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ABSTRACT

Graph Neural Networks (GNNs) are fragile to adversarial attacks. However, ex-
isting state-of-the-art adversarial attack methods against GNNs are typically con-
strained by the graph’s scale, failing to attack large graphs effectively. In this paper,
we propose a novel attack method that attacks the graph in a divide-and-conquer
manner to tackle large-scale adversarial attacks on GNNs. Specifically, the nodes
are clustered based on node embeddings, coarsened graphs are constructed using the
node clusters, and attacks are conducted on the coarsened graphs. Perturbations are
selected starting with smaller coarsened graphs and progressing to larger detailed
graphs while most of the irrelative nodes remain clustered, significantly reducing
the complexity of generating adversarial graphs. Extensive empirical results show
that the proposed method can greatly save the computational resources required to
attack GNNs on large graphs while maintaining comparable performance on small
graphs.

1 INTRODUCTION

Graphs are a versatile representation that can be utilized to model data from a wide range of disciplines,
such as biology, chemistry, social networks, recommendation systems, and financial systems. Not
surprisingly like Deep Neural Networks (DNNs), Graph neural networks (GNNs) on graph data act
crucial roles in a number of emerging graph-based applications. GNNs exhibit their ability to extract
valuable information from both the features (i.e., information from individual node embedding) and
the topology (i.e., the relationship between nodes) in various applications.

Like DNNs, GNNs are also subject to adversarial attacks under both test-time (evasion) (Dai et al.|
2018;Wu et al.} 2019; Xu et al.}2019) and training-time (poisoning) (Ziigner et al., 2018 Ziigner &
Giinnemann, 2019) attacks. In this paper, we focus on a common node classification task (London
& Getoor, 2014} |Chapelle et al., [2006), which is of semi-supervise learning category: the whole
graph, except for the labels for test nodes, is given during the training process. The semi-supervised
learning setting contributes the attacker to generate enormous effects on GNNs. GNNs can improve
classification by the message passing scheme (Kipf & Welling| [2017), exploiting the information in
a node’s neighborhood. This is a core strength but also a major vulnerability: due to the message
propagation, an attacker can easily affect GNNs to change the prediction of a single node, even
without changing any of its attributes or edges connected to it. Adversarial attacks on GNNs could
result in real-world consequences; for example, unnoticed lending relationships can be forged to
deceive the financial system, posing a serious systemic risk.

However, existing attack methods on GNNs suffer from a major complexity problem, making them
difficult to use against large-scale graphs. The attack method must be memory- and time-efficient due
to the large number of nodes in graph data. Existing work invariably falls short of at least one of the
aforementioned concerns. Specifically, many existing methods are based on calculating gradients for
all the edge entries. For example, PGD (Xu et al.,|2019) maintains the large size of edge gradients in
a dense matrix format, which results in a quadratic memory expense. For a graph with N nodes, a
dense N x N gradient matrix is needed. A similar situation occurs to Mettack (Ziigner & Giinnemann)
2019), due to the implementation of meta-learning calculating meta-gradients for all N x IV edge
entries. Other methods, like RL-S2V (Dai et al., 2018) needs to train the attackers with reinforcement
learning framework, which also consumes significant computational resources. Nettack (Ziigner
et al.,[2018)) suffers from the edge updates in an inefficient trial-and-error manner.
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To overcome these limitations, it is crucial to simplify the graph while preserving the important
properties of graph. One effective way is to coarsen the graph using a subset of the original node set,
which involves contracting disjoint sets of connected vertices to reduce the number of nodes. Graph
coarsening (Ruge & Stiiben |1987) has found various applications in graph partitioning (Hendrickson
et al., [1995}; |[Karypis & Kumar, [1998}; Kushnir et al., [2006), visualization (Harel & Korenl [2000;
Hul 2005; Walshaw, [2000) and machine learning (Shuman et al.,|2015)). In this paper, we propose a
novel graph coarsening method to achieve adversarial attack on GNNs with efficient computation.
Our key insight is to divide a large graph into small graphs and attack those small graphs with a
dividing-and-conquering strategy, as shown in Figure[I] For each perturbation, the proposed method
will first cluster the nodes to build the coarsening graph, then select the most impacting edge entry
based on the coarsening graph. Clusters related to the selected entry will be split and the coarsened
graph will be rebuilt. The select-and-rebuild process will be repeated until the selected clusters are
unsolvable, i.e., the selected clusters only contain a single node, while most irrelative nodes remain
clustered.

Our proposed method will reduce the complexity of GNNs attacks from O(N?) to O (N VN + M ),

where [ > 2 is a hyperparameter, N and M are the number of nodes and edges. Empirical results on
8 datasets show the proposed method is able to attack large-scale graphs effectively and also perform
compatibly to state-of-the-art methods on small-scale graphs.

2 RELATED WORKS

Adversarial attacks on machine learning models, unnoticeable perturbations deceives models, have
been studied for a variety of model types. Unlike outliers, adversarial examples are purposefully
constructed to be unnoticed in order to deceive machine learning models. Deep neural networks
are also highly sensitive to small adversarial perturbations added to the data|Szegedy et al.| (2014);
Goodfellow et al.|(2015). The vast majority of attacks and defenses believe that data instances are
independent and continuous, which is not the case for node classification different from many other
graph-based tasks.

Recently, adversarial attacks for graphs start to attract attention from researchers. [Torkamani & Lowd
(2013) adopts associative Markov networks to improve robustness of collective classification with
adversarial noise in the node features. In|Chen et al.|(2017), the modifications in the generated graph
clustering are measured with injected noise to a bipartite graph representing DNS queries. [Dai et al.
(2018)); [ Xu et al.|(2019) take test-time (i.e., evasion) attacks into consideration on node classification.
However, poisoning (i.e., training-time) attacks are more suitable for the semi-supervised setting of
node classification and the transferability evaluation of their attacks is ignored. Also, the attacks
are restricted to delete edge only and aiming at attacking the prediction of a single node. In
nettack (Ziigner et al.,|2018), both evasion and poisoning attacks are designed as bilevel optimization
problem on node classification models. The attacks are performed based on a surrogate model and
the impact of those attacks are evaluated with a classifier trained on the modified data. This attack
method can both add and remove edges, and manipulate node attributes using binary vectors, but
only be suited to targeted attacks on single nodes. In|Ziigner & Giinnemann| (2019), meta-gradients
are leveraged to attack the graph globally, making it possible to degrade the overall performance of
models on node classification seriously.

There are only a few works developing efficient attack methods in terms of time complexity. Further-
more, given that most attack algorithms are gradient-based, how to reduce their memory complexity
remains a challenge. The high complexity of attack methods has hindered their use in practical
applications.

3 APPROACHES

3.1 PROBLEM FORMULATION

We concentrate to attacking GNNs on the task of semi-supervised node classification. Given a single
(attributed) graph and a set of labeled nodes, the goal of GNNS is to predict the labels of the unlabeled
nodes. Let G = (A, X) be an attributed graph with adjacency matrix A € {0,1}"*¥ and node
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feature matrix X € RV*P where N is the number of nodes and D the dimension of the node feature
vectors. Given the node IDs V = {1,..., N} and the set of labeled nodes V;, C V, each node i is
assigned to exactly one class ¢; from K different classes. The goal of GNNss is to learn a function
fo mapping each node v € V to one of the K classes. Please note this is an instance of transductive
learning that all the unlabeled nodes (i.e., test samples) as well as their attributes and edges are known,
except for the labels of the unlabeled nodes Vi = V/Vy,, and used during training (Chapelle et al.,
20006). The parameters 6 of the function fy are learned by minimizing a loss function L., (e.g.,
Cross-Entropy Lcg) on Vy, and corresponding labels C:

0 = aI'g;nin['train (f@ (g)) s.t. Lirain (f9 (g)) = LcE (f@ (g) VL, C) . (1

Attacker’s Goal: Adversarial attacks are unnoticeable deliberate perturbations of data samples for
desired outcome by the attacker applied to the machine learning models. Specifically in this work, the
attacker’s goal is to increase the misclassification rate of a node classification model achieved after

training on the modified graph data G= (A, X) Following |Ziigner & Giinnemann|(2019) and in
contrast to|Ziigner et al.|(2018); Dai et al.|(2018)), the attacker is designed for global attacks reducing
the overall classification performance of a model (i.e., misclassify nodes in V; as many as possible).

Attacker’s Knowledge: In this work, we focus on gray-box attacks where the attacker has limited
knowledge about the classification model. The attacker can access the graph data G, labeled nodes
V1, and the training labels Cy,, , but cannot access the model parameters 6 and testing labels Cy,, .
In other words, we are focusing on poisoning (training-time) attacks instead of evasion (test-time)
attacks. To attack the victim model, the attacker can use a surrogate model to generate the modified

graph data G. We use the popular GCN in Kipf & Welling|(2017), the same as in|Ziigner et al.|(2018]);
Zigner & Glinnemann|(2019), to be the surrogate model:

fo(A,X) = softmax (A2XW1W2) , )

where A = (D + I)"Y/2(A + I)(D + I)~!/2, D the diagonal matrix of the node degrees and
(W1, Wy) are weight parameters of the two-layer GCN.

Attacker’s Capability: We focus on changing the graph structure only, because our algorithm can be
easily adopted to attack the node features. Adversarial attacks should be unnoticeable to the original
data. We follow [Ziigner et al|(2018)’s attacker capabilities that a budget constraint A is set to limit

the number of changes ||A — Al|; < 2A, assuming the graph to be symmetric. We use ®(G) to
denote the set of all possible unnoticeable graph data.

Objective Function: We formulate the goal of our algorithm as an optimization problem:

min Ly (fg*(é)) st. 0" =argmin Ly (fe((j)) 3)
Ged(g) 0

L 1s the loss function to decrease the generalization performance of the model on the unlabeled
nodes, which is not able to be directly optimized without Cy,,,. There are three options:

e Train: One option is to maximize the loss on labeled nodes Vy,, which means L, = — L. The
reason for this option is, a model with a high training error is very likely to also generalize poorly
on test set;

* Self: Another option is to use estimated labels. Recalling the semi-supervised setting of the task, G
is known at training time. We can obtain estimated labels of C with the surrogate model to compute

the loss on the unlabeled nodes Vy;, which indicates L, = — Lot = —LcE ( fo (Q) Vu, C);

* Both: It is also a good option to combine both Train and Self, which means L, = —Lain — Lsels-

3.2 GRAPH STRUCTURE POISONING VIA META-GRADIENTS

As formulated in Eqn. (E]), the attacker aims to maximize the classification loss obtained after training
the model parameters on the modified (poisoned) graph G, which is a highly challenging bi-level
optimizing problem. Furthermore, graphs are discrete data, that using gradient-based methods such
as gradient descent to make small perturbations on the graph data is not applicable. The possible
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decisions for the attacker include edge insertions and deletions and the attackers can make decisions
on individual edge entry, which means N? possible decision for each perturbation. Hence, given a
budget of A, the number of possible attacks is about O (N 2A) , which indicates searching the best
attack is impossible.

To tackle this problem, Ziigner & Giinnemann|(2019) designed a greedy sequential decision making
algorithm utilizing meta-gradients, which are widely used in meta-learning works (Thrun & Pratt,
1998} [Naik & Mammone, |1992; Bengio, |2000; Bengio et al.l 2013} Schmidhuber} 1992} |Agostinelli
et al.,[2014} |Finn et al.,[2017)). It treats the graph structure matrix as a hyperparameter and compute
the gradient of L, after training the surrogate model with Ly,

vgela = VQEatk (fQ* (G)) s.t. 0" = Oth (['train (f@ (g))) . (4)
opty(+) is a differentiable optimization procedure, like vanilla gradient descent with learning rate «
starting from some initial parameters 6 and 011 = 6; — Vg, Lirain (fo,(G)) for T steps.

If we only perform changes to the graph structure A, the node attributes X can be treated as a
constant. To perform discrete updates, a score matrix S € RV * is defined to assign each possible
action a value indicating its estimated impact on the attacker objective L. Given the meta-gradient
for a node pair {u, v}, we have:

S(u,v) = Vala - (=2 Au,v) +1). (5)
With S, we can pick the most impacting edge to update the graph sequentially. For the K -th update,
the entry with highest score is picked and the graph is modified by:
gi+l = (flip (AK, ), X) st €= arg max SK(u,v). 6)
e=(u,v):(flip(AK ,e),X)e® ()
flip(A X ) denoting function flipping the edge entry (i.e., A (u,v) < 1 — A (u,v)). GX is the
graph after K updates. G° = G. and the final modified graph G = G2.

The computational complexity of this algorithm is O(AN?), which is significantly improved from
naive searching algorithm. However, it costs more computational resources compared with down-
stream GNNs requiring O(M ) complexity, where M is the number of edges that most graphs are
sparse so M << N?2.

3.3 GRAPH STRUCTURE POISONING VIA GRAPH COARSENING

The main drawback of existing adversarial attack methods for graphs is the enormous decision space:
O(N?) edges to be added or deleted, which is still not affordable for attacking large-scale graphs.
To tackle this problem, we simplify the graph to small scales to reduce decision space. To this end,
we contract the nodes into disjoint sets, which is similar to construct a “coarser” graph. We want to
search the most impacting edge entry on the coarsen graph to reduce the decision space.

Oe ©u9
GQ/O - }’D\\ G,Q Clustering Splitting
/ \ & &
( Qq © O(j \ Rebuilding Rebuilding
‘ | 7 \ \

Figure 1: Algorithm Overview: Given the graph, our proposed method first cluster the nodes based
on node embeddings. Then rebuild the coarsened graph with the weighted edges, averaged features
and summed labels. After that the most impacting edge entry in the coarsened graph is selected
calculated by meta-gradients. The selected clusters are split into new clusters, and the new coarsened
graph is rebuilt. The clustering, rebuilding, selecting and splitting procedures are repeated until the
selected edge entry is connecting two single nodes. Finally, the perturbation is added to the graph.

Ilustration for the whole proposed algorithm is shown in Algorithm[T|and for a single perturbation step
is shown in Figure[T] The proposed methods contains four basic procedures: clustering, rebuilding,
selecting and splitting. We will introduce these four procedures in the following paragraphs.
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Algorithm 1 Poisoning Attack on GNNs via Graph Coarsening
Require: Graph G = (A, X), Labeled nodes and corresponding labels V;,, Cy,, . perturbation
budget A, meta gradients iterations 7", number of clusters K = LW |.
Ensure: Modified graph G = (A, X).
1: Train surrogate model with G, Cy,, and get 6. Use 6 to predict labels of unlabeled nodes CVU.
20 A A, G+ (AX).
3: while |[A — A|| < 2A. do

4:  Randomly initialize the surrogate model with 6.

5 fortin0,..., 7 —1do

6: 041 < 0 — aVy, Lirain ( fo. (_C’; )) // Update surrogate model by gradient descent.
7:  end for

8:  Calculate node embeddings E. Initialize coarsened node sets V, i, < {V},0,0

9:  while |7;| > 1or|7;| > 1do

10: V + (V/{v;}) Ukmeans(v;, E, K). /I Splitting and Clustering.
11: V « (V/{v;}) U kmeans(7;, E, K). // Omit if ¢ = j.
12: Rebuild the graph G = (A, X) and labels Cr, Cy.

13: Compute meta-gradients V%ﬂa based on Eqn .

14: Select the most impacting entry (i, j) based on G and V.

15:  end while

16:  Update G « (ﬂip (A, (vi, 17j)> vX)'
17: end while

18: return G

Clustering: We will map the nodes V to a smaller set of nodes Y with a surjective map 7 : V — V),
where |V| << |V|. Previous works on graph coarsening assume the graph is not attributed (i.e.,
without features X) and focus on preserving different properties. They are usually related to the
spectrum of the original graph and coarse graph|Loukas & Vandergheynst (2018); [Loukas| (2019);
Bravo-Hermsdorff & Gunderson| (2019);|Cai et al.|(2021). Since we have the node features X, we
can utilize it to construct the node map. K-Means method is applied to construct the node map 7 with
the output embedding E from the first layer of the surrogate GCN (i.e., E = AXW ;). We define
kmeans(V, E, K) as a function that cluster the nodes in V into a set } containing K clusters (i.e., a
set of nodes) {01, ..., Uk } based on embedding matrix E, where K < |V|. If K >= |V|, kmeans(-)
will return V itself.

Rebuilding: After constructing the node maps, we need to calculate the edge maps and features for
the coarsened graph G = (A, X), and the labels C of each cluster.

The feature vector X (i, :) for cluster v; equals the average features of all the nodes in the cluster:

_ 1 ,
X(i,:) = il > X () ©)
¢ JED;
The adjacency matrix A is weighted and the weight for each entry:
AGg)= Y. A(ij); )
PEV;,qET;

The labels are weighted sum of the one-hot labels of the nodes, but are calculated separately for
labeled nodes and unlabeled nodes, where:

Cr(i,:)= > C(i), and Cy(i,)= > C(j,2). ©)

JjeEv;NVL JEU;NVU

Selecting: With the coarsened graph G = (A, X), we reform Eqn. , by changing L, to soft label
cross-entropy loss. e.g., for the Both setting:

Lot = _ﬁ S log (fo (9)) (i) - Crir:) — |v%\ S log (£ (G)) (ir:) - Culin). (10)
i€V i€V
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Table 1: Misclassification rate (in %) of GCN with 1%, 5%, and 10% perturbed edges.

Attack | Cora | Citeseer | Polblogs

PbRae | 1% 5% 0% | 1% 5% 0% | 1% 5% 10%
Clean ‘ 16.6+03 16.6+0.3 16.6+0.3 ‘ 28.5+0.8 285+09 285+0.8 ‘ 64+05 64+06 64+05
DICE ‘ 16.6 03 18.0+£04 19.5+0.5 ‘ 284+03 289+0.3 29.7+0.3 ‘ 7709 112+1.1 14408

First-order | 16.6 +0.3 17.2+03 17.6+0.5|282+03 283+03 282+03| 7.0+£0.8 7.8+09 7.7+0.6

Nettack - - - 29.0+04 31.9+03 - - - -

A-Meta 174+04 21.8+09 28.1%1.1[{29.1+£0.5 31.9+0.7 343+1.1|13.7+1.6 198+08 22.7+0.7
Meta 170£04 245+10 37.3+£14[292+£05 346+£0.7 38.6+1.0|11.4+04 225+0.8 28.7+3.6
Ours [18.6 0.5 24.6+0.8 36.9+1.1]294+04 349+0.6 39.8+0.9|11.8+08 24.0+1.1 27.3+09

For Train and Self settings, L, only contains the first or the second term in the last equation. With
the new Ly, we follow the process in Eqn. @) to select the most impacting edge entry (;, 7, ).

Different from picking the entry from the original graph which is binary, edges in A are weighted.
We need to judge whether to add or delete edges for the picked entry and determine whether it is able
to add or delete an edge between or inside corresponding clusters.

Similar to Eqn. (@), the choice to add or delete is determined by the maximum value of the score
matrix calculated with meta-gradients Vge‘a . If we want to add (resp., delete) an edge for A(3, j),

the score is V3* (4, j) (resp., =V (i, 5)).

For an edge to be deleted, we only need to check if A(i,j) > 0. When we hope to add an
edge to A(i,7), it is more complicated: if ¢ # j, A(4,j) < |7;]||0;] must be satisfied; If i = j,
A(i,5) < |v5](|v;| — 1)/2 is the condition before adding the edge.

Splitting: After selecting the edge entry, we will first check whether the selected entry is connecting
two single nodes. If it is true, the perturbation will be updated to G and the algorithm will start
searching for another perturbation. If the edge entry is connecting two clusters with more than one
nodes, we will split the selected clusters. Specifically for ©;, we will remove it from ) and merge V
with kmeans(9;, E, K). After that the proposed method will rebuild the coarsened graph and select
another edge entry.

Please note the proposed method will only select edge entries in the new graph related to the clusters
added to the graph by the splitting procedure. e.g., if the selected entry is ¥; and v, the new selected
entry must satisfy v; € kmeans(v;, E, K) and v; € kmeans(v;, E, K).

Complexity Analyses: Let the number of repeated times for clustering, rebuilding, selecting and
splitting be [. The complexity of GCN is O(M dh), where M is the number of edges, d is the number
of features and h is the size of hidden layer.

* Clustering procedure only contains a K-Means function, so the complexity of it is O(N Kd).

* Rebuilding procedure, calculating averaged features requires O(Nd) complexity, while for calcu-
lating the weighted adjacency we can add the weights edge by edge requiring O(M) complexity.

* Selecting procedure is done on the coarsened graph which contains no more than 2K clusters,
hence, it requires O(K21%) complexity.

* Splitting is a set operation requiring O (V) complexity.

Overall, after omitting h, d and [ which are relatively small to N and M, complexity of the whole
algorithm is O(NK + M). In practice we found K-Means always tends to cluster the nodes

averagely without any regularization, so that we can roughly take K ~ V/N. Hence, taking [ as
the hyperparameter of the proposed method, we set K = NN |. The complexity of the proposed

method is O (N\L/N+M).
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Table 2: Misclassification rate (in %) / running time (in minutes) of the proposed method on large
scale datasets.

Ptb.Rate (%) | Pubmed | Amazon | CS | Physics | Arxiv
0 | 138403/- | 120£02/- | 73%03/- | 44201/- | 346xl.1/-
1 14.4+0.3/43.4 15.3+20.3/143.1 9.4+0.4/68.3 | 5.0+0.2/182.3 | 49.2+0.9/473.2
5 16.7+£0.2 /1989 | 17.4+0.3/673.2 | 12.1+0.2/277.5| 5.4+0.2/820.1 | 52.8+1.0/1823.8
10 19.2+0.4/402.0|21.8+0.4/1347.1 | 15.1+0.3/562.9 | 6.9+0.3/1621.5 | 57.9+1.2/3712.9

4 EXPERIMENTS

4.1 SETTINGS

Datasets: we evaluate our method on different scale datasets from the well-known small-scale
datasets including Cora (McCallum et alJ, |2000), Citeseer (Giles et al., [1998} Sen et al., [2008]),
Polblogs (Adamic & Glance} |2005) datasets to large-scale datasets including Pubmed (Sen et al.,
2008), Amazon (Shchur et al., 2018)), CS (Shchur et al., |[2018)), Physics (Shchur et al., 2018)), and
Arxiv (Wang et al.,[2020) datasets. Each dataset is split into labeled (10%) and unlabeled (90%) nodes.
The labels of the unlabeled nodes are only used for the evaluation of generalization performance
among different models. We report the statistics summary of those datasets in Appendix[A.2]

Implementation details: Following [Ziigner & Giinnemann| (2019)), we train node classification
models on the modified (poisoned) data to evaluate the effectiveness of adversarial attacks. In
our experiments, we adopt Graph Convolutional Networks (GCN) (Kipf & Welling| [2017) as the
node classification model, which utilizes the message passing framework (a.k.a. graph convolution)
and is trained in a semi-supervised way. We repeat all of our attacks on five different splits of
labeled/unlabeled nodes and train all target classifiers ten times per attack (using the split that was
used to create the attack). Uncertainty indicates 95 % confidence intervals of the mean obtained via
bootstrapping is reported with every classification accuracy result. The detailed choice of «, [, T" and
the settings of L, are shown in Appendix [A.3]

Baselines: We report the results of various state-of-the-art poisoning attack methods on graphs for
comparison:

* DICE (“delete internally, connect externally””) O(M): DICE is a baseline that has all true class
labels (train and test) available and thus more knowledge than all competing methods. For each
perturbation, DICE randomly chooses whether to insert or remove an edge. Edges are only removed
between nodes from the same class, and only inserted between nodes from different classes.

* First-order O(N 2): this baseline is proposed in [Finn et al.[(2017), which ignores all second-order
derivatives to attack the graph.

* Nettack O(N 3): Nettack (Ziigner et al.,[2018) is a targeted attack method. In our experiments, one
target node is randomly selected from the unlabeled nodes for each perturbation and the graph is
attacked considering all nodes in the network.

» Meta O(N?): In|Ziigner & Giinnemann| (2019) proposed a meta-gradient method based on greedy
meta-gradients selection, which is described in Section[3.2]

» A-Meta O(N?): A-Meta is a variation approach to Meta proposed inZiigner & Giinnemann|(2019),
which approximately calculates the meta-gradients similar to the method proposed in|Nichol et al.
(2018).

4.2 COMPARISON TO OTHER ATTACK METHODS

Evaluation on Small-Scale Datasets: Let’s look at how the proposed method performs on small-
scale datasets before evaluating it on large-scale datasets. In Table |1} we exhibit the misclassification
rates of all state-of-the-art attack methods and our proposed method on three datasets Cora, Citeseer
and Polblogs. The largest dataset among the selected datasets is Cora, which has 2485 nodes in total.
Perturbation rate varies in [1%, 5%, 10%).
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Table 3: Running details of the proposed method with [ = 3.
Dataset | Ptb.Rate (%) | Add Delete Loop [V| Time (min.) | Mis.Rate(%)

0 0 0 - - - 28.5+0.8
Citescer 1 323 37 319 317 0.6 294+04
5 171.8 112 322 318 2.7 349+0.6
10 3344 31.6 322 31.8 5.5 39.8+0.9
0 0 0 - - - 13.8+0.3
Pubmed 1 3515 915 336 750 9.1 144+0.3
5 14639 752.1 3.39 75.7 48.8 16.7+0.2
10 2667.2 1764.8 3.36 754 94.5 192+04

Table 4: Ablative studies for [. Perturbation rate is 5%.
Dataset | [ | Add Delete Loop [V| Time (min.) | Mis.Rate(%)

1] 180.8 22 1.00 2110 10.9 323+0.6
Citeseer | 2 | 141.2 41.8 2.04 69.0 3.7 344 +£0.7
31 171.8 11.2 322 31.8 2.7 349 +0.6
4| 1727 103 436 21.0 2.8 335+0.8
1 - - - - - -
Pubmed | 2 | 1636.8 579.2 225 241.6 168.9 16.0 0.3
3114639 752.1 339 757 48.8 16.7+£0.2
4114084 807.6 449 41.6 47.3 16.6 £ 0.2

Nettack failed to output valid results in three days for some cases due to its O(/N?) complexity. DICE,
First-Order, and Nettack, among all the state-of-the-art approaches, are too weak to deceive GNNs
into misclassifying more nodes, as seen in the table. Meta and A-Meta are dominating among these
methods. However, our proposed method offers competitive results. With most of the cases, our
proposed method performs slightly better while with some of the cases it performs slightly weaker
compared to Meta and A-Meta. These findings show that the proposed strategy is capable of attacking
GNNs on small-scale graphs.

Evaluation on Large-Scale Datasets: Table [2| shows the performance and running time of our
proposed method on five large-scale datasets. The size of these datasets varies from 13752 to
169343 (details can be found in Appendix [A.2)). Perturbation rate varies in [1%, 5%, 10%).

The proposed approach can effectively trick GNNs to misclassify nodes on large graphs, as shown
in table. Please note that state-of-the-art methods First-Order, Nettack, Meta and A-Meta all fail to
attack these large-scale graphs due to out-of-memory or out-of-time in three days. Because these
methods require complexity O(NN?) or higher. DICE can finish the attack on time with little consumed
memory, but it needs more knowledge (the labels for unseen nodes) for attacking and the performance
is relatively poorer compared to our proposed method (please refer to Table[8|in Appendix).

4.3 ABLATIVE STUDIES

Statistics of the Proposed method: In Table 3] we exhibit the critical statistics for the proposed
method. We select Citeseer and Pubmed dataset and vary the perturbation rate in [1%, 5%, 10%],
then show the average number of edges added (“add”), deleted (“delete”), the average executed
times (“Loop”) of the while loops (in Algorithm [I|from line 9 to 15) per perturbation, the average
size of clusters in the coarsened graph ) in Algorithm (“|V|”), the running time per attack (“Time”)
and the corresponding misclassification rates. [ is set to be 3 for Algorithm [I]

The proposed method adds more edges than it removes (Meta (Ziigner & Giinnemann, |2019) encoun-
ters similar situations). K-Means always clusters the nodes averagely, as we said at the end of Section
This statement is supported by the fact that the number of loops is extremely close to [/, in the
range of 1.2[. In addition, the coarsened graph’s size is consistent to varied perturbation rates.
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Table 5: Ablative studies for different settings of our proposed method.
Dataset | Ptb.Rate (%) | Clean | E=X Logit | Train Self Both

1 28.5+0.8 28704 28.6+x0.5(289+03 292+03 29404
Citeseer 5 285+0.8(329+£0.5 342+0.7|348+£0.6 33.9+09 34.9+0.6
10 285+0.8|358+1.2 373+£09|395+0.6 37.8+13 39.8+09
1 13.8+03|14.0+£04 143+03|141+£04 144+03 143+03
Pubmed 5 13.8+03|16.0+02 166+02|164+03 16.7+0.2 165+0.3
10 13.8+03|190+04 192+05|18.8+04 192+x04 189=+0.5

Ablative Studies for /: [ in Algorithm]|is a critical hyperparameter that it determines the complexity
of the proposed method. In Table d] we show the statistics for the proposed method with different
choices of . We select Citeseer and Pubmed dataset and the perturbation rate is 5%. [ varies form 1
to 4. When [ = 1, the proposed method is the same as Meta.

From Table 4| we can infer that when [ becomes larger, the size of coarsened graph reduces, the
number of loops increases. The running time also reduces when [ becomes larger, but when [ > 3 the
reduction is not significant. Hence, we set [ = 3 for most of the situations, except for some small
graphs or larger graphs like Arxiv (please refer to Appendix [A.3|for more details).

When [ = 1, the proposed method fails to finish the attack due to out-of-memory. Although when
[ > 3 the benefit of larger / on time saving is not significant, it helps to reduce memory resources
consumed by the size of coarsened graphs, making the proposed method possible to attack huge
graphs avoiding out-of-memory issues.

Choices of the Embeddings for K-Means: As we mentioned in Section [3.3] we use the output from
the first layer of the surrogate GCN as the node embeddings for clustering nodes with K-Means
approach. The reason for this choice is, the surrogate model only contains two layers, size of the
output of the last layer (i.e., logits of the model) may be small due to the number of classes for each
graph. While if we use the input node feature X as node embeddings to build the coarsened graph,
the adjacency information A is ignored.

In Table[5] we show the results of using X (“E = X”) or the logits of the surrogate model (“Logit”)
for clustering procedure. We select Citeseer and Pubmed dataset and vary the perturbation rate in
[1%, 5%, 10%)]. Misclassification rates are reported. Compared with the best results among Train,
Self and Both which use the output of the first layer to cluster the nodes, performance for these
settings is worse.

Choices of L,: The choice of L, for the proposed method is also important. If we select Train
setting, the attacker will update the graph to increase the loss of the surrogate model on the training
set, hoping the surrogate model generalizes poorly on the unlabeled nodes. While if we select the
Self setting, the attacker will directly concentrate on changing the predictions of the surrogate model
on the unlabeled nodes.

In Table[5] we show the results of different choices of £,4. We select Citeseer and Pubmed dataset
and vary the perturbation rate in [1%, 5%, 10%]. We find that Both is the best choice for Citeseer
while for Pubmed the best one is Self. Although there are differences in the results for different
choices, the gaps are not big.

5 CONCLUSION

In this paper, we propose a novel attack method that attacks the graph in a divide-and-conquer manner.
The proposed method clusters nodes with node embeddings, constructs coarsened graphs using the
node clusters, and searches attacks based on the coarsened graphs. The proposed method selects
perturbations from smaller coarsened graphs to larger detailed graphs with most of the irrelative nodes
clustered, significantly reducing the complexity of attacking graphs. Extensive empirical results show
that the proposed method can greatly save the computational resources required to attack GNNs on
large graphs while maintaining comparable performance on small graphs.
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6 ETHICS STATEMENT

GNNSs can be utilized to a wide range of applications, such as biology, chemistry, social networks,
recommendation systems, and financial systems. Adversarial attacks on GNNs could result in
real-world consequences; for example, unnoticed lending relationships can be forged to deceive
the financial system, posing a serious systemic risk. One potential negative impact is to apply the
proposed method to real-world applications. But on the other hand, positive impacts of the proposed
method is we can train new GNNs which immune the proposed attack method to improve robustness.

All the datasets used in this paper are public for academic use.

7 REPRODUCIBILITY STATEMENT

We provide the source code of the proposed method in the supplementary materials. Detailed settings
and hyperparameters of the proposed method are listed in Appendix
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A APPENDIX

A.1 IMPLEMENTATION ENVIRONMENTS
We use PyTorch (Paszke et al.,[2019) to implement the proposed method with PyTorch-Geometric (Fey,

& Lenssen, |2019) and DeepRobust (L1 et al.,|2020) packages. The experiments are run on NVidia
TITAN RTX GPU, Intel(R) Xeon(R) Silver 4116 CPU 2.10GHz, 192G RAM.

Table 6: Dataset Statistics.

Datasets Nodes Edges Classes Features Feature Type
Cora 2485 5069 7 1433 Binary
Citeseer 2110 3668 6 3703 Binary
Polblogs 1222 16714 2 - -
Amazon 13752 491722 10 767 Binary
CS 18333 163788 15 6805 Binary
Pubmed 19717 44338 3 500 Continuous
Physics 34493 495924 5 8415 Binary
Arxiv 169343 1166243 10 767 Continuous

A.2 DATASET STATISTICS

In this paper, we evaluate the performance of our method on eight datasets, which are summarized in
Table

¢ Cora (McCallum et al., |2000) and Citeseer (Giles et al., [1998; [Sen et al., 2008) are two
real-world bibliographic datasets. The Cora (resp., CiteSeer) dataset contains a number of
machine-learning papers divided into one of 7 (resp., 6) classes. The final corpus of Cora
(resp., CiteSeer) dataset has 2708 (resp., 3312) documents, 1433 (resp., 3703) distinct words
in the vocabulary, and 5429 (resp., 4732) links. We choose largest connected component of
Cora (resp., CiteSeer) dataset in our experiments.

* Polblogs (Adamic & Glance, 2005) dataset is collected from the top 20 conservative leaning
blogs and the top 20 liberal leaning blogs and contains 12470 posts from the left leaning set
of blogs and 10414 posts from the right leaning set.

* Pubmed (Sen et al.,|2008)) dataset consists of 19717 scientific publications from PubMed
database pertaining to diabetes classified into one of three classes. The citation network
consists of 44338 links. Each publication in the dataset is described by a TF/IDF weighted
word vector from a dictionary which consists of 500 unique words.

e Amazon (Shchur et al.,[2018) dataset is based on the Amazon co-purchase graph, where
nodes represent goods, edges indicate that two goods are frequently bought together, node
features are bag-of-words encoded product reviews, and class labels are given by the product
category. We select the “Computers” collection of this dataset.

* CS and Physics datasets (Shchur et al.| [2018)) are based on the Microsoft Academic Graph
from the KDD Cup 2016 challenge, nodes are authors, that are connected by an edge if they
co-authored a paper; node features represent paper keywords for each author’s papers, and
class labels indicate most active fields of study for each author.

* Arxiv (Wang et al.| [2020) dataset is a directed graph, representing the citation network
between all Computer Science (CS) arXiv papers. Each node is an arXiv paper and each
directed edge indicates that one paper cites another one. Each paper comes with a 128-
dimensional feature vector obtained by averaging the embeddings of words in its title and
abstract.

13
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Table 7: Hyperparameters for each dataset.

Datasets l o T Lok

Citeseer 3 0.1 10 Both
Cora 2 0.1 20 Train
Polblogs 2 0.1 100 Self
Amazon 3 0.1 5 Both
CS 3 0.1 5 Both
Pubmed 3 0.1 10 Self
Physics 3 0.3 1 Both
Arxiv 4 0.3 1 Both

Table 8: Misclassification rate (in %) for DICE on large scale datasets.
Ptb.Rate (%) | Pubmed | Amazon | CS | Physics | Arxiv

0 | 13.8£0.3]12.0£0.2 | 7.3+0.3 | 4.420.1 | 34.6x1.1
1 14.040.2 | 15.2+0.4 | 7.420.4 | 4.5£0.4 | 38.120.8
5 15.70.2 | 17.2+0.2 | 8.0£0.3 | 4.8+0.2 | 41.7%1.1
10 17.3+0.4 | 20.7+0.3 | 8.5£0.5 | 5.8+0.2 | 43.2£1.2

A.3 HYPERPARAMETER SETTINGS FOR DIFFERENT DATASETS

In this section, we exhibit the hyperparameters [, «, T and the choice of Ly in Algorithm[I|for each
dataset. The details can be found in Table

A.4 RESULTS OF DICE ON LARGE-SCALE DATASETS

In Table 2] we show the performance of our proposed method on large-scale datasets. In Table [§] we
show the corresponding results of the baseline method DICE. DICE can finish the attack on time
consuming little memory, but it needs more knowledge (the labels for unseen nodes) for attacking
and the performance is relatively poorer compared to our proposed method.
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