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Abstract

In supervised learning, it is quite frequent to be confronted with real imbalanced datasets.
This situation leads to a learning difficulty for standard algorithms. Research and solutions
in imbalanced learning have mainly focused on classification tasks. Despite its importance,
very few solutions exist for imbalanced regression. In this paper, we propose a data augmen-
tation procedure, the GOLIATH algorithm, based on kernel density estimates and especially
dedicated to the problem of imbalanced data. This general approach encompasses two large
families of synthetic oversampling: those based on perturbations, such as Gaussian Noise,
and those based on interpolations, such as SMOTE. It also provides an explicit form of
such machine learning algorithms. New synthetic data generators are deduced. We ap-
ply GOLIATH in imbalanced regression combining such generator procedures with a new
wild-bootstrap resampling technique for the target values. We evaluate the performance of
the GOLIATH algorithm in imbalanced regression where we compare our approach with
state-of-the-art techniques.

1 Introduction

Many real-world forecasting problems are based on predictive models in a supervised learning framework
and standard algorithms can fail when the target variable is too skewed. Learning from imbalanced data
concerns many problems with numerous applications in different fields (Krawczyk| (2016), [Fernandez et al.
(2018a)). The major part of such works concerns imbalanced classification (see for instance Buda et al.
(2018)), |Cao et al.| (2019)), |Cui et al.| (2019), Huang et al| (2016)), Yang & Xu| (2020)), [Branco et al.| (2016b)
where many solutions propose a pre-processing strategy especially for the generation of new synthetic data.
A large part of such existing methods consist in adapting the well know SMOTE algorithm (Fernandez et al.
(2018b))). Very few works have addressed the problem of imbalanced regression although many important
real-world applications in different fields such as economy, meteorology, or insurance. As for imbalanced
classification, some applications focus on predicting rare and extreme values, which can be of great interest.
In the literature, the imbalanced regression corresponds to the correct prediction of rare extreme values of a
continuous target variable Fernandez et al| (2018b]) but, contrary to the classification tasks, there is no level
to quantify the imbalance and the labels are continuous. Unlike in a classification context, learning from
imbalanced dataset for regression tasks leads to two additional problems: i) the definition of the imbalanced
phenomenon and ii) the identification of the observations that are considered as minority.

In this paper we propose a very general method, which we shall call GOLIATH (for Generalized Oversampling
for Learning from Imbalanced datasets and Associated THeory) to deal with the imbalanced regression
problem. The first step of GOLIATH is a synthetic covariates generation based on kernel density estimators.
The second step of GOLIATH is concerned with the imbalanced regression: a new method based on a wild-
bootstrap procedure is proposed for generating target values given the synthetic covariates. GOLIATH is
then a two-step algorithm. In this paper, we concentrate on tabular data rather than images because many
applications rely on structured data, and there are still very few solutions available to address them. Our
main contributions can be summarized as follows:
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i) Providing a unified statistical expression of existing data augmentation algorithms, including the
popular SMOTE;

ii) Deducing new synthetic data oversampling methods using the large and flexible expression of GO-
LIATH;

iii) Proposing innovative methodology to generate the target variable for dealing with imbalanced re-
gression: conditioning on the newly generated covariates and avoiding discretizing its support.

iv) Proposing a new way to generate synthetic data providing a solution to the main challenge of
synthetic data generation: avoiding overfitting and the introduction of bias.

The paper is organized as follows. In Section [3] we give a general form of our data augmentation proce-
dure corresponding to the first step of GOLIATH. We study some standard perturbation and interpolation
methods that are included in this approach, such as SMOTE and Gaussian Noise. In Section [5] we develop
the theory to obtain new generators. In Section [6] we will look more closely at the imbalanced regression,
corresponding to the second step of GOLIATH. Numerical results on several applications are presented in
Section [7} Finally, we discuss the method proposed in Section [§]

2 Related work and main differences with Goliath

Most of the works in imbalanced regression have proposed to binarize the problem with a relevant function
and an associate threshold |Torgo & Ribeiro (2007)) in order to adapt some imbalanced classification solutions
Torgo et al.| (2013), Branco et al.| (2017, Branco et al.| (2019), |[Ribeiro & Moniz| (2020), |Song et al.| (2022),
Camacho et al| (2022)). This methodology presents the disadvantage of dividing the continuous distribution
of the target variable into binary classes and therefore involves a loss of information. More recently, other
methods have emerged by using deep learning approaches, for dealing with images, such as[Sen et al.| (2023)),
Ding et al.| (2022), |Gong et al.| (2022)) or |Wang & Wang] (2024). For instance [Yang et al.| (2021) proposed
to use kernel density estimates to improve learning from imbalanced data with continuous targets. Like the
previous works, this proposal suggests dividing the target variable support into B groups that involve a loss
of information. However, the techniques proposed in this context rely on deep learning, which is effective for
images but less so for tabular data, which is our application framework here.

In regression, the continuous nature of Y introduces two challenges: i) unlike classification where it is
immediate to detect imbalance by comparing classes, measuring imbalance in regression is challenging because
the data is continuous. GOLIATH provides a solution by using the inverse of the kernel density to determine
the weights associated with Y’ ii) unlike classification, where the labels of ¥ remain unchanged during
synthetic data creation, in regression it is necessary to generate new and relevant values for the target
variable. In this way, GOLIATH combines a two-step procedure: the first generates X and the second
deduces the generation of Y using an innovative procedure based on a wild bootstrap.

3 A New Kernel-Based Oversampling Formulation

4 General Formulation of GOLIATH

We consider a sequence of observations {(z1,y1), -, (®n,yn)}, which are realizations of n iid random
variables (X,Y"), where the target variable Y is univariate and the covariate X is a p-dimensional random
vector. The components of X = (X,---,X,,) are supposed to be continuous or discrete and Y is supposed
to be quantitative.

Write & = {@1,- - , @, } the set of all observations. We call GOLIATH the generalized oversampling proce-
dure based on the form of the following weighted kernel density estimate:

gx~ (:B*|Ii) = ZwiKi(m*a :E)a (1)

i€T
where (K;);ez is a collection of kernels, (w;);cz is a sequence of positive weights with ). - w; = 1, and
T represents a subset of {1,2,---,n}. Here the index * stands for the synthetic data. In we propose
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a general form for the conditional density for the synthetic data generators. The objective is to use the
flexibility of the kernels to estimate the density of covariates in order to obtain synthetic data that reflects
the distribution of the observations.

We can show that generalizes perturbation-based and interpolation-based synthetic data oversampling.
We give an illustration with the basic algorithms ROSE, Gaussian Noise and SMOTE in Subsections [£.1]
and where we demonstrate that these methods are particular cases of the generalized form , with
corresponding parameters summarized in Appendix Several existing methods can be rewritten in the
form and we give some illustrations in Appendix In Section [5| we will show that some particularly
interesting new methods can be derived from the generic form and we will compare some of them to
current competitors in the imbalanced regression context.

REMARK 1. The generators in can be considered as smoothed bootstrap methods (see|Silverman € Young
(1987),|Hall et al.| (1989), De Angelis & Young| (1992)). Smoothed bootstrap consists in drawing samples from
kernel density estimators of the distribution. It can be decomposed into two steps: first, a seed is randomly
drawn and second, a random noise from the kernel density estimator is added to obtain a new sample. In
the form , the first step is represented by the drawing weight w; and the second by the kernel K;(x).
Convergence properties of smoothed bootstrap are studied in|De Martini & Rapallo| (2008) and |Falk & Reiss
(1989). They proved the consistency of the smoothed bootstrap with classical multivariate kernel estimator
and more specifically the convergence in Mallows metric. As described by the authors, the smoothed bootstrap
provides better performances than a classical bootstrap when a proper choice of smoothing parameters is
used. Other works have focused on the consistency of the multivariate kernel density estimate and proposed
a relevant bandwidth matriz, see for instance|Silverman| (1986), |Scott (2015]) and|Duong & Hazelton (2005).

4.1 Rewriting Interpolation Approaches

As presented in [Ferndndez et al.| (2018b)), the Synthetic Minority Oversampling Technique (SMOTE) (Chawla
et al.| (2002)) is considered a "de facto" standard for learning from imbalanced data and has inspired a large
number of methods to handle the issue of class imbalance. It is also one of the first techniques adapted
to imbalanced target values in regression with [Torgo et al.| (2013). SMOTE algorithm can be summarized
as follows: at each step of the data augmentation procedureﬂ an observation is randomly selected, which
we shall call a seed. We will denote by S the random variable indicating the index of the seed, that is
S = i if the ith observation has been selected, and we denote by S(1),---,S(k) the k nearest neighbors
(k-nn) of xg. Given S, a neighbor denoted by Ni(.S) is randomly chosen among S(1),---,S5(k). The new
data is generated by linear interpolation between S and Nj(S). We have P(S = i) = 2, Vi = 1,--- ,n,
and P(Ny(S) = S(¢)) = £,V¢ = 1,--- k. Finally, writing X* the synthetic random vector we have
X*=Axs+ (1 = A)Ni(S), with X uniformly distributed ¢([0; 1]).

To show that this approach is a particular case of we proceed in three steps:

1 Conditionally to S and Ng(S), the jth component of X* is generated by a uniform distribution

Las iy 01(®5) Loy 0oy (@5 — ij)
|5 (£) — i |5 (€) — i

where x4(¢) is the ¢th nearest neighbors of ;. Each component of X* is drawn by the same uniform

variable, that is X7 = Azg; + (1 —A)Ng(S); for j = 1,--- ,p, and by abuse of notation we write the
multivariate generating density as follows:

I

gIMOTE (m;\i, S =i, Np(S) = ml(é)) =

low;(0)—a;) (®" — @)
i (€) — i

giyOTE (m*|i,s =14, Np(S) = wzw)) =

2 Conditionally to S, X* is generated according to a uniform mixture model (UMM) on the segments
between xg and its k-nn. The same mixture component is used for each component giving

k
1 (" — x;)
SMOTE ;_ x|~ . z : O s (0)—x;] i
T |T - .
gx= ( | 7 k < ‘wz — wz‘

n the original version of SMOTE, the seed is drawn successively w1th a loop and not randomly. These two ways are very
close when the generated sample size is large
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3 More generally, X* is generated according to a mixture of UMM as follows:
since P(S = 1) = £, we have

g%yOTE(m*H:) _ ZQSMOTE((E*‘QNZ', S = ’L) ~

3=

Li0,2; (" — x;)
; Z [0w|;¢;1 e
n

1 SMOTE ;_x
S E ;
P K; (", x)

We finally obtain the form with Z = [0,n], w; = 1/n and K;(x*,2) = K MOTE(g* x). This new
writing represents the conditional SMOTE density given the observation &. We can relate this expression
to the work of |[Elreedy et al.|(2023) in which the authors give an expression of the unconditional SMOTE
density, that is integrating the distribution over & in a context of class minority. Other methods derived

from SMOTE can be recovered by (see Appendix [A.3)).

4.2 Rewriting Perturbation Approaches

We illustrate by recovering two classical data augmentation procedures, ROSE and Gaussian Noise (GN),
as follows:

o At each step of the ROSE algorithm (see Menardi & Torelli| (2014)) the seed S is selected randomly.
Given S a synthetic data is generated with a multivariate density

1

ROSE x|~ . ROSE [«
gx= " (27|&, S =1i) = Kz, " (x" —x;) = .2

T K2 (2" — 2)),

where K denotes the multivariate Gaussian kernel and H, = diag(hi, ..., hp) is the bandwidth
matrix proposed by Bowman & Azzalini (1999), with h, = ((pfz)n)l/(p+4) ,¢g=1,...,p. Finally, a
synthetic random variable X* is generated with the density

ROSE o) ROSE « ROSE "
gx* E K 7% (2" — ;) E wi Ky, ;).

 Similarly to ROSE, at each step of the Gaussian Noise algorithm (see [Lee & Sauchi| (2000))) a seed is
selected and synthetic data is generated. Finally, the generating multivariate density has the form

o5 ZKHn * Z K @ ),

where HGN = diag(hy, ..., hp), hg = OnoiseGq, ¢ = 1,...,p.

Both cases are particular cases of with w; = 1 and K;(#,x) = Kg, (x — x;), i.e. the same Gaussian
kernel for all observations but with a different bandwidth matrix.

4.3 Global criticism

Although there are many extensions of SMOTE or ROSE and Gaussian Noise, such techniques suffer from
some drawbacks. For the interpolations techniques, the directions in the data space are limited and deter-
ministic because they depend only on the k-nn (nearest neighbors). Moreover, the distance from the seed is
also limited because the new sample is on the segment with the drawn nearest neighbor. For the perturbation
techniques, the directions in the data space are randomly generated and so they can more explore the space.
The distance between the new sample and the seed is also unbounded. However, the directions are randomly
chosen and do not respect the correlation between the data and their support and the correlations between
variables.
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5 New Kernel-Based Methods

5.1 Generalized Interpolation Approaches
A general form We propose a particular form of which generalizes the SMOTE algorithm as follows:
gt (z¥|Z) = ZwiKi(w*,:v) = Zwi Z ol gmt(m*ki)
€T €T Led;

where g/} (z*|&) is an interpolation function on [, @;(()], J; denoting the set of k-nn associated to ;.

_ 1 int I N 1[0;m:(@)*m'](m*_mi) . .
my = 3 and ;") (z¥|2) = Yo D] represents a

SMOTE is then a particular case when w; = &

n

uniform distribution between the vectors x; and x;(1).

Nearest Neighbors Smoothed Bootstrap Since the uniform distribution coincides with the Beta distri-
bution with parameters a = 8 = 1, a natural extension of SMOTE is to consider a general Beta distribution.
We find the same idea in [Yao et al.|(2022) within another context. The very flexibility of the Beta distri-
bution suggests us to propose X* = Ax; + (1 — N)x({); for i = 1,--- ,n, where X follows a generalized Beta
distribution. By abuse of notation, we get the following interpolation function:

int ¥~ o+ * a— *\B—
gi (x"|Z) = M(w —x)*  (@i(0) — )" Lo, (0)—a)-

INCOINCE))

Extended Nearest Neighbors Smoothed Bootstrap Finally, the previous methods based on inter-
polation are limited to the "seed - k-nn segments" and therefore do not reach all the data space. To avoid
generating on a bounded or discrete support we propose to extend these approaches to any part of the
support by adding a Gaussian distribution on the segment as follows:

ge—int(m*|i) = Zwi Z Te|i gf,zlnt(x*|:i)7

i€T eJ;

where the extended interpolation function is a Beta Gaussian mixture, that is, gfzmt(az*\zﬁ) is the density

of a Gaussian distribution N(6,0°) where 6 is generated by g;"}(x|®). To rely on the recent literature, we
remark that SASYNO algorithm |Gu et al.| (2020)) is a special case of this methodology. This extended version
can be viewed as a hybrid method between interpolation and perturbation techniques. It provides a good
compromise between the interpolation and perturbation approaches because it can generate in the whole
data space as the perturbation approach i.e. constraint-free, but assigns a distribution to the directions

towards the segments, that is orienting the perturbation toward the k-nn.

REMARK 2. We tried to adapt the k-nearest neighbors density estimate (Biau & Devroye (2015])) that is a
bandwidth-variable kernel (also called a balloon kernel) as a generator but its computation time is currently
too high to be used.

5.2 Generalized Perturbation Approaches

Classical Smoothed Bootstrap As the ROSE and GN techniques use a multivariate Gaussian kernel
estimate with a diagonal bandwidth matrix, we can rewrite their associated generating density as follow:

gx- (@"1&) = Y _wi [ [ Kn, (2] — i) (2)

i=1

1 2
with K, (u) = (2m)~/ 2h;16_mu the univariate gaussian kernel density estimator with smoothing pa-
rameter h;. Such kernels are clearly not adapted for asymmetric, bounded or discrete variables. This remark
is also true for the work of [Yang et al.| (2021) which uses some symmetric kernels to improve learning of
imbalanced datasets.
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Non-Classical Smoothed Bootstrap To fix the drawback of the classical kernel we extend (2 by
adapting (1)) to the support of @, considering some non-classical kernels (we refer to some works handling
the kernel density estimation for specific distributions inspired from |Bouezmarni & Rombouts| (2010)), [Someé
(2015)), Hayfield & Racine| (2008)), |Chen| (2000)). We rewrite as

P
g5l (@' @) = Y wi [ [ Kn, (2], i)
i€l j=1

where Kp,; (u, ) is a univariate kernel adapted to the nature of the jth variable and specifically defined on
x as follows:

Gaussian kernel for a variable defined on R (classical kernel):

L -des?,

K =
h(u7 CL‘) h\/ﬂ
o Binomial kernel for a discrete variable defined on N:
(x4 (:c+ h)“ (1 - h)”l—“
Kh(u’x)iu!(x—&—l—u)! x+1 z+1 ’

o Gamma kernel for a positive asymmetric distribution defined on [a, +00]:

u(:cfa)/h

T(1 + (z — a)/h)hiHE—a)/h

—Uu

exp( h )1[a,+oo](u)'

Kp(u,z) =
o Negative Gamma kernel for a negative asymmetric distribution defined on [—oo, b]:

w0k _

T(1— (z — b)/h)ht-G-b/n P (Tu)l[—oo,b] ().

Kh(u7 l’) =
o Beta kernel for a variable defined on [0, 1]:

uz/h(l o u)(l—z)/h
B+ 1,5+ 1)

o Truncated Gaussian kernel for a variable defined on [a, b]:

Ky (u,z) =

1[0’1] (u).

o _loiu—z\2
Kp(u,z) = hme 2 (5F0) L, (),

b -1
</ 1 1(u—m)2)
o= e 2\"h
o hV2m

Note that if the Dirac kernel (1z—z,) is used, we get the standard bootstrap: [1| includes also the simple
oversampling. It is important to note that the GOLIATH algorithm uses an estimation of the smoothing
parameter h provided by some specific R-package dedicated to the density estimation (for instance, it uses
the Silverman estimation for the Gaussian kernel). Their estimates are based on properties of univariate
consistency. Another technique to deal with skewed or heavy-tailed distributions is to apply a transformation
of the data in order to use classical kernel density estimation (Charpentier & Flachaire (2015)), |Charpentier
& Oulidi| (2010)) but it necessitates proposing a relevant transformation which exceeds the scope of this
paper.

REMARK 3. The use of a diagonal bandwidth matriz in (@ does not take into account the correlation between
variables. To improve this issue, we could consider a full (symmetric positive definite) smoothing matriz.
In that case, we would use a multivariate kernel density estimate considering the correlation between the
variables which would be optimal for generating data. However, the estimation of such a matriz is generally
based on the covariance matrix which does not adequately capture non-linear correlations. In practice, it can
be challenging, even inconsistent, to find a form of a multivariate kernel that adapts to all data and their
support.




Under review as submission to TMLR

5.3 Goliath Overview

The GOLIATH algorithm is summarized in Figure A cartography of GOLIATH is also given in Figure
[[Bl The algorithm gives the possibility to choose, with the "mode" parameter, the kind of the returned
sample: a full synthetic dataset, an augmented one, or a mixed one. The mixed sample is constructed as
follows: keep the original observation for the first occurrence of the seed and synthetic data for the next.
This mode corresponds to performing an undersampling and an oversampling. More precisely, to preserve
the maximum of information and avoid potential overfitting, we suggest to: keep the initial observation for
its first drawing and generating synthetic data from it for the other drawing which is the "mix" mode in the
GOLIATH algorithm. This technique theoretically helps in reducing bias (by keeping the real data) while
avoiding overfitting (by not duplicating the same observations). More details on this option are given in

Appendix

5.3.1 GOLIATH Overall Algorithm

The GOLIATH algorithm is summarized in Figure [[a] and Figure [ID] presents its cartogrophy.

y

GOLIATH: ‘i
Weighted Kernelt
I,De.nsi'}'y' Esﬂmute.l

Input covariate X; target variable Y=null; mod="mix"; type;
method-Y=1; clustering=F; seed s=null; components GMM
m=n-row(X); weights w=rep(1,n-row(X)); synthetic data sam-

ple size N=n-row(X); parameter p) A—
Clustering // Optional application of a clustering on the (—j R
train — —_ — —_—
clust = Cluster(X,Y,clustering) // clust=1 for all samples if ‘ | [ Eﬁ:j:z:f | f |
clustering=F | Balloon Kernel Classical Kernel | | Neighbors | NOI’,I(C'O_'GSliE.O.l
Seed drawing // weighted oversampling |l Smoothed | \ erne
if s = null then s = draw(X,N,w) o ) e __/‘ \_ Boostrap v
X generation // Synthetic data generation for the covari- S 'f)
ates
if m < n then synth = GMM(X,Y,m,N)
else for each c in clust: kr\ll;N_r_De"jW Other Classial NNMI:EST \, Gamma
if type = "CSB" then synth = G-CSB(X,N,w, s, p) 5:\0':';?1; Smoothed S:EGTI:;; Smoothed
else if type = "NCSB" then synth = G-NCSB(X,N,w, s, p) Boostrap EBooisinop Boostrap Prms;
else if type = "NNSB" then synth = G-NNSB(X,N,w, s, p) {j
) else if type = "eNNSB" then synth = G-eNNSB(X,N,w, s, \‘ Beta/truncated
1% y y Gaussian
Y generation // Optional Synthetic Y generation REEE (o SIPE Ry Smoothed
if Y <> null then synth[,Y] = G-Y(X,Y,synth,s,method-Y, Bootstrap
p)
end For
Output
if m<n or mod = "synth" then return synth ) ) Binomial
else if mod = "augment" then return (X,Y) + synth 6””55"1”_|N°'93 Erod]
else return mix((X,Y),synth,s) IRl Bootstrap

() GOLIATH algorith (b) GOLIATH cartography
a algorithm

Figure 1: GOLIATH algorithm and cartography

6 GOLIATH as a Solution for Imbalanced Regression

Using the first generator step of GOLIATH (methods proposed in 2.3.1 and 2.3.2) we can generate synthetic
covariates X*. We then have to generate the target variable Y given such X*.

A non-parametric method for drawing weights We propose here to define the drawing weights w; in
as the inverse of the kernel density estimate for the target variable Y: the more isolated an observation
is, the higher its drawing weight. To avoid giving disproportionate weights (typically too large a weight for
extreme values), we can use a hyperparameter a as below. The weights are normalized to get a sum equal
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to 1. For i =1,--- ,n, the normalized drawing weight w; of observation i is thus defined as follows:
qi . 1
w; = , with ¢; := = , (3)
Zj 4q; f y(yi)a

where fy denotes a convergent kernel density estimator.

In the following, we assume a = 1.

REMARK 4. With a = 1, the generated random variable Y* satisfying P(Y* = y;) = w; is close to a uniform
distribution. More precisely |Stocksieker et al| (2025) generalized a result of |Smith & Gelfand (1992) by

showing that choosing q; = %, with fo a target probability density function (pdf), then the pdf of Y*
Yi

converges to fo. In our case f; s a uniform distribution and we can apply this result as soon as the support

of Y is bounded.

A similar idea, using the opposite, is explored in [Steininger et al.| (2021]) where the authors propose to also
use the kernel density estimate but with a different form. In|Yang et al. (2021]) the authors propose also using
the inverse of the estimated label density to weight the loss function but apply a discretization of the target
variable. The strength of our approach is to preserve the continuity of the distribution whereas most other
works propose splitting it into bins that involve a loss of information. The kernel density is automatically
adapted to the distribution of Y, as proposed in Subsection [5.2)

A new approach to generate the target variable The target variable is not generated in the same way
as the covariate. Once the covariates are generated from our generator models, we propose to adapt a wild-
bootstrap technique with synthetic features (Wu (1986))ﬂ The classical Wild-Bootstrap involves uniformly
drawing a prediction error € to generate a new y; := y; + €,v;, where v; is a random variable.

The generation of the target variable is performed as follows:

i) Train a Random Forest on the initial sample;
ii) For each seed z; € xg: predict target variable g5 associated to x5 with the Random Forest; xg being
the original observations drawn at step 1.

iii) Obtain the distribution of the absolute residuals on the prediction of the seed: ys — ys and draw a
randomly residual €;

iv) Generate the noise in the Wild-Bootstrap vs ~ N'(0,c), o being a parameter; v, can also be set to
1 to avoid adding noise to the residual.

v) Generate a new y* associated to the new synthetic a2 as follows:
. om (0
Ys = Ys + lerfvs X sign(ys — yy)

With vg = 1, this form is close to the Wild Bootstrap version with the Rademacher distribution. The idea
behind this proposition is to consider taking into account i) the prediction error and ii) the impact of the
synthetic covariate on the target variable.

The choice of using a Random Forest is justified by its good predictive performance, its non-parametric
nature, and the possibility of getting an error distribution for a given target variable value. It represents
the second step of GOLIATH. Other interesting methods to generate Y are proposed in Appendix (but
giving lower numerical performances on our illustration, as presented in Appendix . The algorithm is

detailed in Appendix

7 Application in Imbalanced Regression

To evaluate the performance of GOLIATH, we focus on the imbalanced regression context because of the
natural capacity of the form to handle continuous variables.

2The kernel regression (Nadaraya-Watson estimator) was also tested but not selected because its high computation time and
poor performance
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For each dataset, we construct a test sample as 10-30% of the initial dataset and use the weighting previously
defined: the inverse of the kernel density estimate for the target variable Y. We construct an artificial
imbalanced dataset from the remaining sample. More details on the protocol are given in Appendix [6]
One of the objectives of our approach is to obtain better performance than the imbalanced train dataset.
We compare our results to existing methods to deal with imbalanced regression from the UBL R-package,
Branco et al.| (2016a), classical oversampling, SMOTE, Gaussian Noise, SMOGN, WERCS and ADASYN
from the python-package ImbalancedLearningRegression (Wu et al.| (2023))). These techniques are used with
their automatic relevance function and the same parameters as GOLIATH if any, in particular k£ for SMOTE
and pert for the Gaussian Noise.

To avoid sampling effects and obtain a distribution of prediction errors we ran 10 train-test datasets. In the
same way, to avoid getting results dependent on some learning algorithms we use 10 models from the autoML
of the H20 R-package|LeDell & Poirier| (2020]) among the following algorithms: Distributed Random Forest,
Extremely Randomized Trees, Generalized Linear Model with regularization, Gradient Boosting Model,
Extreme Gradient Boosting and a Fully-connected multi-layer artificial neural network. We present here the
aggregated results of the models, a more detailed analysis is available in Appendix [C] and

We then compute the following metrics: RMSE and MAE and weighted-RMSE with our weighting function
giving more importance to the rare values. Since the test sample is balanced on the target variable, we
considered here the RMSE and MAE metrics as relevant to provide an overview of the average error across
the whole target variable.

REMARK 5. The basic methods (Gaussian Noise or SMOTE) are different from the UBL version because
1) the generation of the target variable Y is realized with wild bootstrap and considers the new synthetic
attributes and i) the weights w is defined for all samples while UBL uses a relevant function that divides
the dataset into rare and frequent sets. Like the ROSE and Gaussian Noise algorithms, GOLIATH takes
into account a parameter tuning the level noise for perturbation approaches (description in Appendiz . It
is also possible to use a clustering (Gaussian Mizture Model) in GOLIATH in order to apply a generation
by cluster. All datasets provided by GOLIATH in the applications were provided with the mod "miz". Note
that the ROSE algorithm did not exist for imbalanced regression.

7.1 lllustrative Application

In order to get a reference for predictive performance, we chose a balanced dataset from which we build an
imbalanced train dataset. The dataset, named SML2010 Data Set is available on the Machine Learning
repository UC]ﬂ It is composed of 24 numeric attributes and 4137 instances. The target variable is the
indoor temperature (we construct a unique target variable as the mean temperature of dinning-room and
the temperature of the room). We train, with the autoML, the following train dataset:

o Reference values: Full sample (FTrain), Imbalanced (Imb)

o Benchmark: UBL-Oversampling (UBL-0S), UBL-SMOTE for regression (UBL-SMOTE), UBL-
Gaussian Noise for regression (UBL-GN), UBL-SMOGN for regression (UBL-SMOGN), UBL-
WERCS (UBL-WERCS), IRL-ADASYN (IRL-0S)

o GOLIATH (step 1): Oversampling (G-0S), Gaussian Noise (G-GN), Gaussian Noise with GMM-
clustering (G-GNwCl), ROSE (G-ROSE), ROSE with a GMM-clustering (G-ROSEwCl), SMOTE
(G-SMOTE), Non classical Smoothed Boostrap with contraints on the distributions (G-NCSB),
Classical Smoothed Boostrap (G-CSB), Nearest Neighbors Smoothed Bootstrap, with Beta distri-
bution, (G-NNSB), Nearest Neighbors Smoothed Bootstrap with k-NN weights proportionates to the
distance from the seed (G-NNSBw), Extended Nearest Neighbors Smoothed Bootstrap (G-eNNSB).

Figure shows the results for RMSE on the test sample. The weighted-RMSE and MAE metrics are
shown in Appendix[7] and present similar results. We can observe that the GOLIATH algorithm presents an
RMSE smaller than the imbalanced sample and than the benchmark techniques, whatever the generators.
The GOLIATH-oversampling is comparable to the UBL-oversampling which confirms, on this dataset, the

Shttps://archive.ics.uci.edu/ml/datasets/SML2010
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relevance of the weighting. The Non-Classical Smoothed Bootstrap (NCSB) is as efficient as the Classical
Smoothed Bootstrap (CSB, ROSE, GN). However, it provides realistic values for the variables. We can see
some examples of inconsistency in Appendix @bl The results show that the clustering seems to improve
the performance. The Nearest Neighbors Smoothed Bootstrap (NNSB) and Extended Nearest Neighbors
Smoothed Bootstrap(eNNSB) outperform the original SMOTE. It is important to note that the different pa-
rameters (the number of nearest neighbors for interpolation techniques and the level of noise for perturbation
techniques) are arbitrary and not optimized here. The heatmap in Figure shows the robustness of the
methods with their rank by run with respect to the RMSE. We can observe, based on the mean and standard
deviation of the rank, that the Classic Smoothed Bootstrap, the Non-Classical Smoothed Bootstrap, and
the Nearest Neighbors Smoothed Bootstrap are the best approaches here.

RMSE Rank 1 2 3 4 5 6 7 8 9 10 | mean| sd RMSE Rank 1 2 3 4 5 6 7 8 9 10 mean sd
Frain | 08 | 07 | 07 | 09 | 08 | 07 | 08 | 08 | 09 | 09 | 08 | 01 Imb | s 5 7 | 12 | 13 | 10 | 10 | 13| 6 | 10 | 3
imb_ | 2,19 | 1,79 | 1,48 | 1,44 | 1,85 | 1,85 | 2,08 | 2,02 | 1,89 | 1,59 | 1,82 | 0,25 BLos |5 T 551 B w7 2 ol 1. 5 12152
uBLos | 2,21 | 1,96 | 1,69 | 1,82 | 2,12 | 1,83 | 2,38 | 2,22 | 2,07 | 1,85 | 2,02 | 0,22 | [ugLsmote| 7 | 13 | 0 | 12 | o | 15 | 22 | 13 | 2 | 3 | 2 | 2

UBL-SMOTE| 1,87 | 1,85 | 1,60 | 1,53 | 1,68 | 1,97 | 2,12 | 2,13 | 1,85 | 1,77 | 1,84 | 0,20 ey BERBEE G R i1 | s | 11 | 11 a2l a
UBLGN | 2,24 | 1,98 | 1,67 | 1,60 | 1,92 | 1,61 | 2,10 | 2,01 | 1,81 | 1,67 | 1,86 | 0,22 | [Ggrsmoonl 12 | 10 | 16 | 15 | 15 | 12 | 12 12 [ 12 | 2 | 3 2

UBL-SMOGN| 2,17 | 1,81 | 1,74 | 1,67 | 1,92 | 1,96 | 2,20 | 217 | 1,98 [ 1,52 | 1,91 | 023 | [piweres a7 T2 T 17 | 13 T 16 | 7 5 | 2 T2 [ 15 | 12 | 3

usL-wercs| 2,43 | 1,87 | 1,80 | 1,59 [ 2,08 [ 1,64 [ 2,24 [ 2,09 | 213 | 1,86 [ 1,97 [ 027 | [eaeni™ e T e T 18 1 | 18 28 18 7 | 18 15 18 o

IRL-ADASYN| 2,63 | 2,26 | 2,17 | 2,03 | 2,58 | 2,31 | 2,50 | 2,57 | 2,44 | 2,33 | 2,38 | 0,20 o8 ol 5T 16l 3ol 3 slo o ul 2
Gos | 211|183 | 167 | 1,71 | 1,86 | 2,10 | 2,16 | 2,21 | 2,13 | 1,93 | 1,97 | 0,20 on s i Tl 10 10 2 5 S T o e .
GGN | 2,00 | 1,82 | 1,22 | 1,48 | 1,76 | 1,49 | 1,57 | 1,92 | 1,61 | 1,66 | 1,65 | 0,23

G-GNwCl | 1,65 | 1,61 | 1,56 | 1,37 | 1,54 | 1,99 | 1,91 | 1,78 | 1,65 | 1,48 | 1,65 | 0,19 G-GNwa | 3 S} 8 9 ORNEELE 9 2 5 Z 9 L
G-ROSE | 1,60 | 1,73 | 1,69 | 1,35 | 1,57 | 1,47 | 1,68 | 1,93 | 1,71 | 1,60 | 1,63 | 0,16 GROSE | 1 2l B LD g z 3 © U 8 5 L

G-ROSEWCI | 1,84 | 1,60 | 1,29 | 1,48 | 1,83 | 1,79 | 1,77 | 2,01 | 1,77 | 1,89 | 1,65 | 0,22 | | OROSEwCI| 6 Z BN 10 [ ] & g 2 : o 3

G-SMOTE | 1,95 | 1,80 | 1,61 | 1,54 | 1,63 | 1,73 | 2,25 | 2,67 | 1,30 | 1,93 | 1,84 | 0,39 G-SMOTE [ 8 9 1u | 12 7 8 6 | 18 1 7 | 1 5
GNcsB | 2,19 | 1,77 | 1,54 | 1,33 | 1,44 | 1,63 | 1,70 | 2,05 | 1,78 | 1,66 | 1,71 | 0,26 G-NCSB |NFs 6 6 4 3 6 4 1 | 10 | 10 | 7 3
G-csB | 1,69 | 1,68 | 1,55 | 1,30 | 1,50 | 1,82 | 1,78 | 2,00 | 1,72 | 1,52 | 1,66 | 0,20 G-CsB 5 4 7 3 4 10 7 7 8 4 6 2
GNNSB | 1,67 | 1,56 | 1,57 | 1,30 | 1,77 | 1,54 | 1,79 | 1,29 | 1,45 | 1,60 | 1,55 | 0,27 G-NNSB 4 1 9 3 11 3 8 1 2 8 5 4

G-NNSBw | 1,62 | 1,97 | 1,46 | 1,46 | 1,64 | 1,83 | 1,54 | 1,90 | 1,64 | 1,74 | 1,68 | 0,18 G-NNSBw | 2 16 4 8 8 12 1 4 D) 12 7 5

G-eNNSB | 2,20 | 1,79 | 1,45 [ 1,35 | 1,29 | 1,63 | 1,73 | 1,86 | 1,46 | 1,57 | 1,61 | 0,30 G-eNNsB | 14 | 8 3 1 1 6 5 3 3 5 5 4

(a) RMSE Heatmap (b) RMSE Ranking

Figure 2: Numerical simulation. RMSE values and ranking for the full sample, the imbalanced sample, 6
competitors, and GOLIATH associated with 11 different generating methods

The RMSE-rank represents the ranking of approaches according to the RMSE for a run: rank 1 corresponds
to the training dataset that offers the smallest RMSE on the test sample. We also compared the results
using the R-package IRon: Solving Imbalanced Regression Tasks El, a useful and relevant package specific to
Imbalanced Regression based on |Ribeiro & Moniz| (2020). The results in Appendix demonstrate that
GOLIATH outperforms UBL approaches, even when considering their performance metrics (weighted MSE,
weighted MAE, and SERA).

7.2 Imbalanced Regression Applications

We test our approach on several real data set from a repository provided as a benchmark for imbalanced
regression problemsﬂ and presented in [Branco et al|(2019) (descriptions in Appendix @) Figures [3al and
present RMSE gain (wrt the imbalanced dataset) and the median of the RMSE ranking. We can observe
on these datasets that the GOLIATH algorithm empirically outperforms the state-of-the-art techniques,
especially the Non-Classical Smoothed Bootstrap and the Extended Nearest Neighbors Smoothed Bootstrap.

We can see on these several applications, with several runs, several learning algorithms, and several perfor-
mance metrics that the GOLIATH approach seems relevant to deal with imbalanced regression. In general
GOLIATH gives better results, especially when it is combined with and extended nearest neighbors smoothed
bootstrap in its first step of covariates generation.

7.3 Discussion

Based on all our numerical evidences, we strongly recommend the use of GOLIATH when step 1 combines a
smoothed boostrap with nearest neighbors. The five versions of GOLIATH involving bootstrap procedures
appear to be the best performing and most stable in terms of numerical results (both RMSE gain and rank).

4https://cran.r-project.org/web/packages/IRon/IRon. pdf
Shttps://paobranco.github.io/DataSets-IR/
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RMSE gain NO2 cpuSm Boston Bank8FM Abalone RMSE rank NO2 cpusSm Boston Bank8FM Abalone
UBL-0S -3% 2% -7% 63% 0% UBL-0S 14,0 14,5 13,0 17,0 16,5
UBL-SMOTE -10% -2% -12% 27% -4% UBL-SMOTE 10,0 11,5 11,0 11,0 12,0
UBL-GN -8% -5% 7% 57% -3% UBL-GN 10,5 9,5 11,5 15,5 13,0
UBL-SMOGN -10% -3% -10% 29% -3% UBL-SMOGN 8,0 12,0 11,5 12,0 12,0
UBL-WERCS -4% 3% -1% 57% -1% UBL-WERCS 14,0 16,0 15,5 16,5 15,0
IRL-ADASYN 10% 22% -1% 69% NA IRL-ADASYN 18,0 18,0 16,0 18,0 NA
G-0S -1% -2% -3% 57% -3% G-0S 16,0 14,0 14,5 f1I535) 13,5
G-GN -11% -18% -21% 0% -9% G-GN 6,5 52 2,5 6,0 6,5
G-GNw(Cl -10% -18% -14% 13% -6% G-GNwCl 8,5 5,0 6,5 8,0 9,5
G-ROSE -9% -17% -17% -6% -9% G-ROSE 8,5 4,0 4,0 4,5 7,0
G-ROSEwCI -9% -19% -21% 0% -8% G-ROSEwCI 10,0 4,0 3,0 8,0 8,0
G-SMOTE -6% -2% -6% 54% -11% G-SMOTE 13,5 11,5 12,5 15,5 4,5
G-NCSB -9% -23% -23% -6% -9% G-NCSB 8,0 2,0 4,0 5,0 53
G-CSB -12% -20% -17% 0% -9% G-CSB 6,5 2 6,0 5,0 6,0
G-NNSB -13% -11% -12% 31% -14% G-NNSB 6,0 8,5 8,0 12,0 2,5
G-NNSBw -15% -11% -14% 35% -13% G-NNSBw 3,0 7,0 6,5 12,0 Bi5
G-eNNSB -15% -7% -19% -29% -21% G-eNNSB 2,0 10,0 5,5 1,5 1,0

(a) RMSE-gain (b) Median of the RMSE-rank

Figure 3: Datasets. RMSE values and ranking for 6 competitors, and GOLIATH associated with 11 different
generating methods

8 Discussion and Perspectives

GOLIATH is an algorithm gathering two large families of synthetic data oversampling. Many methods can
be rewritten as particular cases of it. This approach gets the advantage to obtain a general form for the
generator which is based both on the theoretical foundations of kernel estimators and classical smoothed
bootstrap techniques. It provides a general expression for the conditional density of the generator. The
use of well-chosen kernels makes it possible to take into account the nature of the covariates: continuous,
discrete, totally or partially bounded. Our approach generalizes the SMOTE algorithm by providing weights
and flexible densities for interpolation. We also extend this technique to wider support than that of the
observations by combining interpolation and perturbation approaches. Numerical applications in imbalanced
regression models demonstrate that GOLIATH and its variants are very competitive, especially when the
generator used in step 1 is the extended nearest neighbors smoothed bootstrap.

The weights w; (and 7;); in the interpolation case) offer a large flexibility. For instance, it is possible to handle
classification tasks by conditioning with the minority class. We could deal with multi-class classification too.
It is also possible to combine some extensions of SMOTE that propose to focus on specific samples in the
synthetic data generation (as ADASYN) with a kernel approach in order to perform the methodology.

As a perspective, a natural extension of this work is to automate the choice of the kernel estimators, the
weights, as well as some parameters according to the data. For example by defining a weights function for
the nearest neighbor instead of defining the parameter k. Indeed, the parameter k is sometimes unsuitable
and we could suggest a dynamic weighting depending on the neighborhood. It is also possible to define
a kernel according to the neighborhood into the same dataset. For instance, an interpolation approach is
favored within clusters when neighboring points are considered close to the observation. On the other hand,
a perturbation approach is preferred when the observation appears isolated. Finally, non-standard kernels
enable handling specific distributions such as bounded or discrete ones.

We also could define w; in order to generate a target distribution as done in [Stocksieker et al.| (2023)). Finally,
the perturbation-based approaches, based on kernel density estimators, may find it challenging to accurately
capture dependencies between variables. The interpolation approaches consider it but the generation is
limited to the segments. The extended-SMOTE proposes a first solution. GOLIATH proposes also an
innovative method to generate Y based on the generated X, regardless of the generator used. It would also
be interesting and potentially effective to use multiple generators and capitalize on the strengths of each.
The generators could be applied locally based on the data characteristics.
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Another research direction would be to better consider i) correlations between variables while respecting
their definition domain and ii) mixed data. Finally, it could be interesting to test GOLIATH on image
datasets, by combining it with a deep-learning model (Deep Imbalanced Regression framework).
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