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Abstract
Transformer models have been gaining substantial
interest in the field of computer vision tasks nowa-
days. Although a vision transformer contains two
important components which are self-attention
module and feedforward network (FFN) module,
the majority of research tends to concentrate on
modifying the former while leaving the latter in its
original form. In this paper, we focus on improv-
ing the FFN module within the vision transformer.
Through theoretical analysis, we demonstrate that
the effect of the FFN module primarily lies in pro-
viding non-linearity, whose degree corresponds to
the hidden dimensions. Thus, the computational
cost of the FFN module can be reduced by enhanc-
ing the degree of non-linearity in the nonlinear
function. Leveraging this insight, we propose an
improved FFN (IFFN) module for vision trans-
formers which involves the usage of the arbitrary
GeLU (AGeLU) function and integrating multi-
ple instances of it to augment non-linearity so that
the number of hidden dimensions can be effec-
tively reduced. Besides, a spatial enhancement
part is involved to further enrich the non-linearity
in the proposed IFFN module. Experimental re-
sults show that we can apply our method to a
wide range of state-of-the-art vision transformer
models irrespective of how they modify their self-
attention part and the overall architecture, and
reduce FLOPs and parameters without compro-
mising classification accuracy on the ImageNet
dataset.

1. Introduction
Transformer models with self-attention operation have been
applied to the field of computer vision (Han et al., 2022) and
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achieve impressive results on many tasks such as image clas-
sification (Dosovitskiy et al., 2021; Touvron et al., 2021; Wu
et al., 2023; Guo et al., 2024), object detection (Fang et al.,
2021; Zheng et al., 2023), semantic segmentation (Strudel
et al., 2021) and video analysis (Neimark et al., 2021) nowa-
days. Compared to convolutional neural networks (CNNs),
transformer models have less inductive bias due to the low-
pass filter property of the self-attention (Park & Kim, 2022)
and have the capability to utilize more training data to en-
hance generalization ability (Chen et al., 2024). However,
when given a limited amount of training data, the origi-
nal Vision Transformer (ViT) model (Dosovitskiy et al.,
2021) cannot perform on par with state-of-the-art CNN
models (Hao et al., 2023), making it difficult to apply ViT
to complicated vision tasks.

The modification of the vanilla ViT model primarily lies in
two parts. The first one is to change the basic architecture of
ViT. Hierarchical ViTs (Heo et al., 2021; Liu et al., 2021; Xu
et al., 2023) leverage the advantage of hierarchical architec-
ture of CNNs and reduce the spatial size as well as expand
the channel dimensions multiple times with the help of pool-
ing layers. A convolution stem with multiple convolutional
layers is introduced in (He et al., 2019) to replace the non-
overlapping patch embedding operation. The second one is
to modify the self-attention module in ViT. Local-enhanced
vision transformers (Huang et al., 2021; Wu et al., 2022)
constrain the range of attention and generate patches within
a local region, and facilitate interactions between patches
to extract and interpret global information. Efficient self-
attention operations reduce computational complexity of
previous operation from O(n2) to O(n) (Wang et al., 2020)
or O(nlog(n)) (Kitaev et al., 2020).

Although a substantial number of works concentrate on
studying the variations of vision transformers, very few
of them pay attention to modifying the feedforward net-
work (FFN) module. CMT (Guo et al., 2022) uses an in-
verted residual feed-forward network to replace the original
FFN module, CoAtNet (Dai et al., 2021) uses MBConv
blocks (Sandler et al., 2018) to replace some of the ViT
blocks in its network architecture. However, there are multi-
ple modifications in their architectures and the effectiveness
of modifying FFN module remains unclear. Furthermore,
there is a lack of theoretical analysis explaining why these
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Figure 1. Top-1 classification accuracy versus FLOPs for different models on ImageNet-1k dataset. Our IFFN module can reduce FLOPs
without sacrificing classification performance on different baseline vision transformer models.

changes are effective.

In this paper, we first give a thorough analysis of the FFN
module in the vision transformer and show that the effect
of the FFN module primarily lies in providing non-linearity
whose degree corresponds to the hidden dimensions. Then,
if we can enhance the degree of non-linearity in the non-
linear function, we could potentially decrease the hidden
dimensions of the FFN module, thereby reducing the com-
putational cost. Based on this thought, we introduce the
arbitrary GeLU (AGeLU) function which is easy to combine
to generate stronger non-linearity. Besides, a spatial-wise
enhancement part is added to further enrich the non-linearity
of the module. By combining them together, we introduce
our improved FFN (IFFN) module for vision transformer.
We conduct several experiments on different popular vision
transformer models with various designs of the whole ar-
chitecture and self-attention module including DeiT, Swin,
PoolFormer, LVT, etc., by replacing their original FFN mod-
ule into the proposed IFFN module. Results on ImageNet-1k
dataset show that we can effectively reduce FLOPs and pa-
rameters without sacrificing the classification accuracy as
shown in Fig. 1 and the experiment section.

2. Related Works
Vision transformer (ViT) was first introduced by (Doso-
vitskiy et al., 2021) to extend the transformer architecture

to vision tasks. Since then, researches have focused on
improving the performance of vanilla ViT. For example,
DeiT (Touvron et al., 2021) leveraged the knowledge dis-
tillation method and introduced a series of new training
techniques to enhance the classification performance on
ImageNet-1k. Swin (Liu et al., 2021) utilized a hierarchical
architecture and adopted a local self-attention mechanism
to reduce computational complexity while using shift opera-
tion to add interaction across different sub-windows. Pool-
Former (Yu et al., 2022) argued that the whole architecture
of ViT was more important than the self-attention operation
and replaced the multi-head self-attention (MHSA) modules
with pooling operations.

Methods mentioned above focus on modifying the training
strategy, the whole architecture of ViT and the MHSA mod-
ule (Tang et al., 2024). Very little research studied the FFN
module in ViT. CMT (Guo et al., 2022) and PVTv2 (Wang
et al., 2022) introduced ViT models with several modifi-
cations, and one of them was to use the inverted residual
feed-forward network to replace the original FFN module.
CoAtNet (Dai et al., 2021) found that vertically stacking
convolution layers and attention layers was surprisingly ef-
fective and replaced some of the ViT blocks with MBConv
blocks through neural architecture search method. These
studies generated new ViT models with various modifica-
tions to the fundamental architecture. However, the impact
of altering the FFN module alone remains uncertain.
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𝑥𝑐 𝑦𝑐

FFN Module: 𝒀 = 𝜙 𝑿𝑾𝑎 𝑾𝑏, hidden dim = 4 

Figure 2. An intuitive illustration of the corollary that the FFN module is a non-linearity generator. We use ϕ(·) = ReLU(·) in this figure
for simplicity. Other formats of nonlinear function can also be used here to derive the same conclusion.

3. FFN Module is a Non-linearity Generator
Considering an input matrix X ∈ RN×C in which N is the
number of patches and C is the dimension of each patch,
the output of the FFN module can be calculated as:

Y = FFN(X) = ϕ(XW a)W b, (1)

where W a = {wa
ij} ∈ RC×C′

and W b = {wb
ij} ∈

RC′×C are weight matrices of two FC layers, C ′ controls
the number of hidden dimensions, and ϕ(·) represents the
non-linear function. C ′ = 4C and ϕ(·) = GeLU(·) are
used in the original ViT model.

Without loss of generality, we assume N = 1 and the input
matrix X degrades into an input vector x ∈ RC . Then, we
can represents Eq. 1 in its element-wise form:

xW a =

(
C∑

i=1

wa
ic′xi

)C′

c′=1

,

ϕ(xW a) =

(
ϕ(

C∑
i=1

wa
ic′xi)

)C′

c′=1

,

y = ϕ(xW a)W b =

 C′∑
j=1

wb
jcϕ(

C∑
i=1

wa
ijxi)

C

c=1

=

 C′∑
j=1

wb
jcϕ(mcjxc + ncj)

C

c=1

, (2)

in which mcj = wa
cj and ncj = f(x1, · · ·, xc−1, xc+1, · ·

·, xC) =
∑C

i=1,i̸=c w
a
ijxi. Given Eq. 2, we can derive the

following corollary:

Corollary 3.1. Given an input vector x ∈ RC , the output
of the FFN module in Eq. 1 is denoted as y ∈ RC . Then:

(1) Each element yc in y is the linear combination of C ′

different nonlinear functions to the input element xc.

(2) Distinct scales and biases are applied to different input
elements xc before passing through the nonlinear function
ϕ(·).

(3) The scale is a learnable weight independent to the input

element xc, while the bias is dependent to all other input
elements in x.

The above conclusion brings to light that the FFN module
in the vision transformer is no more than a non-linearity
generator with a nonlinear degree of C ′, as intuitively shown
in Fig. 2.

4. Method
4.1. A More Powerful Nonlinear Function

Based on the corollary in the previous section, a straightfor-
ward way is to use the combination of C ′ different nonlinear
functions to replace the original FFN module. However, the
bias which depends on the input elements makes it challeng-
ing to attain a comparable degree of non-linearity by merely
combining multiple nonlinear functions, and the classifica-
tion performance does not match that of using the original
FFN module (as shown in Tab. 5).

In the following paragraph, we first introduce the arbitrary
nonlinear function which is flexible and easy to be concate-
nated together to form a more powerful nonlinear function.
Subsequently, we demonstrate that the hidden dimension
of the FFN module can be effectively reduced with this
enhanced nonlinear function.

Arbitrary nonlinear function. Arbitrary nonlinear func-
tion is defined as

ϕ′(x) = βϕ(αx+ γ) + θ, (3)

in which x is the input of the arbitrary nonlinear function,
α and β are learnable coefficients before and after applying
the basic nonlinear function ϕ(·), and γ and θ are learnable
biases. The inspiration for introducing arbitrary nonlinear
function arises from Eq. 2 where distinct weights and biases
are employed to each element xc before and after applying
the basic nonlinear function. Since GeLU is used as a basic
nonlinear function in ViT, we introduce the arbitrary GeLU
(AGeLU) to our model:

AGeLU(x) = βGeLU(αx+ γ) + θ. (4)
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Figure 3. The comparison among the shapes of GeLU, AGeLU and RPReLU.

AGeLU is more flexible than other modified nonlinear func-
tions such as the RPReLU function proposed in ReAct-
Net (Liu et al., 2020). The latter can only adjust the position
of the turning point compared to PReLU, while AGeLU can
also provide a learnable slope of the function and switch
the whole shape by using different positive and negative
coefficients α and β. Fig. 3 gives a comparison among the
shapes of GeLU, AGeLU, and RPReLU. Note that other
basic activation functions such as ReLU, PReLU, etc. can
be extended using the same way as AGeLU to form AReLU
and APReLU.

Reducing the hidden dimension of FFN module with
powerful nonlinear function. Rather than using the origi-
nal FFN module introduced in Eq. 1, we propose our AFFN
module that integrates two AGeLU functions and forms a
powerful nonlinear function to replace the original GeLU
and halve the hidden dimension of the module. Specifically,
we have:

Y ′ = AFFN(X)

= concat(AGeLU(XW d),AGeLU′(XW d))W e, (5)

where W d = {wd
ij} ∈ RC×C′

2 and W e = {we
ij} ∈

RC′×C are weight matrices of two FC layers, and
AGeLU(·) and AGeLU′(·) are two nonlinear functions pro-
posed in Eq. 4 with different parameters. With this simple
modification, the first FC layer has half the output channels
compared to the original FFN module, and can effectively
reduce the FLOPs and parameters in the vision transformer
model. In the following section, we show that the proposed
AFFN module can also be treated as the linear combination
of C ′ different nonlinear functions.

We can degrade the input matrix X into an input vector
x ∈ RC , and represent Eq. 5 in its element-wise form:

t0 = xW d =

(
C∑

i=1

wd
ic′xi

)C′
2

c′=1

,

t1 = AGeLU(t0)

=

(
βc′GeLU(αc′

C∑
i=1

wd
ic′xi + γc′) + θc′

)C′
2

c′=1

,

t′1 = AGeLU′(t0)

=

(
β′
c′GeLU(α′

c′

C∑
i=1

wd
ic′xi + γ′

c′) + θ′c′

)C′
2

c′=1

,

t2 = concat(t1, t
′
1)

=

(
βc′GeLU(αc′

C∑
i=1

wd
i,f(c′)xi + γc′) + θc′

)C′

c′=1

,

y′ = t2W
e

=

 C′∑
j=1

we
jc · [βjGeLU(αj

C∑
i=1

wd
i,f(j)xi + γj) + θj ]

C

c=1

,

=

 C′∑
j=1

w
′e
jcGeLU(m′

cjxc + n′
cj) + θj

C

c=1

, (6)

where in the fourth line, we define α′
1, ···, α′

C′
2

≜ αC′
2 +1, ··

·, αC′ (the same to β′, γ′ and θ′), f(x) = x− C′

2 · 1x>C′
2

in which 1 is the indicator function, w
′e
jc = we

jc · βj , m′
cj =

wd
c,f(j) and n′

cj = func(x1, · · ·, xc−1, xc+1, · · ·, xC) =∑C
i=1,i̸=c w

d
i,f(j)xi + γj .

Note that compared to the original FFN module (Eq. 2), the
form of the proposed AFFN module (Eq. 6) is almost the
same and can also be treated as a generator that generates the
same degree of non-linearity. According to Collary 3.1, each
element y′c in y′ can also be treated as a linear combination
of C ′ different nonlinear functions to the input element
xc, each with distinct scales and biases. Each scale is a
learnable weight independent to the input while each bias is
dependent on other input elements.
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4.2. Theoretical Analysis

In this section, we analyze the Lipschitz constant of the
proposed AFFN module. Note that the Lipschitz constant
serves as a metric for assessing the network’s stability by
bounding the rate of output change in response to input
perturbations, while also highlighting the network’s sus-
ceptibility to adversarial attacks. Thus, it is beneficial to
study the Lipschitz constant that contributes to improving
the reliability of our module.

Firstly, we give the definition of a Lipschitz constant:
Definition 4.1. A function f : Rn → Rm is Lipschitz
continuous if there exists a non-negative constant L such
that

||f(x)− f(y)||2 ≤ L||x− y||2 for all x, y ∈ Rn, (7)

among which the smallest L is called the Lipschitz constant
of function f .

In the following paragraph, we present a lemma to describe
the conceptualization of nonlinear activation functions, and
then use a theorem to derive the bound on the Lipschitz
constant of our proposed AFFN module.
Lemma 4.2. (Fazlyab et al., 2019) Suppose φ : R → R is
slope-restricted on [p, q]. Define the set

Tn = {T ∈ Sn|T =

n∑
i=1

λiieie
⊤
i , λii ≥ 0}. (8)

Then for any T ∈ Tn the vector-valued function ϕ(x) =
[φ(x1), · · ·, φ(xn)]

⊤ : Rn → Rn satisfies[
x− y

ϕ(x)− ϕ(y)

]⊤ [
−2pqT (p+ q)T
(p+ q)T −2T

] [
x− y

ϕ(x)− ϕ(y)

]
≥ 0

for all x, y ∈ Rn.

It is easy to prove that our proposed AGeLU activation
function satisfies the slope-restricted condition when the
parameters α and β in Eq. 4 are finite. The matrix T is used
for deriving the Lipschitz bound of the AFFN module in the
following theorem.
Theorem 4.3. Given the AFFN module described by
f(x) = W 1concat(ϕ1(W

0x + b0), ϕ2(W
0x + b0)) + b1.

Suppose ϕi(x) : Rn → Rn = [φi(x1), · · ·, φi(xn)], where
φi is slope-restricted on [pi, qi], i ∈ {1, 2}. Define Tn as in
Eq. 8. Suppose there exists ρ1, ρ2 > 0 such that the matrix
inequalities

M(ρi, T ) :=

[
−2piqiW

0⊤TW 0 − ρiIn0 (pi + qi)W
0⊤T

(pi + qi)TW
0 −2T +W 1i⊤W 1i

]
⪯ 0, i ∈ {1, 2}, (9)

holds for some T ∈ Tn, where W 1 = [W 11 W 12]. Then
||f(x)− f(y)||2 ≤ (

√
ρ1 +

√
ρ2)||x− y||2 for all x, y ∈

Rn0 .

GeLU

FC Layer

Inputs

Outputs

(a) Original FFN Module (b) IFFN Module (ours)

ℎ × 𝑤 × 𝑐

ℎ × 𝑤 × 4𝑐
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AGeLU1
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ℎ × 𝑤 × 4𝑐

ℎ × 𝑤 × 𝑐

AGeLU2

ℎ × 𝑤 × 2𝑐

FC Layer

FC Layer

Concat

3 × 3 DW Conv

BN GELU

ℎ × 𝑤 × 4𝑐

Spatial-wise
Enhancement

Channel-wise
Enhancement

Figure 4. The architecture of (a) the original FFN module and (b)
the proposed IFFN module. The channel-wise enhancement part
includes the AGeLU function and concatenation operation. The
spatial-wise enhancement part includes a depthwise block.

Theorem 4.3 gives an upper bound of L(f) =
√
ρ1 +

√
ρ2

on the Lipschitz constant of the proposed AFFN module
f(x) = W 1concat(ϕ1(W

0x + b0), ϕ2(W
0x + b0)) + b1.

The above equation can be treated as a semi-definite pro-
gram (SDP) which can be solved numerically to derive its
global minimum. The proof of Theorem 4.3 is in the Ap-
pendix A.

4.3. Enhancing Non-linearity with Spatial Information

Although the AFFN module generates a same degree of
non-linearity compared to the original FFN module, we
notice that the degree of freedom of {wd

i,f(j)}
C′

j=1 in Eq. 6

are halved compared to the original {wa
ij}C

′

j=1 in Eq. 2. It
is similar to the model quantization methods that halve the
number of bits used for weights and activation and may
degrade the performance.

In the previous section, we extend the non-linearity of the
FFN module through the channel dimension. Therefore, in
this section we further enhance non-linearity with spatial
information. Many previous studies use convolution opera-
tion in vision transformers. For example, CMT (Guo et al.,
2022) uses inverted residual FFN in the network, and CoAt-
Net (Dai et al., 2021) replaces some of the attention blocks
with inverted bottlenecks. However, they do not mention
the relationship between these blocks and the extension of
non-linearity. VanillaNet (Chen et al., 2023) proposes series
informed activation function to enrich the approximation
ability which is formulated as:

ϕs(xh,w,c) =
∑

i,j∈{−n,n}

ai,j,cϕ(xi+h,j+w,c + bc), (10)
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Table 1. Image classification results on ImageNet-1k datasets. Several widely used state-of-the-art vision transformer models such as DeiT,
Swin, PoolFormer and LVT are used as the baseline models, and the original FFN modules in them are replaced with the proposed IFFN
module. The results are also intuitively shown in Fig. 1. ‘*’ indicates that we use kernel size as 5 in the spatial-wise enhancement part.

Methods Architecture Parameters (M) FLOPs (G) Top-1 Accuracy (%)

DeiT

DeiT-Ti 5.72 1.26 72.2
+ IFFN 5.00 (-12.6%) 1.10 (-12.7%) 72.6
DeiT-S 22.05 4.60 79.9
+ IFFN 18.84 (-14.6%) 3.93 (-14.6%) 80.0
DeiT-B 86.57 17.57 81.8
+ IFFN∗ 73.66 (-14.9%) 14.92 (-15.1%) 81.8

Swin

Swin-Ti 28.29 4.50 81.2
+ IFFN 24.29 (-14.1%) 3.88 (-13.8%) 81.5
Swin-S 49.61 8.75 83.2
+ IFFN 42.40 (-14.5%) 7.49 (-14.4%) 83.2
Swin-B 87.77 15.44 83.5
+ IFFN∗ 75.45 (-14.0%) 13.34 (-13.6%) 83.4

PoolFormer

PoolFormer-S12 11.92 1.82 77.2
+ IFFN 9.80 (-17.8%) 1.48 (-18.7%) 77.2

PoolFormer-S24 21.39 3.40 80.3
+ IFFN 17.15 (-19.8%) 2.72 (-20.0%) 80.7

PoolFormer-S36 30.86 4.99 81.4
+ IFFN 24.50 (-20.6%) 3.97 (-20.4%) 81.5

PoolFormer-M36 56.17 8.78 82.1
+ IFFN 44.19 (-21.3%) 6.93 (-21.1%) 82.1

PoolFormer-M48 73.47 11.56 82.5
+ IFFN∗ 58.62 (-20.2%) 9.46 (-18.2%) 82.3

Portable ViT

LVT-R1 5.52 0.76 73.9
+ IFFN∗ 4.98 (-9.8%) 0.68 (-10.5%) 74.0
LVT-R2 5.52 0.84 74.8
+ IFFN∗ 4.98 (-9.8%) 0.76 (-9.5%) 74.6
LVT-R3 5.52 0.92 74.6
+ IFFN∗ 4.98 (-9.8%) 0.84 (-8.7%) 74.8
LVT-R4 5.52 1.00 74.9
+ IFFN∗ 4.98 (-9.8%) 0.92 (-8.0%) 74.9

where ϕ(·) is the activation function. We found that this is
equal to going through the non-linear function followed by a
n×n depthwise convolution (DW Conv), which means that
DW Conv after the non-linear function utilizes the spatial
information and enhances non-linearity by learning global
information from its neighbors. Thus, we modify our AFFN
module by introducing a DW Block (DW Conv with BN
and GeLU) after AGeLU, and form the final improved FFN
(IFFN) module as shown in Fig. 4. The IFFN module has
two main differences compared to the original FFN mod-
ule. The first is the channel-wise enhancement part that
includes the AGeLU function and concatenation operation
proposed in section 4.1 to extend non-linearity through chan-
nel dimension. The second is the spatial-wise enhancement

part with a DW Block to enhance non-linearity with spatial
information.

5. Experiments
In this section, we conduct experiments on the ImageNet-1k
dataset for image classification and then ablate different
parts of IFFN through ablation studies. Experiments on
object detection and semantic segmentation are shown in
the Appendix B and C.

5.1. Image Classification on ImageNet-1k

We empirically verify the effectiveness of the proposed
IFFN module on the ImageNet-1k dataset which contains
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Table 2. Ablation study on channel/spatial-wise enhancement part. The experiments are conducted using the DeiT-Ti model on the
ImageNet dataset.

Methods Parameters (M) FLOPs (G) Top-1 Accuracy (%)

DeiT-Ti 5.72 1.26 72.2
w/ channel 4.89 1.08 70.5
w/ spatial 5.83 1.28 72.8

w/ channel & spatial 5.00 1.10 72.6

1.28M training images from 1000 different classes and 50K
validation images.

Implementation details. We treat our IFFN module as
a plug-in and replacement module that is used to replace
the original FFN module in different vision transformers.
Other parts of the architecture of baseline model are remain
unchanged. The training strategies are exactly the same as
the original methods.

Baseline models. We select several widely used state-of-
the-art vision transformer models as our baseline models,
including DeiT (Touvron et al., 2021), Swin (Liu et al.,
2021), PoolFormer (Yu et al., 2022) and portable vision
transformer such as LVT (Yang et al., 2022).

Experimental results. We replace all the FFN modules
in each baseline method with the proposed IFFN module.
The experimental results are shown in Tab. 1. We can see
that almost all the models can reduce over 10% FLOPs
and parameters without loss of classification accuracy. For
example, we can reduce the parameter count of the DeiT-Ti
model by 12.6% and FLOPs by 12.7% while increasing
the top-1 accuracy by 0.4%. As the model becomes larger,
the amount of parameter/FLOPs reduction also increases
as the proportion of the FFN module in the computation
grows. Similar results can be seen in other baseline models.
PoolFormer models exhibit higher FLOPs and parameter
reduction (over 20%) since most of their calculations come
from the FFN module.

5.2. Ablation Studies

In this section, we ablate various design choices for each part
of the IFFN module to empirically verify the effectiveness
of the proposed method.

Effect of channel/spatial-wise enhancement part. In
Tab. 2 we separately use channel-wise and spatial-wise en-
hancement parts in the IFFN module. When using channel-
wise enhancement alone, there is a performance degradation
compared to the baseline but the model has fewer FLOPs
and parameters. When using spatial-wise enhancement
alone, the model gets a better performance but with more
computations. Combining the channel-wise and spatial-

Table 3. Ablation study on replacing GeLU with different activa-
tion functions with and without using the proposed IFFN module.
The experiments are conducted using the DeiT-Ti model on the
ImageNet dataset.

DeiT-Ti Top-1 Acc (%)

w/ GeLU (original) 72.2
+IFFN 72.6

w/ SoftPlus (Nair & Hinton, 2010) 71.6
+IFFN 72.0

w/ ELU (Clevert et al., 2015) 71.1
+IFFN 71.7

w/ Swish (Ramachandran et al., 2017) 72.0
+IFFN 72.5

wise enhancement brings about a smaller model with better
classification accuracy. Note that although the performance
gain mainly comes from spatial-wise enhancement part,
the proposed channel-wise enhancement part copes very
well with the former one and can reduce computational
cost while maintaining accuracy to the greatest extent pos-
sible. For example, using spatial part alone (Line 3) only
increases 0.6% Top-1 accuracy compared to the original
DeiT-Ti model (Line 1). However, by adding channel part,
DeiT-Ti can increase 2.1% Top-1 accuracy while saving over
10% FLOPs and parameters (compare Line 2 and Line 4).
Another straightforward example is to compare the settings
that both have 72.8% top-1 accuracy in Tab. 2 and Tab. 6.
In Tab. 2 the result of 72.8% using only the spatial-wise
enhancement part, and the results of 72.8% in Tab. 6 using
both channel-wise and spatial-wise enhancement parts with
5x5 dwconv, resulting in fewer FLOPs and parameters. This
is an empirical result to show the usefulness of the combi-
nation of channel-wise and spatial-wise enhancement part.
We can achieve the same classification performance with
fewer FLOPs and parameters when combining the channel
and spatial parts compared to using the spatial part alone.
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Table 4. Using different number of nonlinear functions #N for
concatenation. The experiments are conducted based on the DeiT-
Ti model.

#N FLOPs (G) Params (M) Top-1 Acc (%)

2 1.10 5.00 72.6
4 1.01 4.55 68.6

Table 5. Using the addition of 4C number of nonlinear functions
to replace the original FFN module. GeLU and AGeLU are used
as the basic nonlinear functions. The experiments are conducted
based on the DeiT-Ti model.

Methods Top-1 Acc (%)

original FFN 72.2
ϕ(·) = GeLU(·) 50.4
ϕ(·) = AGeLU(·) 53.3

Ablations on different activation functions. In Eq. 3 we
propose a general arbitrary nonlinear function and instanti-
ate it with AGeLU using Eq. 4. To better verify the effec-
tiveness of the proposed method, we replace the original
GeLU in DeiT with other popular activation functions such
as SoftPlus (Nair & Hinton, 2010), ELU (Clevert et al.,
2015) and Swish (Ramachandran et al., 2017). We can see
that in Tab. 3, when using GeLU activation function (the
original setting) and the SoftPlus function, the proposed
IFFN module can have +0.4% accuracy improvements. The
performance gains when using ELU and Swish are +0.6%
and +0.5%, respectively. Since the computational cost of
different activation functions are all negligible, the FLOPs
and parameters reductions are 12.7% and 12.6% which are
the same as in Tab. 1.

Effect of using different number of nonlinear functions
for concatenation. In Eq. 5, AGeLU and AGeLU’ are in-
troduced as two nonlinear functions. In Tab. 4, we show
the results of using more nonlinear functions. It is not
surprise that the performance dropped as the number of non-
linear functions N increases, since the degree of freedom of
{wd

i,f(j)}
C′

j=1 in Eq. 6 should be divided by N and impact
the final classification performance as we analyze at the
beginning of Sec. 4.3.

Effect of directly combining multiple nonlinear func-
tions. The analysis in Sec. 3 shows that the FFN module in
vision transformer is no more than a non-linearity generator
that can be treated as a linear combination of C ′ = 4C
different activation functions. Thus, a straight-forward way
to replace the FFN module is to directly using 4C differ-
ent nonlinear functions to replace the original FFN module.

Table 6. Using different kernel sizes n for depthwise convolution in
the spatial-wise enhancement part. The experiments are conducted
using the DeiT-Ti model on the ImageNet dataset.

n Parameters (M) FLOPs (G) Top-1 Acc (%)

1 4.92 1.08 72.0
3 5.00 1.10 72.6
5 5.15 1.13 72.8
7 5.37 1.17 72.9

However, in Sec. 4.1 we analyze that this method is chal-
lenging to attain a comparable degree of non-linearity since
the biases should depend on the input elements. To verify
this opinion, we use GeLU and AGeLU as the basic nonlin-
ear functions, and use Eq. 11 to replace the original FFN
module:

y = ϕ1(x) + · · ·+ ϕ4C(x), (11)

in which C is the number of input channel dimensions,
and the basic nonlinear function ϕ(·) can be AGeLU(·) or
GeLU(·) function.

As the results shown in Tab. 5, none of these variants is
comparable to the classification performance of the baseline
with the FFN module, since according to Corollary 3.1 the
biases of these nonlinear functions should be different and
are dependent on all other input elements which is hard
to apply in reality and is the main reason that causes the
performance degradation. Experiments are conducted using
the DeiT-Ti model on the ImageNet dataset.

Effect of using different kernel-size. Finally, we use differ-
ent kernel size for depthwise convolution in the spatial-wise
enhancement part to explore the relationship between the
classification performance and the amount of spatial infor-
mation used to enhance the non-linearity. In Tab. 6, we
can see that as the kernel size n increases, the classification
performances are getting better and better with a little in-
creased FLOPs and parameters. The benefit is obvious from
n = 1 to n = 3 since global information from the neighbors
are used. The profit becomes marginal as the kernel size
continues to grow.

6. Conclusion
In this paper, we analyze the effects of the FFN module
in the vision transformer and show that the original FFN
module is no more than a non-linearity generator whose
nonlinear degree corresponds to the number of hidden di-
mensions. Based on this observation, we propose a flexible
activation function AGeLU and combine multiple of them
to form a more powerful nonlinear function that extends
non-linearity through channel dimension. Furthermore, we
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enhance non-linearity with spatial information using depth-
wise block. With the above modification, we can use fewer
hidden dimensions which reduces the FLOPs and parame-
ters of the model without loss of classification performance.
We also give a theoretical analysis of the Lipschitz bound of
the proposed module by which the stability of the network
can be measured. We conduct experiments on several state-
of-the-art vision transformer models using the benchmark
datasets including ImageNet-1k, COCO 2017 and ADE20k
by replacing the original FFN module with the proposed
IFFN module, and the results demonstrate the effectiveness
of our method.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Proof of Theorem 1
Given

f(x) = W 1concat(ϕ1(W
0x+ b0), ϕ2(W

0x+ b0)) + b1, (12)

it is easy to rewrite the function as

f(x) = g(x) + h(x)

=
(
W 11ϕ1(W

0x+ b0) + b11
)
+

(
W 12ϕ2(W

0x+ b0) + b12
)
, (13)

in which W 1 = [W 11 W 12] and b1 = [b11 b12]. Thus, the function f(x) can be divided into two parts g(x) and h(x). In
the following analysis, we give the proof of Lipschitz bound on g(x), and the bound on h(x) can be derived in the same way.

Define x1 = ϕ1(W
0x+ b0) ∈ Rn and y1 = ϕ1(W

0y+ b0) ∈ Rn for two arbitrary inputs x, y ∈ Rn0 . Using the conclusion
in Lemma 4.2, we have:[

(W 0x+ b0)− (W 0y + b0)
x1 − y1

]⊤ [
−2p1q1T (p1 + q1)T
(p1 + q1)T −2T

] [
(W 0x+ b0)− (W 0y + b0)

x1 − y1

]
≥ 0,

where T ∈ Tn (Eq. 8). The above inequality can be rewritten as:[
x− y
x1 − y1

]⊤ [
−2p1q1W

0⊤TW 0 (p1 + q1)W
0⊤T

(p1 + q1)TW
0 −2T

] [
x− y
x1 − y1

]
≥ 0, (14)

By left and right multiply M(ρ1, T ) in Eq. 9 by [(x− y)⊤ (x1 − y1)⊤] and [(x− y)⊤ (x1 − y1)⊤]⊤ respectively, we have:[
x− y
x1 − y1

]⊤ [
−2p1q1W

0⊤TW 0 (p1 + q1)W
0⊤T

(p1 + q1)TW
0 −2T

] [
x− y
x1 − y1

]
≤

[
x− y
x1 − y1

]⊤ [
ρ1In0

0

0 −W 11⊤W 11

] [
x− y
x1 − y1

]
. (15)

Combining Eq. 14 and Eq. 15, we have:

0 ≤
[
x− y
x1 − y1

]⊤ [
ρ1In0 0

0 −W 11⊤W 11

] [
x− y
x1 − y1

]
, (16)

which can also be written as:

(x1 − y1)⊤W 11⊤W 11(x1 − y1) ≤ ρ1(x− y)T (x− y). (17)

Recall that g(x) = W 11x1 + b1 and g(y) = W 11y1 + b1, then the inequality 17 can be written as:

||g(x)− g(y)||2 ≤ √
ρ1||x− y||2 for all x, y ∈ Rn. (18)

Similarly, we have:
||h(x)− h(y)||2 ≤ √

ρ2||x− y||2 for all x, y ∈ Rn. (19)

Given f(x) = g(x) + h(x) in Eq. 13, we can derive:

||f(x)− f(y)||22 = ||(g(x)− g(y)) + (h(x)− h(y))||22
= ||g(x)− g(y)||22 + ||h(x)− h(y)||22 + 2 (g(x)− g(y))

⊤
(h(x)− h(y))

≤ ||g(x)− g(y)||22 + ||h(x)− h(y)||22 + 2||g(x)− g(y)||2||h(x)− h(y)||2
≤ ρ1||x− y||22 + ρ2||x− y||22 + 2

√
ρ1ρ2||x− y||22

= (
√
ρ1 +

√
ρ2)

2||x− y||22. (20)

Finally, the above inequality implies

||f(x)− f(y)||2 ≤ (
√
ρ1 +

√
ρ2)||x− y||2 for all x, y ∈ Rn, (21)

which gives the upper bound of L(f) =
√
ρ1 +

√
ρ2 on the Lipschitz constant of f(·) based on the Definition 4.1.
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B. Object Detection on COCO
In order to better verify the effectiveness of the proposed IFFN module, we conduct experiments for object detection on
the COCO 2017 dataset, which contains 118K training images, 5K validation images and 20K test-dev images. Mask
R-CNN (He et al., 2017) is considered the object detection framework and Swin-Ti is used as the baseline model. Other
training settings are the same as Swin-Ti.

Table 7. Results on COCO object detection.

Backbone APbox APbox
50 APbox

75 #param FLOPs

Swin-Ti 46.0 67.1 50.3 48M 267G
Swin-Ti + IFFN 46.0 67.2 50.3 44M 251G

We can see in Tab. 7 that our IFFN module can reduce over 4M parameters and 16G FLOPs compared to the original
Swin-Ti model with a same box AP, which shows the priority of the proposed method.

C. Semantic Segmentation on ADE20K
We also conduct experiments for the semantic segmentation task on the ADE20K dataset, which contains 20K training
images, 2K validation images and 3K test images from 150 different semantic categories. As in Swin (Liu et al., 2021), we
use UperNet (Xiao et al., 2018) as the base semantic segmentation framework and Swin-Ti as the baseline model. Other
training settings are the same as Swin-Ti.

Table 8. Results on ADE20K semantic segmentation.

Backbone mIoU mAcc #param FLOPs

Swin-Ti 44.5 55.6 60M 945G
Swin-Ti + IFFN 45.0 57.3 56M 928G

As shown in Tab. 8, we achieve a 0.5 mIoU improvement while reducing FLOPs by 17G and parameters by 4M compared to
the baseline model Swin-Ti.
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