
Maximizing LLM Efficiency Through Optimization Strategies
Iman Abbasnejad Tomal Deb

AWS Generative AI Innovation Center
Xuefeng Liu

Abstract
As Large Language Models (LLMs) scale in size, their capabilities
dramatically improve, but this dimensional expansion simultane-
ously introduces substantial computational barriers to efficient in-
ference. While various optimization methods exist including model
pruning, knowledge distillation, and quantization, their effective-
ness and interaction effects remain insufficiently characterized
across deployment scenarios. In this work, we perform compre-
hensive comparisons between inference optimization techniques
for LLMs, systematically evaluating their impact on model perfor-
mance and computational efficiency. Our experiments with Llama3
and Qwen models reveal that knowledge distillation effectively
mitigates performance degradation from pruning while caching
and hardware acceleration provide complementary benefits. Most
significantly, we find that optimally combining these approaches en-
ables smaller models to achieve performance comparable to models
4 × larger while reducing inference latency by up to 100 ×.

CCS Concepts
• Theory of computation→ Probabilistic computation.

Keywords
Inference optimization, Model Pruning, Compression
ACM Reference Format:
Iman Abbasnejad, Tomal Deb, and Xuefeng Liu. 2025. Maximizing LLM
Efficiency Through Optimization Strategies. In Proceedings of The 31st ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’25).
ACM, New York, NY, USA, 8 pages.

1 Introduction
LLMs [22, 33, 34] have demonstrated exceptional capabilities through
pre-training [3, 4]. Their superior performance on complex lan-
guage tasks has led to widespread adoption despite their consider-
able size compared to smaller NLP based models such as BERT [5]
and MicroBERT [11], making inference optimization a critical re-
search area. As the LLM models grow, they exhibit emergent abili-
ties [37] but also present significant computational challenges, re-
quiring substantial resources and incurring high deployment costs.
To address these issues, researchers and industries have proposed
various optimization methods including model pruning [19, 36, 39],
knowledge distillation [29, 30], and quantization [2, 9]. In this work,
we perform comprehensive comparisons between different methods

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’25, Toronto, Canada
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN

of model inference optimization to understand their strengths and
limitations in real-world scenarios. We evaluate several approaches
including model pruning techniques that remove redundant neural
connections, knowledge distillation methods that transfer knowl-
edge from large teacher models to smaller models and hardware
accelerators like AWS Inferentia. Our analysis considers not only
the traditional metrics like accuracy, perplexity and ROUGE-L met-
ric, but also practical measures including latency across various
hardware configurations and quantizations. This multi-dimensional
evaluation provides insights into which optimization techniques
work best for different deployment scenarios and model sizes. By
presenting these comparisons in a systematic way, our work helps
researchers and industries make decisions about which inference
optimization strategies to adopt based on their specific require-
ments and constraints.

2 Related Works
Large language models have shown impressive capabilities across
numerous tasks, but their parameter-heavy architectures present
significant deployment challenges. Prior work has explored vari-
ous optimization approaches to address latency and resource con-
straints [21, 31]. Pruning methods [19, 23, 40] aim to remove re-
dundant parameters while preserving model performance. These
techniques range from simple magnitude-based approaches [15, 43]
that remove small-valued weights to more sophisticated methods.
Advanced pruning strategies include first-order importance esti-
mation [18] and hessian-based calculations [19] that more accu-
rately identify critical parameters.Structural pruning [7] has gained
particular attention for its hardware compatibility by removing
entire structural elements (e.g., attention heads, filters) rather than
individual weights, resulting in dense but smaller models that main-
tain hardware acceleration benefits. Knowledge distillation [30]
represents another significant approach for model compression,
transferring learned representations from larger teacher models
to more compact student architectures [25, 27]. This technique en-
ables smaller models to benefit from the knowledge embedded in
larger pre-trained models, often achieving performance closer to
the teacher than training the smaller model from scratch. Quanti-
zation methods [2, 42] offer complementary benefits by reducing
numerical precision while preserving inference capabilities. Re-
cent advances in post-training compression [20] have accelerated
optimization by reformulating reconstruction error as linear least
squares problems, while layer-wise approaches [8, 10, 14, 28, 38]
apply pruning techniques sequentially for efficiency gains. Metric-
based methods such as SparseGPT [8] and Sun [28] use Hessian
information or weight-activation products to identify important
parameters. In parallel, optimization-based methods including L0
regularization [24], CoFi [38], and Compresso [14] learn parameter
importance through direct performance feedback during training or
fine-tuning. While these techniques have been extensively studied
individually, systematic comparisons across multiple dimensions



KDD ’25, August 3–7, 2025, Toronto, Canada Iman Abbasnejad, Tomal Deb, and Xuefeng Liu

remain limited. Our work addresses this gap by comprehensively
evaluating diverse optimization approaches including model prun-
ing, knowledge distillation, and hardware accelerators.

3 Method
In this section, we present our framework for evaluating and com-
paring various inference optimization techniques for LLMs. Our
methodology includes five key approaches: model pruning, knowl-
edge distillation, quantization methods, prompt caching, and hard-
ware acceleration through AWS Inferentia.

3.1 Model Pruning
We use the layer-pruning method from [13], which is based on the
observation that representations in transformer networks evolve
gradually across layers. In a transformer architecture, each layer
follows a residual iteration:

𝑥 (ℓ+1) = 𝑥 (ℓ ) + 𝑓 (𝑥 (ℓ ) , 𝜃 (ℓ ) ) (1)

where 𝑥 (ℓ ) and 𝜃 (ℓ ) represent the multi-dimensional input and
parameter vectors for layer ℓ , and 𝑓 (𝑥, 𝜃 ) describes the transfor-
mation of a multi-head self-attention and MLP layer block. The
pruning algorithm identifies layers where representations remain
similar across multiple layers, making those intermediate layers
potentially redundant. It computes the angular distance between
inputs at different layers and removes the layers where this distance
is minimized. This is based on the hypothesis that if representations
change slowly such that 𝑥 (ℓ ) ≈ 𝑥 (ℓ−1) + 𝜖 with 𝜖 ≪ 𝑥 (ℓ ) , then cer-
tain layers can be removed with minimal impact on performance.
After pruning the redundant layers, fine-tuning can be applied to
heal any representation mismatches.

3.2 Knowledge Distillation
This approach [16] is a neural network compression technique
where a smaller "student" model learns to mimic the behavior of a
larger, more complex "teacher" model. In the process, the student
model captures the generalized knowledge embedded within the
teacher’s learned representations rather than just the hard class
labels. This can be done by training the student model to match the
teacher’s output probability distributions, which are typically "soft-
ened" using a temperature parameter, 𝑇 in the softmax function.
The softened distributions (where 𝑇 > 1) reveal more information
about the teacher’s internal representations than hard labels alone,
showing not just which class the teacher predicts but the relative
similarities between classes that the teacher has learned. In prac-
tice, distillation often uses a weighted combination of two objective
functions: matching the teacher’s soft probability distributions and
predicting the correct hard labels, with the soft targets usually given
higher priority. This approach effectively transfers the teacher’s
generalized knowledge while maintaining task performance, en-
abling significantly smaller models to achieve comparable accuracy
to their larger counterparts

3.3 Model Quantization
Quantization reduces the numerical precision of model weights and
activations, decreasing memory requirements and computations

while attempting to preserve model behavior. Neural network com-
putations typically use high-precision floating-point formats (FP32)
during training, but this level of precision is often unnecessary
during inference. By reducing precision, we can achieve efficiency
gains with minimal impact on model quality. We evaluate multi-
ple quantization methods across various precision levels including,
FP32, BF16, INT8 and INT4.

3.4 Prompt Caching
Prompt caching aims to avoid redundant computation by stor-
ing and reusing results from previously processed prompts, par-
ticularly effective in applications where similar queries are fre-
quently encountered. The KV (Key-Value) cache optimizes autore-
gressive generation by storing previously computed attention vec-
tors, Attention(𝑄,𝐾,𝑉 ) = softmax

(
𝑄𝐾𝑇

√
𝑑𝑘

)
𝑉 , reducing computa-

tional complexity from 𝑂 (𝑡2) to 𝑂 (𝑡) for a sequence of length 𝑡 ,
though requiring memory that scales as 2 × 𝐿 × ℎ × 𝑑 × 𝑡 bytes for
a model with 𝐿 layers, ℎ attention heads, and hidden dimension 𝑑 .
In this work we use three different prompt caching techniques:

• Static Caching maintains a direct hash table mapping exact
prompt strings to their complete KV representations,

• Dynamic Semantic Caching uses dense vector embeddings
to compute similarity scores between incoming prompts and
cached entries, allowing retrieval of KV values,

• HQQ (Hierarchical Quantized Query) Caching, which com-
bines quantized vector representations with hierarchical in-
dexing to dramatically reduce memory requirements while
maintaining rapid retrieval of KV values.

3.5 AWS Inferentia Acceleration
AWS Inferentia [1] is AWS’s purpose-built ML inference chip opti-
mized for cost-efficient deep learning deployment. Each Inferentia
chip contains four high-performance cores with dedicated memory,
while NeuronLink facilitates efficient inter-chip communication.
We compile LLMs for this platform to maximize performance ad-
vantages.

4 Experiments
In this section we describe our approach to model optimization
through knowledge distillation, pruning, quantization, and their
combination, as well as our evaluation methodology.
Base Models: For our experiments, we utilize three foundation
models as our baselines, Llama3-1B, Llama3-8B [12] and Qwen2.5-
32B [32, 41]. These models provide a spectrum of parameter counts
and computational requirements, allowing us to analyze trade-offs
between model size, inference speed, and performance.
Knowledge Distillation: We implement a knowledge distillation
framework where the larger Qwen2.5-32B serves as the teacher
model, while the smaller Llama-1B and Llama-8B serve as students.
Model Pruning: Building on thework of [13], we implementmodel
pruning to reduce the computational footprint of our models. Our
pruning methodology focuses on identifying and removing redun-
dant components while minimizing impact on model performance.
Combined Approach: To investigate the effects of combining
pruning with knowledge distillation, we also perform knowledge



Maximizing LLM Efficiency Through Optimization Strategies KDD ’25, August 3–7, 2025, Toronto, Canada

distillation on the pruned variants of Llama3-1B and Llama3-8B.
In this setup, we use the full Qwen2.5-32B model as the teacher,
and the pruned Llama models as students. This combined approach
aims to recover performance lost during pruning while maintain-
ing the inference speed benefits. We hypothesize that knowledge
distillation can help compensate for model size reduction caused by
pruning, especially for crucial functional components of the model.
Fine-tuning:We follow standard practice for fine-tuning, using
a batch size of 16 examples over 3 epochs. The full set of training
hyperparameters is available in Appendix A.
Dataset: For training we use Unnatural Instruct dataset [17] which
contains 68𝑘 text instructions. We use the same template as [35]
for formatting instructions and inputs. We follow the same method-
ology used in [17, 35] to create a validation set of 1, 000 examples
for model selection. For testing the model performance we use
LMentry [6] and test set of Super-Natural Instructions [35].
Evaluation Metrics:We evaluate all models using a comprehen-
sive set of metrics:

• Inference Time: Measured in seconds per sample and tokens
per second,

• Perplexity: Assessing the model’s ability to predict text by
measuring the uncertainty in generating the next token,

• ROUGE-L: Measuring the overlap between model-generated
text and reference answers, with ROUGE-L specifically cap-
turing the longest common subsequence.

• LMentry score [6]: Uses greedy decoding and measures the
generated outputs using high-accuracy regular expressions.

• EM: Exact match of generated text and their ground truth.
• Accuracy: Fraction of correct predictions.

Our evaluation approach allows us to quantify the practical
trade-offs between model size, computational efficiency, and model
performance across different optimization techniques.

5 Results
We performed an extensive series of evaluations on the proposed
techniques and compare the performance and computational com-
plexity of the methods in this section.

5.1 Base Model Performance
Our analysis begins with the baseline performance of each model
without pruning, caching, or knowledge distillation. As shown
in Table 1, Llama3-1B achieved an LMentry score of 59.2 with a
latency of 2.42𝑠 , while Llama3-8B reached 60.1 points at 2.91𝑠 , and
Qwen2.5-32B attained 65.9 points with the longest latency of 3.74𝑠 .
On the Super-Natural Instructions benchmark, Table 2, we observe
a clearer performance hierarchy, with Qwen2.5-32B achieving 27.8%
exact match (EM) and 91.7% accuracy, followed by Llama3-8B (23.5%
EM, 84.9% accuracy) and Llama3-1B (18.7% EM, 78.3% accuracy).
These results confirm the expected correlation between model size
and task performance

5.2 Model Pruning Impact
When applying model pruning, we observe a consistent trade-off
between computational efficiency and task performance. At 20%
pruning with no other optimizations, Llama3-1B’s LMentry score
decreased to 51.8 while improving latency to 1.83𝑠 (24.4% reduction).

Table 1: LMentry benchmark results with latency improve-
ments. Best latency (yellow) and scores (pink) highlighted.
"Impr.(%)" column shows latency reduction vs. baseline (0%
pruning, no cache).

Model Pruning Cache Performance Efficiency

Perplexity↓ LMentry↑ Latency↓(s) Tokens/s↑ Impr.(%)

Llama3-1B 0% None 15.38 59.2 2.42 1066.7 -
Llama3-1B 0% Dynamic 15.38 59.2 1.99 1272.0 17.8%
Llama3-1B 0% HQQ 15.39 59.1 2.24 1233.5 7.4%
Llama3-1B 0% Static 15.38 59.2 2.32 1180.5 4.1%
Llama3-1B 20% Dynamic 19.85 51.8 1.83 1445.1 24.4%
Llama3-1B 40% Dynamic 26.19 43.6 1.53 1633.3 36.8%

Llama3-1B+KD 0% None 13.92 61.7 2.32 1076.7 -
Llama3-1B+KD 0% Dynamic 13.92 61.7 1.97 1268.0 15.1%
Llama3-1B+KD 0% HQQ 13.93 61.6 2.14 1213.5 7.8%
Llama3-1B+KD 0% Static 13.92 61.7 2.32 1149.5 0.0%
Llama3-1B+KD 20% Dynamic 17.47 56.3 1.81 1434.1 22.0%
Llama3-1B+KD 40% Dynamic 22.64 49.4 1.51 1551.3 34.9%

Llama3-8B 0% None 10.32 60.1 2.91 844.4 -
Llama3-8B 0% Dynamic 10.32 60.1 2.53 1009.8 13.1%
Llama3-8B 0% HQQ 10.33 60.0 2.61 984.0 10.3%
Llama3-8B 0% Static 10.32 60.1 2.69 960.5 7.6%
Llama3-8B 20% Dynamic 14.78 55.6 2.33 1151.8 19.9%
Llama3-8B 40% Dynamic 20.92 47.5 1.92 1342.8 34.0%

Llama3-8B+KD 0% None 9.18 63.5 2.89 879.4 -
Llama3-8B+KD 0% Dynamic 9.18 63.5 2.42 1029.8 16.3%
Llama3-8B+KD 0% HQQ 9.19 63.4 2.61 991.0 9.7%
Llama3-8B+KD 0% Static 9.18 63.5 2.66 990.5 8.0%
Llama3-8B+KD 20% Dynamic 12.97 59.8 2.25 1162.8 22.1%
Llama3-8B+KD 40% Dynamic 18.26 52.9 1.94 1310.9 32.9%

Qwen2.5-32B 0% None 11.54 65.9 3.74 673.1 -
Qwen2.5-32B 0% Dynamic 11.54 65.9 3.53 795.4 5.6%
Qwen2.5-32B 0% HQQ 11.55 65.8 3.44 764.4 8.0%
Qwen2.5-32B 0% Static 11.54 65.9 3.61 749.3 3.5%
Qwen2.5-32B 20% Dynamic 15.37 56.4 2.79 917.6 25.4%
Qwen2.5-32B 40% Dynamic 22.11 48.7 2.34 1124.6 37.4%

Similar patterns emerge for Llama3-8B (55.6) and Qwen2.5-32B
(56.4), with latency improvements of 19.9% and 25.4%, respectively.

At 40% pruning, more substantial performance degradation oc-
curs, Llama3-1B’s LMentry score falls to 43.6, Llama3-8B to 47.5,
and Qwen2.5-32B to 48.7. However, the latency improved by 36.8%,
34.0%, and 37.4%, respectively. Notably, larger models appear more
resilient to aggressive pruning, maintaining better relative perfor-
mance at higher pruning rates.

On the Super-Natural Instructions benchmark, Table 2, 20% prun-
ing reduced exact match rates by 2.9 (to 15.8%), 2.8 (to 20.7%), and
3.3 (to 24.5%) percentage for Llama3-1B, Llama3-8B, and Qwen2.5-
32B respectively. At 40% pruning, this degradation increased to
6.1 (to 12.6%), 7.1 (to 16.4%), and 8.2 (to 19.6%) percentage. The
corresponding decreases in accuracy follow a similar pattern, with
reductions of 4.7, 3.6, and 3.7 percentage points respectively. From
this analysis we can observe that, the percentage-wise reduction
in exact match rate is more severe than the reduction in accuracy,
suggesting that pruning primarily affects the model’s precision in
generating exact outputs rather than its overall understanding of
instructions.

5.3 Caching Strategies
Without changing the model architecture, caching strategies of-
fers pure efficiency gains without much performance losses. As
shown in Table 1, dynamic caching provides substantial latency
improvements across all models: 17.8% for Llama3-1B (2.42𝑠 to
1.99𝑠), 13.0% for Llama3-8B (2.91𝑠 to 2.53𝑠), and 5.6% for Qwen2.5-
32B (3.74𝑠 to 3.53𝑠). Importantly, these latency reductions come
with not much decline in performance metrics, preserving identical
LMentry scores, exact match rates, and accuracy percentages.



KDD ’25, August 3–7, 2025, Toronto, Canada Iman Abbasnejad, Tomal Deb, and Xuefeng Liu

Table 2: Super-Natural Instructions results with EM rate
changes. Best accuracy highlighted (pink). EM Δ(%) shows
change relative to baseline (0% pruning, no KD).

Model Pruning Cache Performance

R-L↑ EM↑(%) Acc↑(%) EM Δ (%)

Llama-1B 0% None 0.31 18.7 78.3 -
Llama-1B 20% None 0.30 15.8 73.6 -15.5%
Llama-1B 40% None 0.25 12.6 68.2 -32.6%

Llama-1B+KD 0% None 0.34 21.3 83.7 +13.9%
Llama-1B+KD 20% None 0.33 19.1 80.6 +2.1%
Llama-1B+KD 40% None 0.29 15.8 74.5 -15.5%

Llama-8B 0% None 0.36 23.5 84.9 -
Llama-8B 20% None 0.33 20.7 81.3 -11.9%
Llama-8B 40% None 0.26 16.4 75.8 -30.2%

Llama-8B+KD 0% None 0.38 26.7 89.5 +13.6%
Llama-8B+KD 20% None 0.36 24.3 87.1 +3.4%
Llama-8B+KD 40% None 0.30 20.2 82.4 -14.0%

Qwen2.5-32B 0% None 0.39 27.8 91.7 -
Qwen2.5-32B 20% None 0.35 23.5 88.0 -15.5%
Qwen2.5-32B 40% None 0.28 19.6 82.1 -29.5%

HQQ caching offers varied improvements: 7.4% for Llama3-1B,
10.3% for Llama3-8B, and 8.0% for Qwen2.5-32B. This strategy in-
curs minimal performance penalties (0.1𝑡𝑜0.2 on LMentry), making
it a viable alternative when memory efficiency is prioritized. Static
caching provides the most modest efficiency gains of 4.1𝑡𝑜7.6%
across models, with Qwen2.5-32B showing only 3.5% improvement,
but maintains performance parity with the no-cache baseline.

When analyzing caching strategies across pruned models, we
observe that the relative efficiency gains remain consistent regard-
less of pruning level. For example, caching strategies consistently
provide additional latency gains regardless of pruning level, with
dynamic caching reducing latency by 15 − 18% for Llama3 models
and 5 − 7% for Qwen2.5-32B across different pruning rates.

5.4 Knowledge Distillation
Knowledge distillation can be used to recover performance lost
through pruning while maintaining efficiency gains. Unpruned
Llama3-1B+KD achieved an LMentry score of 61.7 (from 59.2),
and close to the much larger Llama3-8B. Similarly, Llama3-8B+KD
reached 63.5 from 60.1. On the Super-Natural Instructions bench-
mark, knowledge distillation yielded significant gains in EM: from
18.7% to 21.3% for Llama3-1B and from 23.5% to 26.7% for Llama3-8B.
This brings the Llama3-8B+KD model to within 1.1% of Qwen2.5-
32B’s performance despite being four times smaller.

The most significant benefit of knowledge distillation appears
when combined with pruning. At 20% pruning, Llama3-1B+KD
achieved an LMentry score of 56.3, recovering 4.5 points of the
7.4-point loss from pruning. Similarly, Llama3-8B+KD reached
59.8, recovering 4.2 points and nearly matching the unpruned base
Llama3-8B. Similar pattern is observed on the Super-Natural In-
structions benchmark, where knowledge distillation at 20% pruning
improved EM from 15.8% to 19.1% for Llama3-1B and from 20.7%
to 24.3% for Llama3-8B. Notably, Llama-8B+KD with 20% pruning
achieved 87.1% accuracy, higher than Llama3-8B with no pruning
(84.9%) and approaching Qwen2.5-32B with 20% pruning (88.0%).
Even at 40% pruning, distilled models maintained substantially
better performance: Llama3-1B+KD scored 49.4 on LMentry (vs.
43.6 without KD) and Llama-8B+KD scored 52.9 (vs. 47.5 without
KD), demonstrating that knowledge distillation can mitigate per-
formance degradation even at higher pruning ratios.

Table 3: Inference times across quantization methods. INT4
Impr. shows latency reduction vs. baseline; Inf. Impr. shows
Inferentia speedup.

Model Pruning None BF16 INT8 INT4 Inferentia INT4 Impr. Inf. Impr.

Llama-1B 2.42 0.97 1.01 0.94 0.012 61.2% 201.7×
Llama-1B 20% 1.93 1.02 1.06 0.96 0.007 50.3% 41.7%
Llama-8B 2.91 1.32 2.03 0.91 0.043 68.7% 67.7×
Llama-8B 20% 2.05 1.97 2.01 1.98 0.037 3.4% 14.0%
Qwen2.5-32B 3.74 2.66 2.78 2.30 0.872 38.5% 4.3×
Qwen2.5-32B 20% 3.65 3.46 3.72 3.66 0.641 -0.3% 26.5%

5.5 Hardware Acceleration and Quantization
Table 3 presents inference time across different quantization meth-
ods and hardware platforms. All quantization experiments were
conducted on NVIDIA A100 GPUs with 2×40GB GPUs. Quantiza-
tion alone provides significant acceleration, with INT4 quantization
reducing latency by 61.2% for Llama-1B (from 2.42𝑠 to 0.94𝑠), 68.7%
for Llama3-8B (from 2.91𝑠 to 0.91𝑠), and 38.5% for Qwen2.5-32B
(from 3.74𝑠 to 2.30𝑠) compared to unquantized baselines. However,
the most dramatic improvements come from hardware acceleration
with AWS Inf2 (with 1 chip, 32 cores, 32 NeuronCores, 128GB mem-
ory), which delivers 201.7 × for Llama3-1B (from 2.42𝑠 to 0.012𝑠),
35.8× for Llama3-8B (from 1.54𝑠 to 0.043𝑠), and 3.6 × for Qwen2.5-
32B (from 3.12𝑠 to 0.872𝑠). When combining Inferentia with model
pruning, we observe additional performance gains, with pruned
models achieving latency reductions of 41.7% (Llama3-1B), 14.0%
(Llama3-8B), and 26.5% (Qwen2.5-32B) compared to their unpruned
counterparts on the same hardware.

5.6 Analysis
The full potential of the optimization techniques emerges when
combining all three approaches. Llama3-8B+KD with 20% pruning
and dynamic caching demonstrates the most favorable balance: it
achieves 96.4% of original Qwen2.5-32B’s LMentry performance
(59.8 vs. 65.9) while reducing latency by 39.8% (2.25s vs. 3.74s). Fur-
thermore, Llama3-8B+KD with 40% pruning and dynamic caching
maintains strong performance (52.9 LMentry score, 82.4% accu-
racy) while delivering a 48.1% latency reduction compared to the
Qwen2.5-32B baseline (1.94s vs. 3.74s).

When themodels are running on Inferentia hardware, the Llama3-
8B+KD model with 20% pruning on Inferentia achieves inference
times of 0.037s, approximately 101.1 × faster than the baseline
Qwen2.5-32B configuration while maintaining 90.7% of its LMentry
performance and 87.4% of its exact match rate. This shows, choos-
ing a right caching and optimization technique, smaller models can
achieve performance comparable to models 4 × their size while
offering dramatically better efficiency profiles.

6 Conclusion
In this work, we extensively evaluated the impact of various infer-
ence optimization techniques on LLM performance and efficiency.
Our evaluation reveals that knowledge distillation, model prun-
ing, and caching strategies provide complementary benefits when
properly combined. Distillation effectively mitigates performance
degradation from pruning, with student models maintaining over
90% of the teacher model’s performance despite having 4× fewer pa-
rameters. By strategically combining these approaches, we demon-
strate that smaller models can match the capabilities of much larger
counterparts while dramatically improving inference efficiency.



Maximizing LLM Efficiency Through Optimization Strategies KDD ’25, August 3–7, 2025, Toronto, Canada

References
[1] Amazon Web Services. 2023. AWS Inferentia: High-performance Machine

Learning Inference. https://awsdocs-neuron.readthedocs-hosted.com/en/latest/
general/arch/neuron-hardware/inferentia.html. Accessed: 2023-10-15.

[2] Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing Jin, Xin Jiang, Qun Liu, Michael
Lyu, and Irwin King. 2020. Binarybert: Pushing the limit of bert quantization.
arXiv preprint arXiv:2012.15701 (2020).

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[4] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, et al. 2023. Palm: Scaling language modeling with pathways.
Journal of Machine Learning Research 24, 240 (2023), 1–113.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert:
Pre-training of deep bidirectional transformers for language understanding. In
Proceedings of the 2019 conference of the North American chapter of the association
for computational linguistics: human language technologies, volume 1 (long and
short papers). 4171–4186.

[6] Avia Efrat, Or Honovich, and Omer Levy. 2022. Lmentry: A language model
benchmark of elementary language tasks. arXiv preprint arXiv:2211.02069 (2022).

[7] Determine Filters’Importance. 2016. Pruning Filters for Efficient ConvNets.
(2016).

[8] Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Massive language models can be
accurately pruned in one-shot. In International Conference on Machine Learning.
PMLR, 10323–10337.

[9] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. 2022. Gptq:
Accurate post-training quantization for generative pre-trained transformers.
arXiv preprint arXiv:2210.17323 (2022).

[10] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan-Adrian Alistarh. 2023.
OPTQ: Accurate post-training quantization for generative pre-trained transform-
ers. In 11th International Conference on Learning Representations.

[11] Luke Gessler and Amir Zeldes. 2022. MicroBERT: Effective Training of Low-
resource Monolingual BERTs through Parameter Reduction and Multitask Learn-
ing. In Proceedings of the The 2nd Workshop on Multi-lingual Representation Learn-
ing (MRL). Association for Computational Linguistics, Abu Dhabi, United Arab
Emirates (Hybrid), 86–99. https://aclanthology.org/2022.mrl-1.9

[12] AaronGrattafiori, AbhimanyuDubey, Abhinav Jauhri, Abhinav Pandey, Abhishek
Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex
Vaughan, et al. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783
(2024).

[13] Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and
Daniel A Roberts. [n. d.]. The unreasonable ineffectiveness of the deeper layers,
2024. URL https://arxiv. org/abs/2403.17887 ([n. d.]).

[14] Song Guo, Jiahang Xu, Li Lyna Zhang, and Mao Yang. 2023. Compresso: Struc-
tured pruning with collaborative prompting learns compact large language mod-
els. arXiv preprint arXiv:2310.05015 (2023).

[15] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights
and connections for efficient neural network. Advances in neural information
processing systems 28 (2015).

[16] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

[17] Or Honovich, Thomas Scialom, Omer Levy, and Timo Schick. 2022. Unnatural
instructions: Tuning language models with (almost) no human labor. arXiv
preprint arXiv:2212.09689 (2022).

[18] Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. 2020.
Dynabert: Dynamic bert with adaptive width and depth. Advances in Neural
Information Processing Systems 33 (2020), 9782–9793.

[19] Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin
Fineran, Michael Goin, and Dan Alistarh. 2022. The optimal bert surgeon: Scalable
and accurate second-order pruning for large language models. arXiv preprint
arXiv:2203.07259 (2022).

[20] Woosuk Kwon, Sehoon Kim, Michael W Mahoney, Joseph Hassoun, Kurt Keutzer,
and Amir Gholami. 2022. A fast post-training pruning framework for transform-
ers. Advances in Neural Information Processing Systems 35 (2022), 24101–24116.

[21] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. 2019. Albert: A lite bert for self-supervised learning
of language representations. arXiv preprint arXiv:1909.11942 (2019).

[22] Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel
Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias
Gallé, et al. 2023. Bloom: A 176b-parameter open-access multilingual language
model. (2023).

[23] Zejian Liu, Fanrong Li, Gang Li, and Jian Cheng. 2021. EBERT: Efficient BERT
inference with dynamic structured pruning. In Findings of the Association for
Computational Linguistics: ACL-IJCNLP 2021. 4814–4823.

[24] Christos Louizos, Max Welling, and Diederik P Kingma. 2017. Learning sparse
neural networks through 𝐿_0 regularization. arXiv preprint arXiv:1712.01312
(2017).

[25] XinyinMa, XinchaoWang, Gongfan Fang, Yongliang Shen, andWeiming Lu. 2022.
Prompting to distill: Boosting data-free knowledge distillation via reinforced
prompt. arXiv preprint arXiv:2205.07523 (2022).

[26] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. Zero:
Memory optimizations toward training trillion parameter models. In SC20: Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 1–16.

[27] Ahmad Rashid, Vasileios Lioutas, Abbas Ghaddar, and Mehdi Rezagholizadeh.
2020. Towards zero-shot knowledge distillation for natural language processing.
arXiv preprint arXiv:2012.15495 (2020).

[28] Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. 2023. A simple and effective
pruning approach for large language models. arXiv preprint arXiv:2306.11695
(2023).

[29] Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019. Patient knowledge distilla-
tion for bert model compression. arXiv preprint arXiv:1908.09355 (2019).

[30] Siqi Sun, Zhe Gan, Yu Cheng, Yuwei Fang, Shuohang Wang, and Jingjing Liu.
2020. Contrastive distillation on intermediate representations for language model
compression. arXiv preprint arXiv:2009.14167 (2020).

[31] Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny
Zhou. 2020. Mobilebert: a compact task-agnostic bert for resource-limited devices.
arXiv preprint arXiv:2004.02984 (2020).

[32] Qwen Team. 2024. Qwen2.5: A Party of Foundation Models. https://qwenlm.
github.io/blog/qwen2.5/

[33] Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kul-
shreshtha, Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. 2022.
Lamda: Language models for dialog applications. arXiv preprint arXiv:2201.08239
(2022).

[34] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[35] Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amir-
reza Mirzaei, Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran,
Atharva Naik, David Stap, et al. 2022. Super-naturalinstructions: Generalization
via declarative instructions on 1600+ nlp tasks. arXiv preprint arXiv:2204.07705
(2022).

[36] Ziheng Wang, Jeremy Wohlwend, and Tao Lei. 2019. Structured pruning of large
language models. arXiv preprint arXiv:1910.04732 (2019).

[37] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian
Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022. Emergent abilities of large language models. arXiv preprint arXiv:2206.07682
(2022).

[38] Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. 2023. Sheared llama:
Accelerating language model pre-training via structured pruning. arXiv preprint
arXiv:2310.06694 (2023).

[39] Mengzhou Xia, Zexuan Zhong, and Danqi Chen. 2022. Structured pruning learns
compact and accurate models. arXiv preprint arXiv:2204.00408 (2022).

[40] Dongkuan Xu, Ian EH Yen, Jinxi Zhao, and Zhibin Xiao. 2021. Rethinking
Network Pruning–under the Pre-train and Fine-tune Paradigm. arXiv preprint
arXiv:2104.08682 (2021).

[41] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Cheng-
peng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei,
Huan Lin, Jialong Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang,
Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang,
Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai,
Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng,
Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang
Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui,
Zhenru Zhang, and Zhihao Fan. 2024. Qwen2 Technical Report. arXiv preprint
arXiv:2407.10671 (2024).

[42] Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li,
and Yuxiong He. 2022. Zeroquant: Efficient and affordable post-training quanti-
zation for large-scale transformers. Advances in Neural Information Processing
Systems 35 (2022), 27168–27183.

[43] Ofir Zafrir, Ariel Larey, Guy Boudoukh, Haihao Shen, and Moshe Wasserblat.
2021. Prune once for all: Sparse pre-trained language models. arXiv preprint
arXiv:2111.05754 (2021).

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/arch/neuron-hardware/inferentia.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/arch/neuron-hardware/inferentia.html
https://aclanthology.org/2022.mrl-1.9
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/


KDD ’25, August 3–7, 2025, Toronto, Canada Iman Abbasnejad, Tomal Deb, and Xuefeng Liu

A Detailed Explanation of Experiment
In this section we provide more details of our experiments and find-
ings. For the fine-tuning experiments, we applied a consistent set
of hyperparameters across all conditions. Models were trained for
a maximum of 10, 000 steps. We selected the final model based on
Rouge-L performance on our validation set, evaluating checkpoints
at 1000-step intervals. Our training configuration used a batch size
of 16 and employed a learning rate schedule with a maximum value
of 10−5, incorporating a warm-up phase during the initial 10% of
training steps. Weight decay was set at 0.01. We truncated input se-
quences at 1, 024 tokens and limited output sequences to 128 tokens.
All training runs utilized DeepSpeed’s ZeRO-3 optimization [26]
for efficient distributed training. For fine-tuning we employed 8
NVIDIA V100 40GB GPUs. For evaluation metrics, including Rouge-
L and exact match scores, we used the implementation described
in [35].

Figure 1 shows the fine-tuning and corresponding validation
losses of the proposed base models on the training dataset. Fig-
ures 2,3 and4 illustrate the fine-tuning and validation losses for
the proposed based models under different layer pruning condi-
tions (0%, 20%, and 40%). All models exhibit widening gaps between
training and validation losses. This pattern directly correlates with
the EM rate declines described in Table 2, where Llama3-1B shows
a 15.5% EM reduction at 20% pruning and 32.6% at 40% pruning.
In addition, when moving from 0% to 20% pruning, Llama3-1B’s
perplexity increased, which is reflected in the higher final loss
values.

On the other hand, the visualized losses demonstrate model
scale-dependent patterns. Larger models (particularly Qwen2.5-
32B) demonstrate smoother convergence trajectories even under
pruning conditions, while smaller models (Llama3-1B) show more
erratic behavior, especially at 40% pruning. As pruning increases,
the gap between training and validation loss widens more dra-
matically for smaller models than larger ones. This widening gap
explains why Qwen2.5-32B maintains 82.1% accuracy at 40% prun-
ing while Llama3-1B drops to 68.2%. Furthermore, the loss curves
indicate that all models initially converge at similar rates regardless
of pruning level, but diverge significantly in later iterations, suggest-
ing that pruned models have less capacity to capture fine-grained
patterns during extended training.

Figure 5 presents layer similarity patterns through heat maps
across our pruned models. Each square is colored to represent the
row-normalized angular distance between layer ℓ and ℓ + 𝑛 for all
possible values of ℓ , with block sizes 𝑛 extending to substantial
fractions of total model depth. Our analysis reveals consistent pat-
terns that directly explain the performance impacts observed in our
pruning experiments.

The smallest angular distances (yellower regions) predominantly
appear in deeper blocks, indicating that deeper layers typically
exhibit higher similarity and thus present better pruning candidates.
This pattern aligns with our empirical results in Tables 1 and 2,
where larger models like Llama3-8B and Qwen2.5-32B maintain
better relative performance at higher pruning rates (20% − 40%)
compared to the smaller Llama3-1B. The resilience of these larger
models to pruning can be attributed to greater redundancy in their
deeper layers, as visualized in our similarity maps.

Figure 1: Base model fine-tuning on Unnatural Instruct
dataset [17].

Figure 2: Pruned Llama3-1B model fine-tuning on Unnatural
Instruct dataset [17].

The blocks containing the final layer (visible along the outer diag-
onal) consistently display maximal or near-maximal distance values
(red regions), suggesting that the output layer captures unique rep-
resentations critical to model performance. This empirical finding
explains why our pruning strategy deliberately preserves the fi-
nal layer, allowing us to achieve significant latency improvements
(24.4% − 37.4%) while minimizing performance degradation.

Interestingly, the Qwen2.5-32B model exhibits distinctive simi-
larity patterns compared to the Llama family. We observe several
shallow blocks in Qwen (yellow regions), particularly in the lower-
left quadrant of its heatmap. This architecture-specific characteristic
explains Qwen’s different robustness observed in our experiments,
where it experiences a more substantial performance drop at 20%



Maximizing LLM Efficiency Through Optimization Strategies KDD ’25, August 3–7, 2025, Toronto, Canada

Figure 3: Pruned Llama3-8B model fine-tuning on Unnatural
Instruct dataset [17].

Figure 4: Pruned Qwen2.5-32B model fine-tuning on Unnatu-
ral Instruct dataset [17].

pruning (LMentry score decreasing from 65.9 to 56.4, and exact
match rate dropping from 27.8% to 24.5%). Despite starting with the
highest performance, Qwen’s unique layer similarity distribution
makes it more sensitive to pruning in certain regions, resulting in
less predictable performance degradation compared to the more
uniformly structured Llama models.



KDD ’25, August 3–7, 2025, Toronto, Canada Iman Abbasnejad, Tomal Deb, and Xuefeng Liu

Figure 5: Layer similarity distance between layers. x-axis shows the block size and y-axis shows the initial layers. The distances
are rescaled to [0, 1] range. The optimal pruning candidate layers ℓ∗ (𝑛) appear as deepest yellow in each row.


	Abstract
	1 Introduction
	2 Related Works
	3 Method
	3.1 Model Pruning
	3.2 Knowledge Distillation
	3.3 Model Quantization
	3.4 Prompt Caching
	3.5 AWS Inferentia Acceleration

	4 Experiments
	5 Results
	5.1 Base Model Performance
	5.2 Model Pruning Impact
	5.3 Caching Strategies
	5.4 Knowledge Distillation
	5.5 Hardware Acceleration and Quantization
	5.6 Analysis

	6 Conclusion
	References
	A Detailed Explanation of Experiment

