
How to Insert Additional Layers Between the Middle Layers of the
Pre-trained Model

Anonymous ACL submission

Abstract

In many deep-learning tasks, performance im-001
provements have been achieved through the002
full fine-tuning of pre-trained models for down-003
stream tasks. Numerous studies have insert an004
additional layer to a pre-trained model when de-005
signing a model for fine-tuning. This additional006
layer helps optimize the pre-trained model for007
downstream tasks. In some cases, this addi-008
tional layer may need to be inserted between009
the existing middle layers of the pre-trained010
model . However, most studies have added an011
additional layer outside the pre-trained model.012
This is because inserting an additional layer013
between the pre-trained layers of a pre-trained014
model can cause performance degradation. In015
this study, we assume the following reason for016
the performance degradation: Initializing the017
additional layer using the existing initialization018
method with random characteristics and using019
the activation function changes the output value.020
We experimentally verified our assumptions by021
varying the number of additional layers and022
activation functions. To address this problem,023
we propose a methodology that initializes by024
unit tensor and modifies the application of the025
activation function. The methodology does not026
modify the output vector during the initial stage027
of full fine-tuning. We conducted experiments028
on the various NLP and CV datasets to verify029
whether the proposed methodology could solve030
this problem.The code used for the experiments031
is available on GitHub.1032

1 Introduction033

With the rapid development of deep learning tech-034

nology, people have become more interested in035

artificial intelligence (AI) applications. AI appli-036

cation services have been developed in various037

fields, such as voice assistants, AI-based QA sys-038

tems, and autonomous driving. Some of the tech-039

nologies that have led to the rapid development of040

1https://anonymous.4open.science/r/Unit_
Initalize_and_Weight_Activation-1FE9

deep learning include transformer (Vaswani et al., 041

2017) and transfer learning(He et al., 2019). A 042

transformer is a language model structure based on 043

multi-head attention. Deep learning models such 044

as BERT(Devlin et al., 2019), RoBERTa (Liu et al., 045

2019), and SwinTransformer(Liu et al., 2021) are 046

large language models (LLMs) based on trans- 047

former structures. Numerous recent studies have 048

used pre-trained LLMs with transfer learning. 049

Many of these studies performed full fine-tuning 050

of pre-trained large language models to perform 051

downstream tasks. As shown in model editing of 052

(Zheng et al., 2023), an additional layer is added 053

outside the pre-trained model to enable the deep 054

learning model to perform the downstream task. 055

There are various methods, such as adding a clas- 056

sification head to change the size of the output 057

tensor (Devlin et al., 2019) or structuring an ad- 058

ditional layer that is specialized for the objective 059

(Kim and Kang, 2022). Thus, many studies using 060

full fine-tuning have inserted additional layers out- 061

side the pre-trained model to handle downstream 062

tasks. However, there are many possible structures 063

of additional layers to better perform the down- 064

stream task, which may require the insertion of 065

additional layers between the middle layers inside 066

the pre-trained model. But inserting an additional 067

layer between the middle layers inside a pre-trained 068

model can cause performance degradation. 069

Generally, when inserting a fully connected neu- 070

ral network layer as an additional layer, the weights 071

must be initialized because the additional layer is 072

newly created. There are many different weight 073

initialization methods. Many of them assign ini- 074

tialization values probabilistically according to a 075

specific distribution. The weights initialized using 076

these methods have randomness. Thus, before train- 077

ing, if weights initialized with randomness, than the 078

results of an additional layer can also be random. 079

Even if a well-trained input is given to the initial- 080

ized additional layer, the result will have random 081

1

https://anonymous.4open.science/r/Unit_Initalize_and_Weight_Activation-1FE9
https://anonymous.4open.science/r/Unit_Initalize_and_Weight_Activation-1FE9

characteristics that are likely to be untrained vec-082

tors in the pre-training process. Therefore, inserting083

an additional layer between the middle layers in-084

side a well-trained pre-trained model can act as085

noise at the pre-trained model.086

For example, suppose there is a transformer-087

based pre-trained language model P . Let Pn be088

each pre-trained transformer block in the pre-089

trained model. If we insert a randomly initialized090

additional layer between P3 and P4, even if P3 re-091

sults in a well-trained vector, P4 will get a vector092

with randomness due to the additional layer. This093

implies that P4 will get vectors that are unrelated094

to the pre-trained information that was learned dur-095

ing the pre-training process. Therefore, during the096

full fine-tuning of a pre-trained model, inserting an097

additional layer between the middle layers inside098

the pre-trained model can noise in the pre-trained099

model. Moreover, if this noise accumulates in the100

early stages of full fine-tuning, it may cause the101

pre-trained information to be lost during full fine-102

tuning. Experiments and results that verify these103

issues are presented in Section 4.3.104

Additionally, the activation functions applied to105

the additional layers can act as noise in the pre-106

trained model. Typically, an activation function is107

applied to the output of a fully connected neural108

network. The activation function causes a change109

in the vector value; therefore, even if the addi-110

tional layer is well-trained and contains valuable111

pre-trained information, the activation function can112

cause a change the value. This can be a problem113

in full fine-tuning if the newly inserted activation114

function changes the vector values between the115

middle layers of the pre-trained model.116

This study introduces a methodology to prevent117

problems caused by inserting additional layers be-118

tween the middle layers of a pre-trained model. To119

address this issue, we propose a methodology that120

inserts additional layers in the early stages of full121

fine-tuning, where the initialized additional layers122

do not act as noise to the pre-trained information.123

To the best of our knowledge, this is the first study124

to reliably train an additional layer inserted be-125

tween the middle layers of a pre-trained model in126

full fine-tuning.127

2 Related Work128

2.1 Transfer Learning129

Transfer Learning. Transfer learning uses the130

knowledge and information from a model trained131

for specific purposes to solve problems in other 132

tasks. (He et al., 2019) experimentally demon- 133

strated that the knowledge learned by a deep learn- 134

ing model for a specific task can be transferred 135

to other tasks. In the early days, transfer learning 136

was primarily used in computer vision. Utilizing 137

models pre-trained on large datasets for tasks such 138

as fine-grained image classification (Yuan et al., 139

2020), segmentation (Long et al., 2015), and de- 140

tection (Girshick et al., 2014) has shown notable 141

efficacy in various computer vision applications. 142

Pre-trained Language Model. Many recent 143

studies in the field of natural language processing 144

have used pre-trained language models. Pre-trained 145

language models train a text representation with 146

general characteristics during the pre-training pro- 147

cess, and it is common to perform self-supervised 148

learning using a large number of unlabeled corpora 149

to train the text representation. For the training 150

objective of dictionary learning, masked language 151

modeling is used, which masks some tokens in the 152

text and then reconstructs the masked token(Devlin 153

et al., 2019). 154

Fine-tuning of Pre-trained Language Model. 155

A pre-trained language model trained with general 156

information through pre-training is then fine-tuned 157

using the dataset from a downstream task. Several 158

methods have been considered to effectively fine- 159

tune the models. First, a separate layer was added 160

to the pre-trained language model. For example, 161

SEQSON(Wang et al., 2022) added a single-layer 162

linear classifier on top of the encoder of the pre- 163

trained model to estimate the important parts of 164

the original document in an abstract summariza- 165

tion task. DyLex(Wang et al., 2021) uses word- 166

agnostic tag embedding and contextual embedding 167

of pre-trained models as an additional layer in the 168

sequence labeling task. There are also studies that 169

change the fine-tuning process. 170

2.2 Weight Initialization 171

Setting the initial weights is critical when train- 172

ing a deep-learning model. Incorrect initial weights 173

can cause various problems, such as gradient van- 174

ishing, which increases the likelihood of conver- 175

gence to a local minimum. Therefore, considerable 176

research has been conducted on weight initializa- 177

tion methods. In general, the most popular initial- 178

ization methods used in deep learning models are 179

Xavier initialization (Glorot and Bengio, 2010) and 180

He initialization (He et al., 2015). Xavier initial- 181

ization (Glorot and Bengio, 2010) initializes the 182

2

Figure 1: Model structure with additional layer. (A) is model structure of In multi-head self-attention. (B) is model
structure of After feed-forward network. (C) is model structure of Both.

weights to follow a normal distribution, with the183

standard deviation determined by the number of184

nodes in the previous and next layers. He initializa-185

tion (He et al., 2015) addresses the limitations of186

Xavier initialization, offering enhanced efficiency187

for ReLU(Agarap, 2018) activations.188

3 Proposed Method189

The proposed method aims to insert an additional190

layer between the middle layers inside the pre-191

trained model. When inserting an additional layer,192

we construct an additional layer such that the in-193

serted layer does not act as noise to the pre-trained194

information. To insert an additional layer into a tra-195

ditional deep learning methodology, the additional196

layer and activation function are structured and197

weight initialized. For example, if the traditional198

method uses a fully connected neural network as199

an additional layer, the structure of the additional200

layer is as follows: The additional layer operates201

on learnable parameters W, b (WX + b). The ac-202

tivation function is applied to the output of layer203

WX + b (α(WX + b)). Here, W and b denote the204

learnable parameter weight and bias, respectively,205

X is the input, and α is the activation function. In206

addition, W and b are initialized by an initialization207

methods such as the Xavier Initialization and He208

Initialization.209

In this study, we assume that the initialization210

method with randomness and the activation func-211

tion applied to the output cause the loss of pre-212

trained information. To solve this problem, we con-213

struct an additional layer in the early stage of full214

fine-tuning step that does not harm the existing215

pre-trained information. The method to prevent the216

problem is described in detail in Section 3.2.217

3.1 Position of Additional Layers 218

In this section, we describe the position of the ad- 219

ditional layer inserted for the experiment before 220

explaining the proposed methodology. The model 221

structure used for the experiments is illustrated in 222

Figure 1. An additional layer is inserted between 223

the middle layers of the transformer blocks. In this 224

study, we used three model structures, and addi- 225

tional layers were inserted at the following posi- 226

tions: 1. only in multi-head self-attention and 2. 227

only after the feed-forward network, and 3. both. 228

In Multi-head Self-attention. The model struc- 229

ture with an additional layer inserted at the position 230

in the multi-head self-attention is shown in Fig. 231

1-A. An additional layer A is positioned after the 232

feed-forward network of generate Qi,Ki, and Vi 233

in multi-head self-attention. where i denotes the 234

number of heads. We input Qi, Ki, and Vi into an 235

additional layer A to generate new Q′
i, K

′
i, V ′

i. 236

Subsequently, Q′
i, K

′
i, and V ′

i are used to per- 237

form multi-head self-attention. The equation for 238

this process is as follows: 239

Qi = WQ
i E (1) 240

241
Ki = WK

i E (2) 242
243

Vi = W V
i E (3) 244

Q′
i = AQ′

i (Qi) (4) 245
246

K ′
i = AK′

i (Ki) (5) 247
248

V ′
i = AV ′

i (Vi) (6) 249

Attention(Q′,K ′, V ′) = Softmax(
Q′K ′T
√
dK′

)V ′

(7) 250

3

Figure 2: Additional layer structure when layer position is In multi-head self-attention.

251

headi = Attention(Q′
i,K

′
i, V

′
i) (8)252

MultiHead(Q′,K ′, V ′)

= Concat(head1, head2, ..., headh)W
O

(9)253

These equations are based on the multi-head at-254

tention equations of the transformer(Vaswani et al.,255

2017). In the equation, E denotes the input embed-256

ding and WQ
i , WK

i , W V
i , and WO are the learn-257

able parameters of multi-head self-attention in the258

pre-trained model. i is the head index and h is the259

number of heads. Additionally, A(·) denotes an ad-260

ditional layer, and the structure of A is described261

in Section 3.2.262

After Feed-forward Network. The position of263

the additional layer in After feed-forward network264

is shown in Fig 1-B. Additional layers are inserted265

after the feed-forward network in the transformer266

blockThe equation for this is as follows:267

FFN ′(x) = A(max(0, xW1+b1)W2+b2) (10)268

This equation is based on the transformer269

(Vaswani et al., 2017): The feed-forward network270

of transformer block experimented with FFN ′(x),271

which is an additional layer A added to the for-272

mula FFN(x) in the Transformer paper(Vaswani273

et al., 2017). W1, W2, b1, and b2 are learnable pa-274

rameters of the pre-trained model. A(·) denotes the275

additional layer.276

Both refers to inserting an additional layer in277

both the multi-head self-attention and after feed-278

forward neural network. The corresponding struc-279

ture is shown in Fig 1-C.280

3.2 Insert Additional Layer 281

The proposed method involves inserting an addi- 282

tional layer without harming the pre-trained in- 283

formation, that is, the additional layer does not 284

act as noise in the initial stage of full fine-tuning. 285

We assumed that the transformations of the out- 286

put vector by the additional layer in the early 287

stages of full fine-tuning were acted as noise in 288

the pre-trained model. In existing pre-trained mod- 289

els, each pre-trained layer receives a well-trained 290

input and passes the well-trained output to the next 291

pre-trained layer. However, if an additional layer is 292

inserted during this process, the next layer receives 293

the value of the transformed output, rather than 294

the well-trained output of the previous pre-trained 295

layer. 296

The proposed method focuses on two reasons 297

why the output vector changes when an additional 298

layer is inserted: the initialization method of ran- 299

domly initializing the weights, and the activation 300

function applied to the output. An initialization 301

method with random characteristics may change 302

a well-trained output vector to an output vector 303

with random characteristics. Applying an activa- 304

tion function to the output of an additional layer 305

can change the value of the well-trained output vec- 306

tor. If the output vector between each pre-trained 307

layer is modified in the early stages of full fine- 308

tuning, the pre-trained information can be loss. If 309

more additional layers are inserted, the problem of 310

not using the pre-trained information accumulates, 311

and the pre-trained information may be lost during 312

the fine-tuning process. This was experimentally 313

verified in Section 4.3. Therefore, the proposed 314

method prevents the output of the pre-trained layer 315

4

from having random characteristics and prevents316

the well-trained output from being modified by the317

activation function. The overall structure of the pro-318

posed methodology is illustrated in Figure 2. Fig-319

ure 2 illustrates the case where an additional layer320

is added to the in multi-head attention position.321

Unit Initialization. In this study, the learnable322

parameters of the additional layer are initialized323

using a unit tensor. A unit tensor (matrix) has the324

property of preserving the value of the input in thea325

dot product. If the dot product a tensor Y and the326

unit tensor U, the output is Y (Y · U = Y). There-327

fore, we initialize the learnable parameter of the328

additional layer WA as a unit tensor. If the addi-329

tional layer is initialized as a unit tensor, the next330

pre-trained layer will not receive a vector of un-331

trained random characteristics as input during the332

early stages of full fine-tuning. This allows the pre-333

trained information to be used in the early stages334

of full fine-tuning. Maintaining the pre-trained in-335

formation in the early stages of full fine-tuning pre-336

vents the pre-trained information from being lost337

during training. The weight WA
0 of the additional338

layer is initialized as follows:339

WA
0 =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 (11)340

Weight Activation. The additional layer in the341

proposed method does not apply an activation func-342

tion to the output. The proposed methodology ap-343

plies an activation function to the learnable param-344

eter WA in an additional layer. GeLU(Hendrycks345

and Gimpel, 2023) was used as an activation func-346

tion . When the GeLU activation function is applied347

to the unit tensor, a tensor similar to the unit ten-348

sor is obtained. Similarly, even if the activation349

function is applied in the initialization phase of the350

additional layer, the value changes slightly. In the351

initial stage of full fine-tuning, it can mitigate the352

additional layer acting as noise in the pre-trained353

information. It also prevents the loss of pre-trained354

information after full fine-tuning is completed. The355

structure of additional layer A is as follows:356

A(x) = α(WA)x (12)357

x ∈ Rdx denotes the input vector for the addi-358

tional layer. dx is the dimension of input vector x.359

WA ∈ Rdx×dx is a learnable parameter of the addi- 360

tional layers. α(·) denotes the activation function. 361

4 Experiment 362

4.1 Experiment Setup 363

In this paper, we conduct experiments on vari- 364

ous NLP and CV datasets to verify the perfor- 365

mance of the proposed methodology. The experi- 366

mental datasets are GLUE benchmark (Wang et al., 367

2018), CNN/DM (See et al., 2017), WMT16 (Bojar 368

et al., 2016), ImageNet(Deng et al., 2009), and CI- 369

FAR100(Krizhevsky, 2009). A detailed description 370

of each dataset is given in Appendix A. 371

In this paper, we use the pre-trained model with- 372

out additional layers as a baseline. We also con- 373

duct a comparison experiment with a pre-trained 374

model with Insert Additional Layer without Pro- 375

posed Method. This comparison experiment veri- 376

fies that the proposed methodology can solve the is- 377

sues in this paper. We also conduct comparative ex- 378

periments with the freeze pre-trained model, which 379

is one of the ways to adapt the additional layer in 380

fine-tuning. Freeze Pre-trained Model only learns 381

the additional layer without the parameters of the 382

pre-trained model. The models used in each experi- 383

ment are described in Appendix B. 384

4.2 Experiment Result 385

table 1 is the result of GLUE benchmark(Wang 386

et al., 2018) experiment on DeBERTaV3large(He 387

et al., 2021). The performance without Proposed 388

Method is considerably low compared to the base- 389

line. For CoLA dataset, the performance was as 390

low as 12.89. In addition, the performance of STS- 391

B’s In multi-head attention was 47, which is about 392

half of the baseline. Most of the results demon- 393

strate extremely low performance, confirming that 394

full fine-tuning is difficult in this case. This trend 395

is also seen in other datasets that use accuracy as 396

an evaluation metric. The subtasks SST-2, MRPC, 397

QNLI, RTE, and WNLI iare binary classifications. 398

Therefore, an accuracy of 50% is obtained in the 399

untrained case. On many case, the performance was 400

close to 50%, confirming the difficulty of training 401

when without proposed methods. 402

Freeze Pre-trained Model is an result of fine- 403

tuning only additional layer without pre-trained 404

model parameter. For most datasets, there was 405

no improvement in performance. However, some 406

datasets show a clear performance improvement 407

compared with the insertion of an additional layer 408

5

COLA SST-2 MRPC STS-B QNLI RTE WNLI
Model Mcc Acc Acc Corr Acc Acc Acc
DeBERTaV3large 75.87 95.87 90.93 92.97 93.61 91.34 91.54

Insert Additional Layer without Proposed Method
DeBERTaV3I 0 50.92 70.10 47.07 50.54 52.70 56.34
DeBERTaV3A 0 50.92 68.38 34.13 50.54 52.70 57.75
DeBERTaV3B 12.89 82.56 71.08 31.30 50.54 56.68 56.34

Freeze Pre-trained Model
AdapterI 0 89.44 70.83 22.00 64.34 57.76 56.34
AdapterA 5.29 87.50 72.30 80.86 83.31 57.40 60.56
AdapterB 14.23 85.78 71.32 24.74 63.26 55.60 56.34

with Proposed Method
ProposedI 75.85 95.99 91.67 93.28 93.78 91.70 92.95
ProposedA 73.03 96.10 91.91 92.84 93.74 91.70 95.77
ProposedB 74.28 95.53 92.16 92.94 93.65 91.70 94.36

Table 1: GLUE benchmank performances with DeBERTaV3large. I,A and B is position of additional layer. I is In
multi-head attention, A is After feed forward network and B is Both

CNN/DM WMT16 en-ro
Model ROUGE-1 ROUGE-2 ROUGE-N BLEU
T5∗base 42.05 20.34 39.40 28.0
T5base 42.60 20.15 39.58 26.45

Insert Additional Layer without Proposed Method
T5I 39.72 18.30 36.74 24.41
T5A 41.66 19.39 38.53 24.88
T5B 36.84 16.24 33.91 18.30

with Proposed Method
ProposedI 42.44 20.15 39.37 26.69
ProposedA 43.20 20.70 40.15 26.79
ProposedB 42.21 19.85 39.23 26.72

Table 2: Text Generation performances with T5base. * is the performance in the T5 paper(Raffel et al., 2020).

without Proposed Method like SST-2. However, the409

performance was lower than that of the baseline,410

confirming that the issue could not be solved.411

The performance when using the proposed412

method is with Proposed Method. The performance413

of with Proposed Method is similar to or higher414

than baseline. For the COLA, the performance was415

lower than that of the baseline in all cases with416

Proposed Method. However, in contrast to the case417

without Proposed Method, the performance was418

similar to that of the baseline. In most cases, the419

performance was higher than the baseline. We sus-420

pect that the performance improvement is due to421

the success of full fine-tuning of the larger model422

by inserting an additional layer. We also performed423

experiments on T5base and the results are in ap-424

pendix C.425

table 2 is the performance evaluation of 426

CNN/DM(See et al., 2017), WMT16 (Bojar et al., 427

2016) on T5base(Raffel et al., 2020). The results 428

show that T5base is relatively robust to additional 429

layers. However, there is a clear performance degra- 430

dation on CNN/DM and WMT16 without the 431

proposal methodology. When using the proposal 432

methodology, the performance was higher than the 433

baseline. This confirms that the proposal method- 434

ology can prevent the performance degradation 435

caused by the additional layer in text generation. 436

The proposed method was experimented us- 437

ing a pre-trained foundation model for the CV 438

task. Table 3 presents the experimental results 439

on ViTbase(Dosovitskiy et al., 2021). The perfor- 440

mance of Insert Additional Layer without Proposed 441

Method was approximately 60% accurate. So, In 442

6

Figure 3: Performance graph of number of Additional layer in MRPC.

Model ImageNet Acc CIFAR100 Acc
ViT∗

base 83.97 91.67
ViTbase 83.99 92.81

Insert Additional Layer without Proposed Method

ViTI 66.85 61.55
ViTA 81.01 82.18
ViTB 53.72 54.69

with Proposed Method
ProposedI 84.28 92.62
ProposedA 84.09 92.54
ProposedB 84.22 92.77

Table 3: Image Classification performances with
ViTbase . * is the performance in the ViT pa-
per(Dosovitskiy et al., 2021).

the case of ViTbase, we found that training was443

some possible even if an additional layer was in-444

cluded. However, the performance was consider-445

ably poor compared to that of the baseline. In446

most cases, the proposed method outperformed the447

baseline method. This confirms that the proposed448

methodology can improve the loss of pre-trained449

information even in a CV’s pre-tarined foundation450

model.451

4.3 Performance Degradation by Additional452

Layer453

This study assumes that the additional layer in-454

serted into the middle layer inside the pre-trained455

model can be noise to the pre-trained informa-456

tion. So, we experimentally verified that the per-457

formance degradation is caused by the additional458

layers. We experimented with the performance of459

the downstream task as a function of the number460

of additional layers without using the proposed461

methodology. In this experiment, each additional462

layer used the Xavier initialization, and GELU was463

applied to the output. We ran two experiments: 464

one with the top-k additional layers of the total 465

N transformer blocks, and one with the bottom- 466

k additional layers. In this experiment, we used 467

DeBERTaV3large, thus N was 24. 468

Fig 3 visualizes the downstream task perfor- 469

mance according to the number of additional layers 470

in MRPC. From the graph, it is the performance de- 471

creases proportionally to the number of additional 472

layers. This result shows that the additional layers 473

without using the proposed method can act as noise 474

in the pre-trained model, and the performance de- 475

creases as the noise increases. Additionally, the 476

performance at bottom-k is lower than the perfor- 477

mance at top-k when k is the same. We suspect that 478

noise causes more performance degradation in the 479

early layers of the pre-trained model. 480

We also experimented with the same task as in 481

pre-training. We evaluated the performance of the 482

masked language model(MLM) after train MLM of 483

MRPC dataset. The results showed that MLM ac- 484

curacy decreased as k increased. This confirms that 485

the additional layer can cause the loss of pre-trained 486

information. To clarify, we conduct the same exper- 487

iment on CoLA dataset, which is described in the 488

appendix D. 489

4.4 Ablation Study 490

The performance was compared with and without 491

the proposed methodology according to the number 492

of additional layers. fig 4 show the performance 493

when an additional layer is inserted into the bottom- 494

k transformer blocks. When full fine-tuning of the 495

pre-trained model, the performance degrades with 496

the number of additional layers without using the 497

proposed method. However, when the proposed 498

method was used, the performance did not decrease 499

as the number of additional layers increased. Suc- 500

7

Figure 4: Performance graph of number of additional layer about with or without proposed method. In this graph,
the additional layer was inserted into the bottom-k transformer block of the pre-trained model.

MRPC CoLA
Activiation Position Acc Mcc
No Activation 91.67 73.33
Output Activation 72.06 65.24
Weight Activation 91.67 75.85

Table 4: Performance according to the location of the
activation function.

cessful full fine-tuning was achieved regardless501

of the number of additional layers, with some in-502

stances even showing performance improvements.503

This demonstrates that the proposed methodol-504

ogy effectively prevents performance degradation505

caused by additional layers.506

Table 4 compares the performance of the po-507

sition of the activation function in the additional508

layer. In this experiment, an additional layer was509

inserted in the In multi-head attention position, and510

the weight was initialized as a unit tensor. The per-511

formance degradation occurred when the activation512

function was applied to the output. The additional513

layer without activation function showed similar or514

lower performance than the proposed methodology.515

For the proposed method, it was possible to pre-516

vent the performance degradation caused by output517

activation.518

Table 5 compares the performance of different519

initialization methods for the additional layer. In520

this experiment, an GeLU activation is applied to521

the weight. Existing initialization methods, which522

use values with random characteristics, lead to per-523

formance degradation during full fine-tuning. The524

proposed methodology successfully prevents this525

degradation.526

MRPC CoLA
Activiation Position Acc Mcc
Xavier Initialization 72.55 12.71
Unit Initialization 91.67 85.85

Table 5: Performance according to the Initialization
method.

5 Conclusion 527

In this study, we propose a methodology for the 528

full fine-tuning of pre-trained models with addi- 529

tional layers. We experimentally verified that the 530

pre-trained information can be lost when insert- 531

ing additional layer between middle of pre-trained 532

layer. We assume that the reason for this problem 533

is that the values change between the pre-trained 534

layers by randomly initializing the weights and 535

applying an activation function to the output. To 536

address this issue, we initialized the weight with a 537

unit tensor and applied an activation function to the 538

weight. To verify the performance of the proposed 539

method, we performed experiments on the GLUE 540

benchmark, text generation and image classifica- 541

tion. The results show that the performance of the 542

proposed method improved in most cases, and even 543

in cases where the performance decreased, it was 544

similar to that of the baseline. 545

There are several possible models for processing 546

the different downstream tasks. Some of these cases 547

may require inserting an additional layer in the 548

middle of a pre-trained model. In this study, we 549

verified that the proposed methodology can achieve 550

full fine-tuning when an additional layer is inserted 551

in the middle of a pre-trained model. Therefore, we 552

expect to develop more diverse fine-tuned models 553

using the proposed methodology. 554

8

Figure 5: Visualization of additional layer weight of ImageNet. For the visualization, we only used weights up to
7*7 tensor.

Limitation555

In this study, we propose a method in which the556

additional layer inserted in the middle layer of the557

pre-trained model is not applied as noise in full558

fine-tuning. Therefore , we prevented the loss of559

pre-trained information by applying it as noise in560

the full fine-tuning process. However, the proposed561

method has certain limitations.562

First, the tendency of the unit tensor even af-563

ter training is shown in Figure 5. For initialization564

methods with random characteristics, there was no565

specific tendency in the trained layer. However, in566

the proposed methodology, the tendency of the unit567

tensor is visible even after learning because it is568

initialized with a unit tensor. The ∆ of Figure 5569

shows that both methods can be trained. Also, the570

amount of trained value is similar. However, even571

after training with proposed method, the value for572

the diagonal line is relatively high, similar to the573

unit tensor. This may be undesirable for deep learn-574

ing. In the future, it will be necessary to study ini-575

tialization methods to reduce this tendency.576

In addition, the proposed method uses the prop-577

erty of a unit tensor of value does not change during578

the dot product. A fully connected neural network579

dot product an input tensor and weight for the result.580

Therefore, the proposed methodology initializes the581

weight of a fully connected neural network as a unit582

tensor. However, a CNN performs an elementwise583

product of the kernel. Therefore, this methodology584

cannot be applied to CNN kernels. The proposed585

methodology cannot be used in deep learning mod- 586

els that do not use dot products. Therefore, future 587

research needs to investigate methodologies that 588

can be applied to different deep learning models. 589

References 590

Abien Fred Agarap. 2018. Deep learning using rectified 591
linear units (relu). arXiv preprint arXiv:1803.08375. 592

Ond rej Bojar, Rajen Chatterjee, Christian Federmann, 593
Yvette Graham, Barry Haddow, Matthias Huck, An- 594
tonio Jimeno Yepes, Philipp Koehn, Varvara Lo- 595
gacheva, Christof Monz, Matteo Negri, Aurelie 596
Neveol, Mariana Neves, Martin Popel, Matt Post, 597
Raphael Rubino, Carolina Scarton, Lucia Specia, 598
Marco Turchi, Karin Verspoor, and Marcos Zampieri. 599
2016. Findings of the 2016 conference on machine 600
translation. In Proceedings of the First Conference 601
on Machine Translation, pages 131–198, Berlin, Ger- 602
many. Association for Computational Linguistics. 603

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez- 604
Gazpio, and Lucia Specia. 2017. SemEval-2017 605
task 1: Semantic textual similarity multilingual and 606
crosslingual focused evaluation. In Proceedings 607
of the 11th International Workshop on Semantic 608
Evaluation (SemEval-2017), pages 1–14, Vancouver, 609
Canada. Association for Computational Linguistics. 610

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, 611
and Li Fei-Fei. 2009. Imagenet: A large-scale hier- 612
archical image database. In 2009 IEEE conference 613
on computer vision and pattern recognition, pages 614
248–255. Ieee. 615

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 616
Kristina Toutanova. 2019. BERT: Pre-training of 617

9

http://www.aclweb.org/anthology/W/W16/W16-2301
http://www.aclweb.org/anthology/W/W16/W16-2301
http://www.aclweb.org/anthology/W/W16/W16-2301
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

deep bidirectional transformers for language under-618
standing. In Proceedings of the 2019 Conference of619
the North American Chapter of the Association for620
Computational Linguistics: Human Language Tech-621
nologies, Volume 1 (Long and Short Papers), pages622
4171–4186, Minneapolis, Minnesota. Association for623
Computational Linguistics.624

William B Dolan and Chris Brockett. 2005. Automati-625
cally constructing a corpus of sentential paraphrases.626
In Proceedings of the International Workshop on627
Paraphrasing.628

Alexey Dosovitskiy, Lucas Beyer, Alexander629
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,630
Thomas Unterthiner, Mostafa Dehghani, Matthias631
Minderer, Georg Heigold, Sylvain Gelly, Jakob632
Uszkoreit, and Neil Houlsby. 2021. An image633
is worth 16x16 words: Transformers for image634
recognition at scale. ICLR.635

Ross Girshick, Jeff Donahue, Trevor Darrell, and Ji-636
tendra Malik. 2014. Rich feature hierarchies for ac-637
curate object detection and semantic segmentation.638
In 2014 IEEE Conference on Computer Vision and639
Pattern Recognition, pages 580–587.640

Xavier Glorot and Yoshua Bengio. 2010. Understand-641
ing the difficulty of training deep feedforward neural642
networks. In Proceedings of the Thirteenth Interna-643
tional Conference on Artificial Intelligence and Statis-644
tics, volume 9 of Proceedings of Machine Learning645
Research, pages 249–256, Chia Laguna Resort, Sar-646
dinia, Italy. PMLR.647

Kaiming He, Ross Girshick, and Piotr Dollar. 2019. Re-648
thinking imagenet pre-training. In 2019 IEEE/CVF649
International Conference on Computer Vision650
(ICCV), pages 4917–4926.651

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian652
Sun. 2015. Delving deep into rectifiers: Surpassing653
human-level performance on imagenet classification.654
In 2015 IEEE International Conference on Computer655
Vision (ICCV), pages 1026–1034.656

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021.657
Debertav3: Improving deberta using electra-style pre-658
training with gradient-disentangled embedding shar-659
ing.660

Dan Hendrycks and Kevin Gimpel. 2023. Gaussian661
error linear units (gelus).662

N. Houlsby, A. Giurgiu, Stanislaw Jastrzebski, Bruna663
Morrone, Quentin de Laroussilhe, Andrea Gesmundo,664
Mona Attariyan, and S. Gelly. 2019. Parameter-665
efficient transfer learning for nlp.666

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan667
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and668
Weizhu Chen. 2022. LoRA: Low-rank adaptation of669
large language models. In International Conference670
on Learning Representations.671

Gyunyeop Kim and Sangwoo Kang. 2022. Effective 672
transfer learning with label-based discriminative fea- 673
ture learning. Sensors, 22(5). 674

Alex Krizhevsky. 2009. Learning multiple layers of 675
features from tiny images. pages 32–33. 676

Hector J Levesque, Ernest Davis, and Leora Morgen- 677
stern. 2011. The Winograd schema challenge. In 678
AAAI Spring Symposium: Logical Formalizations of 679
Commonsense Reasoning, volume 46, page 47. 680

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 681
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 682
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 683
Roberta: A robustly optimized BERT pretraining ap- 684
proach. CoRR, abs/1907.11692. 685

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, 686
Zheng Zhang, Stephen Lin, and Baining Guo. 2021. 687
Swin transformer: Hierarchical vision transformer 688
using shifted windows. In Proceedings of the 689
IEEE/CVF International Conference on Computer 690
Vision (ICCV), pages 10012–10022. 691

J. Long, E. Shelhamer, and T. Darrell. 2015. Fully 692
convolutional networks for semantic segmentation. 693
In 2015 IEEE Conference on Computer Vision and 694
Pattern Recognition (CVPR), pages 3431–3440, Los 695
Alamitos, CA, USA. IEEE Computer Society. 696

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, 697
Kyunghyun Cho, and Iryna Gurevych. 2021. 698
AdapterFusion: Non-destructive task composition for 699
transfer learning. In Proceedings of the 16th Con- 700
ference of the European Chapter of the Association 701
for Computational Linguistics: Main Volume, pages 702
487–503, Online. Association for Computational Lin- 703
guistics. 704

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 705
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 706
Wei Li, and Peter J. Liu. 2020. Exploring the lim- 707
its of transfer learning with a unified text-to-text 708
transformer. Journal of Machine Learning Research, 709
21(140):1–67. 710

Abigail See, Peter J. Liu, and Christopher D. Manning. 711
2017. Get to the point: Summarization with pointer- 712
generator networks. In Proceedings of the 55th An- 713
nual Meeting of the Association for Computational 714
Linguistics (Volume 1: Long Papers), pages 1073– 715
1083, Vancouver, Canada. Association for Computa- 716
tional Linguistics. 717

Richard Socher, Alex Perelygin, Jean Wu, Jason 718
Chuang, Christopher D. Manning, Andrew Ng, and 719
Christopher Potts. 2013. Recursive deep models for 720
semantic compositionality over a sentiment treebank. 721
In Proceedings of the 2013 Conference on Empiri- 722
cal Methods in Natural Language Processing, pages 723
1631–1642, Seattle, Washington, USA. Association 724
for Computational Linguistics. 725

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 726
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz 727

10

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2014.81
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.1109/ICCV.2019.00502
https://doi.org/10.1109/ICCV.2019.00502
https://doi.org/10.1109/ICCV.2019.00502
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
https://www.semanticscholar.org/paper/29ddc1f43f28af7c846515e32cc167bc66886d0c
https://www.semanticscholar.org/paper/29ddc1f43f28af7c846515e32cc167bc66886d0c
https://www.semanticscholar.org/paper/29ddc1f43f28af7c846515e32cc167bc66886d0c
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.3390/s22052025
https://doi.org/10.3390/s22052025
https://doi.org/10.3390/s22052025
https://doi.org/10.3390/s22052025
https://doi.org/10.3390/s22052025
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170

Kaiser, and Illia Polosukhin. 2017. Attention is all728
you need. In Advances in Neural Information Pro-729
cessing Systems, volume 30. Curran Associates, Inc.730

Alex Wang, Amanpreet Singh, Julian Michael, Felix731
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:732
A multi-task benchmark and analysis platform for nat-733
ural language understanding. In Proceedings of the734
2018 EMNLP Workshop BlackboxNLP: Analyzing735
and Interpreting Neural Networks for NLP, pages736
353–355, Brussels, Belgium. Association for Com-737
putational Linguistics.738

Baojun Wang, Zhao Zhang, Kun Xu, Guang-Yuan Hao,739
Yuyang Zhang, Lifeng Shang, Linlin Li, Xiao Chen,740
Xin Jiang, and Qun Liu. 2021. DyLex: Incorporating741
dynamic lexicons into BERT for sequence labeling.742
In Proceedings of the 2021 Conference on Empiri-743
cal Methods in Natural Language Processing, pages744
2679–2693, Online and Punta Cana, Dominican Re-745
public. Association for Computational Linguistics.746

Fei Wang, Kaiqiang Song, Hongming Zhang, Lifeng Jin,747
Sangwoo Cho, Wenlin Yao, Xiaoyang Wang, Muhao748
Chen, and Dong Yu. 2022. Salience allocation as749
guidance for abstractive summarization. In Proceed-750
ings of the 2022 Conference on Empirical Methods751
in Natural Language Processing, pages 6094–6106,752
Abu Dhabi, United Arab Emirates. Association for753
Computational Linguistics.754

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-755
man. 2018. Neural network acceptability judgments.756
arXiv preprint arXiv:1805.12471.757

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien758
Chaumond, Clement Delangue, Anthony Moi, Pier-759
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-760
icz, Joe Davison, Sam Shleifer, Patrick von Platen,761
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,762
Teven Le Scao, Sylvain Gugger, Mariama Drame,763
Quentin Lhoest, and Alexander M. Rush. 2020. Hug-764
gingface’s transformers: State-of-the-art natural lan-765
guage processing.766

Y. Yuan, W. Chen, Y. Yang, and Z. Wang. 2020. In de-767
fense of the triplet loss again: Learning robust person768
re-identification with fast approximated triplet loss769
and label distillation. In 2020 IEEE/CVF Conference770
on Computer Vision and Pattern Recognition Work-771
shops (CVPRW), pages 1454–1463, Los Alamitos,772
CA, USA. IEEE Computer Society.773

Hongling Zheng, Li Shen, Anke Tang, Yong Luo, Han774
Hu, Bo Du, and Dacheng Tao. 2023. Learn from775
model beyond fine-tuning: A survey.776

A Dataset777

We experimented with NLP and CV to evalu-778

ate the performance of the proposed methodol-779

ogy. The proposed methodology inserts an addi-780

tional layer into the pre-trained model; therefore,781

we used the dataset to evaluate the performance 782

of the pre-trained model. In NLP, we used the 783

GLUE benchmark (Wang et al., 2018) to evalu- 784

ate the performance of the proposed methodology 785

in a transformer-based language model. The GLUE 786

benchmark was used to test the natural language 787

understanding ability of a language model. Used 788

dataset of GLUE benchmark are listed in Table 6. 789

To evaluate the generation performance of 790

the proposed methodology on NLP transformer 791

encoder-decoder-based language models, we used 792

CNN/DM (See et al., 2017) and WMT16 (Bojar 793

et al., 2016). CNN/DM measures the performance 794

of abstract text summarization using a pre-trained 795

language model. WMT16 evaluated the translation 796

performance of English to Romanian using a ma- 797

chine translation dataset. 798

CV uses image classification datasets to mea- 799

sure the performance of a pre-trained foundation 800

model. The ImageNet(Deng et al., 2009), and CI- 801

FAR100(Krizhevsky, 2009) datasets were used. 802

The information for each dataset is table 6. 803

B Comparison Method 804

Baseline. In this study, we propose a method- 805

ology that inserts an additional layer for the 806

pre-trained model to learn without losing pre- 807

trained information. Experiments of the proposed 808

methodology were conducted using NLP and 809

CV pre-trained models. For NLP, we experi- 810

mented with DeBERTaV3large(He et al., 2021) and 811

T5base(Raffel et al., 2020). We also compared the 812

results with those of ViTbase(Dosovitskiy et al., 813

2021) for the CV experiments. To evaluate the per- 814

formance of the proposed methodology, we com- 815

pare performance with that of the pre-trained model 816

without the additional layer. For a fair evaluation, 817

we experimented with the baseline ourselves. 818

We also compared the performance of the pre- 819

trained model with an additional layer without unit 820

initialization and weight activation. A comparison 821

with and without the proposed methodology con- 822

firmed that it can solve the problem of noise in pre- 823

trained information. The additional layer without 824

the proposed methodology initializes the weights 825

using the Xaver initialization (Glorot and Bengio, 826

2010) and applies an GELU(Hendrycks and Gim- 827

pel, 2023) activation function to the output of the 828

layer. The additional layer is added to the trans- 829

former block of the bottom k (k is more than 80% 830

of the total number of transformer blocks) of the 831

11

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/2021.emnlp-main.211
https://doi.org/10.18653/v1/2021.emnlp-main.211
https://doi.org/10.18653/v1/2021.emnlp-main.211
https://doi.org/10.18653/v1/2022.emnlp-main.409
https://doi.org/10.18653/v1/2022.emnlp-main.409
https://doi.org/10.18653/v1/2022.emnlp-main.409
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://doi.org/10.1109/CVPRW50498.2020.00185
https://doi.org/10.1109/CVPRW50498.2020.00185
https://doi.org/10.1109/CVPRW50498.2020.00185
https://doi.org/10.1109/CVPRW50498.2020.00185
https://doi.org/10.1109/CVPRW50498.2020.00185
https://doi.org/10.1109/CVPRW50498.2020.00185
https://doi.org/10.1109/CVPRW50498.2020.00185
http://arxiv.org/abs/2310.08184
http://arxiv.org/abs/2310.08184
http://arxiv.org/abs/2310.08184

Corpus Task Train Dev Label Matrics
GLUE

COLA(Warstadt et al., 2018) Sentence acceptability judgment 8.5k 1k - Mattews corr
SST-2(Socher et al., 2013) Sentiment analysis 67.3k 0.9k 2 Accuracy
MRPC(Dolan and Brockett, 2005) Paraphrasing/sentence similarity 3.7k 0.4k 2 Accuracy
STS-B(Cer et al., 2017) Paraphrasing/sentence similarity 5.6k 1.5k - Pearson corr
QNLI(Levesque et al., 2011) Natural language inference 105k 5.5k 2 Accuracy
RTE(Wang et al., 2018) Natural language inference 2.5k 0.3k 2 Accuracy
WNLI(Levesque et al., 2011) Natural language inference 0.6k 0.2k 2 Accuracy

Text Generation
CNN/DM Text summarization 287k 11.5k - ROUGE
WMT16 en-ro Translation 610k 2k - BLEU

Image Classification
ImageNet Image classification 1.2m 50k 1000 Accuracy
CIFAR100 Image classification 50k 10k 100 Accuracy

Table 6: Summary information about experimental dataset

Hyper-parameter GLUE Text Generation Image Classification
Warmup Steps {50, 500} - -
Learning Rate {1.5e-5, 3e-5, 5e-5, 1e-4} {1e-3, 1e-4} {3e-2, 1e-2}

Batch size 16 or 8 128 32
Epochs/Steps 15 15000 steps ImageNet:5 / CIFAR100:30

Optimizer AdamW AdamW SGD
Weight Decay 0.01 0.01 0

AdamW ϵ 1e-6 1e-6 -
AdamW β1, β2 0.9,0.999 0.9,0.999 -

SGD momentum - - 0.9
Image Resolution - - 384
Gradient Cliping 1.0 - 1.0

Scheduler linear - cosine
Pre-trained model DeBERTaV3large,T5base T5base ViTbase

added transformer block DeBERTaV3large:{20, 24} {10, 12} 12T5base:{10, 12}

Table 7: Hyperparameter for fine-tuning DeBERTaV3large, T5base, ViTbase. GLUE benchmacks were fine-tuning
on DeBERTaV3large and T5base. Text Generation datasets were fine-tuned on T5base. Image Classification datasets
were fine-tuned on ViTbase.

Additional Layer Position DeBERTaV3large T5base ViTbase

No Additional Layer(baseline) 435M 223M 86M
+ In Multi-head self-Attention 440M 229M 88M
+ After Feed-forward Network 460M 238M 93M
+ Both 465M 243M 95M

Table 8: The number of parameters after inserting an additional layer in the pre-trained model

pre-trained model. The hyperparameters used in832

the experiments are listed in Table 7. To determine833

the best performance, we conducted a grid search834

on the hyperparameters listed in Table 7. All ex-835

periments were run on RTX4090 x1 or RTX3090836

x1. Also, the number of parameters after insert-837

ing an additional layer in the pre-trained model is838

shown in Table 8. The models and metrics for the839

experiments used or modified code from Hugging-840

face(Wolf et al., 2020).841

Freeze Pre-trained Model. The structure in-842

volved in inserting an additional layer into the mid-843

dle layer of the pre-trained model in the proposed844

methodology is similar to the adapter mechanism. 845

The adapter mechanism (Houlsby et al., 2019) is 846

one of the parameter-efficient fine-tuning (PEFT) 847

methods. The Adapter mechanism inserts an ad- 848

ditional layer, such as a pfeiffer Adapter(Pfeiffer 849

et al., 2021) or LoRA(Hu et al., 2022), into the 850

middle layer of a pre-trained model. The adapter 851

mechanism does not perform full fine-tuning of all 852

parameters of the model like traditional fine-tuning. 853

It freezes the parameters of the pre-trained model 854

and learns only the parameters of the additional 855

layer. The additional layer learns to adapt to the 856

pre-trained model. This increases the training speed 857

12

COLA SST-2 MRPC STS-B QNLI RTE
Model Mcc Acc Acc Corr Acc Acc
T5∗base 51.1 95.2 87.5 89.4 93.7 80.1
T5base 61.57 94.95 91.18 89.94 93.01 78.70

Insert Additional Layer without Proposed Method
T5I 19.51 88.07 73.28 80.73 67.38 57.04
T5A 14.58 88.76 83.82 84.21 85.45 58.12
T5B 16.54 87.96 73.28 39.23 67.23 58.84

Freeze Pre-trained Model
AdapterI 9.69 88.99 71.57 22.75 63.39 56.32
AdapterA 17.51 88.99 82.84 83.33 84.44 58.12
AdapterB 13.46 86.58 71.57 21.81 64.59 54.51

with Proposed Method
ProposedI 60.06 94.61 90.93 90.76 92.84 84.12
ProposedA 58.57 94.61 91.67 90.40 92.99 81.23
ProposedB 61.59 94.72 92.89 91.07 92.84 83.03

Table 9: GLUE benchmank performances with T5base. I,A and B is position of additional layer. I is In multi-head
attention, A is After feed forward network and B is Both.

Figure 6: Performance graph of number of Additional layer in CoLA. In this graph, additional layer is initialize
according to Xavier initialization and GeLU activation was applied to the output. top-k inserts an additional layer at
the back k transformer blocks of the transformer layer (24-k ∼ 24). bottom-k inserts an additional layer at the front
k transformer blocks of the transformer layer (1 ∼ k).

in fine-tuning by learning only a few parameters. In858

the experiments of this study, we compare an envi-859

ronment similar to the adapter mechanism. In this860

experiment, an additional layer applied the Xavier861

initialization and ReLU(Agarap, 2018) activation862

to the output. We then measured the performance of863

training only the additional layer while freezing the864

parameters of the pre-trained model. In this com-865

parison, we verified whether the additional layer866

could adapt to the frozen model. We did not use any867

additional method for adaptation in the experiment.868

C Experiment with t5 in GLUE 869

benchmark 870

Table 9 is an evaluation of the GLUE benchmark on 871

T5base. Overall, it shows a similar trend to the per- 872

formance on DeBERTaV3large. However, T5base 873

is relatively more robust to the noise caused by the 874

additional layer. In Insert Additional Layer without 875

Proposed Method, the performance degradation is 876

relatively small than DeBERTaV3large. However, 877

there is a clear performance degradation, with SST- 878

2, STS-B, and QNLI showing a performance degra- 879

dation of 10%, and COLA and RTE showing ex- 880

tremely poor performance. STS-B had a perfor- 881

13

mance degradation of 20 points. Freeze Pre-trained882

Model did not demonstrate any performance im-883

provement. Overall, the performance of the After884

feed forward network position seems to be rela-885

tively high. We suspect that the After feed forward886

network position is less noisy due to fewer lay-887

ers being inserted compared to the other positions.888

When using the proposed method, the performance889

is similar to or higher than the baseline. As with890

DeBERTaV3large, COLA showed a slight perfor-891

mance degradation from baseline except for both892

positions. For other datasets, most of the perfor-893

mance generally matched or exceeded the baseline.894

D performance degradation by number895

of additional layer in CoLA896

Figure 6 shows a graph of performance as a func-897

tion of the number of additional layers in CoLA.898

The performance metrics are similar to Figure 3.899

As the number of additional layers increases, the900

matthews correlation decreases. Also, for most k,901

the performance in the bottom-K is lower than the902

performance in the top-K. This is the same result903

for masked language modeling.904

14

	Introduction
	Related Work
	Transfer Learning
	Weight Initialization

	Proposed Method
	Position of Additional Layers
	Insert Additional Layer

	Experiment
	Experiment Setup
	Experiment Result
	Performance Degradation by Additional Layer
	Ablation Study

	Conclusion
	Dataset
	Comparison Method
	Experiment with t5 in GLUE benchmark
	performance degradation by number of additional layer in CoLA

