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Summary
Real-world populations often include diverse social structures such as sub-groups or teams,

creating heterogeneous incentives that complicate coordination. Therefore, autonomous agents
must be able to adapt their individual incentives based on their surrounding population. To
address this challenge, we introduce a decentralized multiagent reinforcement learning frame-
work in which each individual agent learns to adapt both its behavior and its reward-sharing
strategy within a defined social structure in mixed-motive environments. Inspired by meta-
RL, each agent in our framework maintains two policies: a low-level behavioral policy and
a high-level reward-sharing policy that updates its individual reward function, changing how
agents distribute earned rewards and thereby shaping the incentives within the population. We
demonstrate the viability of this self-tuning approach by showing how agent populations can
learn to coordinate more effectively via the simultaneous adaptation of heterogeneous incentive
configurations. This work is a step toward integrating learning agents into real-world scenarios
with complex social structures and varying incentives.

Contribution(s)
1. We introduce a multi-level framework enabling individual agents to not only learn behavior,

but also adapt heterogeneous reward-sharing parameters in complex environments.
Context: Recent work often assumes homogeneous or fixed reward-sharing schemes,
limiting agents’ ability to adapt to evolving social contexts (Durugkar et al., 2020; Radke
et al., 2023a). Other approaches let agents learn to share or gift rewards but they either lack
social structure or assume a cooperative global objective (Lupu & Precup, 2020; Yi et al.,
2022). Our work, which considers mixed-motive environments with social structure, allows
agents to learn and adapt to heterogeneous reward-sharing schemes, better capturing more
diverse dynamics with social structures and varying incentives.

2. We show that our framework enhances population-level coordination, overcoming sub-
optimal initialization and surpassing non-adaptive fully-cooperative baselines.
Context: Using a standard but sub-optimal fully cooperative initialization, we demon-
strate that adapting reward-sharing parameters enables agents to exceed the performance of
non-adaptive fully-cooperative baselines by 34.2% and 20.3% (in mean population reward)
across our two evaluation environments. Additionally, inspecting agent behaviors in one
environment reveals that our adaptive agents consistently learn the best observed joint pol-
icy identified in prior work (Radke et al., 2023a).

3. We demonstrate that the heterogeneous reward-sharing parameterizations learned by our
framework are highly effective when used to train new agent populations.
Context: Using the heterogeneous reward-sharing schemes discovered during online tun-
ing (i.e., while agents dynamically update their reward-sharing parameters during learning)
as static parameterizations for newly instantiated agents yields further performance gains in
both evaluation environments over online tuning. In one environment, these new popula-
tions surpass the best known configuration from prior work, achieving the highest observed
reward while maintaining significantly greater equality. Discovering effective heteroge-
neous configurations through exhaustive or heuristic search of existing methods is onerous,
our approach leverages reinforcement learning to autonomously learn effective solutions.
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Abstract
Real-world populations include diverse social structures, such as sub-groups or teams,
that create heterogeneous incentives that complicate coordination. Agents learning to
cooperate in these dynamic environments must be able to adapt their internal incentives
with their surroundings. We address this challenge with a decentralized multiagent
reinforcement learning framework in which each agent has two policies, a low-level
behavioral policy and a high-level reward-sharing policy, to adapt both its behavior
and its reward function within mixed-motive environments with social structure. We
demonstrate the viability of our approach by showing that agents coordinate more ef-
fectively through this simultaneous adaptation of heterogeneous reward-sharing config-
urations. Empirically, our framework enhances population-level outcomes, overcoming
sub-optimal initializations and surpassing non-adaptive fully-cooperative baselines in
two evaluation domains. Furthermore, the heterogeneous reward-sharing parameteri-
zations that our method learns prove highly effective when applied to new agent pop-
ulations, yet identifying such configurations through exhaustive or heuristic search is
burdensome in this complex search space. By enabling agents to learn and adapt to het-
erogeneous reward-sharing schemes, our work better captures more diverse dynamics
with social structures and varying incentives.

1 Introduction

The study of cooperation is crucial in artificial intelligence, multiagent systems, and reinforcement
learning (RL) (Dafoe et al., 2020; 2021). Individual learning agents that cooperate can enhance their
capabilities beyond those of a single agent; however, agents often encounter mixed-motive scenarios
with diverse incentives that complicate coordination (Leibo et al., 2017). Furthermore, real-world
populations often contain diverse social structures, in the form of sub-groups or teams, that increase
the complexity of incentive structures. Agents must be able to adapt and learn effective incentive
configurations to operate successfully in these heterogeneous, dynamic settings.

Many existing approaches default to fully cooperative designs, where all agents share rewards
equally, to facilitate learning in complex mixed-motive scenarios. However, recent work highlights
the learning advantages of maintaining some mixed incentives (Durugkar et al., 2020; Radke et al.,
2022; Roesch et al., 2024). Determining which mixture of individual and shared rewards is most
effective depends on agents’ roles, policy distributions, and broader environmental factors, resulting
in a search space that quickly becomes large and unwieldy. This space can be searched by either
defining some population structure (i.e., sub-groups) and modifying inter-agent social dependencies
(i.e., degrees of reward sharing with groups) or defining reward-sharing methods and changing the
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underlying structure of sub-groups. In this paper, we propose a multi-level learning algorithm in-
spired by meta-RL that autonomously navigates the search space of reward-sharing configurations
for a given social structure, enabling agents to adapt the parameters of their internal reward functions
in the context of other agents.

Our work is concerned with the prescriptive agenda of multiagent RL (MARL), focusing on the
behaviors and performance of agents during learning (Albrecht et al., 2024). Specifically, we study
the context of individual learning agents operating within a defined social structure (i.e., agents have
membership to different groups or teams) with the ability to update their inter-agent social depen-
dencies. Our agents consist of two internal RL policies that operate at different timescales. One
policy operates within a multiagent environment, observing states and taking actions in the context
of other agents (i.e., their behavioral policy). A second policy operates in the space of the behavioral
policy’s reward function, a meta-environment, by observing how the behavioral policy shares reward
among different groups in the population and taking actions to update this reward-sharing scheme
(i.e., their reward-sharing policy). This interaction is similar to problems in meta-RL, where the
behavioral policy represents the “inner-loop” and the reward-sharing policy represents the “outer-
loop” (Schmidhuber, 1987; Beck et al., 2023) to learn hyperparameters of the reward function that
best support the overall learning objective. This paper makes the following contributions:

• We introduce a multi-level MARL framework wherein agents not only learn behavioral policies
but also learn heterogeneous reward-sharing parameters within complex environments.

• We demonstrate that this framework enhances population-level coordination, overcoming sub-
optimal initializations and surpassing fully-cooperative non-adaptive baselines.

• We show that the heterogeneous reward-sharing schemes discovered via our approach continue to
yield strong results when applied as static parameters in new agent populations.

2 Preliminaries

We are interested in the space of mixed-motive stochastic game environments that are
not purely cooperative or competitive. Consider a stochastic game, defined as G =
⟨N , S, {A}i∈N , {R}i∈N , P, γ⟩, where N is the set of N individual learning agents. S represents
the state space and si represents an observation of agent i. We assume that all agents are able to ob-
serve the environment the same (i.e., no agent has privileged observations). A represents the action
space and R represents the reward function, where Ri : S×A×S 7→ R and each agent receives the
same reward from the environment for executing the same state-action pair (i.e., no particular agent
receives more nor less reward for specific state-action pairs). P : S × A 7→ ∆(S) is the transition
function and γ is the discount factor where 0 ≤ γ < 1. Additionally, we assume the existence
of reward-causing state-action (RCSA) pairs, areas of the state space that do not carry explicit
reward themselves but cause reward to be obtained elsewhere in the environment (Arjona-Medina
et al., 2019; Radke et al., 2023b).

We define a team to be a collection of agents that can have some degree of common interest as a
way to introduce social structure to the population. Similar to past work, we assume that agents are
assigned to teams a priori, though agents are not required to share rewards with teams they belong
to. A team to which agent i belongs is denoted Tn ⊂ N and agents may belong to any number of
teams. The set of all teams in the system is defined as T with the number of teams being denoted
|T |. The set of all teams that agent i belongs to is defined by the set Ti. Given these definitions,
multiple teams may coexist in the same environment and may not be in zero-sum competition. For
example, employees at a company can belong to multiple teams: an engineering team, a leadership
team, and various social groups within the company. These employees have varying degrees of
common interest with their peers in each group; however, the individual teams are likely not in
zero-sum competition.
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3 Related Work and Background

While sharing rewards has been shown to support cooperative behavior, reward sharing alone does
not guarantee agents will learn the best joint policy. Recent work has formalized the relationship
between the credit assignment problem in MARL and reward-sharing groups, motivating the need
for specialized social structures or reward-sharing parameters among agents (Radke et al., 2023b).
Other research has analyzed how the balance between individual and population-level rewards in-
fluences learning. The Social Value Orientation (SVO) model proposes a scale ranging from purely
individualistic to fully altruistic reward functions (McKee et al., 2020) and Durugkar et al. (2020)
investigate how specific blends of personal and group rewards can benefit coordination tasks; how-
ever, sharing schemes remain static throughout experiments in both models. D3C overcomes the
static limitations of these frameworks by allowing agents to update the amount of reward they share
with any other individual in the system through random perturbations (Gemp et al., 2022). However,
the populations in these prior works lack social structure and agents are not able to be strategic in
how they share rewards. In contrast, our work considers populations with defined social structures
and allows agents to dynamically learn individual reward-sharing parameters for groups they belong
to. Our agents use RL to update their reward-sharing policies; thus, agents are able to update diverse
reward-sharing parameters strategically.

Other distinct reward-sharing mechanisms have been explored where agents explicitly act to share
rewards. Reward gifting allows agents to directly transfer rewards to their peers (Lupu & Precup,
2020; Dong et al., 2021). Agents in the Learning to Incentivize Others (LIO) model learn gifting
functions that modify the rewards given to other agents (Yang et al., 2020). However, the framework
is not budget balanced and can introduce excess reward into the environment. Formal contracts
have been shown to align agents on a reward-sharing scheme but only supports a single contract at
once (Christoffersen et al., 2023). Alternative to these approaches, our work leverages meta-RL to
dynamically update agent preferences for multiple groups through reward-sharing hyperparameters
instead of targeted peer incentives.

Credo Background. Specifically, our work builds upon the credo model for sharing rewards be-
tween MARL agents in the context of social structure (Radke et al., 2023a). The credo model extends
the reward-sharing framework to populations with social structures where agents can optimize their
behavior for themselves, a subset of agents (i.e., a team), or the entire system population. The ratio
of an agent i’s reward shared with each group (self, teams, system) is regulated by credo parameters,
represented as: cri = ⟨ψi, ϕ

T1
i , . . . , ϕ

T|T |
i , ωi⟩. Credo parameters define a reward-sharing configu-

ration of how much reward an agent shares among each group, where ψ is the credo parameter for
i’s individual reward IRi, ϕTn

i is the credo parameter for a team-based reward TRTn
i from team

Tn, and ωi is the credo parameter for the system-based reward of the entire system SR. The credo
parameters within cri always sum to one. Past work implements team rewards TRTn

i and system
rewards SR as the mean reward obtained by agents in Tn and N , respectively, at each timestep of an
experiment. The credo model only considers fixed reward-sharing parameters for each group (self,
teams, system). Furthermore, a limitation of the credo model is that it specifies identical, predefined
reward-sharing parameters for all agents.

Appropriate social structures and credo parameters can significantly improve how agents learn
by facilitating the discovery of valuable yet unrewarded behaviors (RCSA pairs) while mitigating
the credit assignment challenges posed by larger teams and fully-cooperative populations (Arjona-
Medina et al., 2019; Agarwal et al., 2019; Radke et al., 2023a;b). However, these benefits require
determining the best fixed credo parameters for a given population structure through extensive pa-
rameter sweeps. We address this limitation by enabling agents to dynamically update their indi-
vidual reward-sharing credo parameters online, thereby learning to balance these conflicting factors
autonomously.
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Figure 1: (a) Our adaptive tuning agent framework where each independent learning agent com-
prises two policies operating on different timescales. (b) Our high-level meta-environment that the
credo-policy operates within. Each tuning agent has its own instance of this meta-environment.

4 Adaptive Reward Sharing Framework

We propose an adaptive framework that overcomes limitations of the credo model by allowing agents
to learn reward-sharing parameters using RL. Inspired by meta-learning, our approach imbues each
agent with a secondary policy that updates its reward-sharing scheme online, thereby shaping the
reward function for its primary behavioral policy. We also introduce new credo reward functions to
support heterogeneous credo parameters across the population.

Our proposed tuning agent architecture is illustrated in Figure 1a. Each agent i is composed of two
internal policies, i = ⟨πi, πcr

i ⟩, operating at different timescales. Agent i’s low-level behavioral
policy (purple solid box), denoted πi, operates at every timestep within a multiagent environment,
observing states and taking actions in the context of other individual learning agents. Agent i’s
high-level credo policy (orange dashed box), denoted πcr

i , operates at a longer timescale in a meta-
environment, observing how its behavioral policy’s reward is shared among different groups and
taking actions to update the credo parameters of the agent’s reward function. To reduce nonsta-
tionarity for the behavioral policy, the credo policy updates at a defined cadence of E episodes (a
hyperparameter) rather than within an episode of learning, akin to the psychological processes of
skill acquisition (Anderson, 1982). Through its credo policy, each agent adaptively shapes its own
reward function to maximize long-term reward within the given social structure. In the mixed-motive
environments with RCSA pairs that we consider, maximizing reward requires effective coordination
and teamwork between agents.

Since each agent’s credo policy updates its own parameters, agents naturally develop distinct reward-
sharing configurations, even within the same group. For example, if agent i and agent j share a team,
agent imight adopt team-based credo parameter ϕi = 0.2 while agent j settles on ϕj = 0.6, meaning
they contribute differently to their shared team-based reward. Allowing for these heterogeneous
credo parameter distributions between agents, we define the team-based reward channel for any
team Tn as TRTn

i and define the system-based reward channel as SRi, given by:

TRTn
i =

∑
j∈Tn

ϕTn
j Rj(S,Aj , S) and SRi =

∑
j∈N

ωjRj(S,Aj , S).

Additionally, let IRi represent the agent’s normal individual exogenous reward (i.e., Ri) they re-
ceive from the environment for observing the state and taking individual actions. Building on these
definitions, each agent’s credo-based reward function Rcr

i , which its behavioral policy πi seeks to
maximize, is defined as:
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Rcr
i = ψi · IRi +

∑
Tn∈Ti

ϕTn
i∑

j∈Tn
ϕTn
j

· TRTn
i +

ωi∑
j∈N ωj

· SRi. (1)

An agent’s credo policy, πcr
i , learns to optimize the mean credo-based reward that its behavioral

policy accumulates over the E episodes between credo updates. With our credo-based reward, the
team and system-based reward channels depend on both the reward and credo parameters of all
agents on that respective team or in the system. Since team and system-based rewards are allocated
among agents in proportion to their credo parameters, we maintain budget balance: all rewards
earned from the environment are fully distributed, with no loss or introduction of excess reward.

Allowing agents to update their reward-sharing parameters introduces a second-order social dilemma
that affects both credo and behavioral policies, similar to reward gifting discussed in Section 3.
Given the existence of RCSA pairs, agents will extract different amounts of exogenous reward from
the environment. Agents that collect more reward from the environment have the short-term incen-
tive to decrease their team and system credo parameters to keep more reward for themselves. How-
ever, decreasing these parameters inevitably increases the incentive for their teammates or peers to
stop executing RCSA pairs in search of exogenous reward themselves. The decrease in executed
RCSA pairs would result in a decrease in rewards able to be obtained from the environment, ulti-
mately decreasing long-term global welfare. While RL has been shown to perform poorly in social
dilemmas, our results show that our framework balances these two dilemmas by developing and
maintaining effective reward-sharing credo policies and cooperative behavioral policies.

5 Evaluation Details

We outline the setup for evaluating our reward-sharing framework. First, we present the behav-
ioral environments and specify the low-level policy implementation. Next, we introduce the meta-
environment and detail how agents adjust their reward functions via a credo policy. Finally, we
define our experimental configurations that form the basis of our empirical analysis.

Behavioral Environments and Behavioral Policy Implementation. We utilize two commonly
studied stochastic game environments with distinct multiagent challenges as our low-level behav-
ioral environments: the Cleanup Gridworld Game (Cleanup) (Vinitsky et al., 2019) and Neural
MMO (NMMO) (Suarez et al., 2019). The different incentives and reward structures of these two
environments allows us to evaluate our approach under different environmental conditions with var-
ious RCSA pair dynamics. We implement behavioral policies in these environments with Proximal
Policy Optimization (PPO) given its effectiveness in multiagent settings (Schulman et al., 2017; Yu
et al., 2022; Radke et al., 2023b). All learning trials in Cleanup consist of 3.4× 108 environmental
timesteps and trials in NMMO are 2.6×107 environmental timesteps. Episodes in both last for 1,000
timesteps. Agent i’s behavioral policy, πi, aims to maximize its individual credo-based reward func-
tion, Rcr

i (Equation 1), which is calculated at each timestep according to the agent’s current credo
parameters, cri.

We define agents to belong to only one team to study the base case scenario. In Cleanup, we define
three disjoint teams of two agents each from a population of six agents (i.e., |T | = 3 disjoint teams
from the population of N = 6 agents where for every agent i, |Tn| = 2). In NMMO, we set two
disjoint teams of three agents each from the population of six agents (i.e., N = 6 and two teams
|T | = 2 of three agents |Tn| = 3 each). These configurations are consistent with prior work studying
teams in both environments (Radke et al., 2023a;b).

Meta-Environment and Credo Policy Implementation. Our tuning agents are comprised of an
additional policy that operates in a meta-environment to update parameters of their individual re-
ward functions. Each tuning agent in the behavioral environments has its own instance of this
meta-environment that its credo policy is optimizing within. Since agents belong only to one
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Table 1: Experiment configurations. Items labeled (1) to (3) correspond to baseline experiment
configurations. The bold configurations represent experiments utilizing our tuning agents (4) and
learning from learned heterogeneous credo parameter distributions (5).

Exp. Configuration
Initial Credo
⟨ψ, ϕ, ω⟩

Credo Changes
During Exp.

Agent Credo
Heterogeneity

(1) Static Self-Focus ⟨1, 0, 0⟩ ✗ ✗
(2) Static Team-Focus ⟨0, 1, 0⟩ ✗ ✗
(3) Static System-Focus ⟨0, 0, 1⟩ ✗ ✗
(4) Tuning System-Focus ⟨0, 0, 1⟩ ✓ ✓
(5) Static Post-Tuning Learned during (4) ✗ ✓

team, the credo policy of an agent learning to modify three parameters (i.e., agent i’s credo pol-
icy modifies cri = ⟨ψi, ϕi, ωi⟩). As a proof of concept for our approach, we define the meta-
environment (shown in Figure 1b) with discrete credo parameters along intervals of 0.2, creating
21 possible states. The credo policy, πcr

i , for each agent is implemented with Q-Learning with
ϵ-greedy exploration (Watkins & Dayan, 1992). A credo policy can choose from seven actions, in-
creasing/decreasing any two credo parameters (six actions) or no operation (one action). Infeasible
actions are treated as no operation. An agent’s credo policy learns a reward-sharing configuration
that maximizes the mean credo-based reward that their behavioral policy collects throughout the E
episodes since the last credo update. For the following E ≥ 1 episodes, the behavioral policy opti-
mizes the agent’s reward function that is calculated using these updated reward-sharing parameters,
cr′i. Further environment and implementation details are in the Supplementary Materials 8.1.

Experiment Configurations. Table 1 provides an overview of our experiment configurations,
which are either static or tuning scenarios. In static scenarios (configurations (1) through (3)),
agents’ credo parameters are initialized to some predefined focus at the start of an experiment and
never change during the experiment to serve as comparison baselines. For example, in the static
self-focused scenario agents are fully selfish and do not change their homogeneous reward-sharing
configurations during learning. Static scenario agents are comprised only of a behavioral policy and
operate exclusively in the behavioral environments using PPO.

In contrast, our tuning scenario consists of agents utilizing our adaptive framework (Figure 1a)
being comprised of both a behavioral policy and a credo policy. In the tuning system-focus scenario
(configuration (4)), credo parameters are initialized to system-focused (i.e., fully cooperative) and
are dynamically updated according to our tuning framework. Although prior work has argued that
best overall outcomes occur when agents act fully cooperatively (Gemp et al., 2022; Wang et al.,
2019), more recent studies suggest that purely cooperative approaches can be suboptimal (Durugkar
et al., 2020; Radke et al., 2022; Roesch et al., 2024). So, we adopt a fully cooperative configuration
as the initial condition for our agents, since it serves as a natural starting point from which agents
should, in theory, do well if they successfully coordinate, but where we know there is room for
improvement. In all tuning scenario trials, we define E = 96 (96,000 environment timesteps) for
the credo policy updates to coincide with our parallel hardware configuration. For all experiments,
both static and tuning of all configurations, we perform seven trials (i.e., seeds) and report results
with 95% confidence intervals (CI).

In our final experiment, the static post-tuning scenario (configuration (5)), we reuse the heteroge-
neous credo parameters learned by agents during the tuning system-focus trials (configuration (4))
and apply them as static parameters for newly instantiated agents. Specifically, we take the mean
credo parameters for each agent from the final 20% of timesteps in each tuning trail, by which point
the parameters had stabilized in all of our trials, and designate these as learned credo parameters for
a new population. This is done for all seven sets of learned credo parameters from the tuning trials,
where each set consists of six heterogeneous reward-sharing parameterizations (i.e., one for each of
the six agents). Further details on our experiment configurations are in Supplementary Material 8.2.
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Figure 2: Comparing tuning (solid green) and static (solid red) agents initialized with system-focus
credo for mean population reward (top) and inverse Gini index (bottom). For comparison, we gather
results for a static team-focused population (dashed blue), the best observed configuration from past
work, and results for a static self-focused population (dashed orange) as a baseline. All metrics are
from seven trials (mean ± 95% CI).

6 Results

We empirically evaluate the following research questions. RQ1 in Section 6.1: How does the
performance, in terms of reward and equality, of a population our tuning agents contrast with the
performance of a population of static (non-tuning) fully-cooperative agents? RQ2 in Section 6.2:
How do agents’ policies and credo parameters evolve throughout the learning process using our
framework? RQ3 in Section 6.3: To what extent do the final credo parameter distributions that our
tuning agents develop represent effective reward-sharing mixtures for learning and coordination?

6.1 Tuning Reward-Sharing Parameters

First, addressing RQ1, we compare our tuning agents with several static homogeneous reward shar-
ing baselines. Specifically, we compare mean population reward and inverse Gini index results from
tuning system-focus trials (4) with the baseline static configurations of static self-focus (1), static
team-focus (2), and static system-focus (3). Figures 2a and 2b illustrate the performance across sce-
narios in Cleanup and NMMO. The top plot in each figure shows mean population reward, while the
bottom plot shows the inverse Gini index, demonstrating equality. All metrics are the mean result
across seven trials with 95% confidence intervals.

Our results show that our tuning approach has learning advantages, enabling agents to achieve more
reward than their corresponding static agents in both environments. In Cleanup (Figure 2a), tuning
system-focus agents (green) achieve 34.2% higher mean population reward on average than the static
system-focus population (red) over the last 25% of timesteps. In NMMO (Figure 2b), our results
highlight the learning speed benefits that tuning agents exhibit over static agents. For example,
tuning system-focus credo agents (green) reach a reward of 10 in 31% fewer timesteps compared to
the static system-focus agents (red) while also obtaining 20.3% more reward over the final 25% of
experiment timesteps.

As shown by the inverse Gini index results, static system-focus maintains perfect equality by defini-
tion as it is fully cooperative. In comparison, the tuning agent population has reduced equality which
is a requirement of updating reward the sharing scheme. However, high reward equality is still ob-
tained by tuning agents across both environments, either more or on-par with the static team-focused
setting which is the best observed configuration from past work (Radke et al., 2023a).

Our results show the ability for tuning agents to autonomously overcome the learning challenges of a
fully cooperative environment and the possibility to obtain significantly more reward than the static
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Figure 3: Agent behavior and credo parameters throughout one tuning system-focus trial in Cleanup.
The six agents are denoted as i0 though i5. The three teams are denoted as T0 through T2. Agents on
the same team share varying shades of the same color in the plot labels. Figure 3a shows the number
of apples consumed and the number of river cleaning actions for each agent. Figure 3b illustrates the
evolution in self, team, and system credo parameters for each agent, using a sliding window mean
across every 10 samples.

fully cooperative setting. Although the tuning system-focus agents do not achieve the level of reward
of the static team-focus agents (blue dashed lines), the tuning process itself still enabled agents to
overcome sub-optimal fully-cooperative initializations and yielded effective heterogeneous reward-
sharing parameter configurations. We will show that the tuning process develops reward-sharing
configurations that can be used as a static reward-sharing initialization which surpasses the reward
and equality levels of the static team-focus agents in Cleanup in Section 6.3.

6.2 Learned Behaviors and Learned Reward-Sharing Parameters

Second, addressing RQ2, we examine the impact that the tuning process has on the learned policies
of individual agents and their reward-sharing parameters as they evolve throughout an experiment.
We illustrate the behavioral policies and credo configurations of agents throughout a tuning system-
focus (4) trial to examine the underlying effects of the tuning process on learned behaviors. In
NMMO, we do not observe consistent and definitive differences in behaviors between scenarios
(static system-focused vs. tuning system-focused). This could be explained by the dynamic nature
of the RCSA pairs in NMMO that agents continually adapt towards, resulting in less well defined
behavioral roles to examine. We confine our analysis in this section to Cleanup.

Learned Behavioral Policies in Cleanup. In Cleanup, agents are rewarded for consuming apples,
but apple regrowth rate depends on on the cleanliness of an adjacent river. To be successful in
Cleanup, groups must learn to balance rewarded actions of consuming apples with cleaning the
river. Figure 3a shows agents’ apple consumption (top) and cleaning beam actions (bottom) through
one tuning system-focused (4) Cleanup trial (from our results in Figure 2a). Although initialized
as system-focused (i.e., fully-cooperative), the tuning agents evolve towards a joint policy that is
never learned by any static system-focused population. This advantageous evolution is showcased
by agents initial role specialization into three apple-picking and three river-cleaning agents within
the first 1.4e8 timesteps, which is the configuration learned by static system-focused agents, but then
the tuning agents discover a better joint policy as they continue to learn. Specifically, agent i2 (dark
red) on team T1 transitions to apple picking in the latter half resulting in the better joint policy of
four apple-picking agents and two river-cleaning agents.

This role switching is directly facilitated by our tuning process and the learning of this better joint
policy is observed across all seven tuning system-focused trials. While tuning agents do not surpass
static team-focused agents in total reward, they converge to the same joint policy of four apple-
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Figure 4: Examining static agents initialized with learned credo parameter configurations (learned
during tuning system-focus trials in Figure 2). We contrast the learned parameter configurations of
static post-tuning (solid purple) with tuning system-focus (dashed green) agents, and static team-
focus (dashed blue) agents for mean population reward (top) and inverse Gini index (bottom). All
metrics are from seven trials (mean ± 95% CI).

picking agents and two river-cleaning agents. This reward differential could be explained by a
potential underlying role efficiency advantage corresponding to the increased learning time that an
agent population spends executing some joint policy. Thus, our analysis of RQ3 in Section 6.3
explores how the tuning process results in reward-sharing parameter distributions that tend towards
better joint policies, and thus higher rewards, when training from scratch.

Learned Credos in Cleanup. Figure 3b show the learned credo parameters for each agent over the
course of the tuning system-focus Cleanup trial shown in Figure 3a. Agents began the trial starting
with homogeneous fully-cooperative, cr = ⟨0, 0, 1⟩, reward-sharing parameters and update their
credo parameters over the course of the trial using our framework. Our results show that each agent
develops a heterogeneous stable credo distribution. We observe that agents i0 and i1 (blue; team
T0) adopt some team-focused credo for complementary roles, a river cleaner and an apple picker.
Conversely, agents i4 and i5 (green; team T2) adopt similar complementary roles, but maintain
more self-focused credo through the experiment. Most notably, agent i2, in T1, that switches roles,
as mentioned in the previous section, becomes slightly self-focused around 1.4e8 timesteps which
coincides with their role switch. A potential contributor to this role switch could be that, because
this agent has a more self-focused credo, they keep a larger share of their reward, making it more
advantageous for them to take on the role of an apple picker. Altogether, agents discover a better
global joint policy while maintaining high reward equality through the process of learning their
heterogeneous credo parameter distributions. These results show how our framework allows agents
to autonomously learn differing reward-sharing parameters that enhance global outcomes.

6.3 Learning with Learned Reward-Sharing Parameters

Finally, addressing RQ3, we instantiate new static agents with the heterogeneous learned reward-
sharing parameters that agents converge to at the end of the tuning trials in configuration (4). These
results, called the static post-tuning experiment (5), are compared to tuning system-focused results
(4), from which the learned parameters originate, and the previously best observed static-team focus
configuration (2). Our findings are illustrated in Figure 4.

In Cleanup (Figure 4a), we find that the static post-tuning agents achieve more reward and higher
equality than the tuning system-focus results. Interestingly, while the tuning system-focus exper-
iment outperforms the fully cooperative static system-focused setting (as shown in Figure 2), the
tuning process develops a reward-sharing configuration that outperforms itself when used statically
and trained with from scratch. Furthermore, the static post-tuning results surpass the previously best
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observed result of the static team-focused population, achieving both slightly higher mean popula-
tion reward and significantly higher equality. In prior work, discovering this effective team-focused
configuration for a given social structure required an extensive hyperparameter sweep over the credo
parameters (Radke et al., 2023a). With a discretized credo space and homogeneous parameters
among agents, this necessitated at least 21 learning trials to explore the space. If extended to het-
erogeneous parameters, as in our work, the search space grows exponentially, making exhaustive
exploration infeasible. By contrast, our approach enables agents to autonomously learn effective
reward-sharing parameters for a given social structure, potentially requiring as few as a single learn-
ing trial to identify a strong configuration. Thus, our static post-tuning is now the best observed
result in Cleanup with teams while being autonomously discovered using RL.

In NMMO (Figure 4b), static post-tuning agents also outperform the results of the tuning system-
focus agents in the tail end of the experiment. However, the static post-tuning agents do not out-
perform the static team-focused population in NMMO. This could be explained by the multiple
dynamic RCSA pairs in NMMO which differs from Cleanup, by some other underlying environ-
ment dynamic, or social structure dependency. More concretely exploring the relationship between
environment dynamics, social structure, and reward sharing may prove to be an interesting line of
future work which approaches such as ours could help autonomously disentangle.

7 Conclusion

We introduce a decentralized, multi-level framework that empowers each agent to learn both its be-
havior and heterogeneous reward-sharing parameters in complex, mixed-motive environments with
social structure. By coupling a low-level behavioral policy with a high-level reward-sharing policy,
our approach enables agents to adjust their incentives and adapt to the surrounding social context.
Letting each agent intelligently refine how their rewards are distributed among the population helps
shape the incentive landscape to foster effective coordination.

Our empirical results demonstrate that, starting for a sub-optimal yet commonly used fully coop-
erative initialization, agents can substantially improve global outcomes by adapting their reward-
sharing parameters. In two extensively studied multiagent environments, Cleanup and NMMO, our
method outperforms static, non-adaptive fully cooperative baselines. Further, in Cleanup, the hetero-
geneous configurations learned during online tuning achieve the highest observed results, surpassing
all static baselines for reward while maintaining high equality. This capability alleviates the need
for exhaustive or heuristic sweeps over potential reward-sharing parameterizations, which become
oppressive in heterogeneous settings. However, further work is needed to address the challenges
of more complex environments like NMMO in which the learned heterogeneous reward-sharing
schemes do not outperform static team-focus populations.

Our framework offers a promising approach towards autonomously balancing challenges related to
credit assignment, value discovery, and overall joint policy development in social contexts. While
the credo policy is discretized in our current implementation, future work could model different
components of agents’ reward functions more explicitly, such as through continuous action spaces
as in recent deep RL research (e.g., (MacGlashan et al., 2022)). Such an extension would expand
reward function decomposition to multiagent settings and increase the richness of the reward-sharing
search space. Overall, our findings highlight the potential of adaptive, self-tuning meta approaches
to improve the performance of individual learning agents in multiagent systems characterized by
diverse social structures and varying incentives.
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8 Supplementary Materials

8.1 Environment and Implementation Details

In order to evaluate our agent framework, we use two commonly studied stochastic game envi-
ronments with distinct multiagent challenges, like social dilemmas and resource management, as
low-level behavioral environments. Alongside these, we introduce a high-level meta-environment
for our framework wherein agents learn to optimize their reward-sharing strategies.

Low-Level Behavioral Environments. We utilize the Cleanup Gridworld Game (Cleanup) (Vinit-
sky et al., 2019) and Neural MMO (NMMO) (Suarez et al., 2019) as the low-level environments to
serve as the primary context in which agents interact and learn. The different incentives and reward
structures of these two environments allows us to evaluate our approach under different environmen-
tal conditions. Cleanup presents a social dilemma where successful groups of agents must perform
RCSA pairs through active provisioning (Hughes et al., 2018). Agents are rewarded for consuming
apples, but apple regrowth rate depends on on the cleanliness of an adjacent river. To be successful
in Cleanup, groups must learn to balance rewarded actions of consuming apples with cleaning the
river. In contrast, NMMO presents a hunter-gatherer structure where successful groups must learn
to forage different resources and execute multiple RCSA pairs concurrently. Agents must maintain
a stash of consumable resources (food and water) that deplete each timestep but are replenished by
harvesting in the environment. Agents are rewarded for positive increases to their lowest resource.
Thus, to be successful in NMMO, agents must learn to maintain both food and water to receive
reward, creating multiple dynamically changing RCSA pairs.

We implement the behavior policy, πi, of each agent, as well as all baseline (i.e., non-tuning) agents,
in these environments with Proximal Policy Optimization (PPO) given its effectiveness in multiagent
settings (Schulman et al., 2017; Yu et al., 2022; Radke et al., 2023b). We provide the full set
of PPO hyperparameters in our code repository for transparency and reproducibility. Our PPO
hyperparameters are chosen based on values that have been shown to achieve strong performance
in prior works. Importantly, we do not tune these hyperparameters between methods, both our
approach and the baselines use the same PPO hyperparameter settings to ensure a fair comparison.
At every step of an episode, agents select their individual action given their individual partially-
observable observation. Agent i’s behavioral policy aims to maximize their individual credo-based
reward function, Rcr

i (Equation 1), which is calculated at each timestep according to the agent’s
current credo parameters, cri. Our tuning agents are comprised of an additional policy that acts in a
meta-environment which we describe next.

High-Level Meta-Environment. Figure 1b illustrates our defined meta-environment that an
agents’ credo policy takes actions within. We assign agents to belong to only one team to study
the base case scenario. This results in the credo policy of an agent learning to modify three param-
eters (i.e., agent i’s credo policy modifies cri = ⟨ψi, ϕi, ωi⟩). To simplify the learning process, we
discretize credo parameters to intervals of 0.2 creating a state space of 21 possible states. Note that
each tuning agent in the behavioral environments, Cleanup or NMMO, has its own instance of this
meta-environment that its credo policy is optimizing within.

The credo policy, πcr
i , for each agent is implemented with Q-Learning with ϵ-greedy explo-

ration (Watkins & Dayan, 1992). We implement a tabular Q-learning agent with an initial explo-
ration rate of ϵ0 = 0.2, which follows an exponential decay: ϵt = ϵ0e

−0.01t. The learning rate is
adaptive and defined as α(s, a) = 1

N(s,a) , where N(s, a) is the number of times action a has been
taken in state s. The discount factor is set to γ = 0.9. Action selection follows an ϵ-greedy strategy,
where the action with the highest Q-value is chosen with probability 1 − ϵ, while a random action
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(selected uniformly from all possible actions) is taken with probability ϵ. A credo policy can choose
from seven actions, increasing/decreasing any two credo parameters (six actions) or no operation
(one action). Infeasible actions, such as making a credo parameter negative, are treated as no op-
eration. For the following E ≥ 1 episodes, the low-level behavioral policy optimizes the agent’s
reward function that is calculated using these updated reward-sharing parameters, cr′i.

We implement agents across both low-level and high-level environments in the RLlib library (The
Ray Team, 2023). An experiment in Cleanup consists of 3.4× 108 environmental timesteps and ex-
periments in NMMO are 2.6× 107 environmental timesteps. Episodes in both Cleanup and NMMO
last for 1,000 timesteps. In Cleanup, we define three disjoint teams of two agents each from a pop-
ulation of six agents (i.e., |T | = 3 disjoint teams from the population of N = 6 agents where for
every agent i, |Tn| = 2). In NMMO, we set two disjoint teams of three agents each from the pop-
ulation of six agents (i.e., N = 6 and two teams |T | = 2 of three agents |Tn| = 3 each). These
configurations are consistent with prior work studying teams in both environments (Radke et al.,
2023a;b).

8.2 Evaluation Details

Our evaluation is designed to address the following research questions. (RQ1) How does the per-
formance, in terms of reward and equality, of a population of tuning agents contrast with the per-
formance of a population of static (non-tuning) fully cooperative agents? (RQ2) How do agents’
policies and credo parameters evolve throughout the learning process using our framework? (RQ3)
To what extent do the final credo parameter distributions that tuning agents develop represent ef-
fective reward-sharing mixtures for learning and cooperation? In the remainder of this section, we
outline our experimental trial configurations and the specific experiments that we run in order to
address our research questions.

Experiment Configurations. Table 1 provides a summary of our experimental scenario configu-
rations and their distinctions for ease of reference. Throughout our experiments, we refer to static
scenarios and tuning scenarios.

In static scenarios, agents’ credo parameters remain constant after being initialized to a predefined
focus at the start of an experiment. A static self-focus scenario (configuration (1) in Table 1) is
where all of an agent’s credo is weighted to the self parameter (ψi), i.e., cri = ⟨1.0, 0.0, 0.0⟩.
This is equivalent to a fully selfish population wherein no agents share reward. A static team-focus
scenario (configuration (2) Table 1) is where all of an agent’s credo is weighted to the team parameter
(ϕTi

i ), i.e., cri = ⟨0.0, 1.0, 0.0⟩, and only teammates share rewards equally. Finally, static system-
focus scenario (configuration (3) in Table 1) is where all of an agent’s credo value is placed on the
system parameter (ωi), i.e., cri = ⟨0.0, 0.0, 1.0⟩. A system-focus scenario is equivalent to a fully
cooperative population since all agents equally share rewards within the system. Agent populations
in static scenarios typically have homogeneous credo parameters, meaning that all agents in the
population have the same reward-sharing parameters. A notable exception to this, which we detail
later in this section, is the static post-tuning configuration wherein agents have heterogeneous credo
parameters. In static scenarios, agents are only comprised of a behavioral policy, πi, and only act in
the low-level behavioral environments.

In contrast, tuning scenarios consist of agents utilizing our framework, being comprised of both
a behavioral policy and a credo policy, πcr

i (recall Figure 1a). In our tuning system-focus scenario
(configuration (4) in Table 1), credo parameters are initialized to system-focused (fully cooperative)
and are dynamically updated according to our tuning framework. In all tuning scenario trials, we
define E = 96 (96,000 environment timesteps) for the credo policy updates to coincide with our
parallel hardware configuration. For all experiments, both static and tuning of all configurations, we
perform seven trials to reduce variability and report results with 95% confidence intervals.

In our static post-tuning scenario (configuration (5) in Table 1) we use the credo parameters learned
by agents during the tuning system-focus trials (configuration (4)) and apply them as static parame-
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ters for newly instantiated agents. Specifically, we take the average credo parameters for each agent
from the final 20% of timesteps in each tuning trail, by which point the parameters had stabilized in
all of our trials, and designate these as learned credo parameters. These learned credo parameters are
then used as static reward-sharing configurations, meaning the agents’ reward-sharing parameters re-
main constant throughout learning, for our static post-tuning scenario. For each static post-tuning
trial, we initialize the new agents with the corresponding learned credo parameters from one of the
previous seven tuning trials. This is done for all seven sets of learned credo parameters from the
tuning experiments, where each set consists of six reward-sharing parameterizations, one for each
of the six agents.

Experiments. The experiments we conduct are as follows. First, we initialize agents to be fully-
cooperative and subsequently update their reward-sharing parameters using our tuning framework
in order to determine its effects on agent outcomes. (RQ1 addressed in Section 6.1). Specifically,
we compare mean population reward and inverse Gini index results from tuning system-focus trials
(4) with the baseline static configurations of static self-focus (1), static team-focus (2), and static
system-focus (3). Past work has shown that a fully cooperative population (i.e., static system-focus
(3)) achieves sub-optimal results in these environments (Radke et al., 2023a;b). Thus, our tuning
agents must overcome this sub-optimal learning environment where credit assignment is challenging
to maximize performance. Second, we examine the impact that the tuning process has on the learned
policies of individual agents and their credo configurations as they evolve throughout an experiment
(RQ2 addressed in 6.2). We illustrate the behavioral policies and credo configurations of agents
throughout a tuning system-focus (4) trial to examine the underlying effects of the tuning process on
learned behaviors. Finally, we instantiate new static agents with the learned credo parameters that
agents converge to at the end of the tuning experiments in configuration (4) (RQ3 addressed in 6.3).
In particular, we compare results from static post-tuning trials (5) with tuning system-focus (4)
and static team-focus (2) in order to investigate if the agent population discovers favorable reward-
sharing configurations during the tuning process that can be used in subsequent learning trials to
enable more productive and equitable populations.


