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Abstract

Sparse autoencoders (SAEs) model the activations of a neural network as linear1

combinations of sparsely occurring directions of variation (latents). The ability of2

SAEs to reconstruct activations follows scaling laws w.r.t. the number of latents. In3

this work, we adapt a capacity-allocation model from the neural scaling literature4

(Brill, 2024) to understand SAE scaling, and in particular, to understand how feature5

manifolds (multi-dimensional features) influence scaling behavior. Consistent with6

prior work, the model recovers distinct scaling regimes. Notably, in one regime,7

feature manifolds have the pathological effect of causing SAEs to learn far fewer8

features in data than there are latents in the SAE. We provide some preliminary9

discussion on whether or not SAEs are in this pathological regime in the wild.10

1 Introduction11

Sparse autoencoders [1–9] and related methods [10–14] decompose neural network activations into a12

collection of sparsely activating latents. As SAEs have been scaled (now to millions of latents) [4, 15–13

17], they have exhibited scaling laws [4, 15, 18], where loss improves predictably as a power law with14

the number of latents in the SAE. Although sparse autoencoders learn many interpretable features,15

some worry that they may miss important structure in neural representations, either because there are16

an extraordinary number of very rare features in activations [19] or because the SAE architecture and17

training objective make incorrect assumptions about the structure of neural representations [20, 21].18

In this work, we develop a formal analysis of SAE scaling behavior and scaling laws. We are19

particularly interested in understanding SAE scaling when activations contain a particular kind of20

structure: feature manifolds (multi-dimensional features) [22, 23], and in whether feature manifolds21

could cause pathological scaling and exacerbate the problem of interpretability “dark matter” [19].22

Our main approach is to adapt a mathematical model of neural scaling from Brill (2024) [24], where23

models allocate capacity between different data manifolds, to the case of SAEs. Guided by our model,24

we then conduct experiments to probe whether SAEs may scale pathologically in practice.25

2 A model of sparse autoencoder scaling26

2.1 The structure of data and the SAE architecture27

Activation data: We assume the multi-dimensional linear representation hypothesis [25, 26] and28

that neural network activation vectors x ∈ Rd are generated as a sum of sparsely occurring features:29

x =
∑

i Sifi where Si is the subspace where feature i lives, specified by a d × di matrix whose30

columns are basis vectors of the subspace, and fi is a random variable taking values in Rdi , where31

di is the dimension of feature i. Each feature fi is sparse, supported on a small fraction of the data:32

pi = Pr[fi ̸= 0] ≪ 1, so each activation vector is a sum of only a small subset of all features.33
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Figure 1: SAE scaling on a toy feature manifold S1. We train ReLU SAEs with an L1 sparsity
penalty to reconstruct points on the circle S1 ⊆ R2. We find that SAEs can slightly reduce their total
loss by “tiling” the manifold with more sparsely activating latents. For SAEs with 4, 8, and 24 latents,
we show the data (S1) in grey, the SAE’s reconstruction in black, the decoder latent directions as
arrows, and indicate the part of the circle that each latent fires on as colored arcs. If SAEs can reduce
loss by “tiling” a manifold in this way, they may do this at the expense of learning rarer features.

SAEs: Sparse autoencoders attempt to reconstruct activation vectors as a sum of sparsely activating34

latents, consisting of an encoding step f̂ = Enc(x) = σ(Wex+ be) where σ is a nonlinearity and35

f̂ ∈ RN , and a decoding step x̂ = Dec(f̂) = Wdf̂ + bd. Sparse autoencoders are trained with SGD36

on a loss L = ∥x− x̂∥22 + λS(f̂) where S(f̂) is a sparsity-encouraging loss like ∥f̂∥1 or ∥f̂∥0.37

2.2 Assumption: SAE optimization reduces to a latent allocation problem38

We assume that SAEs learn solutions where each latent j is specific to a particular feature i, so that
f̂j ̸= 0 only if fi ̸= 0. We further assume that the SAE latent decoder directions for the latents
associated with feature i lie within the subspace Si, and that the subspaces where features live are
orthogonal, i.e., Si ⊥ Sk if i ̸= k. It follows that the SAE loss on any sample x is the sum of losses
on samples where each active feature had fired alone: if A(x) are the “active” features i where fi ̸= 0
on x, then

L(x) = L

 ∑
i∈A(x)

Sifi

 assumption
=

∑
i∈A(x)

L(Sifi).

We note that feature absorption and related phenomena [27] and the non-orthogonality of features
in practice violate these assumptions, but we will accept them for the sake of expedience. If SAE
latents are specific to features, then an optimal SAE’s loss on a feature i will be determined by the
number of latents ni the SAE allocates to reconstructing feature i, which we denote Li(ni), and will
be determined by the geometry of the feature fi. The expected loss across activations x is then:

Ex [L(x)] = Ex

 ∑
i∈A(x)

L(Sifi)

 =
∑
i

piL(Sifi) =
∑
i

piLi(ni)

We therefore reduce the SAE optimization problem to the problem of choosing how many latents ni to39

allocate to each feature i in the data. To understand SAE scaling behavior, we solve for the allocation40

of latents to each feature ni that minimizes
∑

i piLi(ni) given a distribution over feature frequencies41

pi, the per-feature loss curves Li, and the constraint on the total number of latents
∑

i ni = N .42

2.3 Warm-up on discrete features43

To get comfortable with this formulation, we first apply it to the simplest case where all features44

are discrete. We imagine that for all features i, di = 1 and fi = 1 on the fraction pi of samples45

where feature i is present and is 0 otherwise. For each feature i, an SAE incurs loss 1 if ni = 046

(reconstruction loss = 1 and sparsity loss = 0). If ni = 1, it can perfectly reconstruct the feature,47

incurring sparsity loss λ with L0 or L1 sparsity loss. Therefore L(n) = 1 if ni < 1 else λ.48
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A model of SAE scaling on feature manifolds
If SAEs allocate latents to solve the following optimization problem...

then, as in the neural scaling model from Brill (2024), there are two regimes:

Good regime:

Number of manifolds discovered: Number of manifolds discovered:

Pathological regime:

Figure 2: Left: Application of Brill’s (2024) [24] capacity-allocation model to SAE scaling. Right:
numerical simulation of SAE scaling when the most frequently occurring feature is a manifold with
loss scaling as L(n) ∝ n−β and all other features are discrete. We see that if β ≪ α, then a simulated
SAE with 100 million latents discovers only 3 million features.

With total loss
∑

i piL(ni) and N latents in our SAE we see that the optimal solution is to allocate49

one latent to the most commonly occurring N features. In this setup, then, the effect of scaling50

SAEs is to learn an increasing number of discrete features in the data, in decreasing order of51

their frequency. We will often be interested in the number of features “discovered” by the SAE52

D(N) = |{i : ni > 0}|. In this setting, D(N) = N . To recover the power law scaling that53

SAEs exhibit empirically, we only need to assume that pi ∝ i−(1+α). With this assumption, the54

improvement in total loss from adding a marginal latent i follows pi(1− λ), and integrating from55

i = 1 . . . N we get that the total loss drops off as a power law L(N) ∝ N−α. We note that this model56

of SAE scaling mirrors the “quanta” model of neural scaling from [28], where here the “quanta” are57

features. This picture also agrees with the finding from [15] that SAEs learn features for concepts in58

data approximately in order of the frequencies (roughly Zipfian) at which those concepts occur.59

2.4 Intuition behind pathological manifold scaling60

Recently, several works have commented on the existence of feature manifolds [12, 23] (multi-61

dimensional features) [22] in neural networks. In our formalism above, these are features i with62

di > 1 and where the range of fi is a manifold embedded in Rdi . With feature manifolds, instead63

of having a discrete Li(ni) curve like above, Li might drop off slowly as ni grows. To show that64

this is possible, in Figure 1, we show the scaling curve for ReLU SAEs (σ = ReLU) trained with L165

penalty to reconstruct points on a circle x ∈ S1 ⊆ R2. We observe that these SAEs can gradually66

reduce their total loss by more finely “tiling” the manifold with latents that activate more sparsely,67

and that this manifold can accommodate dozens of latents before loss plateaus. While such solutions68

ruthlessly minimize the SAE loss, it is not obvious that they would be better from an interpretability69

standpoint. Our fundamental concern is that if Li(ni) curves decrease gradually, it could be optimal70

for an SAE to tile common feature manifolds instead of discovering rarer features in data.71

2.5 Solution for power-law L(n) following Brill (2024)72

We assume that feature frequencies decay as a power law pi ∝ i−(1+α) and that all features have73

the same power law per-feature loss curve Li(ni) = n−β
i . In this setting, our model of SAE scaling74

directly corresponds to the model of neural scaling from Brill (2024) [24], where neural networks75

allocate units of capacity ni towards approximating functions on distinct power-law distributed76

data manifolds, with per-manifold loss scaling as n−c/D
i . We show similar derivations to Brill [24]77

in Appendix B and summarize the core results in Figure 2 (left).78

In our notation, there is a key threshold: α < β. When α < β, D(N) ∝ N , so the “efficiency”79

at which SAEs discover features D(N)/N tends towards a constant. However, when β < α, then80

D(N) ∝ N
1+β
1+α , and so D(N)/N tends towards 0. This illustrates the core dynamic of concern:81

3



100 101 102 103 104

Number of Latents

10 1

100

To
ta

l S
AE

 L
os

s

ReLU SAE Scaling on Hyperspheres
S^1
S^2
S^3
S^4
S^5
S^6
S^7
S^8

100 101 102 103 104

Number of Latents

100

To
ta

l S
AE

 L
os

s

ReLU SAE Scaling on Empty Balls
manifold dim=2
manifold dim=3
manifold dim=4
manifold dim=5
manifold dim=6
manifold dim=7
manifold dim=8
manifold dim=9

Figure 3: ReLU SAE scaling on individual toy feature manifolds, showing how L(n) curves depend
on feature geometry. We train with L1 sparsity λ = 0.1. Left: SAE scaling on unit hyperspheres of
varying dimension. Right: SAE scaling on points sampled in {x : 0.5 < |x| < 2}.

when SAEs can continue to reduce loss by “tiling” common feature manifolds, then it can be optimal82

for them to do this at the expense of discovering other, rarer features.83

2.6 Numerical simulation84

While our mathematical model above assumed that all features have the same Li(ni) curve, we can85

run numerical simulations with arbitrary Li(ni) curves. In Figure 2 (right), we conduct simulations86

where the first feature scales as n−β but all other features are discrete and scale as step functions87

1n=0, and with pi ∝ i−(1+0.5). We find that, with only a single feature with power-law L(ni) scaling,88

when β < α this feature begins to absorb the vast majority of latents in the SAE once N is large.89

3 SAE scaling on synthetic features and on real neural networks90

In our analysis, whether SAEs will scale pathologically depends on the shape of their per-feature loss91

curves Li(ni). We showed one such L(n) curve in Figure 1, but we further explore this by training92

SAEs on a variety of synthetic manifolds in Figure 3 and in Appendix Figure 6. Overall, we find that93

the shape of the L(n) curve depends on the manifold geometry, with some manifolds accommodating94

many thousands of latents without saturating loss while on others the loss curve plateaus very quickly95

(effectively β → ∞). In Appendix A.1, we provide further discussion on what α and β may be, and96

whether SAEs might be scaling pathologically, in practice.97

When a large number of SAE latents are allocated to a relatively low-dimensional feature manifold,98

we’d expect the cosine similarities between the decoder latents allocated to that manifold to be close99

to 1. In Appendix E, we show the distribution over decoder latent nearest neighbor cosine similarities100

for SAEs trained on LLM and vision model activations, and find some differences between them.101

4 Discussion102

In this short paper, we have described a model of SAE scaling which reduces the SAE optimization103

problem to the problem of optimally allocating different numbers of SAE latents to different features104

in data. As in the model of scaling from Brill [24] SAE scaling laws either result from an underlying105

power law distribution over features pi ∝ i−(1+α), or from the improvements in loss from tiling106

common feature manifolds following a power law Li(ni) ∝ n−β
i . When β < α, SAE latents could107

massively accumulate on commonly occurring feature manifolds.108

Unfortunately, we do not resolve the question of whether SAEs are in this pathological scaling regime109

in practice. Our uncertainty is due to our knowing neither the distribution over true feature frequencies110

(determining α) nor the geometry of real-world neural network feature manifolds (which determines111

β). We give some additional commentary in Appendix A.1. We view this work as primarily about112

framing, rather than completely answering, this interesting problem.113
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A Additional discussion236

A.1 Are real SAEs in the pathological regime?237

It is worth attempting to say more about whether SAEs are in the pathological scaling regime in238

practice. As we stated in Section 2.5, this depends on the rate at which the feature frequencies pi ∝239

i−(1+α) decay vs. the rate at which the per-feature SAE loss decays L(ni) ∝ i−β . In Appendix B,240

following Brill (2024) [24], we show that when α < β, the efficiency at which SAEs discover features241

D(N)/N approaches a reasonable constant, but when β < α, D(N)/N approaches 0 as N → ∞.242

Whether feature manifolds could cause pathological SAE scaling in the real world depends then on243

the real α (assuming it’s even a power law) and β (assuming Li(ni) is also a power law ∝ n−β
i ).244

What is α?: We first speculate on what α may be. One way of trying to measure this is to look at245

how the latent activation frequencies decay when sorted by frequency. For a few Gemma Scope246

SAEs [16], we show these curves in Figure 4, and measure slopes between −0.57 and −0.74. If247

there was a one-to-one relationship between SAE latents and features in the data, then this would248

imply an α ≈ 0.5 to α ≈ 0.7. However, feature absorption [27], the learning of compositional249

features [29, 30], and latents tiling a feature manifold could distort the relationship between the true250

feature frequencies and the latent activation frequencies.251

Another highly speculative way of trying to estimate α could be to look at the exponents of neural252

scaling laws for models like those the SAE is being trained on. The idea here is that if the “features”253

are the computational units of neural networks that ref [28] called the “quanta”, then the underlying254

neural scaling law slope would reflect the distribution over feature occurrences. Neural scaling255

exponents for language models (w.r.t. network parameters) (αN in the scaling law N−αN have256

been measured to have an αN 0.07 [31] and 0.34 [32], potentially implying a distribution over257

quanta/features pi ∝ i−(1+α) with exponent α in that same range.258
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Figure 4: Frequencies at which latents fire in gemma scope SAEs, sorted by frequency. We measure
the power law decay exponent between latent 102 and 104 to be -0.74 for an SAE with 16k latents
and -0.57 for an SAE with 32k latents.

Figure 5: Measured slopes of Li curves for ReLU L1 SAEs trained on hyperspheres.

What is β?: In Figure 3 and Figure 6, we show L(n) scaling curves for SAEs reconstructing single259

synthetic feature manifolds. We find that these curves depend on the feature geometry. In particular,260

we see that when reconstructing hollow hyperspheres, we can observe gradual L(n) scaling. The261

higher-dimensional hyperspheres in particular can accommodate at least 104 latents without loss262

plateauing. In Figure 5, we plot the slope that we measure for these curves between 102 and 104263

latents, and measure a β of roughly 0.05 for hyperspheres with dimension 6-8.264

However, in the more realistic setting where there is variation in the radial direction–the intensity that265

features fire [19]–we see that manifolds tend to saturate very quickly. It appears that the saturation266

happens when ni ≈ 2di, likely corresponding to solutions where the SAE latents form a basis for the267

subspace where the feature is embedded (or rather use two latents for each basis direction, one in the268

“positive” direction and one in the “negative” direction since latents can only fire positively).269

Therefore, the slope of the Li(ni) curve, and whether SAEs can use a large number of latents to270

reduce loss on feature manifolds, depends on the geometry of the manifold. Our experiments so far271

indicate that in the more realistic setting where there is variation in the radial direction (which was272

seen in practice in ref [22]), that SAEs do not discover solutions which take advantage of a large273

number of latents, and instead learn a basis solution. This is probably the strongest argument274

against the possibility of feature manifolds causing pathological SAE scaling.275
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Lastly, we note that we are unsure how “ripples” [33] in feature manifolds could affect SAE scaling276

on them. If a feature manifold is intrinsically low dimensional, but ripples through a large number of277

other dimensions, we could imagine SAE solutions potentially looking different.278

B Derivations279

B.1 Loss decomposition into per-feature terms280

We work under the assumptions in §2.2: (i) feature-specific latents—each latent j fires only when281

a unique feature i(j) is active; (ii) decoder respect for subspaces—decoder columns for latents282

assigned to feature i lie in span(Si); and (iii) orthogonal feature subspaces—span(Si) ⊥ span(Sk)283

for i ̸= k.284

Additivity of sparsity. For a sample x =
∑

i∈A(x) Sifi, feature-specificity implies f̂j(x) = 0285

unless i(j) ∈ A(x). For separable sparsity penalties (L0/L1), S(f̂) =
∑

j s(f̂j), so286

S(f̂(x)) =
∑

i∈A(x)

∑
j: i(j)=i

s(f̂j(x)) .

Thus the sparsity cost splits across active features.287

Orthogonal reconstruction. Write the model reconstruction as x̂ =
∑

i x̂i, with x̂i :=288 ∑
j: i(j)=i wj f̂j ∈ span(Si) by (ii). Then, using (iii),289

∥x− x̂∥22 =
∥∥∥∑

i

(
Sifi − x̂i

)∥∥∥2
2
=

∑
i

∥Sifi − x̂i∥22 .

Hence the per-sample objective L(x) = ∥x− x̂∥22 +λS(f̂) decomposes as a sum over features active290

on that sample. Taking expectations and letting ni be the number of latents allocated to feature i, we291

obtain292

Ex

[
L(x)

]
=

∑
i

pi Li(ni),
∑
i

ni = N (1)

where pi := Pr[fi ̸= 0] and Li(ni) is the (feature-i) expected reconstruction-plus-sparsity loss293

achieved with ni latents restricted to span(Si). We note that the derivations below closely follow294

those in Brill (2024) [24], adapted to our SAE setting with appropriate changes in notation and295

interpretation. We show them here for convenience.296

B.2 Scaling setup and notation297

We study the optimal latent allocation ni minimizing (1) under two empirical power-law regularities:298

pi ∝ i−(1+α) (features sorted by frequency), Li(n) ≡ L(n) ∝ n−β ,

with α, β > 0.1 Define the discovery count299

D(N) :=
∣∣{ i : ni > 0 }

∣∣
and the total expected loss L(N) :=

∑
i piL(ni) at total width N . A standard Lagrange multiplier300

treatment (continuous relaxation) yields301

ni ∝ p
1

1+β

i ∝ i−γ , γ :=
1 + α

1 + β
. (2)

In practice there is a cutoff index ic (“last discovered feature”) with nic ≈ 1 and ni ≲ 1 for i > ic.302

Then D(N) ≍ ic and303

N =
∑
i≤ic

ni ∝
∑
i≤ic

i−γ .

Two regimes follow depending on whether the allocation tail-sum diverges or converges.304

1Constants are inessential for power-law exponents and are dropped.
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B.3 Case β < α (simple, latent accumulation on frequent features)305

Here γ > 1, so
∑

i≥1 i
−γ converges to a constant Z(γ). From (2), N ∝

∑
i≤ic

i−γ → Z(γ) implies306

the proportionality constant in (2) scales as κ ∝ N . The discovery cutoff is set by nic ≈ 1:307

1 ≈ κ i−γ
c =⇒ ic ∝ κ1/γ ∝ N

1
γ = N

1+β
1+α .

Thus308

D(N) ∝ N
1+β
1+α (sublinear discovery). (3)

For the loss, the discovered part scales as309 ∑
i≤ic

pi n
−β
i ∝ κ−β

∑
i≤ic

i−γ ∝ κ−β ∝ N−β ,

while the undiscovered tail
∑

i>ic
pi ∝ i−α

c ∝ N−α(1+β)/(1+α) decays faster since α > β. There-310

fore311

L(N) ∝ N−β . (4)

Intuitively, the SAE keeps shaving loss on common feature manifolds; discovery lags.312

B.4 Case α < β (benign, feature discovery keeps up)313

Now γ < 1, so
∑

i≤ic
i−γ ∝ i1−γ

c . Using N ∝ κ i1−γ
c and the threshold 1 ≈ κ i−γ

c , we eliminate κ314

to find315

N ∝ ic =⇒ D(N) ∝ N.

For the loss over discovered features,316 ∑
i≤ic

pi n
−β
i ∝ κ−β

∑
i≤ic

i−γ ∝ i−βγ
c i1−γ

c = i 1−(1+α)
c = i−α

c ∝ N−α.

The undiscovered tail obeys
∑

i>ic
pi ∝ i−α

c ∝ N−α, so both pieces match and317

L(N) ∝ N−α. (5)

Here, extra width primarily buys new features rather than over-tiling old manifolds; loss scaling318

mirrors the frequency tail.319

C Additional Experimental Details320

For Figure 3 and Figure 6, we trained SAEs on synthetic feature manifolds. For these experiments,321

we trained for 12000 steps, with a batch size of 2048, and a learning rate of 10−3 with the Adam322

optimizer. For the L1 penalty calculation, we use the trick of multiplying the decoder vector L2323

norms by the latent activation [34].324

D SAE scaling curves on synthetic manifolds325

In Figure 6, we show JumpReLU SAE scaling on individual feature manifolds like we did for ReLU326

SAEs in Figure 3.327

E SAE feature geometry on LLMs and vision models328

E.1 JumpReLU Gemma Scope SAEs329

If a large number of latents “tile” a single low-dimensional feature manifold, then we would expect330

the decoder directions for those SAE latents to have neighbors with high cosine similarity. One can331

see this effect directly in Figure 1, where we see that the SAE decoder latents begin to be arranged332

quite tightly together along the manifold. In this section, we study whether SAEs on real neural333
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Figure 6: JumpReLU SAE scaling on individual toy feature manifolds, showing how L(n) curves
depend on feature geometry. We train with the tanh loss from [35] with c = 0.1 and λs = 1.0.
Left: JumpReLU SAE scaling on unit hyperspheres of varying dimension. Right: JumpReLU SAE
scaling on points sampled in {x : 0.5 < |x| < 2}. We see that, like with ReLU SAEs, that when
there is variation in the radial direction between samples that our SAEs do not learn solutions which
can continue to accommodate latents, and instead plateau after allocating roughly 2di latents to the
feature manifold.

network activations have large numbers of latents with very high cosine similarity to their nearest334

neighbor.335

We first study this in the Gemma Scope SAEs [16]. In Figure 7, we plot the distribution over cosine336

similarities between decoder latent vectors and their nearest neighbor for Gemma Scope SAEs on337

layer 12 (residual stream) of gemma-2-2b. While the distribution is skewed substantially higher than338

one would expect if all latent decoder vectors were random (and thus approximately orthogonal), we339

do not overall see a very large fraction of latents with extremely high cosine similarity to their nearest340

neighbor.341

Intriguingly though, for some SAEs we do see a small uptick on the right side of this distribution,342

where between 10-100 latents have cosine similarity > 0.97 with their nearest neighbor. When we343

investigated these latents in one SAE (width 262k, average l0 121), we found that for each of these344

latents, their nearest neighbor was dead (across a dataset of over 250 million tokens). These latents345

are not then being used to very sparsely reconstruct points on a manifold, and instead seem to be an346

artifact of the training process. However, the alive latents in this set are not typical SAE latents. A347

large number of these latents fire on tokens representing single numerical digits and single alphabet348

characters. We do not have an explanation of this phenomenon, but wonder whether there may be349

some underlying manifold representation which the SAE at one point in training tried to “tile”, but350

then when the latents got too close, one of them was killed to reduce the L0 loss.351

E.2 ReLU L1 SAEs on Inception-v1352

We also study the geometry of latent decoder directions on SAEs trained on Inception-v1 activations.353

We train SAEs on activations from mixed3b using an L1 coefficient, λ, of 1, a learning rate of 10−4,354

and an expansion factor of 16 (a total of 7680 latents).355

In Figure 8, we find that on Inception-v1, a meaningful fraction of SAE latents have very high356

cosine similarity with their nearest neighbor. We note however that this could be due to latents being357

duplicated, which is not strongly disincentivized by the L1 loss, as pointed out in [13].358
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Figure 7: Distribution over cosine similarities between decoder vectors and their nearest neighbor.

Figure 8: Distribution over pairwise cosine similarities for Inception V1.
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