How to Insert Additional Layers Between the Middle Layers of the
Pre-trained Model

Anonymous ACL submission

Abstract

In many deep-learning tasks, performance im-
provements have been achieved through the
full fine-tuning of pre-trained models for down-
stream tasks. Numerous studies have insert an
additional layer to a pre-trained model when de-
signing a model for fine-tuning. This additional
layer helps optimize the pre-trained model for
downstream tasks. In some cases, this addi-
tional layer may need to be inserted between
the existing middle layers of the pre-trained
model . However, most studies have added an
additional layer outside the pre-trained model.
This is because inserting an additional layer
between the pre-trained layers of a pre-trained
model can cause performance degradation. In
this study, we assume the following reason for
the performance degradation: Initializing the
additional layer using the existing initialization
method with random characteristics and using
the activation function changes the output value.
We experimentally verified our assumptions by
varying the number of additional layers and
activation functions. To address this problem,
we propose a methodology that initializes by
unit tensor and modifies the application of the
activation function. The methodology does not
modify the output vector during the initial stage
of full fine-tuning. We conducted experiments
on the various NLP and CV datasets to verify
whether the proposed methodology could solve
this problem.The code used for the experiments
is available on GitHub.!

1 Introduction

With the rapid development of deep learning tech-
nology, people have become more interested in
artificial intelligence (AI) applications. Al appli-
cation services have been developed in various
fields, such as voice assistants, Al-based QA sys-
tems, and autonomous driving. Some of the tech-
nologies that have led to the rapid development of

1h'ctps ://anonymous. 4open.science/r/Unit_
Initalize_and_Weight_Activation-1FE9

deep learning include transformer (Vaswani et al.,
2017) and transfer learning(He et al., 2019). A
transformer is a language model structure based on
multi-head attention. Deep learning models such
as BERT(Devlin et al., 2019), RoBERTa (Liu et al.,
2019), and SwinTransformer(Liu et al., 2021) are
large language models (LLMs) based on trans-
former structures. Numerous recent studies have
used pre-trained LLMs with transfer learning.
Many of these studies performed full fine-tuning
of pre-trained large language models to perform
downstream tasks. As shown in model editing of
(Zheng et al., 2023), an additional layer is added
outside the pre-trained model to enable the deep
learning model to perform the downstream task.
There are various methods, such as adding a clas-
sification head to change the size of the output
tensor (Devlin et al., 2019) or structuring an ad-
ditional layer that is specialized for the objective
(Kim and Kang, 2022). Thus, many studies using
full fine-tuning have inserted additional layers out-
side the pre-trained model to handle downstream
tasks. However, there are many possible structures
of additional layers to better perform the down-
stream task, which may require the insertion of
additional layers between the middle layers inside
the pre-trained model. But inserting an additional
layer between the middle layers inside a pre-trained
model can cause performance degradation.
Generally, when inserting a fully connected neu-
ral network layer as an additional layer, the weights
must be initialized because the additional layer is
newly created. There are many different weight
initialization methods. Many of them assign ini-
tialization values probabilistically according to a
specific distribution. The weights initialized using
these methods have randomness. Thus, before train-
ing, if weights initialized with randomness, than the
results of an additional layer can also be random.
Even if a well-trained input is given to the initial-
ized additional layer, the result will have random

https://anonymous.4open.science/r/Unit_Initalize_and_Weight_Activation-1FE9
https://anonymous.4open.science/r/Unit_Initalize_and_Weight_Activation-1FE9

characteristics that are likely to be untrained vec-
tors in the pre-training process. Therefore, inserting
an additional layer between the middle layers in-
side a well-trained pre-trained model can act as
noise at the pre-trained model.

For example, suppose there is a transformer-
based pre-trained language model P. Let P, be
each pre-trained transformer block in the pre-
trained model. If we insert a randomly initialized
additional layer between P3 and Py, even if Ps re-
sults in a well-trained vector, Py will get a vector
with randomness due to the additional layer. This
implies that P will get vectors that are unrelated
to the pre-trained information that was learned dur-
ing the pre-training process. Therefore, during the
full fine-tuning of a pre-trained model, inserting an
additional layer between the middle layers inside
the pre-trained model can noise in the pre-trained
model. Moreover, if this noise accumulates in the
early stages of full fine-tuning, it may cause the
pre-trained information to be lost during full fine-
tuning. Experiments and results that verify these
issues are presented in Section 4.3.

Additionally, the activation functions applied to
the additional layers can act as noise in the pre-
trained model. Typically, an activation function is
applied to the output of a fully connected neural
network. The activation function causes a change
in the vector value; therefore, even if the addi-
tional layer is well-trained and contains valuable
pre-trained information, the activation function can
cause a change the value. This can be a problem
in full fine-tuning if the newly inserted activation
function changes the vector values between the
middle layers of the pre-trained model.

This study introduces a methodology to prevent
problems caused by inserting additional layers be-
tween the middle layers of a pre-trained model. To
address this issue, we propose a methodology that
inserts additional layers in the early stages of full
fine-tuning, where the initialized additional layers
do not act as noise to the pre-trained information.
To the best of our knowledge, this is the first study
to reliably train an additional layer inserted be-
tween the middle layers of a pre-trained model in
full fine-tuning.

2 Related Work

2.1 Transfer Learning

Transfer Learning. Transfer learning uses the
knowledge and information from a model trained

for specific purposes to solve problems in other
tasks. (He et al., 2019) experimentally demon-
strated that the knowledge learned by a deep learn-
ing model for a specific task can be transferred
to other tasks. In the early days, transfer learning
was primarily used in computer vision. Utilizing
models pre-trained on large datasets for tasks such
as fine-grained image classification (Yuan et al.,
2020), segmentation (Long et al., 2015), and de-
tection (Girshick et al., 2014) has shown notable
efficacy in various computer vision applications.

Pre-trained Language Model. Many recent
studies in the field of natural language processing
have used pre-trained language models. Pre-trained
language models train a text representation with
general characteristics during the pre-training pro-
cess, and it is common to perform self-supervised
learning using a large number of unlabeled corpora
to train the text representation. For the training
objective of dictionary learning, masked language
modeling is used, which masks some tokens in the
text and then reconstructs the masked token(Devlin
et al., 2019).

Fine-tuning of Pre-trained Language Model.
A pre-trained language model trained with general
information through pre-training is then fine-tuned
using the dataset from a downstream task. Several
methods have been considered to effectively fine-
tune the models. First, a separate layer was added
to the pre-trained language model. For example,
SEQSON(Wang et al., 2022) added a single-layer
linear classifier on top of the encoder of the pre-
trained model to estimate the important parts of
the original document in an abstract summariza-
tion task. DyLex(Wang et al., 2021) uses word-
agnostic tag embedding and contextual embedding
of pre-trained models as an additional layer in the
sequence labeling task. There are also studies that
change the fine-tuning process.

2.2 Weight Initialization

Setting the initial weights is critical when train-
ing a deep-learning model. Incorrect initial weights
can cause various problems, such as gradient van-
ishing, which increases the likelihood of conver-
gence to a local minimum. Therefore, considerable
research has been conducted on weight initializa-
tion methods. In general, the most popular initial-
ization methods used in deep learning models are
Xavier initialization (Glorot and Bengio, 2010) and
He initialization (He et al., 2015). Xavier initial-
ization (Glorot and Bengio, 2010) initializes the

Transformer Block |

Add & Norm

[Feed Forward

Add & Norm

Transformer Bock 1

—(rsatem)
()

Additional Layer
|

Feed Forward J

Add & Norm

xN

Transformer Bock 1

Add & Norm

(Additional Layer

)

Feed Forward

]

Add & Norm

ulti-Head Attention |

Concatenate & Linear }

Scaled Dot-Product Attention

xN

Additional Additional Additional
Layer Layer Layer |
Linear Linear Linear |}

-—

ulti-Head Attention | xN Multi-Head Attention |
Concatenate & Linear] [Concatenate & Linear]
h Scaled Dot-Product Attention })— h
Layer Layer |)'| " Layer
- E =!: : =t :
(tinear }) (tinear) tinear J/[Linear J}/(tinear J}
T T
Input Embedding Input Embedding
(a) (b)

T
Input Embedding

(©

Figure 1: Model structure with additional layer. (A) is model structure of In multi-head self-attention. (B) is model
structure of After feed-forward network. (C) is model structure of Both.

weights to follow a normal distribution, with the
standard deviation determined by the number of
nodes in the previous and next layers. He initializa-
tion (He et al., 2015) addresses the limitations of
Xavier initialization, offering enhanced efficiency
for ReLU(Agarap, 2018) activations.

3 Proposed Method

The proposed method aims to insert an additional
layer between the middle layers inside the pre-
trained model. When inserting an additional layer,
we construct an additional layer such that the in-
serted layer does not act as noise to the pre-trained
information. To insert an additional layer into a tra-
ditional deep learning methodology, the additional
layer and activation function are structured and
weight initialized. For example, if the traditional
method uses a fully connected neural network as
an additional layer, the structure of the additional
layer is as follows: The additional layer operates
on learnable parameters W, b (W X + b). The ac-
tivation function is applied to the output of layer
WX +b(a(WX +10)). Here, W and b denote the
learnable parameter weight and bias, respectively,
X is the input, and « is the activation function. In
addition, W and b are initialized by an initialization
methods such as the Xavier Initialization and He
Initialization.

In this study, we assume that the initialization
method with randomness and the activation func-
tion applied to the output cause the loss of pre-
trained information. To solve this problem, we con-
struct an additional layer in the early stage of full
fine-tuning step that does not harm the existing
pre-trained information. The method to prevent the
problem is described in detail in Section 3.2.

3.1 Position of Additional Layers

In this section, we describe the position of the ad-
ditional layer inserted for the experiment before
explaining the proposed methodology. The model
structure used for the experiments is illustrated in
Figure 1. An additional layer is inserted between
the middle layers of the transformer blocks. In this
study, we used three model structures, and addi-
tional layers were inserted at the following posi-
tions: 1. only in multi-head self-attention and 2.
only after the feed-forward network, and 3. both.

In Multi-head Self-attention. The model struc-
ture with an additional layer inserted at the position
in the multi-head self-attention is shown in Fig.
1-A. An additional layer A is positioned after the
feed-forward network of generate ();,K;, and V;
in multi-head self-attention. where i denotes the
number of heads. We input @);, K;, and V; into an
additional layer A to generate new Q';, K';, V.
Subsequently, Q';, K';, and V’; are used to per-
form multi-head self-attention. The equation for
this process is as follows:

Qi =WFE (1)

K;=WEE)

Vi=WYE 3)

Q' = A (Qy))

K'; = AK(K;) 5)

V=AY (V) (6)
1 11T

Attention(Q', K', V') = Softmax(= W
Kl

@)

(Selt-Attention (head h)))
Self-Attention (head 2) N\
(Self-Attention (head 1) N\
r Additional Layer ~N Q
11010} 1O} 5 =
— Q[T 1117 | [ofol1] [o]|55 Q1 5
ToToTolt] | > 8
oJofofo[1
_Unit Infalization *’) Scaled T
w4 [0
. Dot-product =
r Additional Layer ~N Attention =
iolo[o] [» 2
o[1[0]~[0] | = & 2
KT | [olol] o} |55] |— ki
i -[0||7 &
oJoJoJo[1 2)
_Unit m;:w/a:.zanon* J
r Additional Layer ~N
1[ofo] o] [»
0 nm l .y
— 1 WL «| [ofold [o 55| |[—w [T TTTF—""—
i -[0||7 &
ofo[oJo[1 >
_Unit Iniiaization ;’ J L/
wA |/
\ J

Figure 2: Additional layer structure when layer position is In multi-head self-attention.

head; = Attention(Q';, K';,V';))

MultiHead(Q', K', V")

9
= Concat(heady, heads, ..., headh)WO @

These equations are based on the multi-head at-
tention equations of the transformer(Vaswani et al.,
2017). In the equation, E denotes the input embed-
ding and VVZ-Q, WX, WY, and WO are the learn-
able parameters of multi-head self-attention in the
pre-trained model. i is the head index and h is the
number of heads. Additionally, A(-) denotes an ad-
ditional layer, and the structure of A is described
in Section 3.2.

After Feed-forward Network. The position of
the additional layer in After feed-forward network
is shown in Fig 1-B. Additional layers are inserted
after the feed-forward network in the transformer
blockThe equation for this is as follows:

FFEN'(z) = A(max (0, xW1+by)Wa+bs) (10)

This equation is based on the transformer
(Vaswani et al., 2017): The feed-forward network
of transformer block experimented with F FN'(x),
which is an additional layer A added to the for-
mula F/F N (zx) in the Transformer paper(Vaswani
et al., 2017). Wy, Wa, b1, and bs are learnable pa-
rameters of the pre-trained model. A(-) denotes the
additional layer.

Both refers to inserting an additional layer in
both the multi-head self-attention and after feed-
forward neural network. The corresponding struc-
ture is shown in Fig 1-C.

3.2 Insert Additional Layer

The proposed method involves inserting an addi-
tional layer without harming the pre-trained in-
formation, that is, the additional layer does not
act as noise in the initial stage of full fine-tuning.
We assumed that the transformations of the out-
put vector by the additional layer in the early
stages of full fine-tuning were acted as noise in
the pre-trained model. In existing pre-trained mod-
els, each pre-trained layer receives a well-trained
input and passes the well-trained output to the next
pre-trained layer. However, if an additional layer is
inserted during this process, the next layer receives
the value of the transformed output, rather than
the well-trained output of the previous pre-trained
layer.

The proposed method focuses on two reasons
why the output vector changes when an additional
layer is inserted: the initialization method of ran-
domly initializing the weights, and the activation
function applied to the output. An initialization
method with random characteristics may change
a well-trained output vector to an output vector
with random characteristics. Applying an activa-
tion function to the output of an additional layer
can change the value of the well-trained output vec-
tor. If the output vector between each pre-trained
layer is modified in the early stages of full fine-
tuning, the pre-trained information can be loss. If
more additional layers are inserted, the problem of
not using the pre-trained information accumulates,
and the pre-trained information may be lost during
the fine-tuning process. This was experimentally
verified in Section 4.3. Therefore, the proposed
method prevents the output of the pre-trained layer

from having random characteristics and prevents
the well-trained output from being modified by the
activation function. The overall structure of the pro-
posed methodology is illustrated in Figure 2. Fig-
ure 2 illustrates the case where an additional layer
is added to the in multi-head attention position.

Unit Initialization. In this study, the learnable
parameters of the additional layer are initialized
using a unit tensor. A unit tensor (matrix) has the
property of preserving the value of the input in thea
dot product. If the dot product a tensor Y and the
unit tensor U, the outputis Y (Y - U = Y'). There-
fore, we initialize the learnable parameter of the
additional layer W4 as a unit tensor. If the addi-
tional layer is initialized as a unit tensor, the next
pre-trained layer will not receive a vector of un-
trained random characteristics as input during the
early stages of full fine-tuning. This allows the pre-
trained information to be used in the early stages
of full fine-tuning. Maintaining the pre-trained in-
formation in the early stages of full fine-tuning pre-
vents the pre-trained information from being lost
during training. The weight W64 of the additional
layer is initialized as follows:

[1 0 0 -+ 0]
010 -0

WOAZ 0 01 0 (11)
0o 00 --- 1

Weight Activation. The additional layer in the
proposed method does not apply an activation func-
tion to the output. The proposed methodology ap-
plies an activation function to the learnable param-
eter W4 in an additional layer. GeLU(Hendrycks
and Gimpel, 2023) was used as an activation func-
tion . When the GeL U activation function is applied
to the unit tensor, a tensor similar to the unit ten-
sor is obtained. Similarly, even if the activation
function is applied in the initialization phase of the
additional layer, the value changes slightly. In the
initial stage of full fine-tuning, it can mitigate the
additional layer acting as noise in the pre-trained
information. It also prevents the loss of pre-trained
information after full fine-tuning is completed. The
structure of additional layer A is as follows:

A(z) = a(Whz (12)

r € R? denotes the input vector for the addi-
tional layer. d” is the dimension of input vector z.

W4 € R¥*4" is a learnable parameter of the addi-
tional layers. «(-) denotes the activation function.

4 Experiment

4.1 Experiment Setup

In this paper, we conduct experiments on vari-
ous NLP and CV datasets to verify the perfor-
mance of the proposed methodology. The experi-
mental datasets are GLUE benchmark (Wang et al.,
2018), CNN/DM (See et al., 2017), WMT16 (Bojar
et al., 2016), ImageNet(Deng et al., 2009), and CI-
FAR100(Krizhevsky, 2009). A detailed description
of each dataset is given in Appendix A.

In this paper, we use the pre-trained model with-
out additional layers as a baseline. We also con-
duct a comparison experiment with a pre-trained
model with Insert Additional Layer without Pro-
posed Method. This comparison experiment veri-
fies that the proposed methodology can solve the is-
sues in this paper. We also conduct comparative ex-
periments with the freeze pre-trained model, which
is one of the ways to adapt the additional layer in
fine-tuning. Freeze Pre-trained Model only learns
the additional layer without the parameters of the
pre-trained model. The models used in each experi-
ment are described in Appendix B.

4.2 Experiment Result

table 1 is the result of GLUE benchmark(Wang
et al., 2018) experiment on DeBERTaV3;,,.,.(He
et al., 2021). The performance without Proposed
Method is considerably low compared to the base-
line. For CoLA dataset, the performance was as
low as 12.89. In addition, the performance of STS-
B’s In multi-head attention was 47, which is about
half of the baseline. Most of the results demon-
strate extremely low performance, confirming that
full fine-tuning is difficult in this case. This trend
is also seen in other datasets that use accuracy as
an evaluation metric. The subtasks SST-2, MRPC,
QNLI, RTE, and WNLI iare binary classifications.
Therefore, an accuracy of 50% is obtained in the
untrained case. On many case, the performance was
close to 50%, confirming the difficulty of training
when without proposed methods.

Freeze Pre-trained Model is an result of fine-
tuning only additional layer without pre-trained
model parameter. For most datasets, there was
no improvement in performance. However, some
datasets show a clear performance improvement
compared with the insertion of an additional layer

COLA | SST-2 | MRPC | STS-B | QNLI | RTE | WNLI
Model Mcc Acc Acc Corr Acc Acc Acc
DeBERTaV3;,,4 | 75.87 | 95.87 | 90.93 | 92.97 | 93.61 | 91.34 | 91.54

Insert Additional Layer without Proposed Method
DeBERTaV3; 0 5092 | 70.10 | 47.07 | 50.54 | 52.70 | 56.34
DeBERTaV34 0 50.92 | 68.38 | 34.13 | 50.54 | 52.70 | 57.75
DeBERTaV3pg 12.89 | 82.56 | 71.08 | 31.30 | 50.54 | 56.68 | 56.34
Freeze Pre-trained Model
Adapter; 0 89.44 | 70.83 | 22.00 | 64.34 | 57.76 | 56.34
Adapter 4 5.29 87.50 | 72.30 | 80.86 | 83.31 | 57.40 | 60.56
Adapterp 1423 | 85.78 | 71.32 | 24.74 | 63.26 | 55.60 | 56.34
with Proposed Method

Proposed; 75.85 | 9599 | 91.67 | 93.28 | 93.78 | 91.70 | 92.95
Proposed 4 73.03 | 96.10 | 91.91 | 92.84 | 93.74 | 91.70 | 95.77
Proposed s 74.28 | 9553 | 92.16 | 9294 | 93.65 | 91.70 | 94.36

Table 1: GLUE benchmank performances with DeBERTaV3,,,.4.. ILA and B is position of additional layer. I is In

multi-head attention, A is After feed forward network and B is Both

CNN/DM WMT16 en-ro

Model ROUGE-1 ROUGE-2 ROUGE-N BLEU
TS5, 4se 42.05 20.34 39.40 28.0

TS5pase 42.60 20.15 39.58 26.45

Insert Additional Layer without Proposed Method
T5; 39.72 18.30 36.74 24.41
T54 41.66 19.39 38.53 24.88
T5p 36.84 16.24 33.91 18.30
with Proposed Method

Proposed; 42.44 20.15 39.37 26.69
Proposed 4 43.20 20.70 40.15 26.79
Proposedp 42.21 19.85 39.23 26.72

Table 2: Text Generation performances with TS5y, s.. * is the performance in the TS5 paper(Raffel et al., 2020).

without Proposed Method like SST-2. However, the
performance was lower than that of the baseline,
confirming that the issue could not be solved.

The performance when using the proposed
method is with Proposed Method. The performance
of with Proposed Method is similar to or higher
than baseline. For the COLA, the performance was
lower than that of the baseline in all cases with
Proposed Method. However, in contrast to the case
without Proposed Method, the performance was
similar to that of the baseline. In most cases, the
performance was higher than the baseline. We sus-
pect that the performance improvement is due to
the success of full fine-tuning of the larger model
by inserting an additional layer. We also performed
experiments on T5;.s. and the results are in ap-
pendix C.

table 2 is the performance evaluation of
CNN/DM(See et al., 2017), WMT16 (Bojar et al.,
2016) on T5;,¢.(Raffel et al., 2020). The results
show that TS5, is relatively robust to additional
layers. However, there is a clear performance degra-
dation on CNN/DM and WMT16 without the
proposal methodology. When using the proposal
methodology, the performance was higher than the
baseline. This confirms that the proposal method-
ology can prevent the performance degradation
caused by the additional layer in text generation.

The proposed method was experimented us-
ing a pre-trained foundation model for the CV
task. Table 3 presents the experimental results
on ViTy,se(Dosovitskiy et al., 2021). The perfor-
mance of Insert Additional Layer without Proposed
Method was approximately 60% accurate. So, In

0.90
0.85

3

g os0
0.75

0.70

MRPC

e S

— bottom-k
top-k

X/

0 5 10

k

15 20 25

Masked Language Modeling in MRPC dataset

—— bottom-k
0.6 / top-k

MLM Acc

Figure 3: Performance graph of number of Additional layer in MRPC.

Model ImageNet Acc | CIFAR100 Acc
ViT;,.. 83.97 91.67
ViTpgse 83.99 92.81
Insert Additional Layer without Proposed Method
ViT; 66.85 61.55
ViT 4 81.01 82.18
ViTp 53.72 54.69
with Proposed Method
Proposed; 84.28 92.62
Proposed 4 84.09 92.54
Proposedp 84.22 92.77
Table 3: Image Classification performances with
ViTygse - * is the performance in the ViT pa-

per(Dosovitskiy et al., 2021).

the case of ViTy,s., we found that training was
some possible even if an additional layer was in-
cluded. However, the performance was consider-
ably poor compared to that of the baseline. In
most cases, the proposed method outperformed the
baseline method. This confirms that the proposed
methodology can improve the loss of pre-trained
information even in a CV’s pre-tarined foundation
model.

4.3 Performance Degradation by Additional
Layer

This study assumes that the additional layer in-
serted into the middle layer inside the pre-trained
model can be noise to the pre-trained informa-
tion. So, we experimentally verified that the per-
formance degradation is caused by the additional
layers. We experimented with the performance of
the downstream task as a function of the number
of additional layers without using the proposed
methodology. In this experiment, each additional
layer used the Xavier initialization, and GELU was

applied to the output. We ran two experiments:
one with the top-k additional layers of the total
N transformer blocks, and one with the bottom-
k additional layers. In this experiment, we used
DeBERTaV3;;.4c, thus N was 24.

Fig 3 visualizes the downstream task perfor-
mance according to the number of additional layers
in MRPC. From the graph, it is the performance de-
creases proportionally to the number of additional
layers. This result shows that the additional layers
without using the proposed method can act as noise
in the pre-trained model, and the performance de-
creases as the noise increases. Additionally, the
performance at bottom-k is lower than the perfor-
mance at top-k when k is the same. We suspect that
noise causes more performance degradation in the
early layers of the pre-trained model.

We also experimented with the same task as in
pre-training. We evaluated the performance of the
masked language model(MLM) after train MLM of
MRPC dataset. The results showed that MLM ac-
curacy decreased as k increased. This confirms that
the additional layer can cause the loss of pre-trained
information. To clarify, we conduct the same exper-
iment on CoLLA dataset, which is described in the
appendix D.

4.4 Ablation Study

The performance was compared with and without
the proposed methodology according to the number
of additional layers. fig 4 show the performance
when an additional layer is inserted into the bottom-
k transformer blocks. When full fine-tuning of the
pre-trained model, the performance degrades with
the number of additional layers without using the
proposed method. However, when the proposed
method was used, the performance did not decrease
as the number of additional layers increased. Suc-

MRPC

0.90

0.85

—— proposed

153
é() 0.80 w/o proposed

0.75

0 5 10 15 20 25
k

= w/o proposed

CoLA

S04 —— proposed

0 5 10 15 20 25
k

Figure 4: Performance graph of number of additional layer about with or without proposed method. In this graph,
the additional layer was inserted into the bottom-k transformer block of the pre-trained model.

MRPC | CoLA
Activiation Position | Acc Mcc
No Activation 91.67 | 73.33
Output Activation 72.06 | 65.24
Weight Activation 91.67 | 75.85

Table 4: Performance according to the location of the
activation function.

cessful full fine-tuning was achieved regardless
of the number of additional layers, with some in-
stances even showing performance improvements.
This demonstrates that the proposed methodol-
ogy effectively prevents performance degradation
caused by additional layers.

Table 4 compares the performance of the po-
sition of the activation function in the additional
layer. In this experiment, an additional layer was
inserted in the In multi-head attention position, and
the weight was initialized as a unit tensor. The per-
formance degradation occurred when the activation
function was applied to the output. The additional
layer without activation function showed similar or
lower performance than the proposed methodology.
For the proposed method, it was possible to pre-
vent the performance degradation caused by output
activation.

Table 5 compares the performance of different
initialization methods for the additional layer. In
this experiment, an GeL.U activation is applied to
the weight. Existing initialization methods, which
use values with random characteristics, lead to per-
formance degradation during full fine-tuning. The
proposed methodology successfully prevents this
degradation.

MRPC | CoLA
Activiation Position Acc Mcc
Xavier Initialization | 72.55 | 12.71
Unit Initialization 91.67 | 85.85

Table 5: Performance according to the Initialization
method.

5 Conclusion

In this study, we propose a methodology for the
full fine-tuning of pre-trained models with addi-
tional layers. We experimentally verified that the
pre-trained information can be lost when insert-
ing additional layer between middle of pre-trained
layer. We assume that the reason for this problem
is that the values change between the pre-trained
layers by randomly initializing the weights and
applying an activation function to the output. To
address this issue, we initialized the weight with a
unit tensor and applied an activation function to the
weight. To verify the performance of the proposed
method, we performed experiments on the GLUE
benchmark, text generation and image classifica-
tion. The results show that the performance of the
proposed method improved in most cases, and even
in cases where the performance decreased, it was
similar to that of the baseline.

There are several possible models for processing
the different downstream tasks. Some of these cases
may require inserting an additional layer in the
middle of a pre-trained model. In this study, we
verified that the proposed methodology can achieve
full fine-tuning when an additional layer is inserted
in the middle of a pre-trained model. Therefore, we
expect to develop more diverse fine-tuned models
using the proposed methodology.

Weight Visualization of ImageNet

initalize

with -
Proposed Method - I

A

(initlize — After finetuning)

w0 o B 005 oon2 0003 aes M

0,007 0006

After finetuning

PR 0020 0030 0019
~- 0025 0004 [RXTES
PRRTTRRNTEY 0045 -0.071 0022

<-0025 0017 0008 002 [RXSES

02 PR 0,027 -0.029 K3} 0011 [EX¥E 0016
- 0013 [0018 BIBTY 0001 0.006 0021 [RREH
oo , - pm——
o 1 2 3 4 5 s

without
Proposed Method

‘,m oo [oozs oour [G0RE

Figure 5: Visualization of additional layer weight of ImageNet. For the visualization, we only used weights up to

7*7 tensor.

Limitation

In this study, we propose a method in which the
additional layer inserted in the middle layer of the
pre-trained model is not applied as noise in full
fine-tuning. Therefore , we prevented the loss of
pre-trained information by applying it as noise in
the full fine-tuning process. However, the proposed
method has certain limitations.

First, the tendency of the unit tensor even af-
ter training is shown in Figure 5. For initialization
methods with random characteristics, there was no
specific tendency in the trained layer. However, in
the proposed methodology, the tendency of the unit
tensor is visible even after learning because it is
initialized with a unit tensor. The A of Figure 5
shows that both methods can be trained. Also, the
amount of trained value is similar. However, even
after training with proposed method, the value for
the diagonal line is relatively high, similar to the
unit tensor. This may be undesirable for deep learn-
ing. In the future, it will be necessary to study ini-
tialization methods to reduce this tendency.

In addition, the proposed method uses the prop-
erty of a unit tensor of value does not change during
the dot product. A fully connected neural network
dot product an input tensor and weight for the result.
Therefore, the proposed methodology initializes the
weight of a fully connected neural network as a unit
tensor. However, a CNN performs an elementwise
product of the kernel. Therefore, this methodology
cannot be applied to CNN kernels. The proposed

methodology cannot be used in deep learning mod-
els that do not use dot products. Therefore, future
research needs to investigate methodologies that
can be applied to different deep learning models.

References

Abien Fred Agarap. 2018. Deep learning using rectified
linear units (relu). arXiv preprint arXiv:1803.08375.

Ond rej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck, An-
tonio Jimeno Yepes, Philipp Koehn, Varvara Lo-
gacheva, Christof Monz, Matteo Negri, Aurelie
Neveol, Mariana Neves, Martin Popel, Matt Post,
Raphael Rubino, Carolina Scarton, Lucia Specia,
Marco Turchi, Karin Verspoor, and Marcos Zampieri.
2016. Findings of the 2016 conference on machine
translation. In Proceedings of the First Conference
on Machine Translation, pages 131-198, Berlin, Ger-
many. Association for Computational Linguistics.

Daniel Cer, Mona Diab, Eneko Agirre, Ifiigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1-14, Vancouver,
Canada. Association for Computational Linguistics.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. 2009. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages

248-255. Teee.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of

http://www.aclweb.org/anthology/W/W16/W16-2301
http://www.aclweb.org/anthology/W/W16/W16-2301
http://www.aclweb.org/anthology/W/W16/W16-2301
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

William B Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the International Workshop on
Paraphrasing.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An image
is worth 16x16 words: Transformers for image
recognition at scale. /CLR.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Ji-
tendra Malik. 2014. Rich feature hierarchies for ac-
curate object detection and semantic segmentation.
In 2014 IEEE Conference on Computer Vision and
Pattern Recognition, pages 580-587.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Proceedings of the Thirteenth Interna-
tional Conference on Artificial Intelligence and Statis-
tics, volume 9 of Proceedings of Machine Learning
Research, pages 249-256, Chia Laguna Resort, Sar-
dinia, Italy. PMLR.

Kaiming He, Ross Girshick, and Piotr Dollar. 2019. Re-
thinking imagenet pre-training. In 2019 IEEE/CVF
International Conference on Computer Vision
(ICCV), pages 4917-4926.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification.
In 2015 IEEE International Conference on Computer
Vision (ICCV), pages 1026—-1034.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing.

Dan Hendrycks and Kevin Gimpel. 2023. Gaussian
error linear units (gelus).

N. Houlsby, A. Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin de Laroussilhe, Andrea Gesmundo,
Mona Attariyan, and S. Gelly. 2019. Parameter-
efficient transfer learning for nlp.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

10

Gyunyeop Kim and Sangwoo Kang. 2022. Effective
transfer learning with label-based discriminative fea-
ture learning. Sensors, 22(5).

Alex Krizhevsky. 2009. Learning multiple layers of
features from tiny images. pages 32-33.

Hector J Levesque, Ernest Davis, and Leora Morgen-
stern. 2011. The Winograd schema challenge. In
AAAI Spring Symposium: Logical Formalizations of
Commonsense Reasoning, volume 46, page 47.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. 2021.
Swin transformer: Hierarchical vision transformer
using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision (ICCV), pages 10012-10022.

. Long, E. Shelhamer, and T. Darrell. 2015. Fully
convolutional networks for semantic segmentation.
In 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3431-3440, Los
Alamitos, CA, USA. IEEE Computer Society.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
AdapterFusion: Non-destructive task composition for
transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
487-503, Online. Association for Computational Lin-
guistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,

21(140):1-67.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073—
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631-1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, ¥. ukasz

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2014.81
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.1109/ICCV.2019.00502
https://doi.org/10.1109/ICCV.2019.00502
https://doi.org/10.1109/ICCV.2019.00502
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
https://www.semanticscholar.org/paper/29ddc1f43f28af7c846515e32cc167bc66886d0c
https://www.semanticscholar.org/paper/29ddc1f43f28af7c846515e32cc167bc66886d0c
https://www.semanticscholar.org/paper/29ddc1f43f28af7c846515e32cc167bc66886d0c
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.3390/s22052025
https://doi.org/10.3390/s22052025
https://doi.org/10.3390/s22052025
https://doi.org/10.3390/s22052025
https://doi.org/10.3390/s22052025
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170

Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353-355, Brussels, Belgium. Association for Com-
putational Linguistics.

Baojun Wang, Zhao Zhang, Kun Xu, Guang-Yuan Hao,
Yuyang Zhang, Lifeng Shang, Linlin Li, Xiao Chen,
Xin Jiang, and Qun Liu. 2021. DyLex: Incorporating
dynamic lexicons into BERT for sequence labeling.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2679-2693, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Fei Wang, Kaigiang Song, Hongming Zhang, Lifeng Jin,
Sangwoo Cho, Wenlin Yao, Xiaoyang Wang, Muhao
Chen, and Dong Yu. 2022. Salience allocation as
guidance for abstractive summarization. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 6094-6106,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2018. Neural network acceptability judgments.
arXiv preprint arXiv:1805.12471.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing.

Y. Yuan, W. Chen, Y. Yang, and Z. Wang. 2020. In de-
fense of the triplet loss again: Learning robust person
re-identification with fast approximated triplet loss
and label distillation. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Work-
shops (CVPRW), pages 1454—1463, Los Alamitos,
CA, USA. IEEE Computer Society.

Hongling Zheng, Li Shen, Anke Tang, Yong Luo, Han
Hu, Bo Du, and Dacheng Tao. 2023. Learn from
model beyond fine-tuning: A survey.

A Dataset

We experimented with NLP and CV to evalu-
ate the performance of the proposed methodol-
ogy. The proposed methodology inserts an addi-
tional layer into the pre-trained model; therefore,

11

we used the dataset to evaluate the performance
of the pre-trained model. In NLP, we used the
GLUE benchmark (Wang et al., 2018) to evalu-
ate the performance of the proposed methodology
in a transformer-based language model. The GLUE
benchmark was used to test the natural language
understanding ability of a language model. Used
dataset of GLUE benchmark are listed in Table 6.

To evaluate the generation performance of
the proposed methodology on NLP transformer
encoder-decoder-based language models, we used
CNN/DM (See et al., 2017) and WMT16 (Bojar
et al., 2016). CNN/DM measures the performance
of abstract text summarization using a pre-trained
language model. WMT16 evaluated the translation
performance of English to Romanian using a ma-
chine translation dataset.

CV uses image classification datasets to mea-
sure the performance of a pre-trained foundation
model. The ImageNet(Deng et al., 2009), and CI-
FAR100(Krizhevsky, 2009) datasets were used.
The information for each dataset is table 6.

B Comparison Method

Baseline. In this study, we propose a method-
ology that inserts an additional layer for the
pre-trained model to learn without losing pre-
trained information. Experiments of the proposed
methodology were conducted using NLP and
CV pre-trained models. For NLP, we experi-
mented with DeBERTaV3,,,.4.(He et al., 2021) and
TS5pase(Raffel et al., 2020). We also compared the
results with those of ViTy,s(Dosovitskiy et al.,
2021) for the CV experiments. To evaluate the per-
formance of the proposed methodology, we com-
pare performance with that of the pre-trained model
without the additional layer. For a fair evaluation,
we experimented with the baseline ourselves.

We also compared the performance of the pre-
trained model with an additional layer without unit
initialization and weight activation. A comparison
with and without the proposed methodology con-
firmed that it can solve the problem of noise in pre-
trained information. The additional layer without
the proposed methodology initializes the weights
using the Xaver initialization (Glorot and Bengio,
2010) and applies an GELU(Hendrycks and Gim-
pel, 2023) activation function to the output of the
layer. The additional layer is added to the trans-
former block of the bottom k (k is more than 80%
of the total number of transformer blocks) of the

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/2021.emnlp-main.211
https://doi.org/10.18653/v1/2021.emnlp-main.211
https://doi.org/10.18653/v1/2021.emnlp-main.211
https://doi.org/10.18653/v1/2022.emnlp-main.409
https://doi.org/10.18653/v1/2022.emnlp-main.409
https://doi.org/10.18653/v1/2022.emnlp-main.409
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://doi.org/10.1109/CVPRW50498.2020.00185
https://doi.org/10.1109/CVPRW50498.2020.00185
https://doi.org/10.1109/CVPRW50498.2020.00185
https://doi.org/10.1109/CVPRW50498.2020.00185
https://doi.org/10.1109/CVPRW50498.2020.00185
https://doi.org/10.1109/CVPRW50498.2020.00185
https://doi.org/10.1109/CVPRW50498.2020.00185
http://arxiv.org/abs/2310.08184
http://arxiv.org/abs/2310.08184
http://arxiv.org/abs/2310.08184

Corpus Task [Train [Dev [Label [Matrics
GLUE
COLA(Warstadt et al., 2018) Sentence acceptability judgment | 8.5k 1k - Mattews corr
SST-2(Socher et al., 2013) Sentiment analysis 67.3k | 0.9k 2 Accuracy
MRPC(Dolan and Brockett, 2005) | Paraphrasing/sentence similarity | 3.7k 0.4k 2 Accuracy
STS-B(Cer et al., 2017) Paraphrasing/sentence similarity | 5.6k 1.5k - Pearson corr
QNLI(Levesque et al., 2011) Natural language inference 105k | 5.5k 2 Accuracy
RTE(Wang et al., 2018) Natural language inference 2.5k 0.3k 2 Accuracy
WNLI(Levesque et al., 2011) Natural language inference 0.6k 0.2k 2 Accuracy
Text Generation
CNN/DM Text summarization 287k | 11.5k - ROUGE
WMT16 en-ro Translation 610k 2k - BLEU
Image Classification

ImageNet Image classification 1.2m 50k 1000 Accuracy
CIFAR100 Image classification 50k 10k 100 Accuracy

Table 6: Summary information about experimental dataset

Hyper-parameter GLUE Text Generation Image Classification
Warmup Steps {50, 500} - -
Learning Rate {1.5e-5, 3e-5, 5e-5, le-4} {1le-3, le-4} {3e-2, le-2}
Batch size 16 or 8 128 32
Epochs/Steps 15 15000 steps ImageNet:5 / CIFAR100:30
Optimizer AdamW AdamW SGD
Weight Decay 0.01 0.01 0
AdamW e le-6 le-6 -
AdamW 1, B2 0.9,0.999 0.9,0.999 -
SGD momentum - - 0.9
Image Resolution - - 384
Gradient Cliping 1.0 - 1.0
Scheduler linear - cosine
Pre-trained model DeBERTaV34rge, T50ase TS5pase ViTpase
added transformer block DeBE]BSzi\:jl{“{Sf 1{22 }0’ 24) {10, 12} 12

Table 7: Hyperparameter for fine-tuning DeBERTaV3;4,4¢, TSpase, ViTpase. GLUE benchmacks were fine-tuning
on DeBERTaV3,,;4c and T5y4sc. Text Generation datasets were fine-tuned on TS5pqsc. Image Classification datasets

were fine-tuned on ViTpgse.

Additional Layer Position DeBERTaV3,,gc | TSpase | ViTpase
No Additional Layer(baseline) 435M 223M 86M
+ In Multi-head self-Attention 440M 229M 88M
+ After Feed-forward Network 460M 238M 93M
+ Both 465M 243M 95M

Table 8: The number of parameters after inserting an additional layer in the pre-trained model

pre-trained model. The hyperparameters used in
the experiments are listed in Table 7. To determine
the best performance, we conducted a grid search
on the hyperparameters listed in Table 7. All ex-
periments were run on RTX4090 x1 or RTX3090
x1. Also, the number of parameters after insert-
ing an additional layer in the pre-trained model is
shown in Table 8. The models and metrics for the
experiments used or modified code from Hugging-
face(Wolf et al., 2020).

Freeze Pre-trained Model. The structure in-
volved in inserting an additional layer into the mid-
dle layer of the pre-trained model in the proposed

12

methodology is similar to the adapter mechanism.
The adapter mechanism (Houlsby et al., 2019) is
one of the parameter-efficient fine-tuning (PEFT)
methods. The Adapter mechanism inserts an ad-
ditional layer, such as a pfeiffer Adapter(Pfeiffer
et al., 2021) or LoRA(Hu et al., 2022), into the
middle layer of a pre-trained model. The adapter
mechanism does not perform full fine-tuning of all
parameters of the model like traditional fine-tuning.
It freezes the parameters of the pre-trained model
and learns only the parameters of the additional
layer. The additional layer learns to adapt to the
pre-trained model. This increases the training speed

COLA | SST-2 | MRPC | STS-B | QNLI | RTE
Model Mcc Acc Acc Corr Acc Acc
TS5 se 51.1 95.2 87.5 89.4 93.7 | 80.1
TSpase 61.57 | 9495 | 91.18 | 89.94 | 93.01 | 78.70

Insert Additional Layer without Proposed Method
TS5 19.51 | 88.07 | 73.28 | 80.73 | 67.38 | 57.04
T54 14.58 | 88.76 | 83.82 | 84.21 | 85.45 | 58.12
T5p 16.54 | 87.96 | 73.28 | 39.23 | 67.23 | 58.84
Freeze Pre-trained Model
Adaptery 9.69 | 88.99 | 71.57 | 2275 | 63.39 | 56.32
Adapter 4 17.51 | 88.99 | 82.84 | 83.33 | 84.44 | 58.12
Adapterp 13.46 | 86.58 | 71.57 | 21.81 | 64.59 | 54.51
with Proposed Method

Proposed; | 60.06 | 94.61 | 90.93 | 90.76 | 92.84 | 84.12
Proposed4 | 58.57 | 94.61 | 91.67 | 90.40 | 92.99 | 81.23
Proposedp | 61.59 | 94.72 | 92.89 | 91.07 | 92.84 | 83.03

Table 9: GLUE benchmank performances with T5;,s.. I,A and B is position of additional layer. I is In multi-head
attention, A is After feed forward network and B is Both.

CoLA

—— bottom-k
top-k

o

10 15

k

Masked Language Modeling in CoLA dataset

—— bottom-k

051 ° top-k

0.4 1

MLM Acc
o
w

0.2 1

il

L

0.1 A

10 15 20 25
k

Figure 6: Performance graph of number of Additional layer in CoLA. In this graph, additional layer is initialize
according to Xavier initialization and GeLLU activation was applied to the output. top-k inserts an additional layer at
the back k transformer blocks of the transformer layer (24-k ~ 24). bottom-k inserts an additional layer at the front

k transformer blocks of the transformer layer (1 ~ k).

in fine-tuning by learning only a few parameters. In
the experiments of this study, we compare an envi-
ronment similar to the adapter mechanism. In this
experiment, an additional layer applied the Xavier
initialization and ReLLU(Agarap, 2018) activation
to the output. We then measured the performance of
training only the additional layer while freezing the
parameters of the pre-trained model. In this com-
parison, we verified whether the additional layer
could adapt to the frozen model. We did not use any
additional method for adaptation in the experiment.

13

C Experiment with t5 in GLUE
benchmark

Table 9 is an evaluation of the GLUE benchmark on
TSpase- Overall, it shows a similar trend to the per-
formance on DeBERTaV3,,,,.. However, TS5y
is relatively more robust to the noise caused by the
additional layer. In Insert Additional Layer without
Proposed Method, the performance degradation is
relatively small than DeBERTaV3;,,.4.. However,
there is a clear performance degradation, with SST-
2, STS-B, and QNLI showing a performance degra-
dation of 10%, and COLA and RTE showing ex-
tremely poor performance. STS-B had a perfor-

mance degradation of 20 points. Freeze Pre-trained
Model did not demonstrate any performance im-
provement. Overall, the performance of the After
feed forward network position seems to be rela-
tively high. We suspect that the After feed forward
network position is less noisy due to fewer lay-
ers being inserted compared to the other positions.
When using the proposed method, the performance
is similar to or higher than the baseline. As with
DeBERTaV3,,,4., COLA showed a slight perfor-
mance degradation from baseline except for both
positions. For other datasets, most of the perfor-
mance generally matched or exceeded the baseline.

D performance degradation by number
of additional layer in CoLA

Figure 6 shows a graph of performance as a func-
tion of the number of additional layers in CoLA.
The performance metrics are similar to Figure 3.
As the number of additional layers increases, the
matthews correlation decreases. Also, for most k,
the performance in the bottom-K is lower than the
performance in the top-K. This is the same result
for masked language modeling.

14

	Introduction
	Related Work
	Transfer Learning
	Weight Initialization

	Proposed Method
	Position of Additional Layers
	Insert Additional Layer

	Experiment
	Experiment Setup
	Experiment Result
	Performance Degradation by Additional Layer
	Ablation Study

	Conclusion
	Dataset
	Comparison Method
	Experiment with t5 in GLUE benchmark
	performance degradation by number of additional layer in CoLA

