Understanding sparse autoencoder scaling in the
presence of feature manifolds

Eric J. Michaud** Liv Gorton Tom McGrath'
TGoodfire #Massachusetts Institute of Technology

Abstract

Sparse autoencoders (SAEs) model the activations of a neural network as linear
combinations of sparsely occurring directions of variation (latents). The ability of
SAE:s to reconstruct activations follows scaling laws w.r.t. the number of latents. In
this work, we adapt a capacity-allocation model from the neural scaling literature
(Brill, 2024) to understand SAE scaling, and in particular, to understand how feature
manifolds (multi-dimensional features) influence scaling behavior. Consistent with
prior work, the model recovers distinct scaling regimes. Notably, in one regime,
feature manifolds have the pathological effect of causing SAEs to learn far fewer
features in data than there are latents in the SAE. We provide some preliminary
discussion on whether or not SAEs are in this pathological regime in the wild.

1 Introduction

Sparse autoencoders [[1H9]] and related methods [10H14] decompose neural network activations into a
collection of sparsely activating latents. As SAEs have been scaled (now to millions of latents) [4, |15+
171, they have exhibited scaling laws [4} 15} [18]], where loss improves predictably as a power law with
the number of latents in the SAE. Although sparse autoencoders learn many interpretable features,
they may miss important structure in neural representations, either because there are an extraordinary
number of very rare features in activations [[19] or because the SAE architecture and training objective
make incorrect assumptions about the structure of neural representations [20} 21]].

In this work, we develop a formal analysis of SAE scaling behavior and scaling laws. We are
particularly interested in understanding SAE scaling when activations contain a particular kind of
structure: feature manifolds (multi-dimensional features) [22] 23], and in whether feature manifolds
could cause pathological scaling and exacerbate the problem of interpretability “dark matter” [[19} [24].
Our main approach is to adapt a mathematical model of neural scaling from Brill (2024) [25], where
models allocate capacity between different data manifolds, to the case of SAEs. Guided by our model,
we then conduct experiments to probe whether SAEs may scale pathologically in practice.

2 A model of sparse autoencoder scaling

2.1 The structure of data and the SAE architecture

Activation data: We assume the multi-dimensional linear representation hypothesis [24, 26]] and
that neural network activation vectors x € R? are generated as a sum of sparsely occurring features:
x = » . S;f; where S; is the subspace where feature ¢ lives, specified by a d x d; matrix whose
columns are basis vectors of the subspace, and f; is a random variable taking values in R where

*Work done at Goodfire. Correspondence: ericjm@mit.edu

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Mechanistic Inter-
pretability.

Total SAE Loss

55@/@
D Va

0.1 1

10° 10t
Number of latents

Figure 1: SAE scaling on a toy feature manifold S'. We train ReLU SAEs with an L1 sparsity
penalty to reconstruct points on the circle S C R?. We find that SAEs can slightly reduce their total
loss by “tiling” the manifold with more sparsely activating latents. For SAEs with 4, 8, and 24 latents,
we show the data (S1) in grey, the SAE’s reconstruction in black, the decoder latent directions as
arrows, and indicate the part of the circle that each latent fires on as colored arcs. If SAEs can reduce
loss by “tiling” a manifold in this way, they may do this at the expense of learning rarer features.

d; is the dimension of feature 7. Each feature f; is sparse, supported on a small fraction of the data:
p; = Pr[f; # 0] < 1, so each activation vector is a sum of only a small subset of all features.

SAEs: Sparse autoencoders attempt to reconstruct activation vectors as a sum of sparsely activating
latents, consisting of an encoding step f = Enc(x) = o(W.x + b,) where o is a nonlinearity and
feRY anda decoding step X = Dec(f‘)= Wdf' + by. Sparse autoencoders are trained with SGD
onaloss £ = ||x — x[|2 + A S(f) where S(f) is a sparsity-encouraging loss like ||f]|1 or ||f]|o.

2.2 Assumption: SAE optimization reduces to a latent allocation problem

We assume that SAEs learn solutions where each latent j is specific to a particular feature ¢, so that
f'j # 0 only if f; # 0. We further assume that the SAE latent decoder directions for the latents
associated with feature ¢ lie within the subspace S;, and that the subspaces where features live are
orthogonal, i.e., S; L Sy if ¢ # k. It follows that the SAE loss on any sample x is the sum of losses
on samples where each active feature had fired alone: if A(x) are the “active” features ¢ where f; # 0
on x, then

E(X):ﬁ Z Slfz assunzlption Z ,C(Szfl)

i€ A(x) i€ A(x)

We note that feature absorption and related phenomena [27] and the non-orthogonality of features
in practice violate these assumptions, but we will accept them for the sake of expedience. If SAE
latents are specific to features, then an optimal SAE’s loss on a feature ¢ will be determined by the
number of latents n; the SAE allocates to reconstructing feature ¢, which we denote L;(n;), and will
be determined by the geometry of the feature f;. The expected loss across activations x is then:

EX [[,(X)} = Ex Z ,C(Slfl) = Zplﬁ(slfl) = ZpiLi(ni)

1€ A(x)

We therefore reduce the SAE optimization problem to the problem of choosing how many latents n; to
allocate to each feature ¢ in the data. To understand SAE scaling behavior, we solve for the allocation
of latents to each feature n; that minimizes 3 i piL; (n;) given a distribution over feature frequencies
pi, the per-feature loss curves L;, and the constraint on the total number of latents ZZ n; = N.

2.3 Warm-up on discrete features

To get comfortable with this formulation, we first apply it to the simplest case where all features
are discrete. We imagine that for all features ¢, d; = 1 and f; = 1 on the fraction p; of samples

A model of SAE scaling on feature manifolds

If SAEs allocate latents to solve the following
optimization problem...

in £=Y"pL(n;) st > mi=N,
ST £5 2t s 3o
where p; oci) L(n) xnP.

then, as in the neural scaling model from
Brill (2024), there are two regimes:

Discovery efficiency: D(N) /N

=
Goodregime: X < ﬂ = Pathological regime: ,B <

— 1 1
LxN“ LxN # 102 108 10°

ber of f di d: Number of " d:

1+8 Number of latents (N)

D(N) x N D(N) o N

Figure 2: Left: Application of Brill’s (2024) [25] capacity-allocation model to SAE scaling. Right:
numerical simulation of SAE scaling when the most frequently occurring feature is a manifold with
loss scaling as L(n) o« n~# and all other features are discrete. We see that if 3 < «, then a simulated
SAE with 100 million latents discovers only 3 million features.

where feature i is present and is 0 otherwise. For each feature ¢, an SAE incurs loss 1 if n; = 0
(reconstruction loss = 1 and sparsity loss = 0). If n; = 1, it can perfectly reconstruct the feature,
incurring sparsity loss A with LO or L1 sparsity loss. Therefore L(n) = 1if n; < 1 else .

With total loss) . p; L(n;) and N latents in our SAE we see that the optimal solution is to allocate
one latent to the most commonly occurring N features. In this setup, then, the effect of scaling
SAE:s is to learn an increasing number of discrete features in the data, in decreasing order of
their frequency. We will often be interested in the number of features “discovered” by the SAE
D(N) = |{i : m; > 0}|. In this setting, D(N) = N. To recover the power law scaling that
SAEs exhibit empirically, we only need to assume that p; oc i~ (17 With this assumption, the
improvement in total loss from adding a marginal latent ¢ follows p;(1 — A), and integrating from
i =1... N we get that the total loss drops off as a power law L(N) oc N~%. We note that this model
of SAE scaling mirrors the “quanta” model of neural scaling from [28]], where here the “quanta” are
features. This picture also agrees with the finding from [[15]] that SAEs learn features for concepts in
data approximately in order of the frequencies (roughly Zipfian) at which those concepts occur.

2.4 Intuition behind pathological manifold scaling

Recently, several works have commented on the existence of feature manifolds [12} 23] (multi-
dimensional features) [22] in neural networks. In our formalism above, these are features 7 with
d; > 1 and where the range of f; is a manifold embedded in R4, With feature manifolds, instead
of having a discrete L;(n;) curve like above, L; might drop off slowly as n; grows. To show that
this is possible, in Figure[I] we show the scaling curve for ReLU SAEs (¢ = ReLU) trained with L1
penalty to reconstruct points on a circle x € S C R2. We observe that these SAEs can gradually
reduce their total loss by more finely “tiling” the manifold with latents that activate more sparsely,
and that this manifold can accommodate dozens of latents before loss plateaus. While such solutions
ruthlessly minimize the SAE loss, it is not obvious that they would be better from an interpretability
standpoint. Our fundamental concern is that if L;(n;) curves decrease gradually, it could be optimal
for an SAE to tile common feature manifolds instead of discovering rarer features in data.

2.5 Solution for power-law L(n) following Brill (2024)

To model SAE scaling in the presence of feature manifolds, we assume that feature frequencies decay
as a power law p; oc i~(11®)_ For mathematical simplicity, we also assume that all features have

RelLU SAE Scaling on Hyperspheres ReLU SAE Scaling on Spherical Shells

10° A
] S~1 —— manifold dim=2
T S7~2 o —— manifold dim=3
a i s~3 | @ 107 4 —— manifold dim=4
S 1 s~4 |8] —— manifold dim=5
[NN] S™5 | w 1 —— manifold dim=6
X] s~6 | S 1 manifold dim=7
= s~ | T manifold dim=8
el 1 s~8 |5 h manifold dim=9
° °
1071 -
LLLLI T T TTTI T T TTTITT T T TTTTT T T TTTITT LLLL T T TTTT T T TTTI T T TTTITT T T TTTTT
10° 10! 102 103 104 10° 10t 102 103 104
Number of Latents Number of Latents

Figure 3: ReLU SAE scaling on individual toy feature manifolds, showing how L(n) curves depend
on feature geometry. We train with L1 sparsity A = 0.1. Left: SAE scaling on data drawn from a
single unit hypersphere. Right: SAE scaling on data sampled in {x : 0.5 < |x| < 2}.

the same power law per-feature loss curve L;(n;) = n;ﬁ . In this setting, our model of SAE scaling
directly corresponds to the model of neural scaling from Brill (2024) [25]], where neural networks
allocate units of capacity n,; towards approximating functions on distinct power-law distributed

data manifolds, with per-manifold loss scaling as n; /P We show similar derivations to Brill [25]
in Appendix [B|and summarize the core results in Figure [2] (left).

In our notation, there is a key threshold: o < 8. When « < 3, expected loss scales as L(N) o N~
like in the discrete feature case, and D(NN) o< N, so the “efficiency” at which SAEs discover features

D(N)/N tends towards a constant. However, when 3 < a, then £(N) oc N~# and D(N) o N%,
and so D(N)/N tends towards 0. This illustrates the core dynamic of concern: when SAEs can
continue to reduce loss by “tiling” common feature manifolds, then it can be optimal for them to do
this at the expense of discovering other, rarer features.

2.6 Numerical simulation

While our mathematical model above assumed that all features have the same L;(n;) curve, we
can run numerical simulations with arbitrary heterogeneous L;(n;) curves. In Figure 2|(right), we
conduct simulations where the first feature scales as n~? but all other features are discrete and
scale as step functions 1,,—g, and with p; i—(1+0:5) We find that, with only a single feature with
power-law L(n;) scaling, when 8 < « this feature begins to absorb the vast majority of latents in the
SAE once N is large.

3 SAE scaling on synthetic features and on real neural networks

In our analysis, whether SAEs will scale pathologically depends on the shape of their per-feature loss
curves L;(n;). We showed one such L(n) curve in Figure|l| but we further explore this by training
SAEs on a variety of synthetic manifolds in Figure [3]and in Appendix Figure[6] Overall, we find that
the shape of the L(n) curve depends on the manifold geometry, with some manifolds accommodating
many thousands of latents without saturating loss while on others the loss curve plateaus very quickly
(effectively B — o00). In Appendix [A.1] we provide further discussion on what « and 8 may be, and
whether SAEs might be scaling pathologically, in practice.

When a large number of SAE latents are allocated to a relatively low-dimensional feature manifold,
we’d expect the cosine similarities between the decoder latents allocated to that manifold to be close
to 1. In Appendix [E] we show the distribution over decoder latent nearest neighbor cosine similarities
for SAEs trained on LLM and vision model activations, and find some differences between them.

4 Discussion

In this short paper, we have described a model of SAE scaling which reduces the SAE optimization
problem to the problem of optimally allocating different numbers of SAE latents to different features
in data. As in the model of scaling from Brill [25] SAE scaling laws either result from an underlying
power law distribution over features p; o< i~(1*®) or from the improvements in loss from tiling

common feature manifolds following a power law L;(n;) n;[’ . When 3 < «, SAE latents could
massively accumulate on commonly occurring feature manifolds.

Unfortunately, we do not resolve the question of whether SAEs are in this pathological scaling regime
in practice. Our uncertainty is due to our knowing neither the distribution over true feature frequencies
(determining «v) nor the geometry of real-world neural network feature manifolds (which determines
). We give some additional commentary in Appendix[A.T] Arguably our most important observation
is that when we train SAEs on toy feature manifolds with variation in the radial direction, our SAEs
do not tile the manifold and instead exhibit L(n) curves which plateau early. If this geometry is
realistic [22, [29]], then manifolds may not pose an issue to SAE scaling in practice. Overall though,
we view this work as primarily about framing, rather than completely answering, this interesting
problem.

Acknowledgments and Disclosure of Funding

We thank Owen Lewis, Michael Pearce, Jack Merullo, Dan Balsam, Michael Byun, Elana Simon,
and Wes Gurnee for helpful conversations and feedback. EJM was supported by the NSF via the
Graduate Research Fellowship Program (Grant No.2141064). This work was done at Goodfire Al in
San Francisco.

References
[1] Andrew Ng et al. Sparse autoencoder. CS294A Lecture notes, 72(2011):1-19, 2011.

[2] Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models. arXiv preprint arXiv:2309.08600,
2023.

[3] Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-
erly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,
Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex
Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter,
Tom Henighan, and Christopher Olah. Towards monosemanticity: Decomposing language
models with dictionary learning. Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

[4] Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. arXiv
preprint arXiv:2406.04093, 2024.

[5] Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma,
Janos Kramdr, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu
sparse autoencoders. arXiv preprint arXiv:2407.14435, 2024.

[6] Bart Bussmann, Patrick Leask, and Neel Nanda. Batchtopk sparse autoencoders. arXiv preprint
arXiv:2412.06410, 2024.

[7] Thomas Fel, Ekdeep Singh Lubana, Jacob S Prince, Matthew Kowal, Victor Boutin, Isabel
Papadimitriou, Binxu Wang, Martin Wattenberg, Demba Ba, and Talia Konkle. Archetypal sae:
Adaptive and stable dictionary learning for concept extraction in large vision models. arXiv
preprint arXiv:2502.12892, 2025.

[8] Mark Muchane, Sean Richardson, Kiho Park, and Victor Veitch. Incorporating hierarchical
semantics in sparse autoencoder architectures. arXiv preprint arXiv:2506.01197, 2025.

https://goodfire.ai

[9] Valérie Costa, Thomas Fel, Ekdeep Singh Lubana, Bahareh Tolooshams, and Demba Ba. From
flat to hierarchical: Extracting sparse representations with matching pursuit. arXiv preprint
arXiv:2506.03093, 2025.

[10] Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable 1lm feature
circuits. Advances in Neural Information Processing Systems, 37:24375-24410, 2024.

[11] Jack Lindsey, Adly Templeton, Jonathan Marcus, Thomas Conerly, Joshua Batson, and Christo-
pher Olah. Sparse crosscoders for cross-layer features and model diffing, October 2024. URL
https://transformer-circuits.pub/2024/crosscoders/index.html. Research up-
date.

[12] Liv Gorton. Group crosscoders for mechanistic analysis of symmetry. arXiv preprint
arXiv:2410.24184, 2024.

[13] Julian Minder, Clément Dumas, Caden Juang, Bilal Chugtai, and Neel Nanda. Robustly
identifying concepts introduced during chat fine-tuning using crosscoders. arXiv preprint
arXiv:2504.02922, 2025.

[14] Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes Gurnee, Nicholas L. Turner, Brian
Chen, Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael
Sklar, Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas
Henighan, Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam
Zimmerman, Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. Circuit tracing:
Revealing computational graphs in language models. Transformer Circuits Thread, 2025. URL
https://transformer-circuits.pub/2025/attribution-graphs/methods.html.

[15] Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian
Chen, Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham,
Nicholas L Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R.
Sumers, Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom
Henighan. Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet.
Transformer Circuits Thread, 2024. URL https://transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

[16] Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat,
Vikrant Varma, Jdnos Kramar, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open
sparse autoencoders everywhere all at once on gemma 2. arXiv preprint arXiv:2408.05147,
2024.

[17] Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L.
Turner, Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael
Sklar, Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas
Henighan, Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam
Zimmerman, Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. On the
biology of a large language model. Transformer Circuits Thread, 2025. URL https:
//transformer-circuits.pub/2025/attribution-graphs/biology.html.

[18] Jack Lindsey, Tom Conerly, Adly Templeton, Jonathan Marcus, and Tom Henighan. Scaling
laws for dictionary learning, April 2024. URL https://transformer-circuits.pub/
2024/april-update/index.html#scaling-laws. Circuits Updates — April 2024.

[19] Chris Olah and Adam Jermyn. The dark matter of neural networks? Transformer Circuits
Thread, July 2024. URL https://transformer-circuits.pub/2024/july-update/
index.html#dark-matter. Part of Circuits Updates - July 2024, Anthropic Interpretability
Team.

[20] Roébert Csordés, Christopher Potts, Christopher D Manning, and Atticus Geiger. Recurrent
neural networks learn to store and generate sequences using non-linear representations. arXiv
preprint arXiv:2408.10920, 2024.

[21] Sai Sumedh R Hindupur, Ekdeep Singh Lubana, Thomas Fel, and Demba Ba. Projecting
assumptions: The duality between sparse autoencoders and concept geometry. arXiv preprint
arXiv:2503.01822, 2025.

https://transformer-circuits.pub/2024/crosscoders/index.html
https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2024/april-update/index.html#scaling-laws
https://transformer-circuits.pub/2024/april-update/index.html#scaling-laws
https://transformer-circuits.pub/2024/july-update/index.html#dark-matter
https://transformer-circuits.pub/2024/july-update/index.html#dark-matter

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

Joshua Engels, Eric J Michaud, Isaac Liao, Wes Gurnee, and Max Tegmark. Not all language
model features are one-dimensionally linear. arXiv preprint arXiv:2405.14860, 2024.

Alexander Modell, Patrick Rubin-Delanchy, and Nick Whiteley. The origins of representation
manifolds in large language models. arXiv preprint arXiv:2505.18235, 2025.

Joshua Engels, Logan Riggs, and Max Tegmark. Decomposing the dark matter of sparse
autoencoders. arXiv preprint arXiv:2410.14670, 2024.

Ari Brill. Neural scaling laws rooted in the data distribution. arXiv preprint arXiv:2412.07942,
2024.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna
Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse,
Sam McCandlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah.
Toy models of superposition. Transformer Circuits Thread, 2022. https://transformer-
circuits.pub/2022/toy_model/index.html.

David Chanin, James Wilken-Smith, Tomas Dulka, Hardik Bhatnagar, Satvik Golechha, and
Joseph Bloom. A is for absorption: Studying feature splitting and absorption in sparse autoen-
coders. arXiv preprint arXiv:2409.14507, 2024.

Eric Michaud, Ziming Liu, Uzay Girit, and Max Tegmark. The quantization model of neural
scaling. Advances in Neural Information Processing Systems, 36:28699-28722, 2023.

Chris Olah. What is a linear representation? what is a multidimensional feature? Trans-
former Circuits Thread, July 2024. URL https://transformer-circuits.pub/2024/
july-update/index.html#linear-representations. Part of Circuits Updates - July
2024, Anthropic Interpretability Team.

Demian Till. Do sparse autoencoders find “true features”? https://www.lesswrong!
com/posts/QoR8noAB3Mp2KBA4B/do-sparse-autoencoders-find-true-features,
02 2024. Accessed: 2025-08-11.

Evan Anders, Clement Neo, Jason Hoelscher-Obermaier, and Jessica N.

Howard. Sparse autoencoders find composed features in small toy
models. https://www.lesswrong.com/posts/abwwqza2cY3W7L9cj/
sparse-autoencoders-find-composed-features-in-small-toy, 03 2024. Ac-

cessed: 2025-08-11.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Tom Conerly, Adly Templeton, Trenton Bricken, Jonathan Marcus, and Tom Henighan. Up-
date on how we train saes. Transformer Circuits Thread, April 2024. URL https://
transformer-circuits.pub/2024/april-update/index.html#training-saes. Part
of Circuits Updates - April 2024, Anthropic Interpretability Team.

Tom Conerly, Hoagy Cunningham, Adly Templeton, Jack Lindsey, Basil Hosmer, and Adam
Jermyn. Dictionary learning optimization techniques. Transformer Circuits Thread, Jan-
vary 2025. URL https://transformer-circuits.pub/2025/january-update/index,
htm1#DL. Part of Circuits Updates - January 2025, Anthropic Interpretability Team.

https://transformer-circuits.pub/2024/july-update/index.html#linear-representations
https://transformer-circuits.pub/2024/july-update/index.html#linear-representations
https://www.lesswrong.com/posts/QoR8noAB3Mp2KBA4B/do-sparse-autoencoders-find-true-features
https://www.lesswrong.com/posts/QoR8noAB3Mp2KBA4B/do-sparse-autoencoders-find-true-features
https://www.lesswrong.com/posts/a5wwqza2cY3W7L9cj/sparse-autoencoders-find-composed-features-in-small-toy
https://www.lesswrong.com/posts/a5wwqza2cY3W7L9cj/sparse-autoencoders-find-composed-features-in-small-toy
https://transformer-circuits.pub/2024/april-update/index.html#training-saes
https://transformer-circuits.pub/2024/april-update/index.html#training-saes
https://transformer-circuits.pub/2025/january-update/index.html#DL
https://transformer-circuits.pub/2025/january-update/index.html#DL

A Additional discussion

A.1 Are real SAEs in the pathological regime?

It is worth attempting to say more about whether SAEs are in the pathological scaling regime in
practice. As we stated in Section [2.5] this depends on the rate at which the feature frequencies p; o
i~(1+2) decay vs. the rate at which the per-feature SAE loss decays L(n;) i~ . In Appendix
following Brill (2024) [25]], we show that when o < $3, the efficiency at which SAEs discover features
D(N)/N approaches a reasonable constant, but when 8 < «, D(IN)/N approaches 0 as N — oc.
Whether feature manifolds could cause pathological SAE scaling in the real world depends then on

the real v (assuming it’s even a power law) and (3 (assuming L;(n;) is also a power law o« 7, A).

What is a?: We first speculate on what o may be. One way of trying to measure this is to look at
how the latent activation frequencies decay when sorted by frequency. For a few Gemma Scope
SAEs [16], we show these curves in Figure [d] and measure slopes between —0.57 and —0.74. If
there was a one-to-one relationship between SAE latents and features in the data, then this would
imply an o =~ 0.5 to o =~ 0.7. However, feature absorption [27], the learning of compositional
features [30,131]], and latents tiling a feature manifold could distort the relationship between the true
feature frequencies and the latent activation frequencies.

Gemma scope layer 12 SAE latent firing frequencies

T
—_—_ 1 |16k slope: -0.74

T
- 1
S I [32k slope: -0.57 | !
o 1071 1
S 1
g 1
= 1
(o)}
£])
& 1073 A 1 1
b — 16k latents 1
3 —— 32k latents 1 1
© 1 1
65k latents 1 1
0 ——————————— R . S
10° 10t 102 103 104 10°

latent index

Figure 4: Frequencies at which latents fire in gemma scope SAEs, sorted by frequency. We measure
the power law decay exponent between latent 10 and 10* to be -0.74 for an SAE with 16k latents
and -0.57 for an SAE with 32k latents.

Another highly speculative way of trying to estimate o could be to look at the exponents of neural
scaling laws for models like those the SAE is being trained on. The idea here is that if the “features”
are the computational units of neural networks that ref [28]] called the “quanta”, then the underlying
neural scaling law slope would reflect the distribution over feature occurrences. Neural scaling
exponents for language models (w.r.t. network parameters) (ay in the scaling law N ~“~ have
been measured to have an a of 0.07 [32] and 0.34 [33], potentially implying a distribution over
quanta/features p; o i~ (17%) with exponent « in that same range.

What is 5?: In Figure and Figure@ we show L(n) scaling curves for SAEs reconstructing single
synthetic feature manifolds. We find that these curves depend on the feature geometry. In particular,
we see that when reconstructing hollow hyperspheres, we can observe gradual L(n) scaling. The
higher-dimensional hyperspheres in particular can accommodate at least 10* latents without loss
plateauing. In Figure |5l we plot the slope that we measure for these curves between 102 and 10*
latents, and measure a /3 of roughly 0.05 for hyperspheres with dimension 6-8.

However, in the more realistic setting where there is variation in the radial direction—the intensity that
features fire [29]-we see that manifolds tend to saturate very quickly. It appears that the saturation
happens when n; ~ 2d;, likely corresponding to solutions where the SAE latents form a basis for the

Standard RelU L1 SAE Scaling on Spherical Manifolds (A=0.1, ambient=64) . .
Total SAE Loss vs Latents. Scaling Exponent vs Manifold Dimension

0.00 0,002

Lex 107 — Manifold dim=1 (5~1)
— Manifold dim=2 (5~2)
— Manifold dim=3 (5~3)
— Manifold dim=4 (5~4)
— Manifold dim=>5 (5~5)

Manifold dim=6 (5~6) -0.01

1.5x 107!

Manifold dim=7 (5~7)
. Manifold dim=8 (5~8)
1.4x 10

-0.02

1.3x 107!

-0.03

Total SAE Loss
Log-Log Slope

12x107"

-0.04

\ oos

10° 104 1 2 3 4 5 6 7 8
Number of latents Manifold Dimension

1.1x 107}

Figure 5: Measured slopes of L; curves for ReLU L1 SAEs trained on hyperspheres.

subspace where the feature is embedded (or rather use two latents for each basis direction, one in the
“positive” direction and one in the “negative” direction since latents can only fire positively).

Therefore, the slope of the L;(n;) curve, and whether SAEs can use a large number of latents to
reduce loss on feature manifolds, depends on the geometry of the manifold. Our experiments so far
indicate that in the more realistic setting where there is variation in the radial direction (which was
seen in practice in ref [22]), that SAEs do not discover solutions which take advantage of a large
number of latents, and instead learn a basis solution. This is probably the strongest argument
against the possibility of feature manifolds causing pathological SAE scaling.

Lastly, we note that we are unsure how “ripples” [29] in feature manifolds could affect SAE scaling
on them. If a feature manifold is intrinsically low dimensional, but ripples through a large number of
other dimensions, we could imagine SAE solutions potentially looking different.

B Derivations

B.1 Loss decomposition into per-feature terms

‘We work under the assumptions in (i) feature-specific latents—each latent j fires only when
a unique feature i(j) is active; (ii) decoder respect for subspaces—decoder columns for latents
assigned to feature ¢ lie in span(S;); and (iii) orthogonal feature subspaces—span(S;) L span(Sy)
fori # k.

Additivity of sparsity. For a sample x =), A(x) S, f;, feature-specificity implies f'j (x)=0
unless i(j) € A(x). For separable sparsity penalties (LO/L1), S(f) = > s(f;), so

SEx) =Y. D s(fix).
i€ A(x) jii(j)=i

Thus the sparsity cost splits across active features.

Orthogonal reconstruction. Write the model reconstruction as X =) .X;, with X; =
> jriG)=i Wi f; € span(S;) by (ii). Then, using (iii) and the Pythagorean theorem,

2
e = %13 = || 32 (8ifi)|, = 2 18ifi — 3.

Hence the per-sample objective £(x) = [|x — %||3 + AS(f) decomposes as a sum over features active
on that sample. Taking expectations and letting n; be the number of latents allocated to feature 7, we

obtain

where p; := Pr[f; # 0] and L;(n;) is the optimal (feature-i) expected reconstruction-plus-sparsity
loss achieved with n; latents restricted to span(S;). We note that the derivations below closely follow
those in Brill (2024) [25], adapted to our SAE setting with appropriate changes in notation and
interpretation. We show them here for convenience.

B.2 Scaling setup and notation

We study the optimal latent allocation n; minimizing () under two empirical power-law regularities:

pi oc i (1T

(features sorted by frequency), Li(n) = L(n) x n™?,
with o, B > OE] Define the discovery count
D(N) = |{i: n; >0}
and the total expected loss L(N) := Y. p;L(n;) at total width N. A standard Lagrange multiplier
treatment (continuous relaxation) yields

_1 n 1+«
ni < p; 7 o i, = 115)
In practice there is a cutoff index i. (“last discovered feature”) with n;, ~ 1 and n; < 1 fori > i..

Then D(N) = i, and
N = Z n; o< Z 7.
i<ic i<ic
Two regimes follow depending on whether the allocation tail-sum diverges or converges.

B.3 Case 5 < « (simple, latent accumulation on frequent features)

Here v > 1,50), i~ converges to a constant Z (7). From @), N oc >, ; ™7 — Z () implies
the proportionality constant in (2) scales as x oc N. The discovery cutoff is set by n;, = 1:

. . 1 148
1 =~ ki;?” = i, x kY7 «x N7 = Ni+a,

Thus

D(N) x N == (sublinear discovery). 3)

For the loss, the discovered part scales as
Zpin;ﬂ x K_BZZ'_’Y x kP o« N7P,

i<ic i<ic

while the undiscovered tail } ,; p; oc i, @ o N—e(+8)/(1+e) decays faster since v > 3. There-
fore

L(N) o« N7P. 4)

Intuitively, the SAE keeps shaving loss on common feature manifolds; discovery lags.

B.4 Case o < [(benign, feature discovery keeps up)

Now v < 1,50 >, ,; i~7 oci,™7. Using N oc £~ and the threshold 1 ~ xi; 7, we eliminate
to find -
N < i, = D(N) < N.

For the loss over discovered features,
Zpin;ﬁ S m_BZi_7 oc i7P7glm = lmHe) — me o N7

C
i<ic i<ie

?Constants are inessential for power-law exponents and are dropped.

10

JumpReLU SAE Scaling on Hyperspheres JumpReLU SAE Scaling on Spherical Shells

10° A
] S~ —— manifold dim=2
" 1 S7~2 " 0 —— manifold dim=3
a] s~3 | @ 10° 1 —— manifold dim=4
_1] s~ | a3 - —— manifold dim=5
! S5 | W 7 —— manifold dim=6
& 7 576 | &] manifold dim=7
© S | ®© manifold dim=8
§] s~8 § 7 manifold dim=9
10—1 -
TTT T T T TTTTIT T T T TTTITIT T LI TTT T T T TTTTIT T T T TTTTIT T T TTT
100 10! 102 100 10! 102
Number of Latents Number of Latents

Figure 6: JumpReLU SAE scaling on individual toy feature manifolds, showing how L(n) curves
depend on feature geometry. We train with the tanh loss from [35] with ¢ = 0.1 and A\; = 1.0.
Left: JumpReLU SAE scaling on unit hyperspheres of varying dimension. Right: JumpReLU SAE
scaling on points sampled in {x : 0.5 < |x| < 2}. We see that, like with ReLU SAEs, that when
there is variation in the radial direction between samples that our SAEs do not learn solutions which
can continue to accommodate latents, and instead plateau after allocating roughly 2d; latents to the
feature manifold.

The undiscovered tail obeys > 7, ; p; o< iz ® oc N~¢, so both pieces match and

| L(V) « N)

Here, extra width primarily buys new features rather than over-tiling old manifolds; loss scaling
mirrors the frequency tail.

C Additional Experimental Details

For Figure[3|and Figure[6] we trained SAEs on synthetic feature manifolds. For these experiments,
we trained for 12000 steps, with a batch size of 2048, and a learning rate of 10~3 with the Adam
optimizer. For the L1 penalty calculation, we use the trick of multiplying the decoder vector L2
norms by the latent activation [34].

D SAE scaling curves on synthetic manifolds

In Figure[6] we show JumpReLU SAE scaling on individual feature manifolds like we did for ReLU
SAEs in Figure 3]

E SAE feature geometry on LLMs and vision models

E.1 JumpReLU Gemma Scope SAEs

If a large number of latents “tile” a single low-dimensional feature manifold, then we would expect
the decoder directions for those SAE latents to have neighbors with high cosine similarity. One can
see this effect directly in Figure[l| where we see that the SAE decoder latents begin to be arranged
quite tightly together along the manifold. In this section, we study whether SAEs on real neural
network activations have large numbers of latents with very high cosine similarity to their nearest
neighbor.

We first study this in the Gemma Scope SAEs [16]. In Figure[7] we plot the distribution over cosine
similarities between decoder latent vectors and their nearest neighbor for Gemma Scope SAEs on
layer 12 (residual stream) of gemma-2-2b. While the distribution is skewed substantially higher than
one would expect if all latent decoder vectors were random (and thus approximately orthogonal), we
do not overall see a very large fraction of latents with extremely high cosine similarity to their nearest
neighbor.

11

gemma-scope-2b-pt-res layer 12
Decoder distribution over cosine similarities to nearest neighbor

width_32k width_65k width_131k
10% 4] 3
E 103 4 3]
3 10° A
2 |]
T 10° 3 € 107 4 5 1%
8 = gverage_|0_12 g g 102 = average_|0_12
(@] === average_|0_22 (@] 1 == average_l0_21 (@] q === average_|0_20
10! o == average_I0_40 101 o = average 10_38] == average_|0_36
m—— average_l0_76 q == average 10_72 1 7| == average_10_67
=== average_l0_155] = average_10_141 10 _§ == average_|0_129
100 = average_l0_360 100 = average_|0_297 E m—— agverage_|0_264
T T T T T T
0.0 0.5 1.0 0.0 0.5 1.0 0.5 1.0
Cosine similarity Cosine similarity Cosine similarity
width_262k width_524k width_1m
104 4
5 1 104
10° o
- 3 — 10° +
c c [
8 102 _: = average_|0_11 g m— average_|0_22 8 = gverage_|0_19
(@] g == average_l0_21 (@] === average_|0_29 (@] === average_|0_26
1 average_l0_36 === average_|0_46 102 o — average_l0_58
= average_|0_67 10! - === average_I0_65 = average_|0_73
10! o — average_l0_121 === average_|0_115 == average_|0_107
= average_|0_243 = average_|0_227 = average_|0_207
T T T T T T
0.5 1.0 0.5 1.0 0.5 1.0
Cosine similarity Cosine similarity Cosine similarity

Figure 7: Distribution over cosine similarities between decoder vectors and their nearest neighbor.

Intriguingly though, for some SAEs we do see a small uptick on the right side of this distribution,
where between 10-100 latents have cosine similarity > 0.97 with their nearest neighbor. When we
investigated these latents in one SAE (width_262k, average_10_121), we found that for each of these
latents, their nearest neighbor was dead (across a dataset of over 250 million tokens). These latents
are not then being used to very sparsely reconstruct points on a manifold, and instead seem to be an
artifact of the training process. However, the alive latents in this set are not typical SAE latents. A
large number of these latents fire on tokens representing single numerical digits and single alphabet
characters. We do not have an explanation of this phenomenon, but wonder whether there may be
some underlying manifold representation which the SAE at one point in training tried to “tile”, but
then when the latents got too close, one of them was killed to reduce the LO loss.

E.2 ReLU L1 SAEs on Inception-vl

We also study the geometry of latent decoder directions on SAEs trained on Inception-v1 activations.
We train SAEs on activations from mixed3b using an L1 coefficient, A, of 1, a learning rate of 10~4,
and an expansion factor of 16 (a total of 7680 latents).

In Figure [8] we find that on Inception-v1, a meaningful fraction of SAE latents have very high
cosine similarity with their nearest neighbor. We note however that this could be due to latents being
duplicated, which is not strongly disincentivized by the L1 loss, as pointed out in .

12

Nearest Neighbor Similarity Distribution: Curve Features vs All Features
T T

All features !
mmm Curve features |
=== All mean: 0.626 !
10! 4 t
--- Curves mean: 0.816 !
1
1
|
1
L
1
100 4
z
@
H
10714
10724
0.0 0.2 04 0.6 X 10

Cosine similarity to nearest neighbor

Figure 8: Distribution over pairwise cosine similarities for Inception V1.

13

	Introduction
	A model of sparse autoencoder scaling
	The structure of data and the SAE architecture
	Assumption: SAE optimization reduces to a latent allocation problem
	Warm-up on discrete features
	Intuition behind pathological manifold scaling
	Solution for power-law L(n) following Brill (2024)
	Numerical simulation

	SAE scaling on synthetic features and on real neural networks
	Discussion
	Additional discussion
	Are real SAEs in the pathological regime?

	Derivations
	Loss decomposition into per-feature terms
	Scaling setup and notation
	Case beta<alpha (simple, latent accumulation on frequent features)
	Case alpha<beta (benign, feature discovery keeps up)

	Additional Experimental Details
	SAE scaling curves on synthetic manifolds
	SAE feature geometry on LLMs and vision models
	JumpReLU Gemma Scope SAEs
	ReLU L1 SAEs on Inception-v1

