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Abstract

Topic segmentation, in the context of natural001
language processing, is the process of finding002
boundaries in a sequence of sentences that sep-003
arate groups of adjacent sentences at shifts in004
semantic meaning. Currently, assessing the005
quality of a segmentation is done by comparing006
segmentation boundaries selected to those se-007
lected by a known good reference. This means008
that it is not possible to quantify the quality009
of a segmentation without a human annotator,010
which can be costly and time consuming. This011
work seeks to improve assessment of segmen-012
tation by proposing a segmentation metric that013
requires no reference. The metric takes ad-014
vantage of the fact that segmentation at a sen-015
tence level generally seeks to identify segment016
boundaries at semantic boundaries within the017
text. The proposed metric uses a modified clus-018
ter validity metric with semantic embeddings019
of the sentences to determine the quality of the020
segmentation. The metric is compared against021
existing reference-based segmentation metrics022
to demonstrate the strong correlation with them023
and show the proposed metric’s relative accu-024
racy. A Python library implementing the metric025
is released under the MIT license and the repos-026
itory is available at url to be added.027

1 Introduction028

Text segmentation is a common task in language029

processing, in which a text is split into segments.030

Text segmentation is performed at different scales:031

when it is used to split sentences into their parts, it032

is referred to as elementary discourse unit (EDU)033

separation, and when used to split larger documents034

into topic based groups of sentences, it is known035

as topic segmentation (Marcu and Echihabi, 2002;036

Beeferman et al., 1999). This work focuses on037

topic segmentation, which has many applications038

from information retrieval (Dias et al., 2007) to039

summarization of long documents (Gidiotis and040

Tsoumakas, 2020; Zhang et al., 2022).041

Segmentation is generally evaluated by compar- 042

ing a reference set of possible segment boundaries 043

with the boundaries chosen by a given segmen- 044

tation algorithm. This means that segmentation 045

evaluation can only be performed on a data set that 046

has already been segmented by a human evaluator 047

(or other accepted-as-truth segmentation). A vari- 048

ety of methods have been proposed for evaluating 049

segmentation, all of which focus on the reference 050

and candidate sets, rather than the content being 051

segmented. A review of these methods is included 052

in Section 2. We significantly push the state-of- 053

the-art in segmentation evaluation by proposing a 054

reference-free segmentation quality metric. 055

The rest of this paper is organized in the follow- 056

ing manner. A brief history of modern segmen- 057

tation metrics and other related work is shared in 058

Section 2. The proposed reference-free segmenta- 059

tion quality metric is developed, alongside design 060

choice explanations, in Section 3. Validation of the 061

method, by comparing results to existing segmenta- 062

tion metrics on popular segmentation data sets are 063

shared in Section 4 along with an ablation study to 064

demonstrate the behavior of the method in several 065

scenarios. Potential uses and impacts of this work 066

are presented alongside a summary in Section 5. 067

2 Related Work 068

Existing segmentation evaluation metrics (Beefer- 069

man et al., 1999; Pevzner and Hearst, 2002; 070

Fournier and Inkpen, 2012; Fournier, 2013) are 071

reviewed, along with a brief introduction to clus- 072

ter validity metrics. We include a review of the 073

Davies-Bouldin Index (Davies and Bouldin, 1979), 074

which was used as a starting point for this work. A 075

brief review of some unsupervised segmentation 076

methods that use Sentence-BERT (Reimers and 077

Gurevych, 2019) is also shared. 078
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Figure 1: Window-based segmentation comparison

Figure 2: Mass-based segmentation comparison

2.1 Existing Segmentation Metrics079

A variety of segmentation evaluation metrics have080

been proposed. (Beeferman et al., 1999; Pevzner081

and Hearst, 2002; Fournier and Inkpen, 2012;082

Fournier, 2013) To our knowledge, all currently083

used metrics focus on comparing the set of bound-084

aries generated by the segmentation algorithm to085

some other set of boundaries, either a true reference086

or another hypothesis boundary set. Additionally,087

we are not aware of any existing segmentation qual-088

ity evaluations that are based on cluster validity089

metrics or the semantic representations of the seg-090

mented text.091

Existing segmentation metrics can be split into092

two categories, window-based and mass-based,093

with Pk and WindowDiff being window-based and094

Segmentation Similarity and Boundary Similarity095

being mass-based. A simple visualization of a096

window-based segmentation comparison is shared097

in Figure 1. Here, the start of a new segment is rep-098

resented by a 1. The window-based metrics use a099

sliding window that compares segment boundaries100

between reference and hypothesis sets within the101

window. The same example segmentation set is102

presented in mass-based format in Figure 2, where103

the segments are represented as alternating shaded104

boxes. In a mass-based metric, the sizes of the105

segments in terms of chunks are used as the basis106

for comparison. The full derivation and explana-107

tion of these methods is beyond the scope of this108

paper, but a brief introduction to each of these met-109

rics is presented below. The SegEval (Fournier,110

2013) implementation was used for the four classic111

segmentation metrics used in this work.112

2.1.1 Pk 113

The Pk metric was first proposed by (Beeferman 114

et al., 1999) and is widely used for evaluating seg- 115

mentation quality. (Arnold et al., 2019; Xia et al., 116

2022) Pk is the conditional probability of a bound- 117

ary classification error occurring within a window 118

of k chunks (making this a window based metric), 119

given the reference and hypothesis boundary sets. 120

Errors can be either a missing boundary or an added 121

boundary within a moving window that goes across 122

the segmentation set. As an error rate, a score of 123

zero is the desirable score. Using Figure 1 as a 124

reference, with the example window in the position 125

shown, Pk would not consider there to be an error 126

present. The window is then transposed across the 127

entire segmentation set, with errors calculated at 128

each transposition position, and a combined score 129

is created to represent the full segmentation. 130

2.1.2 WindowDiff 131

The Pk metric, although widely used, has some 132

noted shortcomings that were raised by (Pevzner 133

and Hearst, 2002) in the development of their pro- 134

posed metric, WindowDiff. (Pevzner and Hearst, 135

2002) They observed that Pk penalizes false neg- 136

atives more highly than false positives, tends to 137

penalize transposed boundaries (known as near 138

misses) too heavily, and is impacted by segment 139

size variation. WindowDiff is simple to implement 140

and compares the number of boundaries within a 141

moving window. This metric is also widely used 142

in the segmentation literature (Mota et al., 2019; 143

Zhong et al., 2022). Similar to Pk, a score of zero 144

is seen as desirable. Again, using Figure 1 as a 145

reference, with the window in the example position 146

shown, the number of boundaries present match 147

and this window position would return a score of 148

zero. 149

2.1.3 Segmentation Similarity 150

(Fournier and Inkpen, 2012) noted that WindowD- 151

iff and Pk are both window-based metrics that 152

depend on a reference segmentation, which intro- 153

duces some issues. They noted that neither metric 154

penalizes error types (missing or additional bound- 155

aries) equally and that window size influences the 156

metrics’ outcome greatly. They proposed a new 157

metric called segmentation similarity, which at- 158

tempted to improve upon existing metrics by ap- 159

proximating the distance between segmentation 160

sets in terms of the number of edits required to 161

make them the same. This method has the advan- 162
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tage of being symmetric (neither of the compared163

segmentation sets are treated as the true reference)164

and can be extended to compare segmentations165

between multiple annotators. Unlike Pk and Win-166

dowDiff, segmentation similarity is a similarity167

measurement and a score of 1 is considered to be a168

perfect match.169

2.1.4 Boundary Similarity170

(Fournier, 2013) observed that their proposed seg-171

mentation similarity metric suffered from opti-172

mistic values and proposed a new set of metrics173

derived from the same motivations as segmentation174

similarity in (Fournier, 2013). The primary metric175

proposed is called boundary similarity, although176

a boundary edit distance based confusion matrix177

and metrics based on that confusion matrix are also178

proposed in this work. Similar to segmentation179

similarity, a score of 1 is considered optimal for180

boundary similarity.181

2.2 Cluster validity metrics182

Cluster validity metrics are a more generalized ap-183

proach for assessing quality of segmentation in that184

they were designed to assess the quality of parti-185

tions found by unsupervised learning algorithms. A186

variety of cluster validity metrics exist, but in order187

to meet the design goal of not requiring a reference,188

only cluster validity metrics that are reference-free189

(known in clustering literature as internal evalua-190

tion schemes) were considered. Three such metrics191

considered were the Davies-Bouldin Index (Davies192

and Bouldin, 1979), the Calinski-Harabasz Index193

(Caliński and Harabasz, 1974), and the Silhouette194

Score (Rousseeuw, 1987). All three of these met-195

rics attempt to compare the relative distance (or196

dissimilarity) of the members of a cluster to the197

distance (or dissimilarity) between clusters, with198

varying differences in how they are computed. Sil-199

houette Score was rejected due to a lack of sensi-200

tivity when overlapping clusters are present, which201

is a common situation when considering groups of202

textual semantic representations. Adaptations of203

Calinski-Harabasz and Davies-Bouldin were both204

used in initial trials, but the adaptation of Davies-205

Bouldin was found to better demonstrate differ-206

ences in segmentation performance.207

2.2.1 Davies-Bouldin Index208

The Davies-Bouldin Index (Davies and Bouldin,209

1979) is computed on a set of labeled points in210

some n-dimensional space in the following way.211

For each label i, a centroid of the members of that 212

label is computed and the average distance between 213

the segment centroid and the members of the seg- 214

ment are computed and stored as Si. Any distance 215

measure can be used, but Euclidian distance is seen 216

frequently in the literature. 217

The distances between all pairs of centroids are 218

computed and stored as Mij . A ratio of pairwise 219

intra-cluster distances and centroid distances is 220

then computed as the following. 221

Rij =
Si + Sj

Mij
(1) 222

The maximum value of Rij for each label i is taken, 223

R̂i = max{Rij}, 224

and the average of these over all segments is re- 225

ported as the Davies-Bouldin index value, 226

DB =
1

N

N∑
i=1

R̂i, 227

where N is the number of labels. The maximum 228

term in R̂i means that the most similar cluster (in 229

other words, the worse case clustering) to label i 230

is included in the final Davies-Bouldin index. The 231

final score can be thought of as the ratio of intra- 232

cluster distance to inter-cluster distance, averaged 233

across the worse case pair of clusters for each label. 234

A low score indicates that clusters are relatively 235

compact and well-separated, whereas a high score 236

indicates that clusters are large and/or overlap. 237

2.3 Unsupervised segmentation methods 238

Although not a metric, unsupervised segmentation 239

methods are strongly related to the SegReFree met- 240

ric and could be used in some similar ways. For 241

example, an unsupervised segmentation method 242

could be used to create a reference segmentation 243

set, which could be then used with any of the seg- 244

mentation metrics previously discussed. It should 245

be noted that this would be a comparison between 246

two different segmentation methods and still sub- 247

ject to the shortcomings of whatever segmentation 248

metric was utilized. 249

Two specific segmentation methods that are 250

somewhat similar to our proposed method are pub- 251

lished by (Solbiati et al., 2021) and (Ghinassi, 252

2021). (Solbiati et al., 2021) uses Sentence-BERT 253

(Reimers and Gurevych, 2019) to generate em- 254

beddings as an input for a modified TextTiling 255
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Figure 3: Metric computation flowchart

algorithm that attempts to detect topic changes256

based on variations in segment similarity. (Ghi-257

nassi, 2021) uses a variety of different sentence258

embedding models along with a modified version259

of TextTiling that is also based on segment similar-260

ity. They found that Sentence-BERT embeddings261

outperformed those of the other embedding models262

tested. In both cases, they rely on Sentence-BERT263

embeddings to create a semantic representation of264

the sentences to be segmented and attempt to use265

that semantic information to derive similarity based266

boundaries.267

3 Method268

Conceptually, our proposed metric seeks to quan-269

tify segmentation quality by assuming that the de-270

sired segmentation for a given text occurs at topical271

boundaries. If the segmentation boundary separates272

two different semantically different groups of text,273

the semantic vector representations of the sentences274

in those segments should generally be close to the275

other sentences within the segment and separated276

from the sentences in adjacent text segments.277

At a high level, the proposed metric works by278

splitting text into sentences or utterances (the term279

chunks is used as a synonym for both), generat-280

ing embeddings of the chunks being segmented,281

and using a modified cluster validity metric where282

we treat segments as clusters. A block diagram is283

shown in Figure 3. Explanations of each step are284

elaborated upon in the rest of this section.285

3.1 Text splitting286

For the purposes of this paper and without loss of287

generality, all text was split at the sentence level288

following the previous usage of the data sets used289

for validation. This work could be extended to290

dialogue segmentation evaluation by splitting at291

the utterance level or it could be used for multi-292

document segmentation by splitting at a paragraph293

level.294

3.2 Sentence embeddings295

Sentence embeddings were generated using296

Sentence-BERT using the pre-trained ‘all-mpnet-297

base-v2’ model, which was trained on over one298

billion pairs of sentences from a variety of sources299

(Reimers and Gurevych, 2019). Sentence-BERT 300

is a modification of the pretrained BERT network, 301

which derives sentence embedding from semantic 302

meanings and seeks to improve the vector space em- 303

bedding over other methods of generating sentence 304

level BERT embeddings. The goal of Sentence- 305

BERT is to improve semantic textual similarity 306

comparisons between sentences, which provides a 307

necessary input for our proposed method. Sentence- 308

BERT is passed sentences, from the text splitting, 309

and returns 768 dimension embeddings, which are 310

used in conjunction with labels as the input to the 311

modified Davies-Bouldin index discussed in 3.3. 312

Other sentence embedding models could be used 313

with the proposed method, as the SegReFree qual- 314

ity index can be used with any embedding that pro- 315

vides semantic representation of the content being 316

segmented. We chose to use Sentence-BERT due 317

to successes in initial experiments and because it 318

appears to be state of the art for sentence-level em- 319

bedding at the time of writing, which is evidenced 320

in part by the large number of citations (over 3000 321

unique citations on Google Scholar). 322

3.3 Modifications to the Davies-Bouldin Index 323

Two main modifications were required for the 324

Davies-Bouldin Index to be used for assessment 325

of segmentation quality. The first was restricting 326

centroid distance calculations to adjacent segments. 327

This helps preserve the temporal aspect of segmen- 328

tation, as assessing the quality of a boundary is 329

best done by analyzing the adjacent segments to 330

that boundary. Initial experiments found that the 331

adjacent segment restriction improved sensitivity 332

of the final SegReFree score. This effect can be 333

conceptually explained quite easily: the quality of 334

a boundary only depends on the segments being 335

separated; a topically similar segment that isn’t ad- 336

jacent should not influence a descriptive score of 337

segmentation quality. 338

The second modification required was adding an 339

exponential penalty term to the intra-segment dis- 340

tance computation. This was necessary due to the 341

likelihood of adjacent chunks having a higher se- 342

mantic similarity than non-adjacent chunks within 343

a segment. Additionally, a segment that has a sin- 344

gle sentence will have an intra-cluster distance of 345

zero (ie. the centroid is the single point). This 346

was found to be problematic during initial inves- 347

tigations where we created artificially low (good) 348

scores by segmenting very frequently. The expo- 349
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nential penalty term was empirically created as a350

way to counteract this effect. It is still possible to351

get a score of zero by treating each sentence as352

an independent segment, however this is an edge353

case and not an expected segmentation result. Our354

implementation of SegReFree will allow a user355

to score a segmentation with single sentence seg-356

ments, but will warn them that it may cause an357

artificially low score. Multiple distance measures358

were considered (Euclidian, L1, and Cosine), with359

only minor impacts observed between them. With-360

out a reason to select a different measure, Euclidian361

distance was chosen due to it’s common use. Our362

code library allows for the easy switching of dis-363

tance measures and is set up with Euclidian, L1,364

and Cosine distance for easy experimentation.365

The Segmentation ReFree Index algorithm366

works as follows. Embeddings of all sentences367

and corresponding segment labels for all sentences368

are used as the input. For each segment, a centroid369

of the embeddings of the members of that segment370

is computed and the average Euclidian distance be-371

tween the segment centroid and the members of372

the segment are computed; this mean intra-cluster373

distance for segment i is referred to as dispersion374

Si. These intra-cluster distances are then modified375

by376

Si =
Si

1− 1√
ni

(2)377

for all segments containing more than one member,378

where ni is the number of members in the ith clus-379

ter. To prevent infinite values, the correction factor380

is not applied to segments where ni is equal to 1.381

The distances between centroids of temporally ad-382

jacent segments (e.g., between segment i and both383

i − 1 and i + 1) are computed and stored as Mij ,384

j ∈ {i− 1, i+1}. A ratio of pairwise intra-cluster385

distances and centroid distances is then computed386

as387

Rij =
Si + Sj

Mij
, j ∈ {i− 1, i+ 1}, (3)388

for both adjacent segments to i. The maximum389

value of Rij for each segment i is taken,390

R̂i = max{Ri,i−1, Ri,i+1},391

and the average of these over all segments is re-392

ported as the quality index value,393

DB =
1

N

N∑
i=1

R̂i,394

where N is the number of segments. 395

Essentially, Rij in (3) is the ratio of the added 396

distances of segments i and j and Mij , the distance 397

between centroids of segments i and j. If Rij has 398

a low value then the segments are small compared 399

to the distance between them. If Rij is large then 400

the intra-cluster distances are large compared to 401

the distance between them. Hence, the average of 402

the maximum Rijs for each segment i represents 403

a measure of the relative semantic dissimilarity of 404

the the temporally adjacent segments are in a given 405

segmentation. 406

3.4 Data sets 407

Two data sets commonly used in segmentation 408

work were used to validate this metric. The first is 409

the Choi data set, introduced in (Choi, 2000) and 410

used to demonstrate the C99 segmentation algo- 411

rithm. The Choi data set is constructed by taking 412

paragraphs from different files in the Brown corpus 413

(Francis and Kucera, 1979), which creates substan- 414

tial topical shifts between boundaries. The ’3-11’ 415

subset of the Choi data set was used for this work, 416

which includes paragraphs with three to eleven sen- 417

tences each. Two files that included repeating para- 418

graphs were excluded, as they show a very poor 419

(high) score on the given segmentation boundaries 420

between them and throw off average results. It 421

should be noted that this is an artificially created 422

data set that has strong topical shifts between seg- 423

ments and the results reported from this data set 424

can be interpreted as close to ideal behavior of our 425

proposed metric. 426

The second data set used is the newer Wiki-50 427

data set, which is scraped from Wikipedia and uses 428

sections and subsections as topical segment bound- 429

aries. (Koshorek et al., 2018) A larger Wiki-727k 430

data set is also available from the same paper, how- 431

ever the Wiki-50 data set is sufficient to demon- 432

strate the strengths and limitations of our proposed 433

metric. Both data sets used in this work are freely 434

shared for research purposes and the authors do 435

not anticipate any issues with their inclusion in this 436

work. Three other data sets derived from Wikipedia 437

were also considered: the WikiSection (Arnold 438

et al., 2019) and the Cities and Elements data sets 439

(Chen et al., 2009). However, due to the similarity 440

to the Wiki-50 data set they were not included in 441

this work. 442
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3.5 Computational infrastructure and budget443

Sentence-BERT models were evaluated on either444

one or two A100 40GB GPUs and cluster metric445

computations were performed on CPU. The pre-446

trained ’all-mpnet-base-v2’ Sentence-BERT model447

contains 109.5 million parameters. No models448

were trained for this work. Total computation time449

for this paper and related experimentation was less450

than 100 GPU hours.451

3.6 Ethical considerations and risks of this452

work453

As this is not a generative task, the authors have454

no concerns about the content created by this met-455

ric. Misuse of the metric is still a possibility, such456

as blind reliance upon it when used for important457

decisions. Additionally, there may be ways for458

the metric to introduce bias in its usage, particu-459

larly if the training of the embedding model is not460

appropriate for the domain.461

4 Experiments462

A variety of tests were devised to evaluate the per-463

formance of our metric. Tests were designed to464

mimic segmentation errors that could be encoun-465

tered in realistic scenarios.466

4.1 Metric performance on degraded467

segmentation sets468

This series of trials all follow the same philosophy:469

to demonstrate how the metric reflects changes470

in an existing segmentation set as it is degraded471

through different operations. For comparison, the472

four segmentation metrics described in Section 2473

are included. All of these trials for each data set474

were performed in the same way, with the entire475

corpus being used and the results reported are the476

mean of all trials across the entire corpus. The477

Choi 3-11 corpus experiments were repeated five478

times and averaged to better sample the possible479

random outcomes and the Wiki-50 corpus exper-480

iments were repeated 30 times due to the smaller481

number of files. This brought the total number of482

averaged files for each corpus to be roughly the483

same (1500 for Wiki-50 and 1490 for Choi 3-11484

due to the two excluded files).485

4.1.1 Boundary removal486

The first test performed was the removal of existing487

boundaries from a segmentation set. The existing488

boundaries were randomly selected and removed489

Figure 4: Proposed metric and classic metrics as a func-
tion of number of random boundary removals

from each segmentation set. Classic reference- 490

based metrics were computed using the original 491

‘truth’ and altered segmentation sets and the pro- 492

posed metric was computed using only the altered 493

segment labels (as ours is reference-free). Results 494

for all 30 trials for the entire data set were averaged 495

for each set of boundary deletions. If the metrics 496

are effective, they should show that as boundaries 497

are deleted and the segmentation changes from that 498

of the ‘truth’ segmentation that the metric shows 499

this degradation in segmentation quality. 500

Plots of mean proposed and classic metric values 501

as a function of boundary removals are shared in 502

Figures 4 and 5 for the Choi 3-11 and Wiki-50 data 503

sets, respectively. To maintain vertical-axis consis- 504

tency, the two similarity metrics are presented as 505

one minus the metric; hence, higher values indi- 506

cate poorer segmentation quality. The vertical-axis 507

scales for the SegReFree index are set to make 508

the most most efficient use of space and are there- 509

fore using different scales between Figures 4 and 5. 510

The SegReFree index is not bounded to a consistent 511

maximum value and should not be used to compare 512

between models and datasets simultaneously. We 513

suggest using it primarily for comparing segmen- 514

tation methods on a consistent data set, although 515

there may be applications where it is appropriate 516

to use it to compare data sets. Conceptually, this 517

can be explained by considering how different data 518

sets use different parts of the embedding space. 519

Pearson correlation coefficients computed be- 520

tween classic reference-based metrics and our pro- 521

posed reference-free metric are presented in Table 522

1. Note that the similarity metrics were converted 523

to dissimiliarity metrics for consistency: low score 524

indicates good segmentation quality. It can be seen 525

that there is a very strong agreement between the 526

6



Figure 5: Proposed metric and classic metrics as a func-
tion of random boundary removals using the Wiki-50
data set

Data
Set

Pk Window-
Diff

Seg.
Sim.∗

Bound.
Sim.∗

Choi
3-11

0.998 1.000 0.984 0.984

Wiki-
50

0.982 0.987 0.970 0.968

Table 1: Correlation Between Proposed Reference-Free
Index and Reference-Based Indices in Boundary Re-
moval Experiment
∗Seg. Sim. and Bound. Sim. are converted to dissimilarity
metrics for consistency.

classic metrics and our reference-free metric, with527

correlation coefficients all ≳ 0.95. The trend is528

stronger with the Choi 3-11 data set than the Wiki-529

50, but this is expected due to the consistently530

larger topical shifts found in the Choi 3-11 data531

set.532

4.1.2 Segment splitting533

For our second experiment, we demonstrate the534

behavior of the segmentation quality indices when535

segments are randomly split, thus degrading the536

segmentation quality by adding boundaries. Seg-537

ment splitting was performed by randomly select-538

ing existing segments and splitting at the midpoint539

(rounding down in cases of odd numbers of sen-540

tences). As with the boundary removal experiment,541

the segmentation set was altered and the reference-542

based metrics were computed by comparing the543

altered segmentation with the original ‘truth’ seg-544

mentation. Only the altered segmentation was used545

to compute the proposed reference-free metric. The546

results of each were averaged and shared in Figures547

6 and 7 for the Choi 3-11 and Wiki-50 data sets,548

respectively. Again, the two similarity metrics are549

Figure 6: Proposed metric and classic metrics as a func-
tion of random segment splits using the Choi 3-11 data
set

Figure 7: Proposed metric and classic metrics as a func-
tion of random segment splits using the Wiki-50 data
set

presented as one minus the metric to maintain verti- 550

cal consistency; where higher scores for all metrics 551

indicate a lower quality segmentation. 552

A table of Pearson correlation coefficients com- 553

puted between the proposed metric and each of 554

the classic metrics is presented in Table 2. A very 555

strong correlation is observed for the Choi 3-11 556

data set: all > 0.99. The correlation between our 557

proposed metric and the reference-based metrics 558

with the Wiki-50 data set is also good, although it 559

is more inconsistent and almost completely insen- 560

sitive to a single segment split. Thus, the overall 561

correlation is not as strong in the Wiki-50 segment 562

splitting experiment. 563

4.1.3 Boundary transposition 564

To simulate the condition of a ’near miss’, as 565

described in the segmentation metric literature, 566

boundary transposition was also performed. In this 567

experiment, an existing boundary was randomly se- 568

lected and shifted by varying numbers of sentences. 569
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Data
Set

Pk Window-
Diff

Seg.
Sim.∗

Bound.
Sim.∗

Choi
3-11

0.998 0.999 0.989 1.000

Wiki-
50

0.939 0.924 0.946 0.902

Table 2: Correlation Between Proposed Reference-Free
Index and Reference-Based Indices in Segment Splitting
Experiment
∗Seg. Sim. and Bound. Sim. are converted to dissimilarity
metrics for consistency.

Figure 8: Proposed metric and classic metrics as a func-
tion of single random boundary transposition using the
Choi 3-11 data set

As described in Section 2, this is a more challeng-570

ing problem and is handled in different ways by571

different classic segmentation metrics. The mean572

metrics as a function of transposition distance are573

shared in Figures 8 and 9 for the Choi 3-11 and574

Wiki-50 data sets, respectively.575

A table of Pearson correlation coefficients com-576

puted between the proposed metric and classic met-577

rics is displayed as Table 3. Our proposed met-578

ric shows strong agreement with classic metrics579

with the Choi 3-11 data set and directionally cor-580

rect agreement for the majority of transposition581

distances tested on the Wiki-50 data set. We hy-582

pothesize that the degraded performance on this ex-583

periment with the Wiki-50 data set comes from the584

inconsistent size of segments. Because section and585

subsection headings are given their own segments,586

there are many single sentence or even single word587

segments within this data set. The semantic mean-588

ing of a section and an adjacent subsection heading589

is often quite similar and when these are combined,590

it would likely improve (lower) the Segmentation591

ReFree score.592

Figure 9: Proposed metric and classic metrics as a func-
tion of single random boundary transposition using the
Wiki-50 data set

4.2 Using existing segmentation methods 593

To provide an additional demonstration of the met- 594

rics use, an older text segmentation method, Text- 595

Tiling (Hearst, 1997) is used to segment the Choi 596

3-11 and Wiki-50 data sets. This method is inten- 597

tionally chosen as a lower quality, but still purpose- 598

ful method of segmentation. The NLTK (Bird et al., 599

2009) implementation of TextTiling was used for 600

this section. Window sizes for TextTiling were cho- 601

sen arbitrarily to ensure at least two segments per 602

file, with a value of 100 words used for the Choi 603

3-11 data set and a window of 20 words used for 604

the Wiki-50 data set. Results of this test are shared 605

in Table 4 along with classic metrics provided for 606

reference. To interpret these results, we assume 607

that the quality of segmentation performed by Text- 608

Tiling is lower than that of the original source seg- 609

mentation, and therefore, we should expect a higher 610

(worse) SegReFree score for the TextTiling seg- 611

mentation. It can be observed that our proposed 612

metric is directionally correct the majority of the 613

time, showing a higher (worse) score for the lower 614

quality segmentation 98% of the time for the Choi 615

3-11 data set and 68% of the time for the Wiki-50 616

data set. 617

4.3 Ablation study 618

To validate the design choices used in our proposed 619

metric, a small ablation study was performed using 620

both data sets and both of the synthetic degraded 621

segmentation experiments. As with previous exper- 622

iments, random selection of boundaries was per- 623

formed several times (five for each file in the Choi 624

3-11 data set and 30 for each file in the Wiki-50 625

data set) and results were averaged. The two mod- 626

ifications made to the original Davies-Bouldin In- 627

8



Data
Set

Pk Window-
Diff

Seg.
Sim.∗

Bound.
Sim.∗

Choi
3-11

0.906 0.904 0.785 0.800

Wiki-
50

-0.320 -0.316 0.423 0.361

Table 3: Correlation Between Proposed Reference-Free
Index and Reference-Based Indices in Boundary Trans-
position Experiment
∗Seg. Sim. and Bound. Sim. are converted to dissimilarity
metrics for consistency.

dex are described in detail in Section 3.3 and are628

the inclusion of a size penalty term as well as an629

adjacency requirement for the computation of the630

metric. Table 5 shows the results of the removal631

of these individual alterations by computing the632

Pearson correlation coefficient between the Davies-633

Bouldin based metric and the Pk metric. The Pk634

metric was chosen as a comparison due to it’s posi-635

tion as the oldest and most common segmentation636

metric. It can be seen that the original Davies-637

Bouldin Index does not correlate with Pk as well as638

our proposed metric does, and for the some experi-639

ments has a negative correlation. The size penalty640

appears to be helpful for improving performance in641

the presence of segment boundary additions (simu-642

lated as segment splits), which causes smaller-than-643

desired segments. The adjacency appears to be644

most necessary for penalizing missed (simulated as645

deleted) segment boundaries, which conceptually646

makes sense as a missed boundary would cause two647

different topical segments to become combined.648

Multiple distance metrics were also tested, in-649

cluding L1, L2, and Cosine distance. Although650

L1 distance slightly outperformed L2 distance in651

a significant way on one experiment, L2 distance652

was more used in Davies-Bouldin Index literature653

and was chosen for our proposed metric.654

5 Conclusions655

In this work, a new topical segmentation evaluation656

metric that requires no reference segmentation set657

is proposed and evaluated. To our knowledge, this658

is the first reference-free segmentation quality met-659

ric that has been proposed. Strong correlation to660

existing reference-based metrics was demonstrated661

for the worst case errors of missing boundaries662

and boundary insertion in the middle of a coher-663

ent segment. A weaker, yet present correlation is664

demonstrated for the harder case of boundary trans- 665

position (so-called “near misses"). The use of our 666

reference-free metric can help enable future seg- 667

mentation efforts on data that do not have existing 668

human annotation. 669
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