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Abstract
As Large Language Models (LLMs) scale in size, their capabilities
dramatically improve, but this dimensional expansion simultane-
ously introduces substantial computational barriers to efficient in-
ference. While various optimization methods exist including model
pruning, knowledge distillation, and quantization, their effective-
ness and interaction effects remain insufficiently characterized
across deployment scenarios. In this work, we perform compre-
hensive comparisons between inference optimization techniques
for LLMs, systematically evaluating their impact on model perfor-
mance and computational efficiency. Our experiments with Llama3
and Qwen models reveal that knowledge distillation effectively
mitigates performance degradation from pruning while caching
and hardware acceleration provide complementary benefits. Most
significantly, we find that optimally combining these approaches en-
ables smaller models to achieve performance comparable to models
4 × larger while reducing inference latency by up to 100 ×.
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1 Introduction
LLMs [22, 33, 34] have demonstrated exceptional capabilities through
pre-training [3, 4]. Their superior performance on complex lan-
guage tasks has led to widespread adoption despite their consider-
able size compared to smaller NLP based models such as BERT [5]
and MicroBERT [11], making inference optimization a critical re-
search area. As the LLM models grow, they exhibit emergent abili-
ties [37] but also present significant computational challenges, re-
quiring substantial resources and incurring high deployment costs.
To address these issues, researchers and industries have proposed
various optimization methods including model pruning [19, 36, 39],
knowledge distillation [29, 30], and quantization [2, 9]. In this work,
we perform comprehensive comparisons between different methods
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of model inference optimization to understand their strengths and
limitations in real-world scenarios. We evaluate several approaches
including model pruning techniques that remove redundant neural
connections, knowledge distillation methods that transfer knowl-
edge from large teacher models to smaller models and hardware
accelerators like AWS Inferentia. Our analysis considers not only
the traditional metrics like accuracy, perplexity and ROUGE-L met-
ric, but also practical measures including latency across various
hardware configurations and quantizations. This multi-dimensional
evaluation provides insights into which optimization techniques
work best for different deployment scenarios and model sizes. By
presenting these comparisons in a systematic way, our work helps
researchers and industries make decisions about which inference
optimization strategies to adopt based on their specific require-
ments and constraints.

2 Related Works
Large language models have shown impressive capabilities across
numerous tasks, but their parameter-heavy architectures present
significant deployment challenges. Prior work has explored vari-
ous optimization approaches to address latency and resource con-
straints [21, 31]. Pruning methods [19, 23, 40] aim to remove re-
dundant parameters while preserving model performance. These
techniques range from simple magnitude-based approaches [15, 43]
that remove small-valued weights to more sophisticated methods.
Advanced pruning strategies include first-order importance esti-
mation [18] and hessian-based calculations [19] that more accu-
rately identify critical parameters.Structural pruning [7] has gained
particular attention for its hardware compatibility by removing
entire structural elements (e.g., attention heads, filters) rather than
individual weights, resulting in dense but smaller models that main-
tain hardware acceleration benefits. Knowledge distillation [30]
represents another significant approach for model compression,
transferring learned representations from larger teacher models
to more compact student architectures [25, 27]. This technique en-
ables smaller models to benefit from the knowledge embedded in
larger pre-trained models, often achieving performance closer to
the teacher than training the smaller model from scratch. Quanti-
zation methods [2, 42] offer complementary benefits by reducing
numerical precision while preserving inference capabilities. Re-
cent advances in post-training compression [20] have accelerated
optimization by reformulating reconstruction error as linear least
squares problems, while layer-wise approaches [8, 10, 14, 28, 38]
apply pruning techniques sequentially for efficiency gains. Metric-
based methods such as SparseGPT [8] and Sun [28] use Hessian
information or weight-activation products to identify important
parameters. In parallel, optimization-based methods including L0
regularization [24], CoFi [38], and Compresso [14] learn parameter
importance through direct performance feedback during training or
fine-tuning. While these techniques have been extensively studied
individually, systematic comparisons across multiple dimensions
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remain limited. Our work addresses this gap by comprehensively
evaluating diverse optimization approaches including model prun-
ing, knowledge distillation, and hardware accelerators.

3 Method
In this section, we present our framework for evaluating and com-
paring various inference optimization techniques for LLMs. Our
methodology includes five key approaches: model pruning, knowl-
edge distillation, quantization methods, prompt caching, and hard-
ware acceleration through AWS Inferentia.

3.1 Model Pruning
We use the layer-pruning method from [13], which is based on the
observation that representations in transformer networks evolve
gradually across layers. In a transformer architecture, each layer
follows a residual iteration:

𝑥 (ℓ+1) = 𝑥 (ℓ ) + 𝑓 (𝑥 (ℓ ) , 𝜃 (ℓ ) ) (1)

where 𝑥 (ℓ ) and 𝜃 (ℓ ) represent the multi-dimensional input and
parameter vectors for layer ℓ , and 𝑓 (𝑥, 𝜃 ) describes the transfor-
mation of a multi-head self-attention and MLP layer block. The
pruning algorithm identifies layers where representations remain
similar across multiple layers, making those intermediate layers
potentially redundant. It computes the angular distance between
inputs at different layers and removes the layers where this distance
is minimized. This is based on the hypothesis that if representations
change slowly such that 𝑥 (ℓ ) ≈ 𝑥 (ℓ−1) + 𝜖 with 𝜖 ≪ 𝑥 (ℓ ) , then cer-
tain layers can be removed with minimal impact on performance.
After pruning the redundant layers, fine-tuning can be applied to
heal any representation mismatches.

3.2 Knowledge Distillation
This approach [16] is a neural network compression technique
where a smaller "student" model learns to mimic the behavior of a
larger, more complex "teacher" model. In the process, the student
model captures the generalized knowledge embedded within the
teacher’s learned representations rather than just the hard class
labels. This can be done by training the student model to match the
teacher’s output probability distributions, which are typically "soft-
ened" using a temperature parameter, 𝑇 in the softmax function.
The softened distributions (where 𝑇 > 1) reveal more information
about the teacher’s internal representations than hard labels alone,
showing not just which class the teacher predicts but the relative
similarities between classes that the teacher has learned. In prac-
tice, distillation often uses a weighted combination of two objective
functions: matching the teacher’s soft probability distributions and
predicting the correct hard labels, with the soft targets usually given
higher priority. This approach effectively transfers the teacher’s
generalized knowledge while maintaining task performance, en-
abling significantly smaller models to achieve comparable accuracy
to their larger counterparts

3.3 Model Quantization
Quantization reduces the numerical precision of model weights and
activations, decreasing memory requirements and computations

while attempting to preserve model behavior. Neural network com-
putations typically use high-precision floating-point formats (FP32)
during training, but this level of precision is often unnecessary
during inference. By reducing precision, we can achieve efficiency
gains with minimal impact on model quality. We evaluate multi-
ple quantization methods across various precision levels including,
FP32, BF16, INT8 and INT4.

3.4 Prompt Caching
Prompt caching aims to avoid redundant computation by stor-
ing and reusing results from previously processed prompts, par-
ticularly effective in applications where similar queries are fre-
quently encountered. The KV (Key-Value) cache optimizes autore-
gressive generation by storing previously computed attention vec-
tors, Attention(𝑄,𝐾,𝑉 ) = softmax

(
𝑄𝐾𝑇

√
𝑑𝑘

)
𝑉 , reducing computa-

tional complexity from 𝑂 (𝑡2) to 𝑂 (𝑡) for a sequence of length 𝑡 ,
though requiring memory that scales as 2 × 𝐿 × ℎ × 𝑑 × 𝑡 bytes for
a model with 𝐿 layers, ℎ attention heads, and hidden dimension 𝑑 .
In this work we use three different prompt caching techniques:

• Static Caching maintains a direct hash table mapping exact
prompt strings to their complete KV representations,

• Dynamic Semantic Caching uses dense vector embeddings
to compute similarity scores between incoming prompts and
cached entries, allowing retrieval of KV values,

• HQQ (Hierarchical Quantized Query) Caching, which com-
bines quantized vector representations with hierarchical in-
dexing to dramatically reduce memory requirements while
maintaining rapid retrieval of KV values.

3.5 AWS Inferentia Acceleration
AWS Inferentia [1] is AWS’s purpose-built ML inference chip opti-
mized for cost-efficient deep learning deployment. Each Inferentia
chip contains four high-performance cores with dedicated memory,
while NeuronLink facilitates efficient inter-chip communication.
We compile LLMs for this platform to maximize performance ad-
vantages.

4 Experiments
In this section we describe our approach to model optimization
through knowledge distillation, pruning, quantization, and their
combination, as well as our evaluation methodology.
Base Models: For our experiments, we utilize three foundation
models as our baselines, Llama3-1B, Llama3-8B [12] and Qwen2.5-
32B [32, 41]. These models provide a spectrum of parameter counts
and computational requirements, allowing us to analyze trade-offs
between model size, inference speed, and performance.
Knowledge Distillation: We implement a knowledge distillation
framework where the larger Qwen2.5-32B serves as the teacher
model, while the smaller Llama-1B and Llama-8B serve as students.
Model Pruning: Building on thework of [13], we implementmodel
pruning to reduce the computational footprint of our models. Our
pruning methodology focuses on identifying and removing redun-
dant components while minimizing impact on model performance.
Combined Approach: To investigate the effects of combining
pruning with knowledge distillation, we also perform knowledge
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distillation on the pruned variants of Llama3-1B and Llama3-8B.
In this setup, we use the full Qwen2.5-32B model as the teacher,
and the pruned Llama models as students. This combined approach
aims to recover performance lost during pruning while maintain-
ing the inference speed benefits. We hypothesize that knowledge
distillation can help compensate for model size reduction caused by
pruning, especially for crucial functional components of the model.
Fine-tuning:We follow standard practice for fine-tuning, using
a batch size of 16 examples over 3 epochs. The full set of training
hyperparameters is available in Appendix A.
Dataset: For training we use Unnatural Instruct dataset [17] which
contains 68𝑘 text instructions. We use the same template as [35]
for formatting instructions and inputs. We follow the same method-
ology used in [17, 35] to create a validation set of 1, 000 examples
for model selection. For testing the model performance we use
LMentry [6] and test set of Super-Natural Instructions [35].
Evaluation Metrics:We evaluate all models using a comprehen-
sive set of metrics:

• Inference Time: Measured in seconds per sample and tokens
per second,

• Perplexity: Assessing the model’s ability to predict text by
measuring the uncertainty in generating the next token,

• ROUGE-L: Measuring the overlap between model-generated
text and reference answers, with ROUGE-L specifically cap-
turing the longest common subsequence.

• LMentry score [6]: Uses greedy decoding and measures the
generated outputs using high-accuracy regular expressions.

• EM: Exact match of generated text and their ground truth.
• Accuracy: Fraction of correct predictions.

Our evaluation approach allows us to quantify the practical
trade-offs between model size, computational efficiency, and model
performance across different optimization techniques.

5 Results
We performed an extensive series of evaluations on the proposed
techniques and compare the performance and computational com-
plexity of the methods in this section.

5.1 Base Model Performance
Our analysis begins with the baseline performance of each model
without pruning, caching, or knowledge distillation. As shown
in Table 1, Llama3-1B achieved an LMentry score of 59.2 with a
latency of 2.42𝑠 , while Llama3-8B reached 60.1 points at 2.91𝑠 , and
Qwen2.5-32B attained 65.9 points with the longest latency of 3.74𝑠 .
On the Super-Natural Instructions benchmark, Table 2, we observe
a clearer performance hierarchy, with Qwen2.5-32B achieving 27.8%
exact match (EM) and 91.7% accuracy, followed by Llama3-8B (23.5%
EM, 84.9% accuracy) and Llama3-1B (18.7% EM, 78.3% accuracy).
These results confirm the expected correlation between model size
and task performance

5.2 Model Pruning Impact
When applying model pruning, we observe a consistent trade-off
between computational efficiency and task performance. At 20%
pruning with no other optimizations, Llama3-1B’s LMentry score
decreased to 51.8 while improving latency to 1.83𝑠 (24.4% reduction).

Table 1: LMentry benchmark results with latency improve-
ments. Best latency (yellow) and scores (pink) highlighted.
"Impr.(%)" column shows latency reduction vs. baseline (0%
pruning, no cache).

Model Pruning Cache Performance Efficiency

Perplexity↓ LMentry↑ Latency↓(s) Tokens/s↑ Impr.(%)

Llama3-1B 0% None 15.38 59.2 2.42 1066.7 -
Llama3-1B 0% Dynamic 15.38 59.2 1.99 1272.0 17.8%
Llama3-1B 0% HQQ 15.39 59.1 2.24 1233.5 7.4%
Llama3-1B 0% Static 15.38 59.2 2.32 1180.5 4.1%
Llama3-1B 20% Dynamic 19.85 51.8 1.83 1445.1 24.4%
Llama3-1B 40% Dynamic 26.19 43.6 1.53 1633.3 36.8%

Llama3-1B+KD 0% None 13.92 61.7 2.32 1076.7 -
Llama3-1B+KD 0% Dynamic 13.92 61.7 1.97 1268.0 15.1%
Llama3-1B+KD 0% HQQ 13.93 61.6 2.14 1213.5 7.8%
Llama3-1B+KD 0% Static 13.92 61.7 2.32 1149.5 0.0%
Llama3-1B+KD 20% Dynamic 17.47 56.3 1.81 1434.1 22.0%
Llama3-1B+KD 40% Dynamic 22.64 49.4 1.51 1551.3 34.9%

Llama3-8B 0% None 10.32 60.1 2.91 844.4 -
Llama3-8B 0% Dynamic 10.32 60.1 2.53 1009.8 13.1%
Llama3-8B 0% HQQ 10.33 60.0 2.61 984.0 10.3%
Llama3-8B 0% Static 10.32 60.1 2.69 960.5 7.6%
Llama3-8B 20% Dynamic 14.78 55.6 2.33 1151.8 19.9%
Llama3-8B 40% Dynamic 20.92 47.5 1.92 1342.8 34.0%

Llama3-8B+KD 0% None 9.18 63.5 2.89 879.4 -
Llama3-8B+KD 0% Dynamic 9.18 63.5 2.42 1029.8 16.3%
Llama3-8B+KD 0% HQQ 9.19 63.4 2.61 991.0 9.7%
Llama3-8B+KD 0% Static 9.18 63.5 2.66 990.5 8.0%
Llama3-8B+KD 20% Dynamic 12.97 59.8 2.25 1162.8 22.1%
Llama3-8B+KD 40% Dynamic 18.26 52.9 1.94 1310.9 32.9%

Qwen2.5-32B 0% None 11.54 65.9 3.74 673.1 -
Qwen2.5-32B 0% Dynamic 11.54 65.9 3.53 795.4 5.6%
Qwen2.5-32B 0% HQQ 11.55 65.8 3.44 764.4 8.0%
Qwen2.5-32B 0% Static 11.54 65.9 3.61 749.3 3.5%
Qwen2.5-32B 20% Dynamic 15.37 56.4 2.79 917.6 25.4%
Qwen2.5-32B 40% Dynamic 22.11 48.7 2.34 1124.6 37.4%

Similar patterns emerge for Llama3-8B (55.6) and Qwen2.5-32B
(56.4), with latency improvements of 19.9% and 25.4%, respectively.

At 40% pruning, more substantial performance degradation oc-
curs, Llama3-1B’s LMentry score falls to 43.6, Llama3-8B to 47.5,
and Qwen2.5-32B to 48.7. However, the latency improved by 36.8%,
34.0%, and 37.4%, respectively. Notably, larger models appear more
resilient to aggressive pruning, maintaining better relative perfor-
mance at higher pruning rates.

On the Super-Natural Instructions benchmark, Table 2, 20% prun-
ing reduced exact match rates by 2.9 (to 15.8%), 2.8 (to 20.7%), and
3.3 (to 24.5%) percentage for Llama3-1B, Llama3-8B, and Qwen2.5-
32B respectively. At 40% pruning, this degradation increased to
6.1 (to 12.6%), 7.1 (to 16.4%), and 8.2 (to 19.6%) percentage. The
corresponding decreases in accuracy follow a similar pattern, with
reductions of 4.7, 3.6, and 3.7 percentage points respectively. From
this analysis we can observe that, the percentage-wise reduction
in exact match rate is more severe than the reduction in accuracy,
suggesting that pruning primarily affects the model’s precision in
generating exact outputs rather than its overall understanding of
instructions.

5.3 Caching Strategies
Without changing the model architecture, caching strategies of-
fers pure efficiency gains without much performance losses. As
shown in Table 1, dynamic caching provides substantial latency
improvements across all models: 17.8% for Llama3-1B (2.42𝑠 to
1.99𝑠), 13.0% for Llama3-8B (2.91𝑠 to 2.53𝑠), and 5.6% for Qwen2.5-
32B (3.74𝑠 to 3.53𝑠). Importantly, these latency reductions come
with not much decline in performance metrics, preserving identical
LMentry scores, exact match rates, and accuracy percentages.
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Table 2: Super-Natural Instructions results with EM rate
changes. Best accuracy highlighted (pink). EM Δ(%) shows
change relative to baseline (0% pruning, no KD).

Model Pruning Cache Performance

R-L↑ EM↑(%) Acc↑(%) EM Δ (%)

Llama-1B 0% None 0.31 18.7 78.3 -
Llama-1B 20% None 0.30 15.8 73.6 -15.5%
Llama-1B 40% None 0.25 12.6 68.2 -32.6%

Llama-1B+KD 0% None 0.34 21.3 83.7 +13.9%
Llama-1B+KD 20% None 0.33 19.1 80.6 +2.1%
Llama-1B+KD 40% None 0.29 15.8 74.5 -15.5%

Llama-8B 0% None 0.36 23.5 84.9 -
Llama-8B 20% None 0.33 20.7 81.3 -11.9%
Llama-8B 40% None 0.26 16.4 75.8 -30.2%

Llama-8B+KD 0% None 0.38 26.7 89.5 +13.6%
Llama-8B+KD 20% None 0.36 24.3 87.1 +3.4%
Llama-8B+KD 40% None 0.30 20.2 82.4 -14.0%

Qwen2.5-32B 0% None 0.39 27.8 91.7 -
Qwen2.5-32B 20% None 0.35 23.5 88.0 -15.5%
Qwen2.5-32B 40% None 0.28 19.6 82.1 -29.5%

HQQ caching offers varied improvements: 7.4% for Llama3-1B,
10.3% for Llama3-8B, and 8.0% for Qwen2.5-32B. This strategy in-
curs minimal performance penalties (0.1𝑡𝑜0.2 on LMentry), making
it a viable alternative when memory efficiency is prioritized. Static
caching provides the most modest efficiency gains of 4.1𝑡𝑜7.6%
across models, with Qwen2.5-32B showing only 3.5% improvement,
but maintains performance parity with the no-cache baseline.

When analyzing caching strategies across pruned models, we
observe that the relative efficiency gains remain consistent regard-
less of pruning level. For example, caching strategies consistently
provide additional latency gains regardless of pruning level, with
dynamic caching reducing latency by 15 − 18% for Llama3 models
and 5 − 7% for Qwen2.5-32B across different pruning rates.

5.4 Knowledge Distillation
Knowledge distillation can be used to recover performance lost
through pruning while maintaining efficiency gains. Unpruned
Llama3-1B+KD achieved an LMentry score of 61.7 (from 59.2),
and close to the much larger Llama3-8B. Similarly, Llama3-8B+KD
reached 63.5 from 60.1. On the Super-Natural Instructions bench-
mark, knowledge distillation yielded significant gains in EM: from
18.7% to 21.3% for Llama3-1B and from 23.5% to 26.7% for Llama3-8B.
This brings the Llama3-8B+KD model to within 1.1% of Qwen2.5-
32B’s performance despite being four times smaller.

The most significant benefit of knowledge distillation appears
when combined with pruning. At 20% pruning, Llama3-1B+KD
achieved an LMentry score of 56.3, recovering 4.5 points of the
7.4-point loss from pruning. Similarly, Llama3-8B+KD reached
59.8, recovering 4.2 points and nearly matching the unpruned base
Llama3-8B. Similar pattern is observed on the Super-Natural In-
structions benchmark, where knowledge distillation at 20% pruning
improved EM from 15.8% to 19.1% for Llama3-1B and from 20.7%
to 24.3% for Llama3-8B. Notably, Llama-8B+KD with 20% pruning
achieved 87.1% accuracy, higher than Llama3-8B with no pruning
(84.9%) and approaching Qwen2.5-32B with 20% pruning (88.0%).
Even at 40% pruning, distilled models maintained substantially
better performance: Llama3-1B+KD scored 49.4 on LMentry (vs.
43.6 without KD) and Llama-8B+KD scored 52.9 (vs. 47.5 without
KD), demonstrating that knowledge distillation can mitigate per-
formance degradation even at higher pruning ratios.

Table 3: Inference times across quantization methods. INT4
Impr. shows latency reduction vs. baseline; Inf. Impr. shows
Inferentia speedup.

Model Pruning None BF16 INT8 INT4 Inferentia INT4 Impr. Inf. Impr.

Llama-1B 2.42 0.97 1.01 0.94 0.012 61.2% 201.7×
Llama-1B 20% 1.93 1.02 1.06 0.96 0.007 50.3% 41.7%
Llama-8B 2.91 1.32 2.03 0.91 0.043 68.7% 67.7×
Llama-8B 20% 2.05 1.97 2.01 1.98 0.037 3.4% 14.0%
Qwen2.5-32B 3.74 2.66 2.78 2.30 0.872 38.5% 4.3×
Qwen2.5-32B 20% 3.65 3.46 3.72 3.66 0.641 -0.3% 26.5%

5.5 Hardware Acceleration and Quantization
Table 3 presents inference time across different quantization meth-
ods and hardware platforms. All quantization experiments were
conducted on NVIDIA A100 GPUs with 2×40GB GPUs. Quantiza-
tion alone provides significant acceleration, with INT4 quantization
reducing latency by 61.2% for Llama-1B (from 2.42𝑠 to 0.94𝑠), 68.7%
for Llama3-8B (from 2.91𝑠 to 0.91𝑠), and 38.5% for Qwen2.5-32B
(from 3.74𝑠 to 2.30𝑠) compared to unquantized baselines. However,
the most dramatic improvements come from hardware acceleration
with AWS Inf2 (with 1 chip, 32 cores, 32 NeuronCores, 128GB mem-
ory), which delivers 201.7 × for Llama3-1B (from 2.42𝑠 to 0.012𝑠),
35.8× for Llama3-8B (from 1.54𝑠 to 0.043𝑠), and 3.6 × for Qwen2.5-
32B (from 3.12𝑠 to 0.872𝑠). When combining Inferentia with model
pruning, we observe additional performance gains, with pruned
models achieving latency reductions of 41.7% (Llama3-1B), 14.0%
(Llama3-8B), and 26.5% (Qwen2.5-32B) compared to their unpruned
counterparts on the same hardware.

5.6 Analysis
The full potential of the optimization techniques emerges when
combining all three approaches. Llama3-8B+KD with 20% pruning
and dynamic caching demonstrates the most favorable balance: it
achieves 96.4% of original Qwen2.5-32B’s LMentry performance
(59.8 vs. 65.9) while reducing latency by 39.8% (2.25s vs. 3.74s). Fur-
thermore, Llama3-8B+KD with 40% pruning and dynamic caching
maintains strong performance (52.9 LMentry score, 82.4% accu-
racy) while delivering a 48.1% latency reduction compared to the
Qwen2.5-32B baseline (1.94s vs. 3.74s).

When themodels are running on Inferentia hardware, the Llama3-
8B+KD model with 20% pruning on Inferentia achieves inference
times of 0.037s, approximately 101.1 × faster than the baseline
Qwen2.5-32B configuration while maintaining 90.7% of its LMentry
performance and 87.4% of its exact match rate. This shows, choos-
ing a right caching and optimization technique, smaller models can
achieve performance comparable to models 4 × their size while
offering dramatically better efficiency profiles.

6 Conclusion
In this work, we extensively evaluated the impact of various infer-
ence optimization techniques on LLM performance and efficiency.
Our evaluation reveals that knowledge distillation, model prun-
ing, and caching strategies provide complementary benefits when
properly combined. Distillation effectively mitigates performance
degradation from pruning, with student models maintaining over
90% of the teacher model’s performance despite having 4× fewer pa-
rameters. By strategically combining these approaches, we demon-
strate that smaller models can match the capabilities of much larger
counterparts while dramatically improving inference efficiency.
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A Detailed Explanation of Experiment
In this section we provide more details of our experiments and find-
ings. For the fine-tuning experiments, we applied a consistent set
of hyperparameters across all conditions. Models were trained for
a maximum of 10, 000 steps. We selected the final model based on
Rouge-L performance on our validation set, evaluating checkpoints
at 1000-step intervals. Our training configuration used a batch size
of 16 and employed a learning rate schedule with a maximum value
of 10−5, incorporating a warm-up phase during the initial 10% of
training steps. Weight decay was set at 0.01. We truncated input se-
quences at 1, 024 tokens and limited output sequences to 128 tokens.
All training runs utilized DeepSpeed’s ZeRO-3 optimization [26]
for efficient distributed training. For fine-tuning we employed 8
NVIDIA V100 40GB GPUs. For evaluation metrics, including Rouge-
L and exact match scores, we used the implementation described
in [35].

Figure 1 shows the fine-tuning and corresponding validation
losses of the proposed base models on the training dataset. Fig-
ures 2,3 and4 illustrate the fine-tuning and validation losses for
the proposed based models under different layer pruning condi-
tions (0%, 20%, and 40%). All models exhibit widening gaps between
training and validation losses. This pattern directly correlates with
the EM rate declines described in Table 2, where Llama3-1B shows
a 15.5% EM reduction at 20% pruning and 32.6% at 40% pruning.
In addition, when moving from 0% to 20% pruning, Llama3-1B’s
perplexity increased, which is reflected in the higher final loss
values.

On the other hand, the visualized losses demonstrate model
scale-dependent patterns. Larger models (particularly Qwen2.5-
32B) demonstrate smoother convergence trajectories even under
pruning conditions, while smaller models (Llama3-1B) show more
erratic behavior, especially at 40% pruning. As pruning increases,
the gap between training and validation loss widens more dra-
matically for smaller models than larger ones. This widening gap
explains why Qwen2.5-32B maintains 82.1% accuracy at 40% prun-
ing while Llama3-1B drops to 68.2%. Furthermore, the loss curves
indicate that all models initially converge at similar rates regardless
of pruning level, but diverge significantly in later iterations, suggest-
ing that pruned models have less capacity to capture fine-grained
patterns during extended training.

Figure 5 presents layer similarity patterns through heat maps
across our pruned models. Each square is colored to represent the
row-normalized angular distance between layer ℓ and ℓ + 𝑛 for all
possible values of ℓ , with block sizes 𝑛 extending to substantial
fractions of total model depth. Our analysis reveals consistent pat-
terns that directly explain the performance impacts observed in our
pruning experiments.

The smallest angular distances (yellower regions) predominantly
appear in deeper blocks, indicating that deeper layers typically
exhibit higher similarity and thus present better pruning candidates.
This pattern aligns with our empirical results in Tables 1 and 2,
where larger models like Llama3-8B and Qwen2.5-32B maintain
better relative performance at higher pruning rates (20% − 40%)
compared to the smaller Llama3-1B. The resilience of these larger
models to pruning can be attributed to greater redundancy in their
deeper layers, as visualized in our similarity maps.

Figure 1: Base model fine-tuning on Unnatural Instruct
dataset [17].

Figure 2: Pruned Llama3-1B model fine-tuning on Unnatural
Instruct dataset [17].

The blocks containing the final layer (visible along the outer diag-
onal) consistently display maximal or near-maximal distance values
(red regions), suggesting that the output layer captures unique rep-
resentations critical to model performance. This empirical finding
explains why our pruning strategy deliberately preserves the fi-
nal layer, allowing us to achieve significant latency improvements
(24.4% − 37.4%) while minimizing performance degradation.

Interestingly, the Qwen2.5-32B model exhibits distinctive simi-
larity patterns compared to the Llama family. We observe several
shallow blocks in Qwen (yellow regions), particularly in the lower-
left quadrant of its heatmap. This architecture-specific characteristic
explains Qwen’s different robustness observed in our experiments,
where it experiences a more substantial performance drop at 20%
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Figure 3: Pruned Llama3-8B model fine-tuning on Unnatural
Instruct dataset [17].

Figure 4: Pruned Qwen2.5-32B model fine-tuning on Unnatu-
ral Instruct dataset [17].

pruning (LMentry score decreasing from 65.9 to 56.4, and exact
match rate dropping from 27.8% to 24.5%). Despite starting with the
highest performance, Qwen’s unique layer similarity distribution
makes it more sensitive to pruning in certain regions, resulting in
less predictable performance degradation compared to the more
uniformly structured Llama models.
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Figure 5: Layer similarity distance between layers. x-axis shows the block size and y-axis shows the initial layers. The distances
are rescaled to [0, 1] range. The optimal pruning candidate layers ℓ∗ (𝑛) appear as deepest yellow in each row.
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