vs KD 0.45*** 0.15** 0.64*** –0.38 –0.79** 0.29 0.02 0.04 0.18 –0.01 0.24**
LL vs BLOSUM45PA 0.61*** 0.61*** 0.76*** 0.60** –0.39 –0.04 0.14 0.65*** –0.22 0.01 0.80***

IgLM[pre]PA
LL vs KD –0.09 0.22*** 0.35* 0.02 0.12 0.16 0.31* 0.12 –0.63*** –0.26 0.23*
LL vs BLOSUM45PA –0.22** –0.07 0.57** –0.33 0.16 –0.36 0.60*** 0.11 –0.43** –0.82*** 0.51***

IgLM[bi]PA
LL vs KD 0.26** –0.05 0.59** –0.12 0.14 –0.01 –0.11 –0.09 0.24 –0.21 –0.08
LL vs BLOSUM45PA 0.35*** 0.14** 0.73*** 0.43* 0.56* 0.48* –0.58*** 0.38* –0.04 –0.59** 0.36***

Rigidity shows a moderate correlation only on Absci HER2 Control (ρ = 0.45), with little signal293

elsewhere. These results indicate that such physicochemical scores may capture some target-specific294

trends but are not general-purpose predictors of affinity.295

Consistent evolutionary signatures in log-likelihoods from diverse generative models. As296

with DiffAbXL-A, log-likelihoods from both AntiFold and IgLM show strong correlations with297

BLOSUM45 similarity scores (Table 3). For example, AntiFoldPA log-likelihoods correlate with298

BLOSUM similarity at ρ = 0.76 on Nature HEL and ρ = 0.80 on IgDesign TSLP. Similarly,299

IgLM[bi]PA achieves ρ = 0.73 on Nature HEL and shows moderate-to-strong alignment on multiple300

other datasets. These findings further support the hypothesis that generative models implicitly learn301

substitution preferences that align with classical evolutionary priors. We also note that when log-302

likelihoods (LLs) correlate with binding affinity (KD), they almost always exhibit an even stronger303

correlation with BLOSUM similarity. However, the converse does not necessarily hold: a strong304

LL–BLOSUM correlation does not imply a meaningful LL–KD correlation.305

5 Conclusion306

We examined the connection between generative model scores and classical evolutionary similarity307

metrics in the context of antibody design. Across fourteen datasets of experimentally characterized308

antibody variants, BLOSUM similarity to the wild type (WT)—particularly using matrices such309

as BLOSUM45—showed strong and consistent correlation with binding affinity, often rivaling or310

exceeding the performance of model-based log-likelihood scores. Among generative models, the311

diffusion-based model DiffAbXL-A showed the highest correlation with affinity values, consistent312

with prior findings in [Ucar et al., 2024]. Moreover, evaluations of AntiFold and IgLM revealed313

that their log-likelihood scores also align with BLOSUM similarities, even when their correlation314

with binding affinity is weaker. This reinforces the idea that generative models may implicitly learn315

substitution patterns shaped by evolutionary pressure, even without explicit supervision.316

In contrast, PWM-based scores exhibited limited and variable performance, particularly when derived317

from general antibody repertoires. Slight improvements were observed with PWMs constructed from318

antibodies in complex with antigens, though these still underperformed relative to BLOSUM simi-319

larities over the parental antibody sequence in each dataset. PSSM-based scores showed somewhat320

stronger and more stable correlations than PWMs, especially when constructed from dataset-specific321

alignments, occasionally matching the predictive power of BLOSUM and log-likelihood scores.322

However, their performance was less consistent when based on broad repertoires such as OAS or323

structure databases such as SAbDab. Simple biophysical descriptors such as hydrophobicity and324

rigidity captured some signal in a few cases but lacked generalizability.325

These findings highlight the utility of interpretable, evolution-derived metrics such as BLOSUM326

and underscore the importance of contextual information—such as reference sequence choice—in327

score interpretation. They also suggest that generative models encode evolutionary signals that328

can be leveraged for scoring and prioritization tasks. As generative models continue to improve,329

understanding the extent to which their internal representations align with biological priors will330

be essential for advancing robust and interpretable generative models for designing therapeutic331

antibodies.332
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Appendix401

A Impact Statement402

This research advances the use of machine learning in antibody engineering by investigating the403

predictive power of statistical models such as BLOSUM and PWM for ranking antibody designs404

based on binding affinity as well as studying their relationship with the log-likelihood scores of405

diffusion-based generative models. By demonstrating an association between derived scores and406

real-world experimental data, this work provides a pathway to accelerate therapeutic antibody407

discovery while minimizing costly trial-and-error experimentation. Ethical and societal impacts,408

such as improved healthcare outcomes and broader accessibility of life-saving treatments, mirror the409

established considerations in the broader field of machine learning-driven drug discovery.410

B License Information411

IgDesign datasets [Shanehsazzadeh et al., 2023a] are released under MIT license. Absci Her2 datasets412

[Shanehsazzadeh et al., 2023b] are released under BSD License. SAbDab and OAS datasets are413

available under a CC-BY 4.0 license. We will release our code upon the acceptance of our paper with414

Apache 2.0 license.415

C Construction of PWM and PSSM416

To analyze amino acid preferences at each structurally equivalent position, we first aligned all417

sequences using the AHo numbering scheme, which provides a consistent positional framework418

across antibody variable domains. Each sequence was mapped into an AHo-labeled position–residue419

dictionary, and alignment matrices were constructed accordingly.420

We computed the Position Weight Matrix (PWM) by counting the occurrences of each amino421

acid (including gaps) at each AHo-defined position across all aligned sequences. To prevent zero422

probabilities and ensure numerical stability, a Laplace pseudocount of 1 was added to each residue423

count. The resulting frequency fi,a of amino acid a at position i was computed as:424

fi,a =
ni,a + 1

ni + k

where ni,a is the count of amino acid a at position i, ni is the total number of observations at that425

position (including gaps), and k = 21 is the number of possible residue types (20 amino acids plus426

the gap character). The PWM thus represents a normalized probability distribution over residues at427

each position.428

To construct the Position-Specific Scoring Matrix (PSSM), we first estimated background frequencies429

qa for each amino acid a across the entire aligned dataset, again applying Laplace pseudocounts:430

qa =
na + 1

N + k

where na is the total count of amino acid a in the full alignment, N is the total number of observed431

residues across all positions and sequences (including gaps), and k = 21 as before.432

The log-odds score Si,a for each residue a at position i was then calculated as:433

Si,a = log2

(
fi,a
qa

)
This score reflects how much more (or less) likely a residue is to appear at a specific position compared434

to its global background expectation. The final PSSM was stored as a position-by-residue matrix of435

log-odds scores. To summarize the most likely residue at each position, a consensus sequence was436

derived by selecting the amino acid with the highest frequency in the PWM.437
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D Additional Results438

Table 4: Spearman correlations between the model log-likelihoods (LLs) and KD values as well
as between LLs and BLOSUM45PA scores for DiffAbXL-A-DN, AntiFold and IgLM. *, **, ***
indicate p-values under 0.05, 0.01, and 1e-4, respectively.

Model Metric Absci HER2 Nature Absci IgDesign
ZS Ctrl HEL HER2 IL17A ACVR2B FXI TNFRSF9 IL36R C5 TSLP

DiffAbXL-A-DN LL vs KD 0.43*** 0.22*** 0.62** 0.37* 0.62** 0.54* 0.18 0.18 0.14 –0.32 –0.02
LL vs BLOSUM45PA 0.71*** 0.81*** 0.71*** -0.24 0.88*** 0.64** 0.75*** 0.41* 0.85*** –0.61** 0.46***

AntiFoldPA
LL vs KD 0.45*** 0.15** 0.64*** –0.38 –0.79** 0.29 0.02 0.04 0.18 –0.01 0.24**
LL vs BLOSUM45PA 0.61*** 0.61*** 0.76*** 0.60** –0.39 –0.04 0.14 0.65*** –0.22 0.01 0.80***

AntiFoldMUT
LL vs KD –0.31*** –0.31*** 0.33 0.05 0.17 0.34 –0.13 –0.34* –0.05 0.39* 0.29**
LL vs BLOSUM45PA –0.29*** –0.27*** 0.42* 0.18 0.12 0.25 0.28 0.19 –0.02 0.39* 0.00

IgLM[pre]PA
LL vs KD –0.09 0.22*** 0.35* 0.02 0.12 0.16 0.31* 0.12 –0.63*** –0.26 0.23*
LL vs BLOSUM45PA –0.22** –0.07 0.57** –0.33 0.16 –0.36 0.60*** 0.11 –0.43** –0.82*** 0.51***

IgLM[pre]MUT
LL vs KD –0.33*** –0.43*** 0.05 –0.20 –0.46 –0.20 –0.00 –0.30 0.47** 0.03 –0.06
LL vs BLOSUM45PA –0.17* –0.17** 0.22 0.36 –0.64* –0.06 –0.27 –0.36* 0.74*** 0.56** –0.73***

IgLM[bi]PA
LL vs KD 0.26** –0.05 0.59** –0.12 0.14 –0.01 –0.11 –0.09 0.24 –0.21 –0.08
LL vs BLOSUM45PA 0.35*** 0.14** 0.73*** 0.43* 0.56* 0.48* –0.58*** 0.38* –0.04 –0.59** 0.36***

IgLM[bi]MUT
LL vs KD 0.25** –0.08 –0.53** –0.12 –0.13 –0.10 –0.15 –0.24 –0.23 –0.29 0.19*
LL vs BLOSUM45PA 0.39*** 0.25*** –0.66*** 0.55** 0.48 0.56** –0.54*** 0.57** –0.37* –0.54** 0.53***

E Log-Likelihood Scoring439

E.1 Setup and Notation440

Let an antibody sequence be denoted by441

s = (s1, s2, . . . , sT ),

where each st represents one of the 20 canonical amino acids. A left-to-right autoregressive language442

model (e.g., GPT-2) defines the sequence probability via the factorization443

p(s) =

T∏
t=1

p(st | s<t), s<t = (s1, . . . , st−1).

Let ℓt(·) ∈ R20 denote the unnormalized logits output by the model at position t. The corresponding444

conditional log-probability is computed as445

log p(st | s<t) = log
[
softmax(ℓt−1)

]
st
, t ≥ 2.

For t = 1, either a special start-of-sequence token or a uniform prior may be used.446

E.2 Full Sequence Log-Likelihood447

The total log-likelihood of a sequence s is given by448

log p(s) =

T∑
t=1

log p(st | s<t).

This quantity can be computed from a single forward pass through the model. The following449

pseudocode illustrates the computation using transformers-style APIs:450

451
# Tokenize and run one forward pass452

input_ids = tokenizer.encode(seq) # shape [1, T]453

logits = model(input_ids).logits # shape [1, T, 20]454

log_probs = softmax(logits , dim=-1).log()455

456

# Shift so that log_probs [*, t-1, *] = log p(s_t | s_<t)457

shifted = log_probs[:, :-1, :]458

labels = input_ids [:, 1:]459

460

# Gather and sum461

token_ll = shifted.gather(-1, labels.unsqueeze (-1)).squeeze (-1)462

total_ll = token_ll.sum()463464
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E.3 Single Contiguous Masked Region465

To compute the log-likelihood of a contiguous span (sa, . . . , sb) conditioned on its left context, we466

can use467

log p(sa, . . . , sb | s<a) =

b∑
t=a

log p(st | s<t), 1 ≤ a ≤ b ≤ T.

Given the vector of log-probabilities computed above, the relevant entries are summed as follows:468

469
# token_ll[i] = log p(s_{i+1} | s_ <=i)470

span_ll = token_ll [(a - 1) : b].sum()471472

E.4 Multiple Disjoint Masked Regions473

Consider a collection of K disjoint spans {[ak, bk]}Kk=1. The total log-likelihood over these regions is474

K∑
k=1

bk∑
t=ak

log p(st | s<t).

This is equivalent to summing over the union of all token positions in the selected spans:475

M =

K⋃
k=1

{ak, . . . , bk}.

476
positions = []477

for (a, b) in spans:478

positions.extend(range(a - 1, b))479

multi_ll = token_ll[positions ].sum()480481

E.5 Context Choice for Library Scoring: LLMUT vs. LLPA482

For a designed antibody library derived from a common parental sequence, the log-likelihood of each483

designed sequence can be computed using one of two distinct approaches:484

Mutation-context likelihood (LLMUT). In this setting, the model is conditioned directly on each485

designed (mutant) sequence to compute its own log-likelihood:486

LLMUT(smut) =
∑
t∈P

log p(smut
t | smut

<t ),

where P denotes the set of mutated positions. This approach reflects the model’s confidence in the487

mutant sequence given the full autoregressive context of the design.488

Parent-context likelihood (LLPA). Alternatively, model logits may be obtained from the original489

parental sequence spa, and the log-likelihood is then evaluated using the designed sequence smut by490

gathering log-probabilities only at mutated positions:491

LLPA(smut; spa) =
∑
t∈P

log p(smut
t | spa

<t).

In practice, the parental sequence is passed to the model to obtain the sequence of conditional492

distributions, and the designed sequence is used only to select which token probabilities to score at493

positions t ∈ P .494

Implementation notes. Let input_pa denote the tokenized parental sequence, and input_mut495

denote the mutant sequence. Then:496
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497
# For LL_MUT498

logits_mut = model(input_mut).logits499

log_probs_mut = softmax(logits_mut , dim=-1).log()500

# Use positions P on token_ll_mut to compute LL_MUT501

502

# For LL_PA503

logits_pa = model(input_pa).logits504

log_probs_pa = softmax(logits_pa , dim=-1).log()505

# Gather log_probs_pa at positions t in P,506

# using tokens from input_mut for indexing507508

Use cases. LLMUT reflects how likely a full designed sequence is under the model’s distribution,509

incorporating all mutated residues and their autoregressive influence. In contrast, LLPA measures510

how well the mutated residues are supported by the local sequence context inherited from the parent,511

isolating the evaluation to mutation sites without considering their downstream impact.512

Summary.513

• LLMUT: evaluates mutant sequence under its own autoregressive context.514

• LLPA: evaluates mutant residues in the fixed parental context.515

F IgLM Log-Likelihood Scoring516

F.1 Preceding vs. Bidirectional Context Scoring517

IgLM is a decoder-only Transformer model trained with an infilling objective designed for antibody518

sequence modeling [Shuai et al., 2023]. Instead of standard left-to-right language modeling, IgLM519

is trained to reconstruct masked spans within a sequence using both left and right flanking context.520

During training, a contiguous span of amino acids is removed and replaced with a special [MASK]521

token. The remaining prefix and suffix of the sequence are concatenated, separated by a [SEP]522

token, and the removed span is appended after this context, followed by an [ANS] token to indicate523

the end of the span. This reordered sequence is used as input to the model, which is then trained524

to autoregressively predict the span tokens (and the [ANS] terminator), conditioned on the entire525

flanking context.526

Formally, for a sequence s = (s1, . . . , sT ) with a masked span S = (ss, . . . , se), IgLM constructs527

an input of the form:528

[CHAIN] [SPECIES] s1, . . . , ss−1, [MASK], se+1, . . . , sT , [SEP], ss, . . . , se, [ANS]

where [CHAIN] and [SPECIES] are fixed metadata tokens indicating chain type and species.529

During evaluation, IgLM supports two log-likelihood computation strategies:530

• Preceding context (autoregressive) scoring ([pre]): left-to-right log-likelihoods are computed531

over the full sequence.532

• Bidirectional context (infilling-based) scoring ([bi]): log-likelihoods are computed using533

bidirectional context, consistent with the training setup.534

Both strategies can be used with either the mutant or parental sequence as input context. For example,535

IgLM[pre]MUT uses the mutant sequence for autoregressive scoring, while IgLM[bi]MUT uses the536

mutant sequence for bidirectional infilling.537

Preceding-Context Scoring. In the [pre] setting, the full sequence (mutant or parental) is passed to538

the model, and token-level log-likelihoods are computed left-to-right. For a given context sequence539

sCTX, and mutant target smut, the log-likelihood is:540

LLpre(s
mut; sCTX) =

∑
t∈M

log p(smut
t | sCTX

<t ),

where M is the set of mutated positions, and CTX ∈ {MUT,PA} indicates the context source.541
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Bidirectional (Infilling-Based) Scoring. In the [bi] setting, IgLM uses its span-infilling mechanism542

to evaluate masked spans with bidirectional context. For each mutated span Sk = (sak
, . . . , sbk), the543

span is masked in the context sequence, and the corresponding mutant residues are passed as the544

target:545

LLbi(s
mut; sCTX) =

∑
k

bk∑
t=ak

log p(smut
t | sCTX

<t , sCTX
>t ).

As before, CTX indicates whether the context is the parental or mutant sequence.546

Implementation Considerations. The IgLM implementation supports both evaluation protocols.547

For autoregressive scoring, the model processes the entire context sequence once and gathers log-548

probabilities at mutation sites. For infilling-based scoring, the model must be called separately for549

each mutated span: the corresponding region is masked in the context sequence, and the mutant550

tokens are appended as the infill segment. The model then computes log-probabilities for these tokens551

after the [SEP] marker, consistent with its training objective.552

As IgLM was trained to model masked spans using bidirectional context, the infilling-based scoring553

([bi]) is more aligned with the model’s architecture and is empirically reported to yield lower perplex-554

ity than autoregressive scoring. However, both modes are supported and yield useful comparisons555

when paired with either mutant or parental input.556

Summary.557

• LLpre: computes log-likelihood using the full sequence as input, relying only on autoregres-558

sive left context.559

• LLbi: computes log-likelihood of the designed regions using IgLM’s infilling mechanism,560

conditioned on bidirectional context from the sequence.561

G AntiFold Log-Likelihood Scoring:562

AntiFold is an antibody-specific inverse folding model based on the ESM-IF1 architecture, trained563

to predict sequences given fixed backbone structures [Høie et al., 2023]. Given a structure input,564

AntiFold generates amino acid sequences autoregressively from N- to C-terminus using a decoder-565

only Transformer architecture with causal attention. This means each position attends only to its566

preceding sequence positions and not to future residues. However, AntiFold conditions globally on567

the full backbone structure, which is processed separately and fed as a contextual embedding at each568

decoding step.569

During evaluation, AntiFold outputs the log-probability assigned to each of the 20 amino acids at each570

sequence position. These per-position log-probabilities can be used to compute the log-likelihood of571

any specified subset of residues, including disjoint masked regions.572

Mutation-context likelihood (LLMUT). In the first evaluation strategy, the model is run using the573

full mutant sequence as input, along with the associated structure1. Per-position log-probabilities are574

extracted from the model output, and the log-likelihood of the mutant residues is computed over the575

specified masked positions:576

LLMUT(smut) =
∑
t∈P

log p(smut
t | smut

<t , structure),

where P denotes the indices of mutated residues. Because the input sequence is the mutant itself, the577

decoder conditions on the correct mutated left context for each position in P .578

Parent-context likelihood (LLPA). Alternatively, log-probabilities can be computed using the579

parental sequence as input. In this case, the model is conditioned on the original (pre-mutation) left580

context, and the mutant amino acids are scored using the model’s output:581

LLPA(smut; spa) =
∑
t∈P

log p(smut
t | spa

<t, structure).

1Backbone structure of mutant sequence is assumed to be same as the parental sequence
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This formulation assesses how well the mutant residues fit into the structural and sequential context582

defined by the parent. However, since the decoder is causal, any mutations occurring at early positions583

can affect the correctness of conditioning for later positions if the full mutant context is not used.584

Implementation details. AntiFold outputs a matrix of per-position log-probabilities in CSV format.585

Given a mutant sequence and set of mutated positions P , the log-likelihood is computed by gathering586

the model’s log-probability for each mutant residue at the corresponding position:587

588
# For LL_MUT589

log_probs_mut = antifold(model_input=mutant.pdb)590

ll_mut = sum([ log_probs_mut[t][ s_mut[t]] for t in P])591

592

# For LL_PA593

log_probs_pa = antifold(model_input=parent.pdb)594

ll_pa = sum([ log_probs_pa[t][s_mut[t]] for t in P])595596

Here, s_mut[t] refers to the amino acid at position t in the mutant sequence, and597

log_probs[t][aa] gives the log-probability assigned to amino acid aa at position t.598

Summary.599

• LLMUT: scores the mutant using its own autoregressive context.600

• LLPA: scores the mutant residues using log-probabilities from the parent context.601

• In both cases, log-likelihood is computed by summing over specified mutated regions.602
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