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ABSTRACT

We introduce LilNetX, an end-to-end trainable technique for neural networks that
enables learning models with specified accuracy-compression-computation trade-
off. Prior works approach these problems one at a time and often require post-
processing or multistage training. Our method, on the other hand, constructs a
joint training objective that penalizes the self-information of network parame-
ters in a latent representation space to encourage small model size, while also
introducing priors to increase structured sparsity in the parameter space to reduce
computation. When compared with existing state-of-the-art model compression
methods, we achieve up to 50% smaller model size and 98% model sparsity on
ResNet-20 on the CIFAR-10 dataset as well as 31% smaller model size and 81%
structured sparsity on ResNet-50 trained on ImageNet while retaining the same
accuracy as these methods. The resulting sparsity can improve the inference time
by a factor of almost 1.86× in comparison to a dense ResNet-50 model. Code is
available at https://github.com/Sharath-girish/LilNetX.

1 INTRODUCTION
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Figure 1: Our method jointly optimizes for size
on disk and structured sparsity. We compare
various approaches using ResNet-50 architec-
ture on ImageNet and plot FLOPs (y-axis) vs.
size (x-axis) for models with similar accuracy.
Prior model compression methods optimize for
either quantization (■) or pruning (▲) objec-
tives. Our approach, LilNetX, enables training
while optimizing for both compression (model
size) as well as computation (structured spar-
sity). Refer Table 1 for details.

Recent research in deep neural networks (DNNs)
has shown that large performance gains can be
achieved on a variety of real world tasks sim-
ply by employing larger parameter-heavy and
computationally intensive architectures (He et al.,
2016; Dosovitskiy et al., 2020). However, as
DNNs proliferate in the industry, they often need
to be trained repeatedly, transmitted over the net-
work to different devices, and need to perform
under hardware constraints with minimal loss in
accuracy, all at the same time. Hence, finding
ways to reduce the storage size of the models on
the devices while simultaneously improving their
run-time is of utmost importance. This paper pro-
poses a general-purpose neural network training
framework to jointly optimize the model parame-
ters for accuracy, the model size on the disk, and
computation, on any given task.

Over the last few years, research on training
smaller and efficient DNNs has followed two seemingly parallel tracks with different goals. One
line of work focuses on model compression to deal with storage and communication network bot-
tlenecks when deploying big models or a large number of small models. While they achieve high
levels of compression in terms of memory, their focus is not on reducing computation. These works
either require additional algorithms with some form of post hoc training (Yeom et al., 2021) or quan-
tize the network parameters at the cost of network performance (Courbariaux et al., 2015; Li et al.,
2016). The other line of work focuses on reducing computation through various model pruning tech-
niques (Han et al., 2015; Frankle & Carbin, 2018; Evci et al., 2020). Their focus is to decrease the
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number of Floating Point Operations (FLOPs) of the network at inference time, while still achieving
some compression due to fewer parameters. Typically, the cost of storing these pruned networks on
disk is much higher than dedicated model compression works.

In this work, we bridge the gap between the two lines of work and show that it is indeed possible to
train a neural network while jointly optimizing for both the compression to reduce disk space as well
as structured sparsity to reduce computation (Fig. 1). We maintain quantized latent representations
for the model weights and penalize the entropy of these latents. This idea of reparameterized quan-
tization (Oktay et al., 2020) is extremely effective in reducing the effective model size on the disk.
However, it requires the full dense model during the inference. To address this shortcoming, we
introduce priors to encourage structured and unstructured sparsity in the representations along with
key design changes. Our priors reside in the latent representation space while encouraging sparsity
in the model space. More specifically, we use the notion of slice sparsity, a form of structured spar-
sity where a K ×K slice is fully zero for a convolutional kernel of size K and C channels. Unlike
unstructured sparsity which has irregular memory access and offers a little practical speedup, slice-
structured sparsity allows for removing entire kernel slices per filter, thus reducing channel size for
the convolution of each filter. Additionally, it is more fine-grained than fully structured channel/filter
sparsity works (He et al., 2017; Mao et al., 2017) which typically lead to accuracy drops.

Extensive experimentation on three standard datasets shows that our framework achieves high levels
of structured sparsity in the trained models. Additionally, the introduced priors show gains even in
model compression compared to previous state-of-the-art. By varying the weight of the priors, we
establish a trade-off between model size, sparsity, and accuracy. Along with model compression,
we achieve inference speedups by exploiting the sparsity in the trained models. We dub our method
LilNetX - Lightweight Networks with EXtreme Compression and Structured Sparsification. Our
contributions are summarized below.

• We introduce LilNetX, an algorithm to jointly perform model compression and structured sparsi-
fication for direct computational gains in network inference. Our algorithm can be trained end-to-
end using a single joint optimization objective without any post-hoc training or post-processing.

• With extensive ablation studies and results, we show the effectiveness of our approach while
outperforming existing approaches in both model compression and pruning, in most network and
dataset setups, obtaining inference speedups in comparison to the dense baselines.

2 RELATED WORK

Typical model compression methods usually follow some form of quantization, parameter pruning,
or both. Both lines of work focus on reducing the size of the model on the disk, and/or increas-
ing the speed of the network during the inference time, while maintaining an acceptable level of
classification accuracy. In this section, we discuss prominent quantization and pruning techniques.

Model pruning: A plethora of works show that a large number of network weights can be pruned
without significant loss in performance (LeCun et al., 1990; Reed, 1993; Han et al., 2015). Methods
such as the Lottery Ticket Hypothesis (Frankle & Carbin, 2018), adapted by various works (Savarese
et al., 2020; Frankle et al., 2019; Malach et al., 2020; Girish et al., 2021; Chen et al., 2021; 2020;
Desai et al., 2019; Yu et al., 2020) prune models, while reaching the dense network performance,
but are iterative and perform unstructured pruning. Other works prune at initialization (Lee et al.,
2018; Wang et al., 2020; Liu & Zenke, 2020; Tanaka et al., 2020) and avoid multiple iterations, but
show accuracy drops compared to the dense models (Frankle et al., 2020). On the other hand, struc-
tured sparsity via filter/channel pruning offers practical speedups at the cost of accuracy (Wen et al.,
2016; He et al., 2017; Huang & Wang, 2018). Yuan et al. (2020) obtain almost no drops of network
performance with structured sparsification but have lower levels of model compression rates due to
storage of floating point weights. Other works operate on intermediate levels of structure such as
N:M structured sparsity (Zhou et al., 2021) and block sparsity (Narang et al., 2017). Niu et al. (2020)
is the closest to ours in terms of pruning structure utilizing slice sparsity, along with an even finer
pattern pruning. They show that such structure can be exploited for inference speedups. They, how-
ever, require predefining a filter pattern set and heuristics for determining layerwise sparsity. They
also optimize for auxiliary variables and have additional training costs due to the dual optimization
subproblem (Ren et al., 2019). In contrast, our algorithm uses a single objective to jointly optimize
for sparsity and model compression with very little impact on training complexity.
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Figure 2: Overview of our approach. A standard CNN comprises of a sequence of convolutional
and fully-connected layers. We reparameterize the parameters W i of each of these layers as W̃ i

in a quantized latent space. Our decoder is such that sparsity in the quantized latents translate to
sparsity in CNN parameters. Further, we organize each parameter tensor as a set of slices (depicted
as colored bands) corresponding to different channels. Proposed training loss exploits this structure
to encourage slice sparsity and jointly optimize for accuracy-compression-computation.

Model quantization: Quantization methods discretize the parameters of a network to a small, finite
set of values, to store them efficiently using entropy coding methods (Rissanen & Langdon, 1981).
Earlier methods uniformly quantize weights to binary or tertiary representations (Courbariaux et al.,
2015; Li et al., 2016; Zhou et al., 2018; Zhu et al., 2016; Rastegari et al., 2016; Hubara et al., 2017).
Several other works focus on non-uniform Scalar Quantization (SQ) techniques (Tung & Mori,
2018; Zhou et al., 2017; Nagel et al., 2019; Banner et al., 2018; Wu et al., 2016; Zhang et al., 2018;
Oktay et al., 2020). Vector Quantization(VQ) (Gong et al., 2014; Stock et al., 2019; Wang et al.,
2016; Chen et al., 2015; 2016) on the other hand, is a more general technique, where the representers
can take any value. VQ can be done by clustering of CNN layers at various compression-accuracy
trade-offs (Faraone et al., 2018; Son et al., 2018), hashing (Chen et al., 2015; 2016), or residual
quantization (Gong et al., 2014). Quantization works focus on reducing bit widths (Zhao et al.,
2019; Jain et al., 2020) which has the effect of high model compression (Young et al., 2021). A
few works do provide inference speedups (Hubara et al., 2016; Jacob et al., 2018) by utilizing lower
bit arithmetic but require custom hardware. In comparison, we focus on jointly optimizing for
compression and computational gains, and leave optimization for lower precision arithmetic for
future. We show the benefits of our approach in terms of even smaller model size compared to these
quantization works along with computational gains while maintaining high levels of accuracy in §5.

3 APPROACH

We consider the task of classification using a convolutional neural network (CNN), although our
approach can be trivially extended to other tasks such as object detection or generative modeling.
Given a dataset of N images and their corresponding labels {xi, yi}Ni=1, our goal is to train a CNN
with parameters Θ that are jointly optimized to: 1) maximize classification accuracy, 2) compress
the model by minimizing the number of bits required to store the model on disk, and 3) minimize
the computational cost of inference in the model by maximizing model sparsity. To keep our method
end-to-end trainable, we formulate it as minimization of a joint objective that allows for an accuracy-
compression-computation trade-off as

L(Θ) = Lacc(Θ) + Lcompress(Θ) + Lcompute(Θ). (1)

For the task of classification, the accuracy term Lacc(Θ) is the usual cross-entropy loss. Given an
image, it maximizes the probability assigned to the target label. The compression term Lcompress(Θ)
encourages the model to have a small disk size. We reparameterize the model weights using a
quantized latent representation space which are then stored on disk. The compression term, while
encouraging smaller model size, doesn’t lead to computational gains as the decoded model param-
eters are still dense. Our computation term Lcompute(Θ) addresses this issue by introducing a struc-
tured sparsity-inducing loss. Our framework allows the structured sparsity in latent weight space
to directly translate to the structured sparsity in the decoded model weights. In our experiments,
we demonstrate significant speedups in the inference time of our model with sparse weights using
off-the-shelf libraries. Refer to Fig. 2 for a high-level overview of our approach. In the following
sections, we describe the compression and computation terms in more detail.
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3.1 COMPRESSION TERM

We formulate our compression term by building upon prior works that incorporate entropy penalty
on parameter representation during training (Ballé et al., 2018; Oktay et al., 2020). The model’s
weights and biases, Θ, are reparameterized as quantized latent representations which are compressed
while the network parameters are implicitly defined as a transform of the latent representations.

We represent the set of model parameters Θ =
{
W 1, b1,W 2, b2, . . . ,WN , bN

}
where N is the

total number of layers in the network, and W k, bk represent the weight and bias parameters of
the kth layer. Each of these parameters can take continuous values during inference. However,
these parameters are stored using quantized latent representations belonging to a corresponding set
Φ =

{
W̃ 1, b̃1, W̃ 2, b̃2, . . . , W̃N , b̃N

}
. For each convolutional layer, W is a weight tensor of

dimensions Cin ×Cout ×K ×K, where Cin is the number of input channels, and Cout is the number
of output channels, and K denotes the filter width and height. The corresponding quantized latent
representation W̃ is represented by a two-dimensional (2D) matrix of size CinCout ×K2. For each
dense layer, W is a tensor of dimension Cin ×Cout and its corresponding latent representation W̃ is
a matrix of dimension CinCout×1. All the biases can be represented in the same way as dense layers.
Each latent representation is a quantized 2D matrix W̃ ∈ ZCinCout×l where l = 1 for dense weights
(and biases) while l = K2 for convolutional weights. Each row/slice W̃i from W̃ represents a
sample drawn from an l-dimensional discrete probability distribution. In order to decode parameters
from latent space Φ to model space Θ, learnable affine transforms Ψ are introduced.

Wi = Ψscale

(
W̃i +Ψshift

)
, W = reshape ([W1 ... Wi ...]) , i ∈ [1...CinCout] (2)

Where W̃i represents the ith row/slice of W̃ and Wi is the corresponding decoded slice. Ψscale ∈
Rl×l and Ψshift ∈ Rl are the affine transformation parameters. Different kinds of layers use differ-
ent pairs of transform parameters (Ψscale,Ψshift), i.e., different convolutional layers have their own
transform, dense layers have their own, and so on.

As Φ consists of discrete parameters which are difficult to optimize, continuous surrogates Ŵ are
maintained for each quantized parameter W̃ . W̃ is thus simply obtained by rounding the elements
of Ŵ to the nearest integer. A straight-through estimator (Bengio et al., 2013) is used to back-
propagate the gradients from the classification loss to Ŵ . Bit-rate minimization is achieved by
enforcing an entropy penalty on the surrogates Ŵ . For a given surrogate Ŵ ∈ Rd×l with d samples
of dimension l, we add uniform noise n ∼ U

(
− 1

2 ,
1
2

)
, and fit l probability models {qj , j ∈ [1...l]}

as proposed in Ballé et al. (2018). The entropy of model weights can now be minimized directly by
minimizing the negative log-likelihood which serves as an approximation to the self-information I
(Eq. (3)). The compression term is then the sum of all the self-information terms

q(Ŵ ) =

CinCout∏
i=1

l∏
j=1

qj(Ŵi,j + ni,j), I(W̃ ) ≈ − log2 q(Ŵ ), Lcompress(Θ) = λI

∑
ϕ̃∈Φ

I(ϕ̃) (3)

Where λI is a hyper-parameter specifying relative weight of the compression loss. After training,
only the quantized representations W̃ are stored by arithmetic coding using the probability tables
from qj . We discard the continuous surrogates post training. During inference, we load the
quantized latents W̃ and decode them using the learnt decoder to obtain the continuous model
weights W which is used in the model’s forward pass.

3.2 SPARSITY PRIORS

The compression term described in the previous section encourages a smaller representation of the
model in terms of the number of bits required to store the model on disk. However, once the model
is decoded for inference, it can be fully dense with no reduction in terms of computation in a single
forward pass of the model. To address this, we introduce a few key changes and then formulate
our computation term as structured sparsity priors that lead to reduced computation. We formulate
all the priors in the latent representation space to decouple from the affine transform parameters
Ψscale,Ψshift and to be consistent with the Lcompress(Θ) term that is also applied in the same space.
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We observe from Eq. (2) that even if all the elements of the latent W̃i are zero, the resulting trans-
formed slice Wi may still be non-zero. In order to enforce structural sparsity in the parameters in
the model space W , we require each K×K slice Wi to be 0, the zero vector. However, this is only
possible if (Ψshift + W̃i) is a zero vector itself or lies in the null space of Ψscale. We notice that the
latter does not occur in most practical situations especially when the vector W̃i is discrete. There-
fore, we remove the shift parameter Ψshift and make the affine transform a purely linear transform.

Wi = ΨscaleW̃i, W̃i ∈ Zl,Ψscale ∈ Rl×l (4)

Note that the jth element in Wi is zero only if the jth row of Ψscale is orthogonal to W̃i or W̃i = 0.
The former tend to be rare or nonexistent in practice due to Ψscale being real-valued and W̃i being
discrete. Thus, any single non-zero element in W̃i causes the transformed model vector Wi to be
nonzero and does not yield any sparsity in the model space. Loosely, we get W̃i = 0 ⇔ Wi = 0.

Unstructured sparsity of latents with Gaussian prior: Since a sparse model contains a majority
of zeros, its weight distribution should peak at zero. However, the loss in Eq. (3) does not neces-
sarily enforce zero latents, allowing for any non-zero constant value. A zero-mean Gaussian is one
such distribution that enforces zero-centered latents. It also enforces other useful properties such as
unimodality and symmetry, typically observed in trained uncompressed model weight distributions
(Appendix B). Similar to Eq. (3), a Gaussian prior can be viewed as a compression penalty but with
a Gaussian weight distribution. This corresponds to the l2 norm penalty on Ŵ .

qU (Ŵ ) =

CinCout∏
i=1

l∏
j=1

1√
2πσ2

e−
1
2Ŵ

2
i,j and IU (W̃ ) ≈ − log2 qU (Ŵ ) (5)

Lgaussian(Θ) = λU

∑
W̃∈Φ

IU (W̃ ) = λU

∑
W̃∈Φ

CinCout∑
i=1

l∑
j=1

∥Ŵi,j∥2 (6)

Where λU is the tradeoff parameter controlling how closely the weights follow a Gaussian distribu-
tion compared to the the fully factorized distribution from the probability models in Eq. (3). A lapla-
cian prior, resulting in an l1 penalty, can also be used but the difference between the two distributions
is negligible due to the effects of the quantization on Ŵ . We experimented with both priors and ob-
served similar performance as expected (refer Appendix G). Through experiments in Sec. 4, we show
that this prior not only enforces model sparsity by design but also improves model compression.

Structured sparsity of latents with group lasso: The Gaussian prior encourages individual weight
values in the latents to be close to zero. However, from Eq. (4), we see that entire slices W̃i should
be zero vectors to improve sparsity in the model space. Note that each slice W̃i can be represented
as a group belonging to W̃ , the set of groups (or slices). Thus, to enforce individual slices to go to
zero as a whole, we propose to use a group sparsity regularization (Yuan & Lin, 2006) on each Ŵi

slice as follows.

Lgroup(Θ) = λS

∑
W̃∈Φ

Cin×Cout∑
i=1

√
ρ∥Ŵi∥2 (7)

where ρ accounts for varying group sizes and λS is the tradeoff parameter for the structured sparsity.

3.3 JOINT OPTIMIZATION OBJECTIVE

The overall loss function is the combination of cross-entropy loss (for classification), self-
information, and regularization for structured and unstructured sparsity of the latents as follows:

Accuracy︷ ︸︸ ︷∑
(x,y)∼D

− log p(y|x; W̃ )

︸ ︷︷ ︸
Cross Entropy

+

Disk Size︷ ︸︸ ︷
λI

∑
ϕ̃∈Φ

I(ϕ̃)

︸ ︷︷ ︸
Parameter
Entropy

+

Computation︷ ︸︸ ︷
λU

∑
W̃∈Φ

CinCout∑
i=1

l∑
j=1

∥Ŵi,j∥2

︸ ︷︷ ︸
Unstructured

Sparsity

+λS

∑
W̃∈Φ

Cin×Cout∑
i=1

√
ρ∥Ŵi∥2

︸ ︷︷ ︸
Structured
Sparsity

(8)

5



Published as a conference paper at ICLR 2023

The above objective is fully differentiable and can be minimized end-to-end by any gradient-based
optimizer. Note that while there are three tradeoff parameters, each of them is relatively indepen-
dent and intuitively controls different aspects of the network. λI controls for model size, λU for
enforcing a zero-mean prior necessary for sparsity, and λS for slice sparsity and hence computation
during network inference. l2 weight decay on model weights is typically used as a regularization
for improving generalization. However, our motivation for a Gaussian prior is for the objective de-
tailed in Sec. 3.2. Furthermore, our group lasso prior and the Gaussian prior are applied in the latent
representation space rather than the model space as in Wen et al. (2016). Due to the presence of
quantization and decoding, the effect of these priors on training is significantly different than when
applying these priors directly to the model weights. We analyze the effect of these priors in Sec. 4.

3.4 IMPLEMENTATION DETAILS

Datasets. We consider three datasets in our experiments. CIFAR-10 and CIFAR-100
datasets (Krizhevsky et al., 2009) consist of 50000 training and 10000 test color images each of
size 32 × 32. For large scale experiments, we use ILSVRC2012 (ImageNet) dataset (Deng et al.,
2009). It has 1.2 million images for training, 50000 images for the test and 1000 classes.

Network Architectures. For CIFAR-10/100 datasets, we show results using - VGG-16 (Simonyan
& Zisserman, 2014) and ResNet-20 with a width multiplier of 4 (ResNet-20-4) (He et al., 2016).
VGG-16 is a commonly used architecture consisting of 13 convolutional layers of kernel size 3× 3
and 3 dense or fully-connected layers. Dense layers are resized to adapt to CIFAR’s 32× 32 image
size, as done in baseline approaches. ResNet-20-4 consists of 3 ResNet groups, each with 3 residual
blocks. All convolutional layers are of size 3 × 3, along with a final dense layer. For the ImageNet
experiments, we use ResNet-18/50 networks with one 7 × 7 convolutional layer, multiple 3 and
1 × 1 convolutional layers, and the final dense layer. We also run experiments with MobileNet-V2
(Sandler et al., 2018), containing depthwise separable convolutions and inverted Bottleneck blocks.

We use the Adam optimizer (Kingma & Ba, 2014) for updating all parameters of our models. The
entropy model parameters are optimized with a learning rate of 10−4 for all our experiments. The
remaining parameters are optimized with a learning rate of 0.01 for CIFAR-10 experiments and a
learning rate of 0.02 for ResNet-18/50 on ImageNet with a cyclic schedule. Our model compression
results are reported using the torchac library (Mentzer et al., 2019) which does arithmetic coding of
the weights given probability tables for the quantized values which we obtain from the probability
models. We do not compress the biases and batch normalization (BN) parameters and include the
additional sizes from these parameters as well as the parameters Ψscale when reporting model size.
Parameter groups for different networks based on types of convolutional/dense layers are provided
in the appendix (Appendix E).

4 ANALYSIS
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Figure 3: Effect of unstructured sparsity coefficient λU . We
show plots for 3 values of λU varying λS to obtain the Pareto
curves on CIFAR-10. Higher λU improves accuracy-model size
tradeoff (left) by a good margin and also the accuracy-slice spar-
sity (right) by a small amount. Shaded areas represent the con-
fidence intervals of the regression fit. Best viewed in color.

Recall from Eq. (8), we proposed
two sparsity coefficients: λU for
unstructured sparsity, and λS for
structured sparsity. Note that the
sparsity terms not only improve
the model’s inference speed (by
increasing slice sparsity and re-
ducing the number of FLOPs) but
also reduce the entropy of la-
tent weights W̃ as most of the
weights become zero after quan-
tization. By varying the two
sparsity coefficients, one for each
sparsity term, we obtain different
points on the Pareto curves for
accuracy vs. model size trade-off and accuracy vs. slice sparsity trade-off. In this section, we study
each of these trade-offs extensively. We use slice sparsity as a proxy for computational complexity
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or inference speed in this section for brevity, and revisit the computational complexity in terms of
actual wall-clock inference time in Sec. 5.2. We use a constant compression coefficient λI = 10−4.
We show Pareto curves of model performance (accuracy) vs. model size (bit-rate), and the slice
sparsity (%) by keeping one of λU ,λS fixed and varying the other. We analyze model sizes for the
compressed parameters in this section as the remaining parameter sizes are constant. All results in
this section are obtained by averaging over 3 runs with varying random seeds.

4.1 EFFECT OF UNSTRUCTURED SPARSITY REGULARIZATION

Fig. 3 shows model performance for three different values of λU , while varying λS for obtaining
the Pareto trade-off curve for each case. Fig. 3(a) and 3(b) show the impact on the top-1 accuracy
as a function of model size and slice sparsity respectively. We see that increasing λU (blue circles
to orange crosses to green squares) improves the accuracy vs. model size tradeoff curve by a fair
margin while also slightly improving the accuracy vs. slice sparsity curve. This is to be expected as
higher λU leads to a higher number of zeros in the latent representations leading to lesser entropy
and consequently lower model size. We also see a marginal gain in slice sparsity even though the
Gaussian prior doesn’t directly optimize for it as a higher number of zeros eventually leads to more
slices entirely going to zero. Thus, we see that the Gaussian prior helps with improving model size
while also marginally improving slice sparsity.

4.2 EFFECT OF STRUCTURED SPARSITY REGULARIZATION
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Figure 4: Effect of structured sparsity coefficient λS . We
show plots for 3 values of λS varying λU to obtain the Pareto
curves. Fig. (a) and (b) correspond to Accuracy-Model Size
trade-off and Accuracy-Slice Sparsity trade-off respectively on
CIFAR-10. Highest λS improves the accuracy-model sparsity
tradeoff curve showing the importance of group lasso regular-
ization for improving slice sparsity. Shaded areas represent the
confidence intervals of the regression fit. Best viewed in color.

Fig. 4 shows model performance
for three values of λs, while
varying λU to obtain the Pareto
curves. Again, Fig. 4(a) and 4(b)
show the impact on the top-1 ac-
curacy as a function of model
size and slice sparsity respec-
tively. The highest value of λS

(green squares) shows a marked
improvement of the accuracy-
sparsity curve in Fig. 4(b). This
shows that the group lasso regu-
larization is effective in improv-
ing the slice sparsity of the model
necessary for computational ben-
efits. Additionally, we see a small
improvement in the accuracy-
model size curve as higher λS

promotes a higher number of zero
slices which indirectly leads to lower entropy of the overall latent representations.

4.3 STRUCTURED vs. UNSTRUCTURED SPARSITY REGULARIZATION

While both structured and unstructured sparsity regularization help improve slice sparsity, the latter
optimizes for it indirectly. Fig. 5 shows the effect of λU , λS on unstructured and slice sparsity of the
latent representations. As expected, we observe that increasing λU (corresponding to larger points),
for a fixed λS , increases the sparsity of the latent representations while indirectly increasing slice
sparsity as well. However, as we increase λS we notice that the plots shift upwards implying higher
structural sparsity for any fixed value of unstructured sparsity. Therefore, we see that our structured
sparsity prior is effective in forcing non zero weights to lie in fewer weight slices thus leading
to higher structured sparsity, ultimately leading to speedups in model inference. Note that while
the structured sparsity constraint directly optimizes for the slice sparsity, the unstructured sparsity
promotes sparsity within a group/slice, akin to Simon et al. (2013). Unstructured sparsity has a
strong effect on model size due to a large number of zeros and lower entropy as we show in Sec.4.1
while structured sparsity constraint directly affects slice sparsity as shown above and in Sec.4.2.
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Table 1: Comparison of our approach against other model compression techniques. We show two
cases of our method: Best and Extreme. Best corresponds to our best model in terms of error rate
and compression factor while Extreme is matching the range of error of baselines if exists. We
achieve higher compression along with the added computational benefits of high slice sparsity. “−”
implies that the work performs pruning but does not report numbers in the paper.

Algorithm Size
(KB)

Error
(Top-1 %)

Sparsity
(%)

VGG-16 (CIFAR-10)

Uncompressed 60 MB (1×) 6.6 0.0
Louizos et al. (2017) 525 (116×) 9.2 94.5
Wiedemann et al. (2019) 960 (62×) 9.0 92.4
Havasi et al. (2018) 168 (452×) 10.0 0.0
Oktay et al. (2020) 101 (590×) 10.0 0.0
LilNetX (Best) 129 (465x) 7.4 97.4
LilNetX (Extreme) 76 (800x) 10.0 99.2

ResNet-20-4 (CIFAR-10)

Uncompressed 17.2 MB (1×) 5.5 0.0
Oktay et al. (2020) 128 (134×) 8.8 0.0
LilNetX (Best) 139 (123×) 6.0 88.5
LilNetX (Extreme) 66 (282×) 8.5 97.9

ResNet-20-4 (CIFAR-100)

Uncompressed 17.2 MB (1×) 26.8 0.0
LilNetX (Best) 125 (137×) 27.0 86.6
LilNetX (Extreme) 76 (226×) 30.9 97.1

Algorithm Size
(MB)

Error
(Top-1 %)

Sparsity
(%)

ResNet-18 (ImageNet)

Uncompressed 46.70 (1×) 30.0 0.0
Dubey et al. (2018) 3.11 (15×) 32.0 -
Young et al. (2021) 2.78 (17×) 31.8 0.0
Oktay et al. (2020) 1.97 (24×) 30.0 0.0
LilNetX (Best) 1.58 (30×) 30.1 33.3
LilNetX (Extreme) 0.86 (54×) 32.3 65.2

ResNet-50 (ImageNet)

Uncompressed 102.00 (1×) 23.7 0.0
Lin et al. (2019) 39.91 (3×) 27.7 39.2
Frankle et al. (2019) 20.40 (5×) 24.0 49.1
Dubey et al. (2018) 6.46 (16×) 26.0 -
Wiedemann et al. (2019) 6.06 (17×) 25.9 25.4
Oktay et al. (2020) 5.49 (19×) 26.0 0.0
Young et al. (2021) 4.39 (21×) 25.8 0.0
LilNetX (Best) 3.96 (26×) 25.4 66.7
LilNetX (Extreme) 2.96 (34×) 25.8 81.7

MobileNet-V2 (ImageNet)

Uncompressed 14.00 (1×) 32.7 0.0
Tu et al. (2020) 10.30 (1×) 32.7 25.0
Wang et al. (2019) 0.95 (15×) 33.5 0.0
LilNetX (Best) 0.67 (21×) 32.8 56.8
LilNetX (Extreme) 0.56 (25×) 33.3 64.7

5 EXPERIMENTS
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Figure 5: Structured vs. unstructured
sparsity regularization. Higher λS im-
proves slice sparsity (y-axis) for a given
level of unstructured sparsity (x-axis).

All our models are trained from scratch. CIFAR-10/100
experiments are trained for 200 epochs. We use the FFCV
library (Leclerc et al., 2022) for faster ImageNet training,
with a batch size of 512 for ResNet-18/50 split across
4 GPUs. We train ResNet-18/50 for 35 epochs to keep
the range of the uncompressed network accuracies simi-
lar to other works for a fair comparison. We show strong
performance in terms of model compression and sparsity
outperforming existing model compression works while
converging faster with relatively fewer epochs.

5.1 COMPARISON WITH COMPRESSION METHODS

As discussed in Sec. 2, existing approaches for model
compression follow either quantization, pruning, or both. We compare with the state of the art
methods in each of these two categories. Among model quantization methods, we use Oktay et al.
(2020) and Young et al. (2021) for comparison, with the latter offering speedups via mix-precision
inference albeit on specialized hardware. Our results are summarized in Table 1. Unless otherwise
noted, we use the numbers reported by the original papers. Since we do not have access to many
prior art models, we compare using slice sparsity. For the CIFAR-10 dataset, we achieve the best
results in compression while also achieving a lower Top-1 error rate for both VGG-16 and ResNet-
20-4. For VGG-16 we obtain the best performance in the error range of t7% at 129KB which is a
465x compression compared to the baseline model. At the ∼10% error range, we outperform Oktay
et al. (2020) in terms of model compression and also with a 99.2% slice sparsity. For ResNet-20-4,
compared to Oktay et al. (2020), we achieve almost twice the compression rate at a similar error
rate of ∼8.5%, simultaneously achieving extremely high levels of slice sparsity (97.9%). Similar
results hold for the case of CIFAR-100 where we achieve a 137× compression in model size with
86.7% slice sparsity and little to no drop in accuracy compared to the uncompressed model.

For ResNet-18 trained on ImageNet, we achieve 30× compression as compared to the uncompressed
model with almost equal error rate outperforming Oktay et al. (2020). The compressed network
achieves a sparsity of 33.3%. For an extreme compression case, we achieve higher levels of com-
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pression (54×) and sparsity (∼65%) at the cost of ∼2% accuracy compared to uncompressed model.
For ResNet-50, our best model achieves a compression rate of 26×, along with 66.7% slice sparsity.
An extreme case of our model achieves a higher compression rate of 34× with sparsity of 81.7%
compared to the next best work of Young et al. (2021) with a rate of 21× at a similar error rate. We
provide additional baseline comparisons for ResNet-50 in the supplementary material.

Finally, for MobileNet-V2 which is already lightweight and optimized for computational efficiency,
we still achieve 21× compression compared to the dense model along with 56.8% slice sparsity with
almost no drop in accuracy. This is especially beneficial for MobileNets which consist of Depth-
wise Separable Convolutions as removing entire 2D slices of the convolutional weight allows for
directly removing the input activation map’s corresponding channels leading to lower FLOPs. We
outperform other baselines at a similar accuracy both in terms of model compression and sparsity.

We conclude that our framework outperforms state-of-the-art (SOTA) approaches in model com-
pression by a fair margin while achieving network weights sparsification for computational gains.

5.2 UTILIZING SLICE SPARSITY FOR INFERENCE SPEEDUPS
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Figure 6: Speedups vs. Slice Sparsity (%). Speedup is the ratio of
CPU throughput for the sparse models to the dense models. For both
cases of ResNet-20 on CIFAR-10 (left) and ResNet-50 on ImageNet
(right), we obtain practical inference speedups utilizing the sparsity of
the compressed models.

While we show compres-
sion gains with respect to
the SOTA in Sec. 5.1, here
we highlight the computa-
tional gains we get through
slice sparsity. We measure
the speedups of the trained
sparse models by obtain-
ing the ratio of the through-
put (images/second) of the
sparse compressed models
to that of the dense uncom-
pressed models. Speedups
are measured on a single
core of an AMD EPYC
7302 16-Core Processor with a batch size of 16. We show inference results for two cases: ResNet-20
on CIFAR-10 and ResNet-50 on ImageNet. As a high slice sparsity provides the added benefits of
full structured sparsity (when all slices in a filter/channel are zero), we show speedups for ResNet-
20 by utilizing fully structured sparsity, removing entire filters or input channels of weight tensors
which are all zeros. Niu et al. (2020) show that slice sparsity, along with pattern sparsity, provide in-
ference speedups on mobile devices via compiler-assisted optimizations. However, due to the lack of
an open-source code base, we utilize the DeepSparse engine (Kurtz et al., 2020) which also exploits
this sparsity for CPU inference speedups. Results are shown in Fig. 6. For CIFAR-10 (left), even
when only exploiting fully structured sparsity, we achieve nearly 2× levels of speedups for 95% slice
sparsity. Speedups scale almost exponentially for sparsity>95%. For ImageNet (right), we obtain
1.86× speedup compared to the dense uncompressed model at 81.7% slice sparsity and even faster
inference times for sparsity>85%. Therefore, our framework offers practical inference speedups via
slice sparsity with no hardware modifications, along with high levels of model compression.

6 CONCLUSION

We propose a novel framework for training a deep neural network, while simultaneously optimizing
the model size to reduce storage cost, and structured sparsity, to reduce computation cost. To the
best of our knowledge, this is the first work on model compression that add priors for structured
pruning of weights in quantized latent representation space.

Experiments on three datasets and three network architectures show that our approach achieves state-
of-the-art performance in terms of simultaneous compression and reduction in computation which
directly translate to inference speedups. We also perform extensive ablation studies to verify that the
proposed sparsity priors allow us to easily control the accuracy-compression-computation trade-off,
which is an important consideration for the practical deployment of models.
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APPENDIX

A ADDITIONAL BASELINE COMPARISON

We compare our approach with additional pruning and quantization approaches in Table 2 for
ResNet-50 trained on ImageNet. We see that we continue to achieve high levels of model com-
pression along with slice sparsity for inference speedups. Yuan et al. (2020) achieve high levels of
sparsity but are unstructured requiring dedicated hardware to obtain speedups. A similar case holds
for the quantization approaches of Zhao et al. (2019); Jain et al. (2020) which can obtain inference
speedups but with hardware optimized for 4-bit and 8-bit integer arithmetic. Additionally, they typ-
ically require post-hoc training stages (Jain et al., 2020) to improve performance after quantization
while our approach is a single stage trained end-to-end.

Table 2: Comparison of our approach with other pruning and quantization approaches for ResNet-50
trained on ImageNet. We continue to achieve the most compression along with high slice spar-
sity. * denotes that the sparsity is unstructured and do not directly translate to computational benefits.

Algorithm Size
(MB)

Error
(Top-1 %)

Sparsity
(%)

ResNet-50 (ImageNet)

Uncompressed 102.00 (1×) 23.7 0.0
Savarese et al. (2020) 8.36 (12×) 24.5 91.8*
Yuan et al. (2020) 38.76 (3×) 24.8 38.8
Zhao et al. (2019) (4 bit) 12.75 (8×) 33.8 0.0
Zhao et al. (2019) (8 bit) 25.5 (4×) 25.3 0.0
Jain et al. (2020) (4 bit w/ retraining) 12.75 (8×) 25.6 0.0
Jain et al. (2020) (8 bit w/o retraining) 25.5 (4×) 25.7 0.0
Jain et al. (2020) (8 bit w/ retraining) 25.5 (4×) 24.6 0.0

LilNetX (Best) 3.96 (26×) 25.4 66.7
LilNetX (Extreme) 2.96 (34×) 25.8 81.7

B HISTOGRAM OF WEIGHTS FOR DENSE UNCOMPRESSED MODEL

We obtain the histogram of weights of the various types of layers of a dense uncompressed ResNet-
50 model trained on ImageNet with only the cross entropy loss. We do not apply any weight decay
in order to avoid enforcing any distribution on the weights. Results are shown in Fig. 7. We show
histograms for 1 × 1, 3 × 3, 7 × 7 convolutions as well as for the dense layer. For 3 × 3 and
7 × 7 convolutions, we pick a random dimension from a 9-dimensional or a 49-dimensional slice
respectively, to highlight the histograms, as a single probability model is fit to each dimension as
shown in Eq. (3). We see that the distributions naturally follow unimodality and are more or less
zero-centered even without any weight decay regularization. The 7 × 7 convolution weight distri-
bution is less continuous due to relatively fewer weight values per dimension (192) but still weakly
exhibits the property of unimodality and symmetry. This shows that networks trained with vanilla
cross entropy loss prefer such distributions naturally. However, the probability models in Eq. (3) do
not enforce any such distribution and can take on any random distribution. Thus, enforcing a Gaus-
sian prior as proposed in Sec. 3.2 promotes unimodality and symmetry of the weight distributions
which can be beneficial for network performance.

C HISTOGRAM OF WEIGHTS FOR QUANTIZED LATENTS

To provide insights into the effect of our quantization, we visualize the histogram of the quantized
latents as well for different weight groups. Results are shown in Fig. 8. We see that we obtain high
levels of 0s on almost all weight groups spanning different types of convolutional layers as well as
the final dense layer. Fewer number of zeros are present in the initial 7×7 convolution similar to the
uncompressed weights as shown in Fig. 7 highlighting its importance in the network. Additionally,
high amount of elements are zeros in 3×3 convolutions highlighting their redundancy and potential
for compression compared to other convolutional layers or the dense layer.
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Figure 7: Histogram of the weights for various types of layers of a ResNet-50 model trained on
ImageNet without weight decay. For 3× 3 or 7× 7 convolutions we pick a random dimension of a
9-dimensional or 49-dimensional slice to highlight the weight distribution for each dimension. Note
the unimodal and zero-centered nature of each of these distributions, even without enforcing weight
decay, highlighting the importance of the Gaussian prior as proposed in Sec. 3.2

D COMPARISON OF MODEL COMPRESSION WITH ENTROPY CODING AND
SPARSE MATRIX FORMATS

Instead of entropy coding, the sparse matrices can additionally be compressed using sparse matrix
formats. We choose the two popular formats of Compressed Sparse Row (CSR) or Coordinate
Format(COO). Results are summarized in Table 3 for our best run for ResNet-50 shown in Table 1
in the main paper. We see that entropy coding far outperforms the sparse formats of CSR and COO
with COO obtaining better compression rates than CSR. This is expected as CSR/COO achieves
high levels of compression only with extremely high levels of sparsity. With an unstructured sparsity
level of ∼80%, storing only the non zero weights itself (and not their indices) provides a maximum
compression of 5×.

Table 3: Sparse formats: Comparison of the effect of entropy coding vs. sparse matrix formats of
CSR, COO on model compression of a ResNet-50 trained on ImageNet. We show the model size in
MB of the latent weights along with the sparsity of the model weights.

Entropy Coding CSR COO Slice Sparsity (%) Unstructured Sparsity (%)

3.96 (26×) 57 (2×) 30 (3×) 66.7 78.8

E PARAMETER GROUPS FOR VARIOUS NETWORKS

We share weight decoders and probability models for different parameter groups of a network which
can be seen as being drawn from similar weight distributions. This limits the overhead in storing the
weights of the corresponding decoders. We list the types of parameter groups for each network as
follows:
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Figure 8: Histogram of the quantized latents for various types of layers of a ResNet-50 model trained
on ImageNet. For 3 × 3 or 7 × 7 convolutions we pick a random dimension of a 9-dimensional or
49-dimensional slice to highlight the weight distribution for each dimension. Note the high level of
0s obtained due to our sparsity priors.

• VGG-16 consists of a parameter group for each dense layer and a parameter group for all
3× 3 convolutions leading to four weight decoders/probability models for each parameter
group.

• For ResNet-20-4 we use zero padding shortcut type A as defined in He et al. (2016), which
leads to only 2 parameter groups, one for the final dense layer and the other for all 3 × 3
convolutions.

• For ResNet-18 trained on ImageNet, we use three parameter groups, for the initial 7x7
convolution, 3× 3 convolutions, as well as the dense layer.

• ResNet-50 consists of an additional parameter group for 1 × 1 convolutions compared to
ResNet-18.

• MobileNet-V2 consists of 3 parameter groups for the initial 3x3 convolution, final dense
layer and the remaining 3x3 convolution.

F STANDARD ERROR FOR MULTIPLE RUNS

Sec. 5 in the main paper shows results when averaged across 3 seeds. In this section, we additionally
provide the standard errors across the 3 random seeds. Results are summarized in Fig. 9 for the two
datasets of CIFAR-10/100. CIFAR-10 shows little to no standard error both in the x-axis (model
size) and y-axis (top-1 validation accuracy). This suggests that the training is stable for different
random seeds. For CIFAR-100 however, we observe large error in the top-1 validation accuracy. We
attribute this to the slow convergence for CIFAR-100 also highlighted in Fig. 10.

CIFAR-100 Convergence:We analyze the convergence of 3 different runs for ResNet-20-4 trained
on the CIFAR-100 dataset with varying values of λS and λU . Results are shown in Fig. 10 when
trained for 200 epochs. We see that validation accuracy (on the right y-axis) continues to increase
towards the end of training between 190-200 epochs. At the same time, validation loss (on the
left y-axis) also decreases. This suggests that the model hasn’t fully converged by the end of 200
epochs. We hypothesize that this is an artifact of the dataset as well as the cosine decay schedule
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Figure 9: Scatter plots with horizontal and vertical error bars for ResNet-20-4 trained on CIFAR-
10/100. For a different random seed, model size changes leading to the error bar in the x-axis
while the vertical bar represents the top-1 validation accuracy error on the y-axis. There is very
little variance in CIFAR-10 and slightly higher for CIFAR-100 due to slow convergence as shown
in Fig. 10

where learning rate decreases drastically towards the end of training and is not maintained for longer
for better convergence.
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Figure 10: Convergence plots for 3 ResNet-20-4 runs on CIFAR-100. We see that loss (left axis)
as well as top-1 validation accuracy (right axis) do not stabilize towards the end of training and
respectively decrease/increase sharply suggesting that the training has not fully converged.
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G l2 vs. l1 vs. l∞ NORM

In this section, we analyze the effect of different types of norm for both individual weights and
groups. For individual weights, we compare the l2 norm with the l1 norm while for the group norm,
we compare the l2 norm with the l∞ norm (l1 weight norm is same as l1 group norm due to sum
of absolutes). Results are summarized in Fig. 11 where top/bottom rows are for CIFAR-10/100
respectively. We see that l2 group norm outperforms its l∞ counterpart for both datasets. However,
l1 norm has little additional effect in terms of l2 weight norm. Additionally, the l2 group norm yields
lesser slice sparsity for a given sparsity (c,g) highlighting the importance of l∞ for high structured
sparsity. While l∞ leads to higher sparsity, it also shows higher model size for a given slice sparsity.
Thus, there is an inherent tradeoff for l∞ which leads to more sparsity but also larger model sizes
(d,h).

H INITIALIZATION OF CONTINUOUS SURROGATES

The initialization of the continuous surrogate Ŵ of a latent space weight W̃ and the decoder ma-
trix Ψ plays an important in the neural network training. Naı̈ve He initialization (He et al., 2015)
commonly used in training ResNet classifiers does not work in our case since small values of Ŵ
get rounded to zero before decoding. Such an initialization results in zero gradients for updating the
parameters and the loss becomes stagnant. To overcome this issue, we propose a modification to the
initialization of the different parameters. In our framework, we recap that the decoded weights used
in a forward pass are obtained using

W = reshape(W̃Ψ) (9)

where W̃ is a matrix in ZCinCout×l and Ψ is a matrix in Zl×l (where l = 1 for dense weights (and
biases) while l = K2 for convolutional weights).

Our goal is to initialize Ŵ and Ψ such that the decoded weights W follow He initialization. First,
since Ŵ is rounded to nearest integer (to obtain latent space weights W̃ ), we assume its elements
to be drawn from a uniform distribution in [−b, b] where b > 0.5 in order to enforce atleast some
non-zero weights after rounding to nearest integer. Next, we take the elements of Ψ to be a normal
distribution with mean 0 and variance v.

Assuming the parameters to be i.i.d., and Var(X) denoting the variance of any individual element
in matrix X ,

Var(W ) = l × Var(Ψ)× Var(W̃ ) (10)

Assuming a RELU activation, with f denoting the total number of channels (fan-in or fan-out) for a
layer, LHS of Eq. (10), using the He initializer becomes 2

f , RHS on the other hand can be obtained
analytically

2

f
= l × v × (2b+ 1)2 − 1

12

=⇒ b =

√
24
lvf + 1− 1

2
, v =

24

lf ((2b+ 1)2 − 1)
(11)

Eq. (11) gives us a relationship between b (defining the uniform distribution of Ŵ ) and v (defining
the normal distribution of Ψ). Note that l and f values are constant and known for each layer.

For a weight decoder corresponding to a parameter group, the maximum value of f in that group
enforces the smallest value of b which should be above a minimum limit bmin. Denoting fmax as the
maximum fan-in or fan-out value for a parameter group, we get

v =
24

lfmax ((2bmin + 1)2 − 1)

=⇒ b =

√
fmax

f ((2bmin + 1)2 − 1) + 1− 1

2
(12)
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The hyperparameter bmin then refers to the minimum boundary any latent space parameter can take
in the network. By calculating the values of v based on fmax, bmin and b for various parameters
based on the corresponding value of f , we then initialize the elements of Ŵ to be drawn from a
uniform distribution in the interval [−b, b] and elements of Ψ to be drawn from N (0, v).

Note that f = fmax =⇒ b = bmin which shows that the minimum boundary corresponds to the
layer with maximum channels (fan-in or fan-out) f .

By choosing an appropriate value of bmin we obtain good initial values of the gradient which allows
the network to converge well as training progresses. bmin offers an intuitive way of initializing the
discrete weights. Too small a value leads to most of the weights being set to zero while too large
a value can lead to exploding gradients. In practice, we find that this initialization approach works
well for Cifar experiments. For ImageNet experiments, we assume a normal distribution instead of
uniform distribution for Ŵ with a sufficiently high variance for the network to train.

I LICENSE

Table 4: Licenses of datasets.

Dataset License

CIFAR-10 Krizhevsky et al. (2009) MIT
CIFAR-100 Krizhevsky et al. (2009) MIT
ImageNet Deng et al. (2009) BSD 3-Clause

Table 4 lists all datasets we used and their licenses.
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Figure 11: Comparison of l2 vs. l1vs. l∞ norm for various metrics of sparsity and size for both
CIFAR-10 (top row) and CIFAR-100 (bottom row). We see that l2 group norm does better than l∞
group norm in terms of accuracy vs model-size or slice sparsity (a,b,e,f). l1 weight norm has little
additional effect compared to l2 weight norm. l∞ favors higher slice sparsity for the same level of
sparsity (c,g). l∞ tends to result in higher model size for a given slice sparsity but also higher slice
sparsity given a model size, which shows the tradeoff between compression and sparsification.
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