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ABSTRACT

Forecasting faithful trajectories of multivariate time series from practical scopes
is essential for reasonable decision-making. Recent methods majorly tailor gener-
ative conditional diffusion models to estimate the target temporal predictive dis-
tribution. However, it remains an obstacle to enhance the exploitation efficiency
of given implicit temporal predictive information to bolster conditional diffusion
learning. To this end, we propose a generic channel-aware Contrastive Conditional
Diffusion model entitled CCDM to achieve desirable Multivariate probabilistic
forecasting, obviating the need for curated temporal conditioning inductive bi-
ases. In detail, we first design a channel-centric conditional denoising network
to manage intra-variate variations and cross-variate correlations, which can lead
to scalability on diverse prediction horizons and channel numbers. Then, we de-
vise an ad-hoc denoising-based temporal contrastive learning to explicitly amplify
the predictive mutual information between past observations and future forecasts.
It can coherently complement naive step-wise denoising diffusion training and
improve the forecasting accuracy and generality on unknown test time series. Be-
sides, we offer theoretic insights on the benefits of such auxiliary contrastive train-
ing refinement from both neural mutual information and temporal distribution gen-
eralization aspects. The proposed CCDM can exhibit superior forecasting capabil-
ity compared to current state-of-the-art diffusion forecasters over a comprehensive
benchmark, with best MSE and CRPS outcomes on 79.17% and 87.5% cases. Our
code is publicly available at https://github.com/anonymous/CCDM.

1 INTRODUCTION

Multivariate probabilistic time series forecasting aims to quantify the stochastic temporal evolutions
of multiple continuous variables and benefit decision-making in various engineering fields, such as
weather prediction (Li et al., 2024), renewable energy dispatch (Dumas et al., 2022), traffic planning
(Huang et al., 2023) and financial trading (Gao et al., 2024). Modern methods majorly customize
time series generative models (Salinas et al., 2019; Li et al., 2022; Yoon et al., 2019; Rasul et al.,
2020) and produce diverse plausible trajectories to decipher the intricate temporal predictive distri-
bution which is conditioned on past observations. Due to the excellent mode coverage capacity and
training stability of diffusion models (Song et al., 2020; Ho et al., 2020), a flurry of conditional dif-
fusion forecasters (Lin et al., 2023; Yang et al., 2024) are recently developed by designing effective
temporal conditioning mechanisms to discover informative patterns from historical time series.

Despite existing advances, current time series diffusion models still struggle to learn a precise and
generalizable multivariate predictive distribution on challenging prediction tasks. The first barrier is
how to design an effective conditional denoising network to account for multivariate temporal cor-
relations in provided observations as well as varying degrees of noise imposed on target sequences.
To address this denoiser architectural issue, CSDI (Tashiro et al., 2021) and TMDM (Li et al., 2023)
employ spatiotemporal attention modules to characterize intra-channel and inter-channel 1 relations.
SSSD (Alcaraz & Strodthoff, 2022) and LDT (Feng et al., 2024) utilize structured state space and
latent diffusion models to handle high-dimensional time series more efficiently. However, existing

1A channel shares the same meaning with a variate, with each channel indicating a univariate time series.
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Figure 1: The schematic of the devised information-theoretic denoising-based contrastive diffusion
learning. The bar chart depicts the average gains by contrastive refinement on six real-world datasets.

time series denoisers fall short in identifying the faithful channel-specific and cross-channel prop-
erties with the step-wise noise disturbing each variate sequences. Improper treatment for diffused
noise can cause training instability and hurt the capacity to tackle long-term dependencies and com-
plex inter-channel correlations. Inspired by recent success of channel-centric structure in long-term
multivariate forecasting (Chen et al., 2024a; Liu et al., 2023), we propose a composite channel-
aware manipulation strategy to design the conditional denoising network, which can cope with the
side effect of noise corruption and recover the plausible heterogeneous temporal correlations.

The second barrier is how to enhance the exploitation efficiency of the implicit temporal predictive
information hidden in limited historical time series. It has been revealed that learning to unveil the
useful temporal patterns like decomposed modes (Deng et al., 2024) or spectral biases (Crabbé et al.,
2024) in collected dataset can boost the diversity and accuracy of generated profiles. But diffusion
forecasters fail to fully unleash the intrinsic predictive information merely by naive noise regression
training. To this end, existing works propose auxiliary diffusion training strategies to amplify the
helpful temporal features for better prediction quality. In particular, they employ specific time series
inductive biases to promote temporal conditioning schemes or guide iterative inference procedures.
Pretraining conditional encoders by deterministic point prediction (Shen & Kwok, 2023; Li et al.,
2023) is a viable method, which produces more accurate medians and sharper prediction intervals.
Coupling unique temporal features like multi-granularity dynamics (Fan et al., 2024; Shen et al.,
2023) or target quantitative metrics (Kollovieh et al., 2024) to regularize the sequential diffusion
process can also steer the reverse generation process towards plausible trajectories. However, these
auxiliary refinements need to expose prior knowledge on task-specific temporal properties and tailor
ad-hoc regulations for diffusion training and sampling. They are not consistent with standard step-
wise temporal denoising learning and a generic way to improve time series diffusion models.

Motivated by a neural information view in (Tsai et al., 2020), naive conditional time series diffusion
learning can be deemed as a forward predictive way to maximize the temporal mutual information
between past observations and target forecasts. Above auxiliary learning methods can empirically
enrich the predictive temporal information. However, single noise prediction training is inadequate
to reveal the entire task-specific information. In light of the composite objective integrating con-
trastive learning to procure more robust task-related representations (Tsai et al., 2020), we propose
to further enhance the prediction-related mutual information captured by denoising diffusion in a
complementary contrastive way, where both positive and negative time series are inspected at each
diffusion step. We illustrate such temporal contrastive refinement on conditional diffusion forecast-
ing in Fig. 1, which mitigates over-fitting and attains better generality on unknown test data.

In this work, we propose a contrastive conditional diffusion model termed CCDM which can explic-
itly maximize the predictive mutual information for multivariate probabilistic forecasting. The effi-
cient channel-aware denoiser architecture and complementary denoising-based contrastive refine-
ment are two recipes to boost diffusion forecasting capacity. Our main contributions are summarized
as: (1) We design a composite channel-aware conditional denoising network, which merges channel-
independent dense encoders to extract univariate dynamics and channel-wise diffusion transformers
to aggregate cross-variate correlations. It gives rise to efficient iterative inference and better scala-
bility on various channel numbers and prediction horizons. (2) We propose to explicitly amplify the
predictive information between generated forecasts and past observations via a coherent denoising-
based temporal contrastive learning, which can be seamlessly aligned with vanilla step-wise denois-
ing diffusion training and thus efficient to implement. (3) Extensive simulations validate the superior
forecasting capability of CCDM. It can attain better accuracy and reliability versus other excellent
models on various forecasting settings, especially for long-term and large-channel scenarios.
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2 PRELIMINARIES

2.1 PROBLEM FORMULATION

In this paper, we look into the task of multivariate probabilistic time series forecasting. Given the
past observation x ∈ RL×D as conditioning time series, the goal is to generate a group of S plausible
forecasts {ŷ(s)

0 ∈ RH×D}Ss=1 from the learned conditional predictive distribution pθ(y0|x). Here,
D is the number of channels, L and H indicate the lookback window length and prediction hori-
zon respectively. θ stands for the parameters of a conditional diffusion forecaster which represents
the real predictive distribution q(y0|x). We allocate diverse values to horizon H and channel num-
ber D to construct a holistic benchmark which can completely evaluate the capability of different
conditional diffusion models on various forecasting scenarios.

2.2 CONDITIONAL DENOISING DIFFUSION MODELS

Conditional diffusion models have exhibited impressive capability on a wide variety of controllable
multi-modal synthesis tasks (Chen et al., 2024b). It dictates a bi-directional distribution transport
process between raw data y0 and prior Gaussian noise yK ∈ N (0, I) via K diffusion steps. The
forward process gradually degrades clean y0 to fully noisy yK and can be fixed as a Markov chain:
q(y0:K) = q(y0)

∏K
k=1 q(yk|yk−1), where q(yk|yk−1) := N (yk;

√
1− βkyk−1, βkI) and βk is

the degree of imposed step-wise Gaussian noise. We can accelerate the forward sampling procedure
and obtain closed-form latent state yk at arbitrary step k by a noteworthy property (Ho et al., 2020):
yk =

√
ᾱky0 +

√
1− ᾱkϵ, where ᾱk :=

∏k
s=1(1 − βs) and ϵ ∼ N (0, I). The reverse generation

process converts known Gaussian to realistic prediction data y0 given input conditions x, which can
be cast as a parameterized Markov chain: pθ(y0:K |x) = p(yK)

∏1
k=K pθ(yk−1|yk,x). The overall

training objective can be simplified as minimizing the step-wise denoising loss below:

Ldenoise
k = Ey0,x,ϵ[

∥∥ϵ− ϵθ(
√
ᾱky0 +

√
1− ᾱkϵ,x, k)

∥∥2
2
]. (1)

A potential issue for current conditional diffusion models lies in forging an effective conditioning
mechanism that can enhance the alignment between given conditions x and produced data y0, like
the coherent semantics between textual descriptions and visual renderings (Esser et al., 2024), or the
conformity of generated vehicle motions to scenario constraints (Jiang et al., 2023). However, such
data consistency is hard to represent for temporal conditional probability modeling. We thus explic-
itly learn to amplify the prediction-related temporal information conveyed from past conditioning
time series to generated trajectories. Such predictive mutual information can reflect underlying tem-
poral properties in historical sequences, to which the produced forecasts should comply.

2.3 NEURAL MUTUAL INFORMATION MAXIMIZATION

As discussed above, to more efficiently represent the useful predictive modes involved in condition-
ing time series, we choose to explicitly maximize the prediction-oriented mutual information when
learning the conditional diffusion forecaster. Learning to maximize mutual information is effective
to boost the consistency between two associated variables (Song & Ermon, 2019), which has been
actively applied to self-supervised learning (Liang et al., 2024b) and multi-modal alignment (Liang
et al., 2024a). Regarding conditional diffusion learning, there also exist several related works (Wang
et al., 2023; Zhu et al., 2022) which explicitly employ mutual information maximization to enhance
high-level semantic coherence between input prompts and generated samples. While we propose a
complementary way to equip the conditional diffusion forecaster with this tool to bolster the utiliza-
tion of informative temporal patterns. Besides, we provide a distinct composite loss design and more
concrete interpretations on the benefits of the contrastive scheme to ordinary conditional diffusion.

Among the two practical methods to maximize the intractable mutual information (Tsai et al., 2020),
contrastive learning aids to strengthen the association by discriminating intra-class from inter-class
samples. Contrastive predictive coding (Oord et al., 2018) realizes such objective by optimizing the
contrastive lower bound with low variance via the prevalent InfoNCE loss:

LInfoNCE = −E
(y0,x)∼q(y0,x),y

(n)
0 ∼qn(y0)

[log
f(y0,x)

f(y0,x) +
∑N

n=1 f(y
(n)
0 ,x)

]. (2)
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Figure 2: The framework of denoising-based contrastive conditional diffusion forecaster. Detailed
negative time series construction methods are clarified in Appendix A.9.1.

During each iteration, we create a set of N negative samples via the negative construction operation
qn(y0) on positive data y0. f(y0,x) accounts for the density ratio q(y0|x)

q(y0)
and can be any types of

positive real functions. This flexible form of the density ratio function offers a natural initiative of
the following denoising-based contrastive conditional diffusion.

Forward predictive learning is another way to boost the inter-dependency by fully reconstructing tar-
get y0 conditioned on given x. This reconstruction learning can be realized by learning a determin-
istic mapping or conditional generative model from x to y0. As I(y0;x) = H(y0)−H(y0|x), and
H(y0) is irrelevant to discovering the entanglement between x and y0, thereby maximizing I(x;y0)
boils down to optimizing the predictive lower bound −H(y0|x) = Eq(x,y0)[log pθ(y0|x)], which
is aligned with the likelihood-based objective of naive conditional diffusion learning. (Tsai et al.,
2020) claims that combining both predictive and contrastive learning tactics can significantly raise
the quality of obtained task-related features. Accordingly, we equip vanilla conditional time series
diffusion with a denoising-based InfoNCE contrastive loss to further boost the temporal predictive
information between past conditions and future forecasts. A concise motivation of this information-
theoretic contrastive diffusion forecasting is depicted in Fig. 1.

3 METHOD: CHANNEL-AWARE CONTRASTIVE CONDITIONAL DIFFUSION

In this section, we elucidate two innovations of the tailored CCDM for generative multivariate time
series forecasting, including the hybrid channel-aware denoiser architecture depicted in Fig. 3 and
denoising-based contrastive diffusion learning demonstrated in Fig. 2.

3.1 CHANNEL-AWARE CONDITIONAL DENOISING NETWORK

Recent progress on multivariate prediction methods (Liu et al., 2023; Ilbert et al., 2024) show that
proper integration of channel management strategies in time series backbones is critical to discover
univariate dynamics and cross-variate correlations. But this problem has not been well explored in
multivariate diffusion forecasting and previous conditional denoiser structures do not obviously dis-
tinguish such heterogeneous channel-centric temporal properties. To this end, we design a channel-
aware conditional denoising network which incorporates composite channel manipulation modules,
i.e. channel-independent dense encoders and channel-mixing diffusion transformers. This architec-
ture can efficiently represent intra-variate and inter-variate temporal correlations in past conditioning
x and future predicted y0 under different noise levels, as well as being robust to diverse prediction
horizons and channel numbers.

Channel-independent dense encoders. We develop two channel-independent MLP encoders to
extract unique temporal variations in each individual channel of observed condition x and corrupted
latent state yk at each diffusion step. The core ingredient in latent and condition encoders is the
channel-independent dense module (CiDM) borrowed from TiDE (Das et al., 2023a), which stands
out as a potent MLP building-block for universal time series analysis models (Das et al., 2023b). A
salient element in CiDM is the skip-connecting MLP residual block which can improve temporal
pattern expressivity. The D linear layers in parallel are shared and used for separate channel feature
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Figure 3: The diagram of channel-aware conditional denoiser architecture. Left: the whole network.
Middle: channel-mixing DiT blocks. Right: channel-independent MLP dense modules.

embedding. We stack nenc CiDM modules of ehid hidden dimension to transform both x and yk into
ehid × D size. These two input encoders can be easily adjusted to accommodate different context
windows and hidden feature dimensions.

Channel-wise diffusion transformers. To regress step-wise Gaussian noise ϵk on raw y0 more
precisely, we should fully exploit implicit temporal information in pure conditioning x and polluted
target yk. We concatenate the latent encoding of x and yk along the channel axis and then leverage
natt-depth channel-wise diffusion transformer (DiT) blocks to aggregate heterogeneous temporal
modes from various channels. DiT is an emergent diffusion backbone for open-ended text-to-image
synthesis which merits eminent efficiency, scalability and robustness (Peebles & Xie, 2023; Esser
et al., 2024). Two critical components in DiT are multi-head self-attention for feature fusion and
adaptive layer norm (adaLN) layers to absorb other conditioning items (e.g. diffusion step embed-
ding, text labels) as learnable scale and shift parameters. Although DiT has been repurposed by
TimeDiT (Cao et al., 2024) and LDT (Feng et al., 2024) to model the multivariate predictive dis-
tribution, our adapted channel-centric DiT module differs from them in two ways. First, we switch
the point-wise attention over the time dimension to a channel-wise attention along the variate axis,
which can represent cross-channel correlations in x and yk beyond temporal dependencies. Second,
to improve time series denoising learning, we directly concatenate the conditioning x with corrupted
yk and capture their temporal features by attention, which can fully utilize the useful predictive pat-
terns in limited historic observations. Whereas TimeDiT and LDT simply pass the given x to adaLN
layers, which may cause the predictive information loss. We analyze the impact of these two unique
structure designs in Appendix A.10. Afterwards, we develop an output decoder with ndec CiDMs
plus a last adaLN to yield the prediction of imposed noise ϵk given x and yk.

3.2 DENOISING-BASED TEMPORAL CONTRASTIVE REFINEMENT

Unlike previous empirically designed temporal conditioning schemes to make better exploitation of
past predictive information, we instead propose to explicitly maximize the prediction-related mutual
information I(y0;x) between past observations x and future forecasts y0 via an adapted denoising-
based contrastive strategy. We will employ the learnable denoising network ϵθ(·) to represent the
contrastive lower bound of I(y0;x) presented by Eq. 2, and exhibit this information-theoretic con-
trastive refinement is complementary and aligned with original conditional denoising diffusion op-
timization, which is actually another forward predictive method to maximize I(y0;x).
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To improve the diffusion forecasting capacity more essentially, the developed contrastive learning
item is wished to directly benefit naive step-wise denoising-based training procedure, i.e. regular-
izing noise elimination behaviors of the conditional denoiser ϵθ(·). Since the density ratio function
f(y0,x) constituting the contrastive mutual information lower bound in Eq. 2 can be any positive-
valued forms, this flexibility naturally motivates us to prescribe f(·) using the step-wise denoising
objective in Eq. 1, for both a positive sample y0 and a group of negative samples y(n)

0 :

fk,ϵ′(y0,x; θ) = exp(−||ϵ′ − ϵθ(
√
ᾱky0 +

√
1− ᾱkϵ

′,x, k)||22/τ); (3a)

fk,ϵ′(y
(n)
0 ,x; θ) = exp(−||ϵ′ − ϵθ(

√
ᾱky

(n)
0 +

√
1− ᾱkϵ

′,x, k)||22/τ); (3b)

where τ is the temperature coefficient in the softmax-form contrastive loss. In Appendix A.9.2,
we also provide another cosine similarity form of f(·) to enhance the denoiser optimization. The
negative time series are constructed by a hybrid time series augmentation method which alters both
temporal variations and point magnitudes (See Appendix A.9.1 for details.). Then, we can derive the
contrastive refinement loss which is coincident with vanilla step-wise denoising diffusion training:

Lcontrast
k = −E

x,y0,{y(n)
0 }N

n=1,ϵ
′ [log

fk,ϵ′(y0,x; θ)

fk,ϵ′(y0,x; θ) +
∑N

n=1 fk,ϵ′(y
(n)
0 ,x; θ)

]. (4)

Apparently, the devised denoising-based temporal contrastive learning can not only seamlessly co-
ordinate with standard diffusion training at each step k, but also improve the conditional denoiser
behaviors in out-of-distribution (OOD) regions. These OOD areas are constituted by the low-density
diffusion paths of negative samples, which are not touched by merely executing denoising learning
along the high-density probability paths of positive samples.

3.3 OVERALL LEARNING OBJECTIVE

The naive denoising diffusion model trained by log-likelihood maximization (Ho et al., 2020) totally
owns K-step valid training items. To align with this step-wise denoising distribution learning, we
can amortize the contrastive regularization in Eq. 4 to each training step, and derive the overall
learning objective below:

max
θ

Eq(y0,x) [log pθ(y0|x) + λK · Iθ(y0;x)] , (5)

where log pθ(y0|x) can be decomposed as
∑K

k=1 Ldenoise
k and indicates the predictive distribution

learning. Whilst maxθ Iθ(y0;x) governs the information-theoretic contrastive learning. Then, the
practical training loss of the devised CCDM at each diffusion step can be presented as:

LCCDM
k = Ey0,x,k∼U[1,K](Ldenoise

k + λLcontrast
k ). (6)

So far, we obtain the overall step-wise training procedure for CCDM, which is a λ-weighted com-
bination of the vanilla denoising term in Eq. 1 and auxiliary contrastive item in Eq. 4. The whole
training algorithm is clarified in Appendix A.3, which is efficient, end-to-end and seamlessly cou-
pled with original simplified denoising diffusion.

Theoretical insights. Beyond the method described above, we also offer two-fold theoretical inter-
pretations on how time series diffusion forecasting can benefit from auxiliary contrastive training.
From the neural mutual information perspective, we show that maximizing Iθ(y0;x) is equivalent
to minimizing KL-divergence DKL [q(y0|x)||pθ(y0|x)] between the real predictive distribution and
diffusion-model-approximated distribution (See Appendix A.1.2 for a detailed proof). It is well-
known that minimizing DKL [q(y0|x)||pθ(y0|x)] can be an efficient surrogate for the maximum
likelihood learning to improve the log-likelihood log pθ(y0|x) of diffusion models (Zhang et al.,
2024; Song et al., 2021). As learning the faithful predictive likelihood is necessary for time series
probabilistic forecasting (Salinas et al., 2020), complementing mutual information-theoretic con-
trastive training can gain better likelihood and thus improve the forecasting capacity of time series
diffusion models. From the distribution generalization perspective, explicitly optimizing the proba-
bilities of unexpected negative samples can render ϵθ(·) see more OOD regions that purely denoising
on positive in-distribution samples do not encompass. In time series learning domain, there always
exists distribution shift between unforeseen testing data and historical training data (Kim et al.,
2021). The contrastive term in Eq. 4 intuitively minimizes the possibility log pθ(y

(n)
0 ) of undesir-

able spurious forecasts by directly impeding ϵθ(·) from correctly removing the noise over negative

6
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y
(n)
0 . This contrastive training helps ϵθ(·) avoid low-density areas formed by negative instances and

undergo more OOD areas during in-distribution training. As claimed in (Wu et al., 2024), boosting
the denoiser robustness in OOD regions in testing stage is crucial to sample plausible forecasts.

Moreover, we reveal the upper bound of conditional diffusion forecasting errors in Proposition 1.
It obviously reflects that the diffusion forecasting capacity is inextricably intertwined with the step-
wise noise regression accuracy of obtained ϵθ(·) on unknown test time series. Hence, leveraging
temporal contrastive refining or other auxiliary training regimes to boost conditional time series
denoising behaviors is conducive to improve final prediction outcomes.

Proposition 1. Let qte(y0|x) be the ground truth distribution of test time series, and pteθ (y0|x) be
the approximated predictive distribution by the developed conditional diffusion model. Let the KL-
divergence between qte(y0|x) and pteθ (y0|x) represent the resulting probabilistic forecasting error.
Then the denoising diffusion-induced forecasting error is upper-bounded:

DKL

[
qte(y0|x)||pteθ (y0|x)

]
≤ Ex,y0,ϵk,k

[
Ak

∥∥ϵθ (√ᾱky0 +
√
1− ᾱkϵk,x, k

)
− ϵk

∥∥2
2

]
+ C.

(7)
Such upper bound is determined by the denoising behaviors of learned ϵθ(·) on unknown test time
series. Ak is a step-wise constant related to noise schedule, and C is a constant depending on test
data quantities. See Appendix A.1.1 for the proof.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We choose six multivariate time series datasets, i.e. ETTh1, Exchange, Weather,
Appliance, Electricity, Traffic, which cover a wide range of temporal dynamics and
channel number D to completely gauge the probabilistic forecasting performance. We manually es-
tablish a more comprehensive benchmark with diverse values of lookback window L and prediction
horizon H , distinct from previous models which merely attest their generative forecasting capacity
on a single short-term setup. Refer to Appendix. A.4 for more details on datasets.

Evaluation metrics. We adopt two standard metrics to assess the quality of both probabilistic and
deterministic forecasts resulting from the generated prediction intervals. CRPS and CRPS sum are
used to assess the reliability of the estimated predictive distribution, and MSE and MAE are used to
quantify the accuracy of calculated point forecasts. See Appendix A.5 for more details on metrics.

Baselines. We select five currently remarkable denoising diffusion-based generative forecasters for
comparisons, including TimeGrad (Rasul et al., 2021), CSDI (Tashiro et al., 2021), SSSD (Alcaraz &
Strodthoff, 2022), TimeDiff (Shen & Kwok, 2023), TMDM (Li et al., 2023). Since these models do
not shed light on outcomes on long-term probabilistic forecasting scenarios, we fully reproduce them
on the newly constructed benchmark. See Appendix A.8.2 for comparisons with more excellent non-
diffusion models.

Implementation details. We normally execute the end-to-end contrastive diffusion training in Eq. 6
using 100 epochs. To reduce the contrastive learning costs on those cases which consume enormous
computational resources, we also employ a cost-efficient two-stage training strategy. Concretely, we
firstly pretrain a low-cost naive diffusion forecaster by Eq. 1 and fine-tune it by the total contrastive
manner in Eq. 6 with only 30 epochs. We keep the temperature coefficient τ = 0.1 and randomly
generate S = 100 multivariate profiles to compose prediction intervals. See Appendix A.6 for
more details on network architecture and contrastive training configurations in different forecasting
setups. All experiments are conducted on a single NVIDIA A100 GPU.

4.2 OVERALL RESULTS

We demonstrate the devised CCDM model can outperform existing diffusion forecasters on most
of the generative forecasting cases in Table 1. Concretely, CCDM can attain the best outcomes on
19/24 deterministic and 21/24 probabilistic evaluations, with 7.74% and 26.16% average improve-
ment of MSE and CRPS on these cases. Especially on two most difficult datasets Electricity
and Traffic, CCDM garners notable progress of 13.48%, 13.64% on MSE and 22.93%, 21.63%

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Overall comparisons w.r.t MSE and CRPS on six real-world datasets with diverse horizon
H ∈ {96, 168, 336, 720}. The best and second-best results are boldfaced and underlined.

Methods CCDM TMDM TimeDiff SSSD CSDI TimeGrad

Metrics MSE CRPS MSE CRPS MSE CRPS MSE CRPS MSE CRPS MSE CRPS
E

T
T

h1
96 0.3715 0.2856 0.4692 0.3952 0.4025 0.3942 1.0984 0.5622 1.1013 0.5794 1.1730 0.6223

168 0.4137 0.3027 0.5296 0.4163 0.4397 0.4170 0.6067 0.4046 1.1013 0.5794 1.1554 0.5970
336 0.5146 0.3391 0.5862 0.4655 0.4943 0.4488 0.9330 0.5421 1.0459 0.6223 1.1403 0.5883
720 0.5545 0.4856 0.7083 0.5335 0.5779 0.5145 1.3776 0.7035 1.0081 0.5952 1.2529 0.6498

Avg 0.4636 0.3533 0.5733 0.4526 0.4786 0.4418 1.0039 0.5531 1.0642 0.5941 1.1804 0.6144

E
xc

ha
ng

e 96 0.0905 0.1545 0.1278 0.2112 0.1106 0.2349 0.5551 0.4569 0.2551 0.2901 1.8655 1.0439
168 0.1638 0.2159 0.2791 0.3210 0.2050 0.3187 0.4517 0.3602 0.8050 0.5093 1.1638 0.8374
336 0.4407 0.3517 0.4572 0.4426 0.5834 0.5472 0.5641 0.4106 0.6179 0.4786 1.9264 1.0465
720 1.1685 0.5864 2.5625 1.0828 0.9096 0.7128 1.3686 0.6386 1.3816 0.7423 2.4034 1.1478

Avg 0.4659 0.3271 0.8567 0.5144 0.4522 0.4534 0.7349 0.4666 0.7649 0.5051 1.8398 1.0189

W
ea

th
er

96 0.2452 0.1826 0.2768 0.2273 0.3842 0.3441 0.6103 0.3878 0.2608 0.2127 0.5628 0.3445
168 0.2407 0.1898 0.2864 0.2519 0.3566 0.3192 0.2796 0.2060 0.2930 0.2286 0.4141 0.2880
336 0.2840 0.2230 0.3494 0.3007 0.4805 0.3591 0.3189 0.2355 0.2918 0.2193 0.5462 0.3549
720 0.5599 0.4074 0.3975 0.3365 0.5052 0.3880 0.6880 0.4179 0.3803 0.2770 0.4774 0.3221

Avg 0.3325 0.2507 0.3275 0.2791 0.4316 0.3526 0.4742 0.3118 0.3065 0.2344 0.5001 0.3274

A
pp

lia
nc

e 96 0.6227 0.3889 0.6858 0.4678 0.7328 0.5740 1.1954 0.6504 0.6823 0.4334 1.6748 0.8397
168 0.6266 0.4020 0.7153 0.5232 0.6468 0.5562 0.7841 0.4776 0.7176 0.4560 1.8901 0.8858
336 0.9119 0.5036 1.0310 0.6590 0.9531 0.6822 1.8822 0.8002 1.0565 0.5675 1.8506 0.8661
720 1.5599 0.8594 1.3937 0.8272 1.4327 0.8809 3.3226 1.1225 1.7347 0.7982 2.4393 1.0083

Avg 0.9303 0.5385 0.9565 0.6193 0.9414 0.6733 1.7961 0.7627 1.0478 0.5638 1.9637 0.9000

E
le

ct
ri

ci
ty

96 0.1897 0.2046 0.1954 0.3113 0.1960 0.3123 0.2444 0.2346 0.2560 0.2571 0.3733 0.3259
168 0.1575 0.1893 0.1908 0.3037 0.1907 0.3043 0.2001 0.2249 0.1754 0.1985 0.3676 0.3083
336 0.1651 0.1983 0.2042 0.3165 0.2047 0.3172 0.1941 0.2245 0.1803 0.2043 0.4249 0.3497
720 0.1959 0.2184 0.2282 0.3338 0.2277 0.3336 0.3743 0.3680 0.9932 0.5678 0.4299 0.3479

Avg 0.1771 0.2027 0.2047 0.3163 0.2048 0.3169 0.2532 0.2630 0.4012 0.3069 0.3989 0.3330

Tr
af

fic

96 1.0291 0.3911 0.9692 0.5894 0.9684 0.5859 1.0363 0.4445 1.1154 0.4240 1.2259 0.4667
168 0.6881 0.3077 0.8632 0.5254 0.8553 0.5192 0.9551 0.4289 1.6000 0.6701 1.3282 0.5510
336 0.6683 0.3284 0.8874 0.5562 0.8834 0.5538 0.9283 0.5140 1.5724 0.6780 1.0447 0.3817
720 0.8392 0.4304 1.0258 0.6383 1.0270 0.6387 1.0635 0.5515 1.5428 0.6696 1.1753 0.4604

Avg 0.8062 0.3644 0.9364 0.5773 0.9335 0.5744 0.9958 0.4847 1.4577 0.6104 1.1935 0.4650

1st Count 40 1 3 0 4 0

on CRPS. These prominent increases reflect the devised channel-centric structure and contrastive
refinement on the diffusion forecaster can enhance its representation efficiency of implicit predictive
information on diverse prediction scenarios. The second-best model CSDI also manifests excellent
forecasting ability especially on Weather, which has complex multivariate temporal correlations.
The hybrid attention module in CSDI can well capture these relations but it entices high computa-
tional overhead and over-fitting to other datasets. TMDM and TimeDiff also attain small MSE on
few cases due to their extra deterministic pre-training operations on conditioning encoders. Note
that we completely replicate TimeGrad on the whole benchmark for the first time even with severe
inference costs, and validate it can actually realize reasonable forecasting results. In Fig. 4, we de-
pict different diffusion produced prediction intervals on one case. We can clearly see that CCDM’s
interval is much more faithful, while TimeDiff’s area is sharper but loses diversity and accuracy. See
Appendix A.11 for more forecasting result showcases and Appendix A.7 on time cost analysis.

4.3 ABLATION STUDY

To investigate respective effects of each component, we remove the proposed denoising-based con-
trastive learning and channel-wise DiT structure, and exhibit the average metric degradation over
different prediction horizons in Table 2. Without auxiliary contrastive diffusion training, we observe
a mean performance drop of 10.21% and 8.13% on MSE and CRPS over the whole benchmark. This
notable decrease indicates that the dedicated denoising-based contrastive refinement can enhance the
utilization efficiency of conditional temporal predictive information and yield a more genuine mul-
tivariate predictive distribution. Due to the restriction of computational costs, such contrastive gains
on Electricity and Traffic datasets are relatively smaller. We can amplify contrastive bene-
fits on large-scale datasets by increasing the batch size and negative number within an iteration in the
future. Regarding the influence of composite channel-aware management in conditional denoiser,
we replace the channel-wise DiT modules by the same depth of linear dense encoders and incur a
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Figure 4: Comparison of generated point forecasts and prediction intervals on an Electricity channel.

full channel-independence architecture. The average reduction on MSE and CRPS over the whole
test settings are 22.75% and 29.06%. This considerable drop reveals that the channel-mixing atten-
tion can empower the denoising network to integrate useful cross-variate temporal features in past
observations and corrupted targets. Besides, the elevation degree induced by channel-centric DiT
is consistent with the true variate correlations in real-world datasets. For instance, the performance
decrease is less salient on Electricity dataset where the electricity consumption of different
customers is not highly related to each other. Whilst on ETTh1 and Weather datasets whose sen-
sory measurements are heavily inter-correlated, the channel-mixing DiT can improve the diffusion
forecasting capacity more vastly.

Table 2: Average MSE and CRPS degradation resulting from the ablation of denoising-based con-
trastive learning or channel-wise DiT module. Full results can be found in Appendix A.8.3.

Models w/o contrastive refinement w/o channel-wise DiT

Metrics MSE Degradation CRPS Degradation MSE Degradation CRPS Degradation

ETTh1 0.5508 18.81% 0.3889 10.08% 0.5956 28.47% 0.5816 64.62%
Exchange 0.4966 6.59% 0.3403 4.04% 0.4924 5.69% 0.3555 8.68%
Weather 0.3816 14.77% 0.2695 7.50% 0.4843 45.65% 0.3336 33.07%

Appliance 1.0220 9.86% 0.5818 8.04% 1.1183 20.21% 0.7231 34.28%
Electricity 0.1887 6.55% 0.2144 5.77% 0.1973 11.41% 0.2137 5.43%

Traffic 0.8439 4.68% 0.4130 13.34% 1.0084 25.08% 0.4675 28.29%

Figure 5: Results by varying contrastive weight λ on three datasets with H = 168. Note that w/o
indicates CCDM is obtained without contrastive training, i.e. λ = 0. The mean and standard error
of 4 metrics are obtained from 10 independently repeated runs.

4.4 CONTRASTIVE REFINEMENT ANALYSIS

Below, we empirically investigate the efficacy of the devised denoising-based temporal contrastive
refinement, including three vital factors for contrastive learning practice and its generality on other
existing diffusion forecasters.

Influence of contrastive weight λ. The complementary step-wise denoising-based contrastive loss
in 4 can enhance the alignment between diffusion generated forecasts and given temporal predictive
information. To elucidate how different degrees of contrastive refining can affect naive diffusion
optimization, we escalate the contrastive weight λ in Eq. 5 from 0.0001 to 0.01 and display corre-
sponding outcomes in Fig. 5. Generally speaking, four metrics of w/o (i.e. λ = 0) are consistently
larger than those of imposing contrastive training (i.e. λ > 0). This reflects that adding contrastive
refining to naive diffusion predictive learning can promote the forecasting capacity. Besides, we can
see that the contrastive gain margin moderately fluctuates among various weights and datasets, and

9
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Table 3: Forecasting performance promotion induced by applying denoising-based contrastive train-
ing to two existing conditional diffusion forecasters.

Methods TimeDiff CSDI

Metrics MSE Promotion CRPS Promotion MSE Promotion CRPS Promotion

E
T

T
h1

96 0.4143 -2.93% 0.3491 11.44% 0.6559 40.44% 0.4371 24.56%
168 0.4715 -7.23% 0.3753 10.00% 0.5894 29.53% 0.3851 25.76%
336 0.5073 -2.63% 0.4025 10.32% 0.9920 5.15% 0.5644 9.30%
720 0.5291 6.19% 0.4338 14.44% 0.7744 23.18% 0.7010 -17.78%

E
xc

ha
ng

e 96 0.0901 18.54% 0.1722 26.69% 0.1589 37.71% 0.2082 28.23%
168 0.1588 22.54% 0.2312 27.46% 0.4096 49.12% 0.3840 24.60%
336 0.6345 -8.76% 0.4293 21.55% 0.5664 8.33% 0.4110 14.12%
720 0.9735 -7.03% 0.6941 2.62% 1.3642 1.26% 0.6392 13.89%

a modest weight between 0.0005 and 0.005 can lead to better improvement. See Appendix A.9 for
more detailed analysis on the influence of negative number N and temperature τ .

Generality of contrastive training. We add the step-wise denoising contrastive training presented
in 4 to two existing diffusion forecasters to validate its generality on conditional time series diffusion
learning. From the results shown in Table 3, it is obvious that CSDI’s generative forecasting ability
can be further enhanced by contrastive diffusion training. Its hybrid attention network can repre-
sent complex temporal patterns more properly by handling more OOD negative samples. While for
TimeDiff which owns extra pre-trained auto-regressive conditioning encoders, CRPS values con-
stantly decrease but some unexpected increases appear on MSE. It may stem from the side effect of
redundant contrastive procedure conveyed to the well-behaved deterministic pre-training strategy.

5 RELATED WORK

Channel-oriented multivariate forecasting. Recent progress on multivariate deterministic predic-
tion (Liu et al., 2023; Lu et al., 2023; Chen et al., 2024a; Han et al., 2024) indicate that learning
channel-centric temporal properties (including single-channel dynamics and cross-channel correla-
tions) is of significant importance. Both channel-independent and channel-fusing time series pro-
cessing are crucial to improve the forecasting performance. But the effectiveness of such channel
manipulation structures is rarely investigated in diffusion-based multivariate probabilistic forecast-
ing, where the extra influence of imposed channel noise in varying degrees should also be addressed.
To tackle this barrier, we blend both channel-independent and channel-mixing modules in the con-
ditional diffusion denoiser to boost its forecasting ability on multivariate cases.

Time series diffusion models. Diffusion models have been actively applied to tackle a wide scope
of time series tasks, including synthesis (Yuan & Qiao, 2024; Narasimhan et al., 2024), forecasting
(Rasul et al., 2021), imputation (Tashiro et al., 2021) and anomaly detection (Chen et al., 2023).
Their common goal is to derive a high-quality conditional temporal distribution aligned with diverse
input contexts, such as statistical properties in constrained generation (Coletta et al., 2024) and
historical records. A valid solution is to inject useful temporal properties into iterative diffusion
learning (Yuan & Qiao, 2024; Biloš et al., 2023) or to develop gradient-based guidance schemes
(Coletta et al., 2024). But there are still rooms to enhance them from the aspect of training methods
and denoiser architectures. To bridge this gap for multivariate forecasting, we exclusively design
a channel-aware denoiser and explicitly enhance the predictive mutual information between past
observations and future forecasts by an adapted temporal contrastive diffusion learning. Even though
several works have applied contrastive diffusion to cross-modal content creation (Wang et al., 2024b;
Zhu et al., 2022), its efficacy on time series generative modeling have not yet been well explored.
And reasonable interpretations on such contrastive diffusion merits are also scanty. See Appendix
A.2 for more detailed related work, which also covers universal temporal contrastive learning.

6 CONCLUSION

In this work, we propose the channel-aware contrastive conditional diffusion model named CCDM
for probabilistic forecasts on multivariate time series. CCDM can capture intrinsic prediction-related
temporal information hidden in observed conditioning time series using an efficient channel-centric
denoiser architecture and information-maximizing denoising-based contrastive refinement. Exten-
sive experiments demonstrate the exceptional forecasting capability of CCDM over existing time
series diffusion models. In future work, we plan to reduce the training costs imposed by additional
temporal contrastive learning, and extend this contrastive diffusion method to general time series
analysis and other cross-domain synthesis tasks.
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A APPENDIX

A.1 THEORETIC RESULTS

A.1.1 PROOF FOR PROPOSITION 1

Below, we shed light on how to derive the upper bound of diffusion-induced probabilistic forecasting
error shown in Proposition 1. We utilize the KL-divergence between the real distribution qte(y0|x)
of test time series and approximated predictive distribution pteθ (y0|x) by conditional diffusion mod-
els to represent the probabilistic forecasting error

DKL

[
qte(y0|x)||pteθ (y0|x)

]
= Eqte(y0|x)

[
log qte(y0|x)

]
− Eqte(y0|x)

[
log pteθ (y0|x)

]
. (8)

The first term in Eq. 8 is unrelated to conditional diffusion learning and thus can be prescribed as a
constant C1 based on the information quantity of real test data

Eqte(y0|x)
[
log qte(y0|x)

]
= − 1

qte(x)
Eqte(y0,x)

[
log qte(y0|x)

]
= −H (y0|x)

qte(x)
= C1. (9)

The second term Eq. 8 is the expected log-likelihood over qte(y0|x), which is identical to the
learning objective of vanilla conditional diffusion models in (Ho et al., 2020). Akin to the step-wise
denoising loss derivation in (Ho et al., 2020), we can obtain the upper bound of the error via Jensen’s
inequality and decompose it into K + 1 items V0, ...,VK :

−Eqte(y0|x)
[
log pteθ (y0|x)

]
= −Eqte(y0|x)

[
log

∫
qte(y1:K |y0)

pteθ (y0:K |x)
qte(y1:K |y0)

dy1:K

]
≤ −Eqte(y0|x)

[
Eqte(y1:K |y0)

[
log

pteθ (y0:K |x)
qte(y1:K |y0)

]]
= Eqte(y0|x)

[
V0 +

K∑
k=2

Vk−1 + VK

]
, (10)

where

VK = DKL

[
qte(yK |y0)||pteθ (yK |x)

]
= 0, (11)

as qte(yK |y0) and pteθ (yK |x) are both standard Gaussian. And since the reverse transitions at each
diffusion step can be shaped in explicit Gaussian forms, we can write out

Vk−1 = Eqte(yk|y0)

[
DKL

[
qte(yk−1|yk,y0)||pteθ (yk−1|yk,x)

]]
= Eqte(yk|y0)

[
DKL

[
N (yk−1;µk(yk,y0), β̃kI)||N (yk−1;µθ(yk,x, k), β̃kI)

]]
= Eqte(yk|y0)

[
1

2β̃2
k

[
∥µθ(yk,x, k)− µk(yk,y0)∥22

]]

= Ey0,ϵk

[
1

2β̃2
k

[∥∥∥∥ 1
√
αk

(
yk − βk√

1− ᾱk
ϵθ (yk,x, k)

)
− 1

√
αk

(
yk − βk√

1− ᾱk
ϵk

)∥∥∥∥2
2

]]

= Ey0,ϵk

[
β2
k

2β̃2
kαk(1− ᾱk)

[∥∥ϵθ (√ᾱky0 +
√
1− ᾱkϵk,x, k

)
− ϵk

∥∥2
2

]]
, (12)

where β̃k = 1−α̃k−1

1−α̃k
βk and V0 is actually a special case of Eq. 12 when k = 1

V0 = −Eq(y1|y0) [log pθ(y0|y1,x)]

= Eq(y1|y0)

[
log(2π)

HD
2 β̃1 +

1

2β̃2
1

∥y0 − µθ(y1,x, k = 1)∥22

]

= Ey0,ϵ1

[
β2
1

2β̃2
1α1(1− ᾱ1)

[∥∥ϵθ (√ᾱ1y0 +
√
1− ᾱ1ϵ1,x, k = 1

)
− ϵ1

∥∥2
2

]]
+C2. (13)
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Overall, if we let Ak =
β2
k

2β̃2
kαk(1−ᾱk)

, C = C1 + C2, we can derive the ultimate upper bound of
probabilistic forecasting error in a concise form as follows:

DKL

[
qte(y0|x)||pteθ (y0|x)

]
≤ Ex,y0,ϵk,k

[
Ak

∥∥ϵθ (√ᾱky0 +
√
1− ᾱkϵk,x, k

)
− ϵk

∥∥2
2

]
+ C,

(14)
which finalizes the proof of Proposition 1. It shows that for unknown test time series, the diffusion-
based generative forecasting performance is associated with the generalization capability of the
trained conditional denoising network on total step-wise noise regression.

A.1.2 ANALYSIS ON INFORMATION-THEORETIC CONTRASTIVE DIFFUSION LEARNING

Here, we vindicate that maximizing predictive mutual information I(y0;x) is equivalent to mini-
mizing the KL-divergence DKL [q(y0|x)||pθ(y0|x)] from the genuine predictive distribution to the
diffusion approximated distribution. The detailed proof is presented as follows:

I(y0;x) = Eq(y0,x)

[
log

pθ(y0|x)
q(y0)

]
= Eq(y0,x)

[
log

pθ(y0|x)
q(y0|x)

· q(y0|x)
q(y0)

]
= Eq(x)

[∫
pθ(y0|x) log

pθ(y0|x)
q(y0|x)

dy0

]
+ Eq(x|y0)

[∫
q(y0) ·

q(y0|x)
q(y0)

dy0

]
= Eq(x) [DKL(pθ(y0|x)||q(y0|x))]− Eq(x|y0) [DKL(q(y0)||q(y0|x))]
≤ Eq(x) [DKL(pθ(y0|x)||q(y0|x))] . (15)

Apparently, I(y0;x) is upper bounded by DKL [q(y0|x)||pθ(y0|x)] and can be maximized by min-
imizing DKL [q(y0|x)||pθ(y0|x)] on provided historical observations x. It is widely-acknowledged
that minimizing DKL [q(y0|x)||pθ(y0|x)] is an effective proxy for the maximum likelihood train-
ing Song et al. (2021); Zhang et al. (2024). It can lead to better log-likelihood for diffusion models
since vanilla combination of an array of weighted noise regression losses in Eq. 1 can not directly
optimize the log-likelihood log pθ(y0|x) (Ho et al., 2020). Besides, Song et al. (2021); Zhang et al.
(2024) have demonstrated that integrating the maximum likelihood training manner with the naive
score matching objective can acquire a significantly better generation quality. Accordingly, in this
time series probabilistic forecasting work, we propose to explicitly maximize I(y0;x) through the
devised denoising-based InfoNCE loss in Eq. 4, which can serve to improve the prediction-related
likelihood of time series diffusion models and further enhance the forecasting capability.

A.2 ADDITIONAL DISCUSSIONS ON RELATED WORKS

Channel-oriented multivariate forecasting. How to properly manage various channel-centric tem-
poral properties (i.e. single-channel dynamics and cross-channel correlations) has been attached
greater importance in recent multivariate forecasting works (Chen et al., 2024a; Han et al., 2024) for
two reasons. One is that traditional transformer-based models (Zhou et al., 2021; Wu et al., 2021;
Zhou et al., 2022; Liu et al., 2022) only focus on improving the expressivity and efficiency of long-
range temporal dependency, which can not obviously discriminate roles of disparate channels and
entice some unsatisfactory outcomes. Besides, channel-independent predictors (Nie et al., 2022;
Zeng et al., 2023; Das et al., 2023a) utilize a shared network to uniformly treat all channels and
display that the single-channel separate prediction can outperform multi-channel mixing settings.
Whilst this channel-independent structure fail to handle those complex temporal modes where the
auxiliary information from other channels could also be helpful. Latest progress (Liu et al., 2023;
Lu et al., 2023; Chen et al., 2024a; Han et al., 2024) reflect that both channel-independence and
channel-fusion are crucial for versatile time series predictors. However, the significance of proper
channel manipulation is rarely probed in multivariate diffusion forecasters, and the additional influ-
ence of channel noise imposed in different extents should also be considered. To tackle this barrier,
we blend both channel-independence and channel-fusion modules in diffusion denoiser to boost its
forecasting ability on multivariate cases.

Time series diffusion models. Due to the remarkable capacity to generate high-fidelity samples,
diffusion models are actively exploited to grasp the stochastic dynamics and temporal correlations
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for a variety of time series tasks, including synthesis (Yuan & Qiao, 2024; Narasimhan et al., 2024),
forecasting (Rasul et al., 2021), imputation (Tashiro et al., 2021) and anomaly detection (Chen et al.,
2023). Common goals of these tasks are to derive a high-quality conditional temporal distribution
aligned with diverse input contexts, such as statistical properties in constrained generation (Coletta
et al., 2024) and historical records. To this end, the key challenge lies in how to design a potent tem-
poral conditioning mechanism to empower the conditional backward generation. An intuitive way
is to integrate useful temporal properties such as trend-seasonality (Yuan & Qiao, 2024), continuity
(Biloš et al., 2023) and multi-scale modes (Shen et al., 2023; Fan et al., 2024) to empirically boost
the utilization efficiency of conditioning data in the learnable denoising process. Another track is
to develop gradient-based guidance schemes to satisfy given constraints via differentialable (Coletta
et al., 2024) or objective-oriented optimization (Kollovieh et al., 2024). Even this plethora of time
series diffusion models, there are still rooms to enhance them from the aspect of training manners
and denoiser architectures. To bridge this gap for multivariate forecasting, we exclusively design
a channel-aware denoiser network and recast the problem of estimating conditional predictive dis-
tribution in the paradigm of mutual information maximization, which can enhance the consistency
between past conditioning and future predicted time series. On top of original conditional likelihood
maximization via step-wise noise regression, we adapt temporal contrastive learning to further aug-
ment conditional diffusion training. In future work, we hope to extend such innovations to benefit
other time series analysis tasks.

Time series contrastive learning. Time series contrastive learning primarily aims to obtain self-
supervised universal temporal representations which can enable an array of downstream tasks with
few shots (Trirat et al., 2024; Lee et al., 2023; Franceschi et al., 2019; Wang et al., 2024a). This
line of research focus on developing efficient representation learning methods to pre-train temporal
feature extractors in two vital senses, containing contrastive loss design and positive and negative
sample pair construction. With respect to the deterministic time series prediction task, there also
exist specialized decomposed contrastive pre-training approaches (Woo et al., 2021; Wang et al.,
2022) to investigate disentangled seasonal and trend representations, which can relieve the sub-
sequent prediction on volatile temporal evolution. While in this work, we devise an end-to-end
denoising-based contrastive learning to ameliorate conditional denoiser training rather than the com-
mon pre-training fashion on general temporal representation networks. We realize this contrastive
refinement in an identical form of step-wise noise regression to seamlessly align with vanilla dif-
fusion training, whereas other popular methods often design the temporal feature similarity-based
objective to govern the training process . Moreover, we alter both temporal variations and point mag-
nitudes in the time series augmentation stage, which can construct more useful negative samples for
the contrastive denoiser improvement.

A.3 TRAINING ALGORITHM

We elucidate the step-wise denoising-based contrastive diffusion training algorithm in Algorithm 1.

Algorithm 1 Step-wise contrastive conditional diffusion training procedure.
Input: Lookback time series x ∈ RL×D; target time series y0 ∈ RH×D; lookback length L;
prediction horizon H; variate number D; diffusion step number K; negative sample number N ;
contrastive loss weight λ; temperature coefficient τ ;
repeat

1: Draw step k ∼ U[1, ..,K].
2: Draw noise ϵ ∼ N (0, I) to calculate the naive diffusion loss Ldenoise

k in Eq. 1.
3: Draw noise ϵ′ ∼ N (0, I) to calculate the denoising-based contrastive loss Lcontrast

k in Eq. 4.
4: Obtain a set of negative time series {yn

0 }
N
n=1 using the hybrid augmentation in Appendix A.9.1.

5: Compute the contrastive conditional diffusion loss LCCDM
k = Ldenoise

k + λLcontrast
k in Eq. 6.

6: Optimize the conditional denoising network ϵθ(·) using the gradient ∇θLCCDM
k .

until converged
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A.4 DATASET DESCRIPTION

We present the dataset usage in Table 4, where the channel number D, sampling rate, train/val/test
split size and own field are clarified. We also provide accessible repositories for these datasets below:

1) ETTh1: https://github.com/zhouhaoyi/ETDataset
2) Exchange: https://github.com/laiguokun/multivariate-time-series-data
3) Weather: https://www.bgc-jena.mpg.de/wetter/
4) Appliance: https://archive.ics.uci.edu/dataset/374/appliances+energy+prediction
5) Electricity: https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014
6) Traffic: https://pems.dot.ca.gov/

Table 4: Detailed dataset description. Size indicates the split lengths of individual points for training,
validation and testing division respectively.

Dataset Variate number D Sampling frequency Split size Field

ETTh1 7 Hourly (8640, 2880, 2880) Energy
Exchange 8 Daily (5311, 758, 1517) Finance
Weather 21 10min (34560, 5760, 11520) Weather

Appliance 28 10min (13814, 1973, 3947) Energy
Electricity 321 Hourly (17280, 2880, 5760) Energy

Traffic 862 Hourly (11520, 2880, 2880) Traffic

A.5 EVALUATION METRICS

To assess the accuracy and reliability of estimated multivariate predictive distribution, we adopt
four common metrics quantify both deterministic and probabilistic forecasting performance of gen-
erated prediction intervals. The MSE (Mean Squared Error) and MAE (Mean Absolute Error) are
employed to quantify the mean difference between the obtained median forecast and true target.
The CRPS (Continuous Ranked Probability Score) and CRPS sum are employed to characterize the
divergence between the generated prediction uncertainties and the real observed time series distri-
bution. Suppose y0 is the ground-truth time series, {ŷ(s)

0 }Ss=1 is the produced prediction set, and
let its 50%-quantile trajectory ȳ0 signify the point forecast, then two metrics can be calculated in a
point-wise form over all channels and timestamps:

MSE =
1

HD
∥y0 − ȳ0∥22 ; (16)

MAE =
1

HD
|y0 − ȳ0| ; (17)

CRPS =
1

HD

D∑
d=1

H∑
t=1

∫
R

(F (ŷtd)− I{ytd ≤ ŷtd})2dŷtd; (18)

CRPS sum =
1

H

H∑
t=1

∫
R

(F (ẑt)− I{zt ≤ ẑt})2dẑt; (19)

where ytd indicates the t-th point value of the d-th univariate time series, zt =
∑D

i=1 yti is the sum
of D point observations at time t. F is the empirical cumulative distribution function.

A.6 EXPERIMENTAL CONFIGURATIONS

In Table 5, we detail the conditional diffusion model configurations on different forecasting sce-
narios, including the channel-aware DiT compositions and diffusion noise scheduling. We simply
preserve the layers of input and output channel-independent dense encoders identical to the depth
of attention modules, i.e. natt = nenc = ndec = 2. One observation is that the designed channel-
centric conditional denoising network can be easily scalable with diverse forecasting scenarios by

19
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merely adjusting the hidden representation dimension ehid, which changes compatibly with the pre-
diction horizon H .

In Table 6, we shed light on the concrete contrastive training configurations for the main comparison
outcomes presented in Table 1. We adopt the two-stage separate training on Weather, Electricity and
Traffic datasets to reduce the training time and memory consumption. The best contrastive weight is
chosen from {0.001, 0.0005, 0.0001, 0.00005}. Due to the GPU memory limitation, we have to turn
down the negative sample number and batch size on Electricity and Traffic datasets with hundreds
of channels, which could restrict the resulting final forecast performance. The initial learning rates
are also displayed for the full reproduction on the newly adopted benchmark. We adopt the Adam
optimizer with its weight decay of 1e-6 and a MultiStepLR learning rate scheduler to optimize the
parameters of contrastive diffusion model.

Table 5: Diffusion forecaster configurations on different forecasting setups.

Forecasting setup DiT blocks Noise schedule
(quadratic)

Lookback length L Prediction horizon H Depth natt Heads Hidden dim ehid β1 βK Steps K

48 96 2 8 128 0.0001 0.5 50
96 168 2 8 256 0.0001 0.2 100

192 336 2 8 512 0.0001 0.1 200
336 720 2 8 728 0.0001 0.1 200

A.7 RUNTIME ANALYSIS

We compare the both training and inference time costs of disparate diffusion forecasters in Table 7.
It is obvious that the auxiliary contrastive learning indeed aggravates the burden of vanilla denoising
diffusion training for the sake of a higher quality of multivariate predictive distribution. Thus we
adopt the two-stage separate strategy to accelerate the training process. The sequential generation
procedure of our CCDM method is notably faster than other models, which indicates the designed
channel-centric denoiser architecture can be efficiently scalable to diverse forecasting settings. Be-
sides, the deterministic autoregressive pretraining in TimeDiff, hybrid attention layers in CSDI and
point-wise amortized diffusion in TimeGrad can magnify their time consumption to different extents.

A.8 MORE EXPERIMENTAL RESULTS

A.8.1 ADDITIONAL COMPARISONS ON SHORT-TERM PROBABILISTIC FORECASTING

We also verify the capability of CCDM on short-term probabilistic forecasting in Table 8, at which
previous diffusion forecasters are displayed to be adept. We follow the same setting in CSDI (Tashiro
et al., 2021) with lookback window of 168 and prediction horizon of 24. Another two diffusion fore-
casters i.e. TimeDiT (Cao et al., 2024) and LDT (Feng et al., 2024), which similarly repurpose the
DiT architecture are involved to show the advantage of the proposed channel-centric manipulation in
temporal conditional denoising. We can see that CCDM consistently outperform other baselines on
the short-term setup, which further validate the superior forecasting capacity of CCDM. Besides, we
replace the CiDM module with residual connections by normal channel-independent linear layers
as in iTransformer, and entice a moderate decline on prediction outcomes in Table 8. It reflects that
adding residual shortcuts to channel-independent MLP encoders can indeed boost the expressivity
for dynamic temporal variations, and verify the virtue of residual CiDM modules in TiDE (Das et al.,
2023a) again.

A.8.2 ADDITIONAL COMPARISONS WITH UP-TO-DATE BASELINE MODELS

To further verify the forecasting capability of CCDM, we involve extra four classes of up-to-date
models for a more comprehensive comparison: 1) iTransformer (Liu et al., 2023), which devises a
channel-centric transformer to capture the complex intra-variate and inter-variate temporal correla-
tions; 2) SimMTM (Dong et al., 2024), which designs a mask-based pretraining scheme to refine
the predictive learning process; 3) mr-Diff (Shen et al., 2023), which endows the useful multi-scale
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Table 6: Contrastive training configurations corresponding to forecasting results in Table 1.
Setup Contrastive weight λ Negative number N Batch size Initial rate Training mode

ETTh1

96 0.001 64*2 32 0.001 End-to-end
168 0.001 64*2 32 0.001 End-to-end
336 0.001 64*2 32 0.0002 End-to-end
720 0.001 64*2 32 0.0002 End-to-end

Exchange

96 0.001 64*2 32 0.001 End-to-end
168 0.001 64*2 32 0.001 End-to-end
336 0.001 64*2 32 0.0002 End-to-end
720 0.001 64*2 32 0.0002 End-to-end

Weather

96 0.001 64*2 32 0.0001 Two-stage
168 0.001 64*2 32 0.0001 Two-stage
336 0.0001 64*2 32 0.00002 Two-stage
720 0.001 64*2 32 0.00002 Two-stage

Appliance

96 0.001 64*2 32 0.001 End-to-end
168 0.001 64*2 32 0.001 End-to-end
336 0.0001 64*2 32 0.0002 End-to-end
720 0.00005 64*2 32 0.0002 End-to-end

Electricity

96 0.0001 32*2 24 0.0001 Two-stage
168 0.00005 32*2 12 0.0001 Two-stage
336 0.00005 32*2 8 0.00002 Two-stage
720 0.00005 24*2 8 0.00002 Two-stage

Traffic

96 0.0005 32*2 4 0.0001 Two-stage
168 0.0001 24*2 4 0.0001 Two-stage
336 0.00005 16*2 4 0.00002 Two-stage
720 0.00005 12*2 4 0.00002 Two-stage

Table 7: Time cost comparison of diffusion forecasters on different sizes of prediction tasks. Both
training time [s] of one epoch and inference time [ms] of one step are provided.

Size CCDM TimeDiff CSDI TimeGrad

Train [s] Infer [ms] Train [s] Infer [ms] Train [s] Infer [ms] Train [s] Infer [ms]

D=8

H=96 18.67 3.63 14.11 3.00 4.78 3.63 2.22 349.42
H=168 28.11 4.37 18.56 3.00 6.33 3.58 3.89 603.05
H=336 80.78 4.71 24.00 2.98 10.67 3.72 5.32 1163.55
H=720 166.44 4.97 26.22 3.05 18.78 3.58 9.33 2571.37

D=28

H=96 66.67 3.76 25.44 4.00 34.89 3.76 7.67 374.23
H=168 203.11 4.38 37.11 3.94 50.78 3.68 12.22 605.80
H=336 441.74 4.71 33.22 4.29 97.22 3.66 21.67 1170.64
H=720 903.00 4.75 34.67 4.50 181.56 6.45 50.22 2551.13

D=321

H=96 573.22 4.59 657.67 17.92 84.78 9.08 48.56 357.51
H=168 1131.89 4.70 859.44 19.48 145.89 17.20 86.22 630.14
H=336 3173.89 4.83 1190.33 20.61 376.11 47.77 171.44 1188.07
H=720 4039.56 5.09 1269.56 22.71 546.67 70.13 330.67 2672.31

D=862

H=96 1466.14 4.54 185.78 46.67 104.22 25.12 80.56 369.04
H=168 1884.77 4.52 193.89 47.89 118.33 47.71 146.67 620.23
H=336 3202.85 5.17 284.89 49.09 228.44 96.06 289.11 1186.83
H=720 4678.78 7.86 463.56 55.01 417.33 193.62 545.67 2591.93

Table 8: Comparisons of short-term forecasting capacity on two datasets with L = 168, H = 24.

Methods Exchange Electricity

MSE MAE CRPS CRPS sum MSE MAE CRPS CRPS sum

CCDM 0.0309 0.1173 0.0917 0.5246 0.0881 0.1780 0.1325 9.9455
CCDM-w/o CiDM 0.0323 0.1205 0.0983 0.5576 0.1067 0.1998 0.1627 12.1184

CSDI 0.0704 0.1774 0.1393 0.7714 0.1117 0.2028 0.1580 13.4852
TimeDiff 0.0313 0.1257 0.1257 0.6857 0.1285 0.2512 0.2509 19.0025
TimeDiT 0.0657 0.1685 0.1252 0.7196 0.1066 0.1965 0.1507 12.9503

LDT 0.0656 0.1616 0.1125 0.6750 0.0998 0.1859 0.1473 12.7360
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Table 9: Overall comparisons with four kinds of up-to-date forecasters w.r.t MSE and MAE on three
real-world datasets. The best and second-best results are boldfaced and underlined.

Methods CCDM iTransformer SimMTM mr-Diff Moirai

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.3715 0.3900 0.4117 0.4159 0.3953 0.4069 0.4024 0.3987 0.4053 0.4087
168 0.4137 0.4170 0.4515 0.4415 0.4335 0.4336 0.4397 0.4244 0.4505 0.4395
336 0.5146 0.4629 0.5437 0.4905 0.4688 0.4551 0.4935 0.4558 0.5738 0.5076
720 0.5545 0.5227 0.5746 0.5313 0.5228 0.5175 0.5621 0.5237 0.8054 0.6146

Avg 0.4636 0.4482 0.4954 0.4698 0.4551 0.4533 0.4744 0.4507 0.5588 0.4926

Weather

96 0.2452 0.2320 0.2503 0.2710 0.2434 0.2524 0.3841 0.3515 0.2546 0.2634
168 0.2407 0.2417 0.2774 0.2920 0.2585 0.2655 0.3563 0.3253 0.2749 0.2863
336 0.2840 0.2814 0.3271 0.3267 0.3047 0.3113 0.4793 0.3745 0.3259 0.3223
720 0.5599 0.4603 0.3768 0.3684 0.3552 0.3546 0.5031 0.4031 0.3842 0.3695

Avg 0.3325 0.3039 0.3079 0.3145 0.2905 0.2960 0.4307 0.3636 0.3099 0.3104

Electricity

96 0.1987 0.2704 0.2011 0.2825 0.2261 0.3106 0.1960 0.3123 0.2065 0.2849
168 0.1575 0.2481 0.1579 0.2554 0.1774 0.2800 0.1908 0.3037 0.1666 0.2614
336 0.1651 0.2597 0.1666 0.2656 0.1826 0.2900 0.2048 0.3177 0.1726 0.2677
720 0.1959 0.2858 0.1982 0.2947 0.2128 0.3138 0.2277 0.3344 0.1995 0.2960

Avg 0.1793 0.2660 0.1810 0.2746 0.1997 0.2986 0.2048 0.3170 0.1863 0.2775

1st count 18 1 10 1 0

temporal features into the cascaded time series diffusion model; 4) Moirai (Woo et al., 2024), which
is a universal time series foundation model forged on large-scale datasets. We compare their deter-
ministic forecasting capability on three real-world datasets and present the MSE and MAE results
in Table 9. We can observe that CCDM and SimMTM can achieve the state-of-art and second-best
ranks respectively. It reveals that designing complementary learning strategies like contrastive re-
finement in CCDM or masked pretraining in SimMTM beyond naive predictive training is able to
enhance the forecasting capacity on specific time series.

A.8.3 FULL RESULTS ON ABLATION STUDY

We illuminate the full forecasting outcomes corresponding to the ablation study of Section 4.3 in
Table 10. In a nutshell, the performance promotion margins derived from such denoiser architecture
and contrastive refinement innovations vary among different forecasting scenarios. It still requires
careful settings on channel-aware denoising networks and auxiliary contrastive training to achieve
the optimal results for a specific time series field and prediction setup.

A.9 MORE ANALYSIS ON TEMPORAL CONTRASTIVE REFINEMENT

A.9.1 NEGATIVE TIME SERIES AUGMENTATION

To enable contrastive learning for time series diffusion models, we consider the following four types
of augmentation methods to produce negative sequences y(n)

0 .

• Intra-series variation shuffling. It alters the ground-truth temporal variations of each uni-
variate time series by patch shuffling, since recovering the correct dynamic evolution is a
vital challenge for time series diffusion models. As shown in Fig. 6, we divide a given
sequence into an array of sub-series patches and randomly shuffle their orders to change
original temporal dependencies.

• Magnitude scaling. It scales up or scales down the magnitudes of individual time points,
as an ideal prediction interval should well cover every point forecasts without any of them
falling outside. Thus, for each positive target y0, we uniformly sample a scaling factor ad
between [0, 0.5] ∪ [1.5, 2.0] and impose it on each channel by ad · yd

0 ∈ RH .

• Jittering. It samples a random Gaussian noise from N (0, 0.3) and adds it to the ground-
truth time series y0.

• Cutout. It randomly masks out the true values on 10% timestamps from input y0 by zeros.
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Table 10: Complete forecasting results by masking denoising-based temporal contrastive refinement
or channel-mixing DiT blocks.

Methods w/o contrastive refinement w/o channel-wise DiT

Metrics MSE Degradation CRPS Degradation MSE Degradation CRPS Degradation

ETTh1

96 0.4447 19.70% 0.3199 12.01% 0.3903 5.06% 0.2963 3.75%
168 0.5223 26.25% 0.3402 12.39% 0.5800 40.20% 0.6674 120.48%
336 0.6416 24.68% 0.3917 15.51% 0.5381 4.57% 0.4699 38.57%
720 0.5944 7.20% 0.5038 3.75% 0.8740 57.62% 0.8928 83.86%

Avg 0.5508 18.81% 0.3889 10.08% 0.5956 28.47% 0.5816 64.62%

Exchange

96 0.1057 16.80% 0.1677 8.54% 0.0959 5.97% 0.1598 3.43%
168 0.1986 21.25% 0.2338 8.29% 0.2200 34.31% 0.2777 28.62%
336 0.4532 2.84% 0.3557 1.14% 0.4735 7.44% 0.3870 10.04%
720 1.2290 5.18% 0.6038 2.97% 1.1802 1.00% 0.5975 1.89%

Avg 0.4966 6.59% 0.3403 4.04% 0.4924 5.69% 0.3555 8.68%

Weather

96 0.2825 15.21% 0.1936 6.02% 0.2919 19.05% 0.2012 10.19%
168 0.3349 39.14% 0.2167 14.17% 0.4199 74.45% 0.2981 57.06%
336 0.2932 3.24% 0.2313 3.72% 0.3825 34.68% 0.2873 28.83%
720 0.6158 9.98% 0.4365 7.14% 0.8428 50.53% 0.5478 34.46%

Avg 0.3816 14.77% 0.2695 7.50% 0.4843 45.65% 0.3336 33.07%

Appliance

96 0.7097 13.97% 0.4291 10.34% 0.7473 20.01% 0.4546 16.89%
168 0.7313 16.71% 0.4374 8.81% 0.7853 25.33% 0.6070 51.00%
336 0.9254 1.48% 0.5083 0.93% 1.0660 16.90% 0.6971 38.42%
720 1.7215 10.36% 0.9525 10.83% 1.8744 20.16% 1.1336 31.91%

Avg 1.0220 9.86% 0.5818 8.04% 1.1183 20.21% 0.7231 34.28%

Electricity

96 0.2142 12.92% 0.2266 10.75% 0.2296 21.03% 0.2198 7.43%
168 0.1689 7.24% 0.2033 7.40% 0.1779 12.95% 0.2041 7.82%
336 0.1714 3.82% 0.2035 2.62% 0.1744 5.63% 0.2048 3.28%
720 0.2002 2.19% 0.2242 2.66% 0.2073 5.82% 0.2260 3.48%

Avg 0.1887 6.55% 0.2144 5.77% 0.1973 11.41% 0.2137 5.43%

Traffic

96 1.0345 0.52% 0.4226 8.05% 1.2831 24.68% 0.4741 21.22%
168 0.6936 0.80% 0.3113 1.17% 0.7682 11.64% 0.3869 25.74%
336 0.6913 3.44% 0.3572 8.77% 0.8472 26.77% 0.4329 31.82%
720 0.9561 13.93% 0.5610 30.34% 1.1351 35.26% 0.5762 33.88%

Avg 0.8439 4.68% 0.4130 13.34% 1.0084 25.08% 0.4675 28.29%

Table 11: Forecasting results by different negative time series augmentation methods on CCDM.
Augmentation methods MSE MAE CRPS CRPS sum

CCDM (Scaling+Variation) 0.4137 0.4170 0.3027 1.3594
Scaling 0.4148 0.4173 0.3031 1.3584

Variation 0.4145 0.4184 0.3046 1.3645
Jittering 0.4236 0.4221 0.3070 1.3677
Cutout 0.4507 0.4381 0.3180 1.4534

We attest the effect of these four negative construction methods on ETTh1 dataset with L = 96, H =
168 and report prediction results in Table 11. We can find that utilizing scaling and variation aug-
mentation methods incurs modestly better quality of prediction intervals than normal Gaussian jit-
tering and zero cutout. Thus in the devised CCDM, we combine the scaling and variation methods
to produce more informative negative instances at each diffusion step.

A.9.2 INFLUENCE OF CONTRASTIVE LOSS FORM

As claimed in (Oord et al., 2018), the density ratio function f(·) in the softmax-formed InfoNCE
loss can be any positive real-valued types. To seamlessly align with the standard denoising diffusion
training paradigm, we specifically dictate f(·) using the step-wise noise regression form as presented
in Eq. 3a, 3b, which adopts the same MSE loss to optimize the conditional denoising network. In
fact, we can also prescribe f(·) as another similarity-based form, which is widely employed in vision
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Figure 6: One diagram of the variation-based time series augmentation method.

Table 12: Forecasting results by two forms of density ratio functions in contrastive loss.

Contrastive loss type Exchange Electricity

MSE MAE CRPS CRPS sum MSE MAE CRPS CRPS sum

MSE regression 0.0830 0.1995 0.1480 0.8331 0.1987 0.2704 0.2046 20.6836
Cosine similarity 0.0864 0.2031 0.1508 0.8729 0.2010 0.2714 0.2056 20.9938

representation learning (Chen et al., 2020). We provide this similarity-typed design for density ratio
function as follows:

fk,ϵ′(y0,x; θ) = exp(sim(ϵ′, ϵθ(
√
ᾱky0 +

√
1− ᾱkϵ

′,x, k))/τ); (20a)

fk,ϵ′(y
(n)
0 ,x; θ) = exp(sim(ϵ′, ϵθ(

√
ᾱky

(n)
0 +

√
1− ᾱkϵ

′,x, k))/τ); (20b)

where sim(·) indicates the cosine similarity between the ground-truth and predicted noise. The
spirit of Eq. 20a, 20b is that the predicted noise of positive time series should be more similar to the
imposed noise label ϵ′, while that for negative instances is repelled from the true ϵ′. We validate the
efficacy of these two disparate density ratio forms for time series contrastive diffusion learning, and
report the forecasting outcomes on two real-world datasets with L = 48, H = 96 in Table 12. We
can easily see that the MSE noise regression form is slightly better than the cosine similarity type,
which suggests that aligning the additional contrastive training with naive denoising manner is more
effective to enhance time series diffusion models.

A.9.3 INFLUENCE OF NEGATIVE NUMBER

It is claimed in previous works on visual contrastive representation learning Oord et al. (2018); Chen
et al. (2020) that a larger number of negative samples within a training iteration can bring out more
informative latent features for downstream vision recognition tasks. To probe the influence of num-
ber of negative sample N on the specialized contrastive time series diffusion model for multivariate
forecasting, we change N in the range from 16 to 256 and showcase pertaining outcomes in Fig.
7. We can observe that the optimal N is 192, 128 and 16 on three datasets and two quantitative
metrics of each dataset exhibit distinctive changing trends. This phenomenon suggests that the real
impact of negative sample number on contrastive training gains is relatively intractable, which is not
amenable to the law in visual contrastive self-supervised pretraining. It could also be caused by the
substantially smaller amount of training corpus in time series than images. We should determine the
best number of negative instances in light of concrete data characteristics along with other training
hyper-parameters. Even though we can not empirically derive a valid guideline to design the optimal
contrastive training configuration, the remarkable forecasting outcomes achieved by CCDM in Table
1 and 9 can reveal that: simply instantiating CCDM using the uniform setting provided in Table 5
without any extra hyper-parameter search is sufficient to attain more excellent forecasting capability
versus other baseline models on a wide variety of real-world datasets and prediction scenarios.

A.9.4 INFLUENCE OF TEMPERATURE COEFFICIENT

The proposed denoising-based contrastive diffusion loss in Eq. 4 is in a canonical softmax form.
According to the gradient analysis for the universal softmax-based contrastive loss in Wang & Liu
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Figure 7: Forecasting results by different numbers of negative samples.

Table 13: Forecasting results by different temperature coefficients.

Temperature τ
ETTh1 Exchange Weather

MSE CRPS MSE CRPS MSE CRPS

0.05 0.4391 0.3124 0.1728 0.2216 0.2515 0.2015
0.1 0.4267 0.3142 0.1638 0.2159 0.2489 0.2006
0.5 0.4730 0.3252 0.1583 0.2152 0.2493 0.2022
1.0 0.5082 0.3389 0.2031 0.2449 0.2505 0.2025

(2021), the temperature τ is a critical factor to control the penalty magnitude on various negative
samples. To attain the contrastive improvement on conditional denoiser training, maintaining τ
within an appropriate interval is significant. We assign four values to τ and illustrate quantitative
results in Table 13. We can apparently observe that [0.05, 0.1] could be a reasonable range on ETTh1
and [0.1, 0.5] is also valid for other two datasets.

A.10 MORE ANALYSIS ON CHANNEL-AWARE DIT ARCHITECTURE

As discussed in Section 3.1, the proposed channel-aware DiT architecture mainly differs from exist-
ing time series denoising networks in two ways: 1) Multi-head attention usage for temporal corre-
lations modeling. We alter the naive point-wise attention over the time dimension to a channel-wise
attention along the variate axis. 2) Conditioning scheme of past observed time series x. We directly
concatenate the conditioning x with corrupted yk and capture their temporal correlations by subse-
quent channel-wise DiT blocks. To demonstrate the impact of attention usage and past conditioning
scheme separately, we compare three curated CCDM variants with DiT-based TimeDiT, LDT and
attention-based CSDI on two real-world datasets. The respective average MSE and CRPS values
over four prediction horizons are presented in Table 14.

In detail, the attention axis column in Table 14 contains two options, including channel-wise at-
tention for inter-variate correlations or point-wise attention for intra-variate temporal dependencies.
The conditioning scheme column consists of three entries: 1) The proposed x − yk mixing DiT. It
concatenates the temporal encoding of past observed x and step-wise corrupted yk along the chan-
nel dimension and feed-forward them into the follow-up DiT blocks to fully exploit the predictive
information in x. 2) Vallina adaLN DiT, which handles x and diffusion step embedding using the
uniform linear adaLN layers. 3) 1D-CNN encoding, which simply processes the local features in x
and adds it to yk latent embedding. Note that to ensure a fair architecture comparison, the ad-hoc
CCDM variants in top three lines, i.e. the devised channel-wise Mix-DiT in standard CCDM, variant
point-wise Mix-DiT and channel-wise DiT are trained without the auxiliary contrastive loss.

According to the ablation study results in Table 14, we can observe that both channel-wise correla-
tion modeling and x− yk mixing conditioning scheme indeed lead to more satisfactory forecasting
results. In particular, the mixing conditioning regime can benefit the denoising network to a much
larger margin than ordinary adaLN and 1D-CNN modules, which suggests that directly fusing x and
yk by DiT blocks can prevent from the potential predictive information loss. Besides, managing the
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Table 14: Ablation studies on channel-wise attention and past conditioning schemes.
Architecture design Exchange Electricity

Models Attention axis Past conditioning scheme MSE Degradation CRPS Degradation MSE Degradation CRPS Degradation

channel-wise Mix-DiT channel x− yk mixing DiT 0.4699 0.00% 0.3403 0.00% 0.1887 0.00% 0.2144 0.00%
point-wise Mix-DiT time x− yk mixing DiT 0.5379 14.47% 0.3583 5.29% 0.1929 2.23% 0.2279 6.30%
channel-wise DiT channel adaLN DiT 0.5699 21.28% 0.3958 16.31% 0.2141 13.46% 0.2382 11.10%

TimeDiT time adaLN DiT 0.6374 35.65% 0.4209 23.68% 0.2598 37.68% 0.2967 38.39%
LDT time adaLN DiT 0.6119 30.22% 0.4084 20.01% 0.2329 23.42% 0.2813 31.20%
CSDI time+channel 1D-CNN encoding 0.7649 62.78% 0.5051 48.43% 0.4012 112.61% 0.3069 43.14%

complex temporal properties from a channel-centric perspective in diffusion forecasting can mitigate
the side effect of noise injection training and give rise to higher-quality prediction intervals.

A.11 MORE SHOWCASES ON PREDICTION INTERVALS

In Fig. 8-13 below, we visualize more prediction intervals generated by the proposed CCDM on
six datasets. The legend for each figure is identical to Fig. 4. For each task’s result visualization,
we just display the first 7 or 8 variates and present two random samples on the L = 48, H = 96
setting. Moreover, in Fig. 14 below, we visually compare the quality of prediction intervals and point
forecasts produced by four different models on each channel of ETTh1. We can clearly see that the
prediction intervals generated by contrastive diffusion CCDM hold better accuracy, sharpness and
reliability to encompass the real observations versus other models. We can also observe that the
faithfulness of the approximated predictive distribution can be enhanced after introducing auxiliary
contrastive training to time series diffusion models.

Figure 8: ETTh1 prediction intervals of total 7 channels.
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Figure 9: Exchange prediction intervals of total 7 channels.

Figure 10: Weather prediction intervals of first 8 channels.
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Figure 11: Appliance prediction intervals of first 8 channels.

Figure 12: Electricity prediction intervals of first 8 channels.
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Figure 13: Traffic prediction intervals of first 8 channels.
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Figure 14: Comparison of generated point forecasts and prediction intervals on 7 ETTh1 channels.
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