PALADIN: Self-Correcting Language Model Agents
to Cure Tool-Failure Cases

Sri Vatsa Vuddanti, Aarav Shah, Satwik Kumar Chittiprolu, Tony Song, Sunishchal Dev, Kevin
Zhu, Maheep Chaudary

Algoverse Al Research
srivatsa644 @ gmail.com

Abstract

Tool-augmented language agents routinely fail in deployment
due to execution-time tool errors such as timeouts, malformed
outputs, or silent API failures. In agentic and multi-agent sys-
tems, these failures are especially damaging: a single unhan-
dled error can cascade across reasoning steps or agents, lead-
ing to deadlock or hallucinated success. Despite this, most
training pipelines optimize only for clean, successful trajec-
tories and leave execution-level recovery largely unmodeled.
We propose PALADIN, a framework for teaching language
agents explicit, generalizable recovery behavior under tool
failures. PALADIN trains agents on over 50,000 recovery-
annotated trajectories generated via systematic failure injec-
tion aligned with the ToolScan taxonomy, while preserving
base task competence through LoRA-based fine-tuning. At
inference time, agents detect execution failures and condi-
tion their responses on a small, curated bank of taxonomy-
aligned recovery exemplars, enabling structured diagnosis
and repair rather than reactive retries. Across multiple back-
bones and evaluation settings, PALADIN consistently im-
proves execution-level robustness. On deployment-relevant
benchmarks, it raises Recovery Rate from 32.8% to 89.7%,
reduces catastrophic (hallucinated) success, and substantially
increases task completion, while incurring only modest ef-
ficiency overhead. Crucially, PALADIN generalizes to un-
seen tools and failure types, retaining over 95% recovery rate
on out-of-distribution APIs. These results demonstrate that
execution-level recovery is a learnable and transferable ca-
pability. By treating tool failure as a first-class training sig-
nal, PALADIN provides a practical foundation for building
reliable, failure-aware language agents and offers a pathway
toward safer and more robust LLM-based agentic and multi-
agent systems.

Code — https://github.com/33k0/PALADIN-Framework

Dataset —
https://huggingface.co/datasets/E-k-O/PaladinData/

Introduction

Tool-augmented language models are increasingly deployed
as agents: systems that plan, invoke external tools, and exe-
cute multi-step actions to achieve goals. In clean benchmark
settings, such agents appear highly capable. In deployment,
however, this competence often silently collapses at scale.

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

100

954

90+

Q
S
o 854
=
]
& g0 |Models & Methods .
Z ® Gemma-12B (CRITIC)
5] PALA o+
g * G 'B (PALADIN) .
3 754 Quen-14B (CRITIC)
z Qwen-14B (PALADIN)

704 ® AM-Thinking (CRITIC)

* AM-Thinking (PALADIN)
65 LLaMA-8B (CRITIC)
LLaMA-8B (PALADIN)
60 T T T T
60 65 70 75 80 85
Task Success Rate (%)

Figure 1: Recovery Rate versus Task Success Rate across
backbones for CRITIC and PALADIN. Each dotted line
traces the shift from a reflective baseline to PALADIN.
Gains in task success closely track gains in recovery, indi-
cating that execution-level recovery is a dominant driver of

reliable performance.

APIs timeout, tool outputs are malformed, and partial fail-
ures occur silently. When execution deviates from the ide-
alized “happy path,” agents frequently deadlock, hallucinate
success, or abandon the task altogether.

This exposes a central paradox in agent design: agents are
trained extensively to reason about tools, but not to recover
from them. Most training pipelines optimize exclusively
over successful trajectories, implicitly assuming reliable ex-
ecution. As a result, execution-time failures—among the
most common causes of real-world agent breakdown—are
largely absent from training data. When failures occur,
downstream reasoning collapses not because plans are poor,
but because recovery behavior is missing.

The problem is especially acute in LLM-based multi-
agent systems, a core focus of the LaMAS workshop. In
such systems, agents depend on one another’s tool-mediated
outputs. A single unhandled failure can propagate across
agents, corrupt shared state, and derail coordination. Reli-
able agentic systems therefore require more than accurate
planning: they require execution-level robustness, the ability
to detect, diagnose, and recover from failures as they arise.

Existing approaches address this problem only par-
tially. Reflective and critic-based methods such as ToolRe-
flect (Polyakov et al. 2025) and CRITIC (Zheng et al. 2023)
revise individual tool calls after errors occur. While effective
in narrow cases, these approaches remain local and reactive.
They do not train agents on full recovery trajectories, nor do
they yield reusable strategies that generalize across failure
modes or multi-step execution.

We argue that recovery must be treated as a first-class
learning objective. We introduce PALADIN, a framework
that teaches language agents explicit, trajectory-level recov-
ery behavior. During training, PALADIN systematically in-
jects realistic execution failures aligned with the ToolScan
taxonomy and pairs them with expert recovery demonstra-
tions. This supervision teaches structured behaviors such as
diagnosis, replanning, tool substitution, and graceful termi-
nation, rather than relying on ad hoc retries or post-hoc cor-
rection.

At inference time, PALADIN augments execution with
a lightweight retrieval mechanism. When a failure is de-
tected, the agent conditions its response on a small, curated
bank of failure-recovery exemplars. This grounds recov-
ery in reusable abstractions, enabling generalization across
tools, APIs, and unseen failure conditions without excessive
retries.

Figure 1 highlights the core empirical pattern motivat-
ing this work. Across models, improvements in recovery ca-
pability translate directly into higher task success. Agents
that recover reliably complete more tasks—not because they
plan better, but because they survive execution failures that
derail baseline systems.

We evaluate PALADIN using a deterministic tool-use
simulator with controlled failure injection and introduce
recovery-focused metrics that directly measure robustness
and safety. Across multiple backbones and benchmarks,
PALADIN substantially improves recovery and task success
with only modest efficiency overhead, and generalizes to un-
seen tools and failure types.

By making recovery explicit, learnable, and measurable,
PALADIN provides a practical foundation for reliable tool-
augmented agents and a concrete step toward the robust
multi-agent systems envisioned by the LaMAS community.

Our contributions are:

* Execution-level recovery as a learning objective, for-
malized as a trajectory-level capability.

e PALADIN, a training and inference framework combin-
ing systematic failure injection with taxonomy-guided
recovery supervision.

* Recovery-focused evaluation, including new metrics
and benchmarks that directly measure robustness under
execution failures.

e Empirical generalization, showing recovery behaviors
transfer across models, tools, and unseen failure modes.

Methodology

PALADIN equips tool-augmented language agents with
execution-level robustness: the ability to detect, diagnose,

Is there something wrong with
theton? :
—— &
A Retieved the o

Figure 2: PALADIN’s tool-use simulator with integrated
failure injection and recovery. (a) Static architecture: tool
calls are executed under controlled failure conditions and
paired with recovery supervision. (b) Dynamic execution
loop: the agent detects failures, applies recovery actions, and
resumes task execution. This design enables reproducible
training and evaluation of execution-level robustness.

and recover from runtime tool failures. The framework con-
sists of four components: (i) formalizing execution failures,
(ii) constructing recovery-annotated trajectories via system-
atic failure injection, (iii) fine-tuning agents with recovery-
aware supervision, and (iv) augmenting inference with
taxonomy-guided retrieval. Figure 2 provides an overview.

Problem Setup

We model a tool-augmented agent as a policy my that pro-
duces a trajectory 7 = [(s1,a1),- .., (sT,ar)], where ac-
tions a; may include tool invocations. Execution failures
f € F arise when tools time out, return malformed out-
puts, raise API errors, or produce inconsistent results. Stan-
dard training pipelines ignore such events, yielding policies
that fail catastrophically when execution deviates from the
“happy path.”

Our objective is to learn a policy that completes tasks
while remaining robust to failures:

7" = argmax E,. [TSR(7) — o CSR(7)],

where TSR measures task completion and CSR penalizes
hallucinated success after failure.

Failure Injection and Recovery-Annotated Data

To expose agents to realistic execution faults, we systemat-
ically augment ToolBench trajectories with failures aligned
to the seven canonical error classes in the ToolScan taxon-
omy (Kokane et al. 2025). Each trajectory is decomposed
into a task 7', available tools A, execution trace C, and er-
ror signal E/. When a failure occurs (E # o), the trace is
truncated at the failure point and passed to a GPT-5 teacher
model, which generates an explicit recovery sequence con-
ditioned on the failure context:

frepair(Ta Av 07 E) — Ol'
If no failure is injected, the trace is finalized unchanged:

fﬁnalize(T7 A, O) — C/.

This process yields over 50,000 recovery-annotated tra-
jectories spanning retries, parameter corrections, tool sub-
stitutions, and graceful termination. Failures are injected de-
terministically at controlled steps, producing multiple vari-
ants of the same base task that differ only in fault condi-
tions. This enables reproducible, apples-to-apples compari-
son across models while preserving identical task structure.

In addition, we curate a compact recovery dictionary of
55+ exemplar failure-recovery pairs. These exemplars op-
erationalize the ToolScan taxonomy into reusable recovery
strategies and serve as structured supervision during infer-
ence.

Training Objective
PALADIN fine-tunes base language models using a causal
language modeling objective augmented with recovery su-
pervision:

Learapin = Lspr + A Lrecs
where Lggr is the standard negative log-likelihood over suc-
cessful trajectories, and L. applies the same objective to
tokens following explicit Recovery: markers that denote
corrective actions. All trajectories are serialized in Tool-
Bench format. We use LoRA adapters (Hu et al. 2021;
Dettmers et al. 2023; Biderman et al. 2024; Liu et al.
2024) for parameter-efficient fine-tuning, preserving base
task competence while injecting recovery behavior.

Inference-Time Recovery via Taxonomic Retrieval

At inference time, PALADIN monitors tool execution and
triggers recovery only when a failure is detected. Given an
observed failure fys, the agent retrieves the most similar ex-

emplar from the recovery bank & = {(f;,7;)}22;:

= 1 d >
Jref argmin (fobss fi),

where d(-,-) measures similarity between error signatures.
The associated recovery action r; conditions the agent’s next
steps, guiding execution back to a valid trajectory.

The retrieval operation incurs negligible overhead: the ex-
emplar bank is small, lookup is constant-time, and retrieval
is executed only upon failure, not during normal reasoning.
Observed efficiency tradeoffs therefore arise from deliberate
recovery actions (e.g., retries or tool switching), rather than
from the retrieval mechanism itself.

Metrics for Execution Robustness
We evaluate execution-level robustness using four metrics:

successful tasks

TSR =
total tasks
RR — # failures recovered
~ failures encountered
CSR — 1-— #hallucmat.ed successes
failures
1
ES =

average number of steps per task

RR, CSR, and ES capture recovery effectiveness, safety,
and efficiency beyond task success alone. We interpret ES

as a proxy for execution cost: improvements in RR and TSR
that maintain bounded ES indicate robustness beyond brute-
force retrying.

Experiment and Evaluation Setup

Figure 3: Construction of the error-trajectory dataset. Each
ToolBench trace is truncated at the first injected failure and
either repaired with an explicit recovery sequence or final-
ized unchanged. Resulting traces are stored with failure and
recovery metadata.

We evaluate PALADIN under controlled yet deployment-
relevant failure conditions, focusing on execution-level ro-
bustness rather than clean-task performance alone. All ex-
periments are conducted in a deterministic simulator to en-
sure reproducibility and fair comparison across methods.

Evaluation Benchmarks

We evaluate on three complementary benchmarks that to-
gether measure recovery behavior, generalization, and com-
parability to prior work.

PaladinEval. PaladinEval is derived from the ToolBench
evaluation split and augmented with explicit, labeled execu-
tion failures. Each instance consists of a ToolBench prompt
paired with a runtime failure injected by a teacher model.
The resulting set includes both clean executions and failure-
augmented traces, enabling joint measurement of task com-
pletion and recovery. To prevent train—test leakage, all tasks,
tool schemas, and (failure class, injection step) pairs used
for PaladinEval are held out from training.

Generalization Set. To assess out-of-distribution robust-
ness, we construct a separate evaluation set by sampling
unused ToolBench prompts and injecting failure types that
do not appear in PALADIN’s 55+ exemplar recovery dictio-
nary. This benchmark tests whether recovery behavior gen-
eralizes beyond memorized failure-recovery pairs.

ToolReflectEval. We additionally evaluate on ToolRe-
flectEval (Polyakov et al. 2025) to enable direct compar-
ison with reflective baselines. We follow their protocol of
allowing up to three recovery attempts per tool call and re-
execute all ToolAlpaca-derived prompts inside our simula-
tor. No prompts are modified or filtered. This ensures fidelity
to the original benchmark while enabling evaluation under a
unified grading framework.

Simulation Environment

All evaluations are conducted in a deterministic tool-use
simulator that reproduces the ToolBench execution pipeline
while adding controlled failure injection, recovery logging,
and automated grading. Each episode begins with a prompt
P and toolset A. Tool calls are executed sequentially, re-
turning either successful outputs or injected failures f € F.
Failures arise either from PaladinEval’s systematic injec-
tion protocol or from naturally error-prone ToolReflectEval
traces.

At each step, the simulator records the dialogue context,
observed failure signal, and recovery action. Final traces
are passed to an automated grader to compute Task Success
Rate (TSR), Recovery Rate (RR), Catastrophic Success Rate
(CSR), and Efficiency Score (ES) under a fixed rubric. Using
a single simulator and grader across all methods ensures that
differences in performance reflect recovery behavior rather
than evaluation artifacts.

We restrict evaluation to this deterministic setting
to isolate execution-level robustness from external non-
determinism. Evaluation on live APIs is left to future de-
ployment studies.

Automated Grading and Reproducibility

All metrics are computed using a GPT-5-based auto-grader
conditioned on fixed, task-specific rubrics derived from the
failure taxonomy. The grader penalizes hallucinated success,
rewards valid recovery strategies, and enforces consistent
metric definitions across benchmarks.

We validate grader reliability against expert human anno-
tations on a held-out set of 120 traces spanning all ToolScan
error classes. Agreement reaches 94.2%, with Cohen’s k =
0.89. To eliminate evaluation variance, grader prompts are
frozen during all experiments. Observed run-to-run varia-
tion remains within +1.5%, which is negligible relative to
reported gains. Grader prompts and scoring scripts will be
released for reproducibility.

Baseline Agents

We compare PALADIN against four baselines spanning dif-
ferent supervision and recovery paradigms:

 Vanilla: the pretrained language model without addi-
tional supervision.

* ToolBench Agent (Qin et al. 2023): trained only on clean
ToolBench trajectories, with no recovery capability.

* ToolReflect Agent (Polyakov et al. 2025): trained
on paired valid/invalid tool calls with iterative self-
correction.

e CRITIC (Zheng et al. 2023): a reflective agent that ac-
cesses external recovery guidance with probability p =
0.7.

These baselines isolate the effects of recovery supervision
(clean vs. failure-rich), recovery strategy (reactive vs. proac-
tive), and integration point (training vs. inference).

Critic-Style Oracle Baseline

To ensure a strong and conservative comparison, we imple-
ment a critic-style oracle baseline closely following the orig-
inal CRITIC design. After each tool call, an oracle provides
a small set of predefined recovery options corresponding to
the observed error type. The agent selects and executes the
strongest option, with up to three attempts allowed before
terminating.

Unlike PALADIN, this baseline does not receive
any recovery-focused fine-tuning and relies entirely on
inference-time guidance. All critic-style baselines share the
same backbone models, simulator, and grader as PALADIN,
ensuring comparability.

Ilustrative Failure Case. In a service-dependency fail-
ure involving multiple APIs (e.g., product retrieval followed
by email validation), correct recovery requires identifying
the upstream service outage, waiting or retrying appropri-
ately, and resuming execution once the dependency stabi-
lizes. This class of failures highlights the difference between
local call correction and trajectory-level recovery.

Results

In agentic systems, tool failures rarely occur in isolation: a
single execution error can cascade across planning, retrieval,
and coordination modules. We therefore interpret all results
through the lens of system reliability rather than isolated task
accuracy. In multi-agent or modular agentic systems, these
gains directly reduce failure propagation, as successful lo-
cal recovery prevents downstream agents or modules from
operating on corrupted state.

Recovery Is the Primary Driver of Task Success

Across models and benchmarks, improvements in recov-
ery consistently translate into higher task success and re-
duced silent failure, indicating that execution-level recov-
ery—rather than auxiliary planning or scale alone—is the
dominant driver of reliable performance.

Table 1 reports results across eight model—dataset pairs.
PALADIN achieves the highest Recovery Rate (RR) in 7/8
settings (average +13.6%), the highest Task Success Rate
(TSR) in 6/8 settings (average +10.2%), and the best Catas-
trophic Success Rate (CSR) in 6/8 settings (average +9.2%).
All improvements are statistically significant (p < 0.01).

Correlation analysis supports a mechanistic relationship
between recovery and task completion. RR and TSR are
strongly correlated (r = 0.91, p < 0.001), while TSR ex-
hibits negligible correlation with efficiency (r = 0.12), in-
dicating that efficiency alone is a poor proxy for reliability.
CSR and Efficiency show a significant negative correlation
(r = —0.72, CI: [-0.79, —0.63]), reflecting an inherent but
bounded safety—efficiency tradeoff.

Efficiency reductions are therefore not incidental. They
arise from deliberate recovery behavior—such as retries,
validation, or tool switching—rather than uncontrolled loop-
ing. No baseline simultaneously achieves higher safety and
higher efficiency, situating PALADIN near the Pareto fron-
tier.

Table 1: Main results across models and datasets. All metrics (Recovery, Task Success, CSR, Efficiency) are normalized such
that higher is better. PALADIN achieves consistently strong safety and recovery performance, with modest efficiency tradeoffs

Pretrained Evaluation Evaluation Scores (1)
LLM Datasets Metrics Vanilla CRITIC ToolReflect ToolBench Paladin (Ours)
Recovery Rate 23.75% 76.34% 65.86% 32.76% 89.68% (+13.34%)
Paladin Task Success Rate 23.62% 72.83% 61.42% 57.4% 78.38% (+5.55%)
Eval Catastrophic Success Rate 29.00% 73.30% 70.27% 68.37% 82.55% (+9.25%)
Gemma-3 Efficiency Score 0.476 0.348 0.288 0.221 0.312 (-34.45%)
12B-Instruct Recovery Rate 2280% | 73.29% 63.23% 31.45% 86.09% (+12.80%)
ToolReflect Task Success Rate 22.56% 69.55% 58.66% 54.82% 83.45% (+13.90%)
Eval Catastrophic Success Rate 26.16% 72.23% 69.08% 67.10% 81.85% (+9.62%)
Efficiency Score 0.508 0.370 0.307 0.235 0.332 (-34.65%)
Recovery Rate 37.68% 81.74% 73.66% 33.48% 94.67 % (+12.93%)
Paladin Task Success Rate 37.53% 72.38% 74.36% 60.41% 79.48% (+5.12%)
Eval Catastrophic Success Rate | 56.53% 87.14% 83.85% 67.88% 94.57% (+7.43%)
Qwen-2.5- Efficiency Score 0.313 0.329 0.312 0.339 0.351 (+3.54%)
14B-Instruct Recovery Rate 36.17% | 78.47% 70.71% 32.14% 92.88% (+14.41%)
ToolReflect Task Success Rate 35.85% 69.13% 71.02% 57.70% 75.19% (+4.17%)
Eval Catastrophic Success Rate 54.88% 81.63% 83.20% 66.60% 94.35% (+11.15%)
Efficiency Score 0.334 0.350 0.333 0.361 0.375 (+3.73%)
Recovery Rate 49.87% 89.91% 87.23% 51.37% 96.08% (+6.17%)
Paladin Task Success Rate 52.93% 61.97% 72.88% 56.83% 81.24% (+8.36%)
Eval Catastrophic Success Rate 60.24% 81.33% 71.32% 80.84% 88.65% (+7.32%)
AM-Thinking Efficiency Score 0.415 0.420 0.297 0.319 0.380 (-9.52%)
V1 Recovery Rate 47.88% 86.31% 83.74% 49.32% 92.24% (+5.93%)
ToolReflect Task Success Rate 50.55% 78.64% 79.41% 65.25% 77.98% (-1.43%)
Eval Catastrophic Success Rate | 62.65% 67.42% 65.93% 58.06% 88.31% (+20.89%)
Efficiency Score 0.442 0.448 0.316 0.340 0.405 (-9.60%)
Recovery Rate 21.83% 63.44% 56.32% 49.2% 79.77% (+16.33%)
Paladin Task Success Rate 17.46% 68.92% 53.74% 47.26% 78.72% (+9.80%)
Eval Catastrophic Success Rate 17.58% 71.84% 67.88% 65.47% 80.73% (+8.89%)
Llama-3.1- Efficiency Score 0.427 0.254 0.287 0.209 0.323 (-24.36%)
8B-Instruct Recovery Rate 18.32% | 58.55% 49.32% 4223% 73.34% (+14.79%)
ToolReflect Task Success Rate 13.45% 59.47% 46.34% 41.22% 71.27% (+11.80%)
Eval Catastrophic Success Rate 15.40% 63.81% 58.09% 53.68% 71.77% (+7.96%)
Efficiency Score 0.568 0.360 0.508 0.412 0.385 (-32.31%)

Recovery Generalizes to Unseen Failures

PALADIN’s recovery behavior generalizes beyond the fail-
ure types and conditions observed during training, maintain-
ing strong performance under out-of-distribution execution

faults.

AM-Thinking-V1

Percentage

lized AM-Thinking-V1

Percentage

i

TSR

Metrics

Figure 4: PALADIN’s performance without inference-time
error matching compared to baselines across Gemma, Qwen,
LLaMA, and AM-Thinking backbones. Full results are pro-
vided in the supplementary material.

Figure 4 reports results on unseen failure types across
all backbones. Despite architectural differences, PALADIN
consistently achieves > 79% RR, > 78% TSR, and > 80%
CSR. Notably, LLaMA-3.1-8B improves from 21.8% to

79.8% RR and from 17.5% to 78.7% TSR, reducing silent
failure by over 60 percentage points. Qwen-2.5-14B attains
the highest CSR (94.6%), while AM-Thinking-V1 achieves
the highest RR (96.1%).

These results demonstrate that recovery is not memorized
at the level of individual error cases. Instead, PALADIN
learns reusable recovery strategies that transfer across un-
seen failures, tools, and model families.

Inference-Time Retrieval Is the Mechanism
Enabling Robustness

Ablation experiments identify inference-time retrieval as a
critical mechanism underlying PALADIN’s robustness. Re-
trieval does not introduce new reasoning steps; it conditions
existing recovery behavior on structured failure exemplars.

Removing exemplar-based error matching sharply de-
grades recovery across all models (Figure 4). For example,
Gemma-12B’s RR drops from 89.7% to 61.4%, TSR from
87.4% to 57.3%, and CSR from 82.6% to 65.1%. Similar
declines are observed for Qwen-14B (RR -21.4%), LLaMA-
8B (RR -31.2%), and AM-Thinking-V1 (RR -14.9%).

The magnitude of these drops—often 20-30

points—indicates that training-time exposure to fail-
ures alone is insufficient. These results indicate that
inference-time retrieval is not a performance booster but a
structural component: without it, recovery policies fail to
activate reliably under execution faults.

Implications for Agent Reliability

Taken together, these results show that execution-level ro-
bustness is a learnable and transferable capability. PAL-
ADIN consistently improves recovery, safety, and task suc-
cess across models, generalizes to unseen failures, and ex-
hibits predictable safety—efficiency tradeoffs driven by in-
tentional recovery behavior. These findings establish recov-
ery as a first-class optimization objective for tool-augmented
agents.

Related Work
Execution-Level Robustness

A growing body of work seeks to improve the robust-
ness of tool-augmented language agents under execution-
time failures. However, most existing approaches treat fail-
ures as local anomalies—events to be patched after they
occur—rather than as trajectory-level operating conditions
that must be modeled and learned explicitly.

ToolReflect (Polyakov et al. 2025) improves tool-call
quality by contrasting invalid and corrected calls through
supervised fine-tuning. While effective for call-level correc-
tion, this formulation does not model recovery as a multi-
step process: failures are addressed in isolation rather than
as part of a cascading execution trace that may require diag-
nosis, replanning, or tool substitution. Related work on LLM
runtime error handling (Sun et al. 2024) and structured ex-
ception handling (Zhou et al. 2025) introduces systematic
mechanisms for error detection, but stops short of training
agents on full recovery trajectories.

Critic-style approaches (Zheng et al. 2023) introduce an
external evaluator that critiques and revises agent actions,
improving reliability through iterative self-correction. These
methods remain fundamentally reactive: feedback is applied
post hoc, recovery quality depends on inference-time judg-
ment, and recovery strategies are not internalized as reusable
behaviors.

In contrast, PALADIN treats recovery as a first-class
learning objective. By training directly on failure-rich tra-
jectories that include diagnosis, replanning, and multi-turn
repair, PALADIN learns reusable recovery policies that op-
erate at the level of execution traces rather than individual
calls.

Diagnostics and Benchmarks

Several efforts focus on characterizing tool-use failures
rather than resolving them. ToolScan (Kokane et al. 2025)
introduces a taxonomy of seven recurring error patterns in
LLM tool use, providing a diagnostic lens on where and how
agents fail. However, ToolScan is explicitly descriptive: it
categorizes failures but does not curate executable recovery
trajectories or provide supervision for learning recovery be-
havior.

BugGen argues that handcrafted or mutation-based bug
synthesis yields narrow coverage of real-world failures, mo-
tivating realistic failure-rich datasets. Together, these works
establish the structure of agent failures but leave open
how agents should be trained to recover during execution.
PALADIN bridges this gap by operationalizing failure tax-
onomies into recoverable trajectories that directly supervise
recovery behavior.

Prior Tool Systems and Interface Reliability

Foundational systems such as Toolformer, Gorilla, Tool-
LLM, ToolBench (Qin et al. 2023; Patil et al. 2023; Schick
et al. 2023; Guo et al. 2024), and RoTBench advanced tool
selection, formatting, and multi-step planning, but largely
assume clean execution or focus on pre-execution uncer-
tainty. As a result, these systems are optimized for “happy-
path” trajectories in which tool calls succeed as intended.

When execution errors occur, prior systems typically lack
explicit recovery strategies, leading to brittle deployment be-
havior. ToolBench provides broad tool coverage but no run-
time recovery protocols, while RoTBench probes robustness
via documentation noise rather than execution faults. Com-
plementary tools such as ToolFuzz (Milev et al. 2025) im-
prove interface reliability before execution, but do not ad-
dress failures that arise during tool interaction.

PALADIN targets this missing layer: runtime execution
breakdowns that occur despite correct tool selection and for-
matting. By explicitly modeling, training on, and evaluat-
ing recovery under such failures, PALADIN reframes ro-
bustness as an execution-time competence rather than a pre-
execution filtering problem.

Discussion

The results show that execution-level recovery is a prereq-
uisite for reliable agentic systems: when failures are not
handled explicitly, errors propagate across reasoning steps
and—by extension—across agents in multi-agent settings.
We interpret PALADIN’s gains not as isolated performance
improvements, but as evidence for concrete design princi-
ples for building failure-aware agents.

Importantly, PALADIN does not aim to eliminate tool
failures. Instead, it treats failure as an expected operating
condition and optimizes recovery behavior accordingly.

Recovery as a Teachable System Capability

PALADIN demonstrates that recovery from tool failures is
not an emergent side effect of scale or reflection, but a capa-
bility that can be explicitly taught. Unlike prior approaches
such as ToolReflect or CRITIC, which rely on local post-hoc
corrections, PALADIN trains agents on full recovery trajec-
tories that include failure detection, diagnosis, and multi-
step repair. This reframes robustness as a system-level be-
havior rather than a patch applied to individual tool calls.
From a design perspective, this suggests that robust agents
should be trained not only on what successful execution
looks like, but on how execution breaks and how to re-
sume progress afterward. Recovery supervision functions as

a control layer over execution, enabling agents to remain op-
erational under non-ideal conditions rather than collapsing
when assumptions are violated.

Generalization via Failure Abstraction

PALADIN’s ability to generalize across tools and unseen
failure modes follows from a simple engineering principle:
recovery policies should be conditioned on failure structure,
not tool identity. By aligning supervision with a failure tax-
onomy, PALADIN learns reusable recovery behaviors (e.g.,
retry with backoff, reformat outputs, substitute tools) that
apply across heterogeneous APIs.

Practically, this means that robustness does not require
memorizing tool-specific fixes. A compact set of failure ab-
stractions, paired with exemplar recoveries, is sufficient to
cover a broad tool surface. This keeps recovery infrastruc-
ture small and stable even as the number of tools or agents
grows—an important consideration for scalable agent sys-
tems. Because recovery is conditioned on failure structure
rather than tool identity, the supporting exemplar bank re-
mains compact and stable, scaling with the diversity of fail-
ure classes rather than the number of tools, tasks, or agents.

Failure Injection as Robustness-Oriented Training

Systematic failure injection serves as a targeted mechanism
for teaching agents how to operate under adverse execution
conditions. Rather than relying on rare naturally occurring
failures or synthetic noise, PALADIN injects canonical fail-
ure types at controlled points in execution. This exposes
agents to realistic breakdowns while preserving task struc-
ture.

Viewed as an engineering strategy, failure injection pro-
vides coverage guarantees: agents encounter the failure
modes they are most likely to face in deployment. The re-
sulting behavior is not merely tolerant of errors, but struc-
tured—agents learn when to retry, when to replan, and when
to terminate gracefully. The modest efficiency overhead ob-
served reflects intentional recovery actions rather than un-
controlled retries.

Managing the Safety—Efficiency Tradeoff

The observed tradeoff between efficiency and robustness re-
flects an inherent property of failure-aware systems: recov-
ering from errors incurs cost, but avoiding recovery incurs
silent failure. PALADIN operates near this tradeoff bound-
ary by converting small increases in execution steps into
large gains in task success and catastrophic failure avoid-
ance.

For system designers, this suggests that efficiency should
be treated as a constrained resource rather than a primary ob-
jective. In deployment, bounded inefficiency may be prefer-
able to brittle speed. PALADIN’s behavior makes this trade-
off explicit and measurable, enabling future systems to adapt
recovery intensity based on task criticality or latency con-
straints.

Limits of Deterministic Evaluation

All results in this work are obtained in a deterministic sim-
ulator, which isolates recovery behavior from external non-

determinism and enables controlled comparison. While real
APIs introduce stochastic delays and evolving interfaces,
the underlying failure modes—timeouts, malformed out-
puts, partial execution—remain structurally consistent.

We therefore view deterministic evaluation as a necessary
abstraction for studying execution-level robustness. Live de-
ployment studies are a complementary step, but not a pre-
requisite for establishing recovery as a learnable system ca-
pability.

Implications for Multi-Agent Systems

Although PALADIN is evaluated in a single-agent setting,
its abstractions directly extend to multi-agent systems. In
such systems, tool-mediated failures are amplified: an un-
handled error in one agent can corrupt shared state or derail
downstream agents.

PALADIN’s recovery policies and exemplar bank can be
shared across agents, providing a common language for di-
agnosing and repairing execution failures. This reduces the
likelihood of cascading breakdowns and supports more sta-
ble coordination. From a LaMAS perspective, this positions
execution-level recovery as foundational infrastructure for
scalable and reliable multi-agent systems, rather than an op-
tional enhancement.

Deployment and Future Directions

PALADIN provides a modular pathway toward failure-
aware agents that can operate under realistic conditions. Its
separation of recovery supervision, exemplar retrieval, and
base task competence makes it compatible with existing
agent architectures and scaling trends.

Future work may explore adaptive recovery policies that
modulate retry behavior based on task criticality, confidence,
or system load, as well as online incorporation of fail-
ure traces from deployment logs. More broadly, PALADIN
highlights a shift in how robustness should be treated: not as
an emergent property of better planning, but as an explicit,
trainable dimension of agent behavior.

Conclusion

PALADIN demonstrates that execution-level robustness is
not emergent but a teachable, scalable capability. By uni-
fying recovery-rich fine-tuning with inference-time exem-
plar retrieval, it transforms brittle, “happy-path” agents into
resilient problem-solvers. Across backbones, PALADIN
achieves > 79% RR, > 78% TSR, and > 80% CSR, while
keeping efficiency penalties within one step. These contribu-
tions extend beyond benchmarks. PALADIN shows recov-
ery behaviors generalize to unseen failures, proving robust-
ness is not tied to specific error types but can be abstracted
into transferable policies.

The implications are twofold. For research, robustness su-
pervision provides a new axis for evaluation and learning,
complementary to scaling and alignment. For practice, PAL-
ADIN enables safer deployment of LLM agents in high-
stakes domains where silent failures are unacceptable. Fu-
ture work should explore adaptive controllers that modu-
late retry intensity based on task difficulty or model confi-

dence, and integration with error logs from production envi-
ronments.

In short, PALADIN sets a new benchmark for execution-
level resilience: robustness can be systematically taught,
generalized across models, and achieved without prohibitive
cost—Ilaying the groundwork for safe, failure-aware Al sys-
tems. More broadly, we view PALADIN as a building block
for safer LLM-based multi-agent systems: equipping each
agent with robust, instrumented recovery behavior reduces
the chance that a single tool fault silently corrupts shared
state, enabling more stable planning and collaboration in
multi-agent workflows.

References

Biderman, D.; Portes, J.; Ortiz, J. J. G.; Paul, M.; Greengard,
P.; Jennings, C.; King, D.; et al. 2024. LoRA Learns Less
and Forgets Less. arXiv:2405.09673.

Dettmers, T.; Pagnoni, A.; Holtzman, A.; and Zettlemoyer,
L. 2023. QLoRA: Efficient Finetuning of Quantized LLMs.
arXiv:2305.14314.

Guo, Z.; Cheng, S.; Wang, H.; Liang, S.; Qin, Y.; Li, P;
et al. 2024. StableToolBench: Towards Stable Large-Scale
Benchmarking on Tool Learning of Large Language Mod-
els. arXiv:2403.07714.

Hu, E. J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang,
S.; etal. 2021. LoRA: Low-Rank Adaptation of Large Lan-
guage Models. arXiv:2106.09685.

Kokane, S.; Zhu, M.; Awalgaonkar, T.; Zhang, J.; Hoang,
T.; Prabhakar, A.; Liu, Z.; Lan, T.; Yang, L.; Tan, J;
Murthy, R.; Yao, W.; Liu, Z.; Niebles, J. C.; Wang, H.; Hei-
necke, S.; Xiong, C.; and Savarese, S. 2025. ToolScan: A
Benchmark for Characterizing Errors in Tool-Use LLMs.
arXiv:2411.13547.

Liu, Z.; Lyn, J.; Zhu, W.; Tian, X.; and Graham, Y. 2024.
ALoRA: Allocating Low-Rank Adaptation for Fine-tuning
Large Language Models. arXiv:2403.16187.

Milev, 1.; Balunovié¢, M.; Baader, M.; and Vechev, M.
2025. ToolFuzz — Automated Agent Tool Testing.
arXiv:2503.04479.

Patil, S. G.; Zhang, T.; Wang, X.; and Gonzalez, J. E. 2023.
Gorilla: Large Language Model Connected with Massive
APIs. arXiv:2305.15334.

Polyakov, G.; Alimova, I.; Abulkhanov, D.; Sedykh, I.; Bout,
A.; Nikolenko, S.; and Piontkovskaya, I. 2025. ToolRe-
flection: Improving Large Language Models for Real-World
API Calls with Self-Generated Data. In Kamalloo, E.; Gon-
tier, N.; Lu, X. H.; Dziri, N.; Murty, S.; and Lacoste, A.,
eds., Proceedings of the 1st Workshop for Research on Agent
Language Models (REALM 2025), 184—199. Vienna, Aus-
tria: Association for Computational Linguistics. ISBN 979-
8-89176-264-0.

Qin, Y.; Liang, S.; Ye, Y.; Zhu, K.; Yan, L.; Lu, Y.; et al.
2023. ToolLLM: Facilitating Large Language Models to
Master 16000+ Real-world APIs. arXiv:2307.16789.
Schick, T.; Dwivedi-Yu, J.; Dessi, R.; Raileanu, R.; Lomeli,
M.; Zettlemoyer, L.; Cancedda, N.; and Scialom, T. 2023.

Toolformer: Language Models Can Teach Themselves to
Use Tools. arXiv:2302.04761.

Sun, Z.; Zhu, H.; Xu, B.; Du, X.; Li, L.; and Lo, D.
2024. LLM as Runtime Error Handler: A Promising
Pathway to Adaptive Self-Healing of Software Systems.
arXiv:2408.01055.

Zheng, R.; Dou, S.; Gao, S.; Hua, Y.; Shen, W.; Wang, B.;
et al. 2023. Secrets of RLHF in Large Language Models Part
I: PPO. arXiv:2307.04964.

Zhou, J.; Chen, J.; Lu, Q.; Zhao, D.; and Zhu, L. 2025.
SHIELDA: Structured Handling of Exceptions in LLM-
Driven Agentic Workflows. arXiv:2508.07935.

Supplementary Material

(for: PALADIN: Self-Correcting Language Model Agents
to Cure Tool-Failure Cases)

Anonymous

11/02/2025

A Critic-Style Approach

We implemented a critic-style agent baseline with an oracle-assisted loop as a benchmark for comparison
to PALADIN. The critic module (Gemma-12B) was invoked after each tool call to detect execution errors
and propose recovery actions. Whenever an error was flagged, the executor was directed to an oracle dataset
with pre-defined recovery actions for the detected error type. The most appropriate action among them was
then selected to continue the trajectory. A maximum of 3 recovery attempts were permitted per error before
execution continued with the latest attempt or failed gracefully.

Our implementation differs from prior CRITIC systems in that, rather than requiring the model to
autonomously generate new candidate recovery actions or perform external reasoning (e.g., web search), we
provide a structured set of recovery actions from a curated oracle dataset. The model’s role was to choose the
most appropriate recovery, rather than generate one from scratch.

Evaluation Example:

Chosen error: ServiceDependencyFailure

Justification: The request involves two services: fetching hot products from AliExpress and validating email
domains. A realistic failure is that one upstream service is temporarily unavailable. The model must recognize
this is an external failure, not due to malformed input.

Expected recovery actions: Identify the failing service, wait until it is healthy, and retry the request.

B ToolFuzz

While PALADIN focuses on runtime robustness during tool execution, complementary work such as ToolFuzz
addresses pre-execution reliability by improving the alignment between tool documentation and model
expectations.

ToolFuzz applies automated fuzz testing to API schemas in order to detect inconsistencies between
declared documentation and actual behavior. It uncovered over 20x more specification-related failures than
prompt engineering baselines across 32 LangChain and 35 custom tools—revealing widespread documentation
under specification as a root cause of tool-use errors.

Although PALADIN assumes that documentation is accurate at test time (as each tool is provided with
correct instructions), ToolFuzz supports our broader vision: robust real-world tool use requires not only
runtime adaptability, but also upstream validation of the tool interfaces themselves. We view ToolFuzz as
complementary infrastructure—ensuring that PALADIN’s recovery logic is exercised on meaningful failures,
not avoidable documentation bugs.

C Runtime Errors

The following are some of the many common errors found in API faults, tool calls, or in daily life. For the
rest of the errors used to train this model, check out our github: https://anonymous.4open.science/r/
PALADIN-Framework/README .md/.

https://anonymous.4open.science/r/PALADIN-Framework/README.md/
https://anonymous.4open.science/r/PALADIN-Framework/README.md/

Specific Failure

Example (Simulated
Output)

Corrective Action Policy

Rationale and Citations

400 Bad Request "error": Re-examine tool The error originates from the
"Malformed request documentation, check client’s request. The only
syntax", "status": parameter formatting, and path to recovery is for the

re-issue the call. client (the agent) to correct
its own mistake.

401 Unauthorized "error": "Invalid Check for a valid API key. If A non-recoverable

API key provided",
"status":

missing or invalid, terminate
the task and report the failure.

authentication error; retrying
with invalid credentials is
futile.

403 Forbidden "error": '"User Terminate the task and report This is an authorization
does not have the lack of permissions. Do failure. Retrying will not
permission for not retry. change permissions.
this resource",

"status":

404 Not Found "error": "The Verify the request URL. If A common error caused by
requested resource correct, assume the resource typos or moved resources.
does not exist", is unavailable and try an Check self-error first.
"status": alternative tool.

500 Internal "error": Retry using exponential A catch-all for transient

Server Error "Unexpected server backoff. If failure persists server-side issues. Retrying
error", "status": after 3—4 attempts, terminate is industry standard.

and report.
503 Service Un- ‘"error": "Service Follow the Retry-After Retry is expected, as the issue

available

unavailable due to
overload or
maintenance",
"status":

header if present; otherwise,
use exponential backoff.

is temporary.

Request Timeout

requests.exceptions.

Timeout

Retry with exponential
backoft; distinguish
connection vs. read timeouts.

Timeouts are usually
transient and should be
retried.

DNS Resolution requests.exceptions. Check hostname for typos. If Could be a typo or a

Error ConnectionError: correct, wait and retry. temporary DNS failure.
getaddrinfo_failed

429 Too Many Re- "error": "Rate Respect the Retry-After Standard API rate

quests limit exceeded", header or apply exponential enforcement. Ignoring leads
"status": backoft. to blocking.

Malformed JSON SyntaxError:JSON. Retry first. If repeated, usea Often due to truncated or
parse_error lenient parser or fallback tool. corrupted responses. Retry is

the simplest fix.
JSON Schema Vi- ValidationError: Report a data quality issue. Data violates schema
olation ’abc’is_not_of_type Coerce if allowed, otherwise expectations. Must be

’number’

discard.

handled gracefully.

Table 1: Catalog of common failures, simulated outputs, and recovery strategies.

D Systematically Augmented Traces

Systematically augmented traces are clean ToolBench-style agents—tool execution logs enriched with controlled,
labeled failures and paired with recovery trajectories. This enables reproducible training and evaluation of
different recovery behaviors under realistic tool-level faults. The method supports generating deterministic
variants of a base rollout by injecting specific error types at different steps, with structured annotations for
failure detection, diagnosis, and correction.

Augmentations were created using a failure-policy dictionary over baseline rollouts, injecting errors such
as timeouts, SXx responses, rate limits, malformed tool outputs, and partial results, with configurable positions
and cascades. Each injected failure was paired with an annotated recovery path (diagnose, replan, parameter
fix, retry, or tool-switch), enabling trajectory-level supervision and deterministic evaluations via metrics like
TSR, RR, CSR, and ES. Because variants are deterministic, they support controlled ablations and consistent
comparisons across model sizes and training settings.

* Base trace: plan — call Tool A with parameters p — receive valid response — continue.

* Augmented variant: identical plan — call Tool A with p — injected timeout at step — agent detects
timeout — backs off with jittered retry and parameter validation — successful response — proceed to
completion. A second variant might inject a malformed JSON response instead of a timeout, prompting
schema validation, selective re-query, or tool-switch. Each variant includes labels for failure type, step
index, recovery rationale, and final outcome, enabling targeted training and evaluation.

Listing 1: Paladin trace with recovery and Finish

[
{
"role": "system",
"content": [
{
"type": "text",
"text": "You are Paladin, an error-resilient agent ..."
}
]
1,
{
"role": "user",
"content": [
{
"type": "text",
"text": "I’m conducting a research project on social media influencers ..."
}
]
s
{
"role": "assistant",
"content": [
{

"type": "text",

"text": "Thought: I need to gather user information ...
Action: userinfo_for_instagram_cheapest
Action Input: {\n \"username\": \"nike\"\n}"

}

]

3
{
"role": "function",
"content": [
{
"type": "text",
"text": "{\"error\": \"\", \"response\": \"{’data’: {’user’: {’biography’:
’Spotlighting athlete* ..."}}"
}
1
I
{
"role": "assistant",
"content": [
{
"type": "text",
"text": "Recovery: Thought: The API call to retrieve user information ...

Action: user_medias_for_instagram_cheapest
Action Input: {\"user_id\": \"113294420064920\"}"

}
]
1,
{
"role": "function",
"content": [
{

"type": "text",
"text": "{\"error\": \"\", \"response\": \"{\\\"data\\\": [
{\\\"media_id\\\": \\\"1234567890\\\",

\\\"caption\\\": \\\"Just Do It\\\" ...\"}"

}
]
3
{
"role": "assistant",
"content": [
{

"type": "text",

"text": "Thought: I have successfully retrieved the recent media posts ...
Action: Finish
Action Input: {\"return_type\": \"give_answer\", \"final_answer\":
\"User information and recent
media posts for ’nike’ ...\"}"

}
]
}

1

The full corpus, schema, and documentation will be publicly released upon acceptance.

E Recovery Dictionary

At the core of PALADIN’s learning process is a recovery dictionary—a curated collection of over 50
execution-level failure types and corresponding recovery strategies. This dictionary was not arbitrarily
constructed. Instead, it was built through an extensive review of real-world sources, including:

* Developer forums (e.g., Stack Overflow, GitHub Issues)

* Toolchain documentation (e.g., LangChain, Zapier, API reference manuals)

* Industry engineering blogs detailing agent failure cases (e.g., Google’s Bard, OpenAl function calls)
* Academic surveys and benchmarks (e.g., ToolScan, ShieldA, Healer)

We structured our final recovery dictionary around ToolScan’s taxonomy of common agentic failures, enriched
with patterns synthesized from forums, documentation, and engineering logs. Each error type in the dictionary
is paired with recovery actions grounded in real debugging and fallback strategies reported by practitioners.

These error-response mappings were then transformed into example trajectories using the ToolBench
format, providing PALADIN with richly annotated failure contexts and realistic correction paths. By rooting
this dictionary in actual agent failure logs and developer strategies, we ensured the training data reflected
authentic, actionable recovery behavior, not synthetic artifacts.

F ToolScan Error Types

Tool Hallucination — tool not found errors

Argument Hallucination — missing or invalid tool input

Invalid Tool Invocation — tool call failed

Partial Execution — incomplete tool outputs requiring continuation

Output Hallucination — tool output not valid

Invalid Intermediate Reasoning — corrected plans and backtracking in multi-turn dialogues
Re-entrant Failures — handled via explicit retry and fallback logic

G Python Dictionary
Here is part of our dictionary:

Listing 1: Recovery Paths Dictionary (wrapped for two-column layout)

recovery_paths = {

Branch 1: Client Request Syntax and Format Errors (400, 422)

"400_422": [
{
"from": "Assistant",
"value": (

"Thoughts: The 400 Bad Request and 422 Unprocessable Entity "
"errors indicate client-side issues. 400 often means malformed "
"syntax or invalid request formatting; 422 means the syntax is "
"correct but the content is semantically invalid.\n\n"
"Action: Start by examining the request URL and endpoint
"carefully. Check for typos, extra slashes, or illegal characters
"that violate URL standards. Use URL validators or linters. Then, "
"validate your payload format; if JSON, ensure it is well-formed, "
"properly bracketed, and matches the API schema. Check required "
"fields and types.\n\n"

"Verify that all required headers like Content-Type and "
"Authorization are present and correct. For 422, focus on
"semantic validation such as correct value ranges, formats, and "

n

"dependencies."
)
1,
{
"from": "function",
"value": "Validated URL and headers; payload verified with no syntax errors."
3
{
"from": "Assistant",
"value": (
"Thoughts: If syntax is good, server-side validation may enforce "
"strict formats or rules not obvious in docs.\n\n"
"Action: Test with minimal payloads including only required "
"fields; gradually add optional fields to isolate problematic "
"data. Confirm API version matches docs, and check server logs "
"if available."
)
3,
{
"from": "function",
"value": "Minimal payload testing performed; error persists.”
1,
{
"from": "Assistant",
"value": (

"Thoughts: Persistent error suggests possible issues with query
"parameters or headers.\n\n"
"Action: Verify all query parameters for correctness and allowed "

"values. Confirm proper encoding (UTF-8) and escaping of special
"characters. Check multipart boundaries if uploading files."

)
1,
{
"from": "function",
"value": "Query parameters and encoding verified."
3,
{
"from": "Assistant",
"value": (
"Thoughts: If no client-side issue found, consider API bugs or "
"server incompatibility.\n\n"
"Action: Contact support with detailed logs; implement retry with "
"exponential backoff."
)
1,
{
"from": "function",
"value": "Escalation logs prepared; retry logic implemented."
}

1,

Branch 2: Authentication and Authorization Errors (401, 403, 407)
"401_403_407": [

{
"from": "Assistant",
"value": (
"Thoughts: 401 Unauthorized indicates missing or invalid "
"credentials, 403 Forbidden means access is denied even if "
"authenticated, and 407 Proxy Authentication Required means the "
"proxy server requires authentication.\n\n"
"Action: Check that valid API keys or tokens are sent in headers "
"exactly as required by the service. Refresh tokens if expired. "
"Confirm permissions on the user or API key to access requested "
"resources.\n\n"
"For 403, verify role-based access controls and resource-specific "
"permissions. For 407, ensure proxy credentials are configured "
"and included properly in requests."
)
1,
{
"from": "function",
"value": "Credentials and permissions checked; tokens refreshed where needed."
1,
{
"from": "Assistant",
"value": (
"Thoughts: Persistent 401/403 might be due to time skew causing "
"token rejection or revoked credentials.\n\n"
"Action: Sync system clock with NTP, regenerate credentials, and "
"check for IP restrictions or rate limits that may block access."”
)
1,

"from": "function",
"value": "System time synchronized; no IP blocks detected."
1,
{
"from": "Assistant",
"value": (
"Thoughts: If proxy authentication fails, check proxy server logs "
"and credentials.\n\n"
"Action: Update proxy config or switch to a proxy that supports "
"needed authentication methods."
)
1,
{
"from": "function",
"value": "Proxy credentials updated; connection succeeded."
}

1,
}

The rest of our dictionary can be found in github athttps://anonymous . 4open.science/r/PALADIN-Framework/
README . md.

H Implementation Details

H.1 Model Instantiations

PALADIN was fine-tuned on multiple open-weight backbones to test cross-architecture generality: Gemma-
27B, Qwen-2.5-14B-Instruct, AM-Thinking V1, and LLaMA-3.1-8B-Instruct. All models were trained on
the full 50K recovery-annotated corpus, enabling direct comparison of robustness transfer across scales and
inductive biases. For LLaMA-3.1-8B, extended context via RoPE scaling ensured parity on long recovery
traces relative to Gemma and Qwen, avoiding truncation artifacts.

H.2 LoRA Configuration

All runs adopted LoRA adapters with rank 16, scaling @ = 32, and dropout 0.0. Adapters were injected
into attention projections (q_proj, k_proj, v_proj, o_proj) and MLP projections (up_proj, down_proj,
gate_proj), equipping models with recovery skills while preserving base competence.

H.3 Optimizer and Scheduler

Training employed paged AdamW (32-bit) with b£16 precision and gradient checkpointing. We used a
base learning rate of 2 x 1074, with standard AdamW defaults for warmup and weight decay, and a constant
schedule over one epoch, appropriate for single-epoch SFT with LoRA.

H.4 Batching, Context, and Epochs

Experiments used a context length of 8192 tokens. Training was performed with micro-batch size 1 and
gradient accumulation 8 (effective batch size 8), for a single epoch over 50K trajectories (80% failure-rich, 20%
clean “happy paths”). This composition balanced recovery supervision with baseline tool-use competence.

https://anonymous.4open.science/r/PALADIN-Framework/README.md
https://anonymous.4open.science/r/PALADIN-Framework/README.md

H.5 Hardware and Runtime

All fine-tuning ran on h200sxm GPUs. The combination of b£16, paged AdamW, and checkpointing enabled
stable 8K-token SFT with LoRA on these accelerators. RoPE scaling extended LLaMA-3.1-8B’s effective
context to 128K tokens with modest additional memory cost, remaining tractable under h200-class footprints.
End-to-end fine-tuning completed within a single epoch per backbone, with wall-clock time increasing
monotonically with parameter count (8B < 14B < 27B).

I Dataset Construction Details

I.1 Failure Injection Procedure

We began from ToolBench tasks and tool schemas, discarding original rollouts, and applied an automated
trace parser to detect the first execution error. Each trajectory was truncated at that failure point to create a
repair target. For every truncated trace, a controller supplied the task, tool schema, error signal, and dialogue
context to a GPT-5 Teacher equipped with a recovery dictionary. The Teacher then generated multi-turn
Recovery: segments consisting of retries, reformulations, fallbacks, or graceful termination, producing
repaired trajectories:

frepair(Ta A,C,E) — c’,

while error-free traces were finalized via:
fﬁnalize(T, A, C) - (.

The simulator injected failures deterministically by specifying error type, manifestation (e.g., malformed
output, silent failure), and turn index. A Python controller executed each scenario by providing tool
documentation, applying the designated error, and simulating tool responses to the agent’s recovery actions.

Injected error examples.

* Timeouts and 5xx/503: Transient server failures triggering capped backoff-and-retry before graceful
termination.

* Malformed/invalid outputs: Truncated JSON, schema violations, or null fields designed to elicit
re-queries, lenient parsing, or tool switching.

* Auth/permission errors (401/403/407): Non-recoverable or credentials-refresh scenarios; repeated
failures prompted terminate-with-explanation policies.

.2 Recovery Annotation Process

Recovery supervision combined two sources: (i) a curated recovery dictionary aligned to ToolScan’s seven
error classes, and (ii) GPT-guided rewriting conditioned on truncated traces and error signals. For each failure,
the Teacher expanded dictionary-level strategies into situated multi-turn recoveries in ToolBench format
(Thought — Action — Action Input — Tool Output), prefixing corrective steps with Recovery:
tags and concluding with Finish plus either a user-facing answer or graceful-failure explanation. Clean
“happy path” traces (about 20%) were also audited and, when necessary, rewritten to ensure fully successful
interactions, preserving base competence while keeping recovery central in the remaining 80% of traces.

10

I.3 Recovery Exemplar Distribution

PALADIN’s retrieval bank contains over 55 recovery exemplars derived from the dictionary and aligned to
ToolScan’s seven canonical error types (see (see Appendix E)). These cover Tool Hallucination, Argument
Hallucination, Invalid Tool Invocation, Partial Execution, Output Hallucination, Invalid Intermediate
Reasoning, and Re-entrant Failures, each paired with exemplar failures and recovery protocols. During
execution, observed failures are matched to the closest exemplar via signature distance d, with the associated
recovery action steering trajectories back to stability. This enables generalization across diverse failure
surfaces.

1.4 Data Split

The final corpus comprises roughly S0K trajectories serialized in ToolBench format with explicit Recovery:
tags, with an 80/20 composition of recovery-rich to clean traces. Training sequences were processed under a
single-epoch CLM SFT regime. Evaluations were conducted in a sandboxed environment with deterministic
error injection to ensure controlled, reproducible assessment using TSR, RR, CSR, and Efficiency metrics.
For LLaMA-3.1-8B, RoPE scaling extended effective context to 128K tokens, preventing truncation of long
recovery trajectories and ensuring parity across backbones under the same split design.

J PaladinEval Benchmark

PaladinEval is a deterministic failure-injection benchmark designed to evaluate recovery competence, honesty,
and efficiency under the seven ToolScan error classes. It combines controlled simulators, taxonomic labeling,
and standardized metrics (TSR, RR, CSR, ES) to enable apples-to-apples comparison across models and
methods. Unlike ToolReflectEval, which targets single-call reflective corrections, PaladinEval emphasizes
trajectory-level, multi-turn recovery in noisy execution settings. All reported scores are normalized so that
higher is better across tables and plots.

J.1 Benchmark Design

PaladinEval instruments ToolBench-style tasks with a simulator that injects a single, labeled execution failure
at a specified turn, then drives the episode to completion while logging recovery attempts, retries, tool
switches, and termination decisions. Each episode includes the task specification, tool schema, truncated
trace at failure, and an injected error drawn from the ToolScan taxonomy. Evaluation is conducted with fixed
seeds and deterministic tool outputs to ensure reproducibility across backbones and runs.

J.2 Tasks and Coverage

The suite spans diverse tool-use tasks representative of training domains and failure surfaces. Episodes are
constructed to cover all seven ToolScan error categories under uniform sampling rules, preventing skew
toward any particular class. Results reported in the main paper compare PaladinEval against ToolReflectEval
across multiple backbones, showing consistent gains in Recovery Rate, Task Success Rate, and Catastrophic
Success Rate. These improvements come with expected efficiency trade-offs from retry-heavy strategies, but
confirm sufficient breadth and balance across failure classes for comparative evaluation.

J.3 Sampling Procedure

For each task, the first tool failure is injected deterministically by specifying the error class, manifestation
(e.g., 5xx timeout, malformed JSON), and turn index. The remainder of the episode is executed with fixed

11

tool responses to recovery actions, minimizing variance. Sampling ensures per-class coverage across Tool
Hallucination, Argument Hallucination, Invalid Invocation, Partial Execution, Output Hallucination, Invalid
Intermediate Reasoning, and Re-entrant Failures, enabling both per-class and macro-averaged reporting of
RR, TSR, CSR, and ES.

J.4 Adapting ToolReflectEval

For comparability, ToolReflectEval was re-run under the same deterministic simulator and normalized metrics.
While ToolReflectEval emphasizes critique-based improvements to single tool calls, PaladinEval stresses
multi-turn recovery after explicit failures, capturing behaviors such as diagnosis, replanning, retries, tool
switches, and graceful termination. Together, the two benchmarks provide complementary perspectives on
robustness.

J.5 Filtering and Deduplication

Benchmark construction applies truncation at the first failure and removes trajectories with ambiguous or
duplicate error signatures to avoid double-counting or conflating error classes. Episodes with inconsistent
tool schemas or non-reproducible outputs are excluded to preserve determinism. Clean “happy-path” episodes
are retained for competence checks but not scored as recoveries, ensuring evaluation focuses squarely on
execution robustness.

K Additional Metrics and Ablations

K.1 Metric Variants and Formulas

We evaluate PALADIN with four metrics:

Task Success Rate (TSR) = #successful tasks |

__ _# failures recovered
Recovery Rate (RR) # failures encountered

_ 1 _ #hallucinated successes
Catastrophe Success Rate (CSR) = 1 T ol filres 2

Efficiency Score (ES) = 1

average # steps to complete task *

RR, CSR, and ES are novel contributions that capture execution-level robustness beyond traditional task
success. For diagnostic checks, we also experimented with call-level efficiency and normalized efficiency
variants; these preserved model rankings and are omitted from main results for clarity.

K.2 Ablation: Removing Inference-Time Retrieval

PALADIN uses taxonomic retrieval over a curated bank of 55+ recovery exemplars aligned to ToolScan to
map observed failures to prototypical recovery actions. Removing retrieval disables exemplar matching and
forces purely end-to-end behavior. Across backbones, this sharply reduces robustness:

* Gemma-12B: RR 89.7% — 61.4%, TSR 87.4% — 57.3%, CSR 82.6% — 65.1%.
* Qwen-14B: RR 94.7% — 73.3%, TSR 79.5% — 66.3%, CSR 94.6% — 68.9%.

* LLaMA-8B: RR 79.8% — 48.6%, TSR 78.7% — 42.7%, CSR 80.7% — 57.4%.

12

* AM-Thinking V1: RR 96.1% — 81.2%, TSR 81.2% — 70.9%, CSR 88.7% — 73.3%.

Drops of 20-30 points highlight that learned recovery patterns are substantially amplified by exemplar-
guided retrieval at inference.

K.3 Ablation: Training Data Composition

PALADIN is trained on recovery-rich traces (80%) plus clean “happy-path” traces (20%) to preserve tool
competence and avoid overfitting to failure-only dynamics. Training solely on injected failures (without
Teacher-authored Recovery: continuations) degrades multi-turn behavior: agents overfit to “retry-once”
heuristics, miss plan-shift and tool-switch transitions, and exhibit decreased CSR due to missing supervised
end states. Quantitatively, RR and TSR fall relative to full recovery-annotated training, with larger ES
penalties from inefficient repeated retries. This confirms that explicit recovery annotations are essential for
learning stable, compositional recovery behaviors.

K.4 Robustness: Zero-Shot Transfer to Unseen Tools

To evaluate generalization, we tested on held-out APIs under the same simulator and error taxonomy. Zero-shot
transfer preserves a large fraction of recovery performance, with smaller absolute drops in CSR than RR/TSR.
This suggests PALADIN preserves honesty under uncertainty even when recovery is incomplete. Failure
analyses show strong transfer of schema-mismatch handling and malformed-output repair, while tool-specific
authentication and pagination account for most residual errors. Retrieval mitigates these by guiding toward
nearest exemplars, even when the exact tools are unseen.

K.5 Takeaways

* Inference-time retrieval is a primary driver of robustness, complementing training-time exposure to
diverse failures.

* Recovery-annotated trajectories are critical; failure-only training under-specifies chained recovery,
degrading end-to-end completion and safety.

» Zero-shot transfer demonstrates that execution-level recovery behaviors generalize, with retrieval
providing a safety net for novel APIs.

L. Expanded Figures

Action: Finish

r 9| Output: {"forecast”: "Sunny, 76°F high, 58°F low’} I— 9 ‘:;"T: "eig;’)“:s {bu};'n";%";ﬁ;h ..,Zh; Y;::;‘“ o

_|

L—

T il e veahar Thought: To get the weather for Tuesday,
o) | Ineed to find the exact date of “Tuesday”
é.l9 for Tuesday Please! 9
§ 3)

Action: Weather APT =
Action: {“date”: “Today’, “location”:“user_location”} ° 4, #

Action: Finish p
Action Input: { “Final Answer”: “The weather ||
on Tuesday is Sunny, 76°F high, 58°F low"} i

| é -_— —| Output: {'forecast": "Sunny, 76°F high, 58°F low"}

Figure 1: PALADIN’s Thought Process

13

Percentage

Percentage

ZZZ1 Model

- - - EZZ1 Model
Llama-3.1-8B-Instruct Generalized Qwen-2.5-14B-IT e lived
100 100 94.67% 94.57%
91.37% 91.43%
80 79.77% 8,724 80.73% 80 | 79.48% 78,629
75.32%
71.57% B e
g 67.43%
[
60—}
60| g
8
=}
Q
o
S a0 |
40 A
20
20
. 0 TSR CSR
RR TSR CSR .
Metrics
Metrics
(b) Qwen-2.5-14B
(a) LLaMA-3.1-8B
ZZZ1 Model 1 ZZZ1 Model
Gemma-3-12b-Instruct [0 Generalized AM-Thlnklng-Vl [0 Generalized
100 100 96.08%
93.42%
89.80% 87.35% 87.38% 88.65% 86.39%
82.47% 82.55% 81.24% g
80| ; b 639% 80| 79.33% A
60— % 60—
ISl
3
=}
9}
o
3
40— S a0
20 | 20|
0) J
TSR CSR TSR CSR
Metrics Metrics
(c) Gemma-3-12B (d) AM-Thinking-V1

Figure 2: PALADIN’s robustness when facing unseen error types across different model backbones.

14

Percentage

Percentage

Llama-3.1-8B-Instruct

100

[ZZ3A Error Matching
No Error Matching

79.77%

80.73%

80

20—

60| 57.40%
48.56%
B . 42.71%
40— e
20
0 TSR CSR
Metrics
(a) LLaMA-3.1-8B
[ZZA Error Matching
Gemma-3-12B-Instruct No Error Matching
100
89.68% 87.38%
82.55%
80| z 2;
/ 65.12%
60 |
10| /

(¢) Gemma-3-12B

TSR

Metrics

CSR

Qwen-2.5-14B-Instruct

100

[ZZ3A Error Matching
No Error Matching

94.67%

80

79.48%

94.57%

66.32%

TSR

Metrics

(b) Qwen-2.5-14B

AM-Thinking-V1

CSR

[ZZ3A Error Matching
No Error Matching

96.08%

S 0|

]

=

=

)

3]

3

L 40
20—
0
100
80—

S e

]

=

=

)

3]

3

L 0

20—

DANINNIMNINN

98

88.31%

73.27%

TSR

Metrics

CSR

(d) AM-Thinking-V1

Figure 3: PALADIN’s abalation when facing unseen error types across different model backbones.

15

	0deedc05-1bb6-427f-8331-66c121c908ec.pdf
	Critic-Style Approach
	ToolFuzz
	Runtime Errors
	Systematically Augmented Traces
	Recovery Dictionary
	ToolScan Error Types
	Python Dictionary
	Implementation Details
	Model Instantiations
	LoRA Configuration
	Optimizer and Scheduler
	Batching, Context, and Epochs
	Hardware and Runtime

	Dataset Construction Details
	Failure Injection Procedure
	Recovery Annotation Process
	Recovery Exemplar Distribution
	Data Split

	PaladinEval Benchmark
	Benchmark Design
	Tasks and Coverage
	Sampling Procedure
	Adapting ToolReflectEval
	Filtering and Deduplication

	Additional Metrics and Ablations
	Metric Variants and Formulas
	Ablation: Removing Inference-Time Retrieval
	Ablation: Training Data Composition
	Robustness: Zero-Shot Transfer to Unseen Tools
	Takeaways

	Expanded Figures

