
Understanding sparse autoencoder scaling in the
presence of feature manifolds

Anonymous Author(s)
Affiliation
Address
email

Abstract

Sparse autoencoders (SAEs) model the activations of a neural network as linear1

combinations of sparsely occurring directions of variation (latents). The ability of2

SAEs to reconstruct activations follows scaling laws w.r.t. the number of latents. In3

this work, we adapt a capacity-allocation model from the neural scaling literature4

(Brill, 2024) to understand SAE scaling, and in particular, to understand how feature5

manifolds (multi-dimensional features) influence scaling behavior. Consistent with6

prior work, the model recovers distinct scaling regimes. Notably, in one regime,7

feature manifolds have the pathological effect of causing SAEs to learn far fewer8

features in data than there are latents in the SAE. We provide some preliminary9

discussion on whether or not SAEs are in this pathological regime in the wild.10

1 Introduction11

Sparse autoencoders [1–9] and related methods [10–14] decompose neural network activations into a12

collection of sparsely activating latents. As SAEs have been scaled (now to millions of latents) [4, 15–13

17], they have exhibited scaling laws [4, 15, 18], where loss improves predictably as a power law with14

the number of latents in the SAE. Although sparse autoencoders learn many interpretable features,15

some worry that they may miss important structure in neural representations, either because there are16

an extraordinary number of very rare features in activations [19] or because the SAE architecture and17

training objective make incorrect assumptions about the structure of neural representations [20, 21].18

In this work, we develop a formal analysis of SAE scaling behavior and scaling laws. We are19

particularly interested in understanding SAE scaling when activations contain a particular kind of20

structure: feature manifolds (multi-dimensional features) [22, 23], and in whether feature manifolds21

could cause pathological scaling and exacerbate the problem of interpretability “dark matter” [19].22

Our main approach is to adapt a mathematical model of neural scaling from Brill (2024) [24], where23

models allocate capacity between different data manifolds, to the case of SAEs. Guided by our model,24

we then conduct experiments to probe whether SAEs may scale pathologically in practice.25

2 A model of sparse autoencoder scaling26

2.1 The structure of data and the SAE architecture27

Activation data: We assume the multi-dimensional linear representation hypothesis [25, 26] and28

that neural network activation vectors x ∈ Rd are generated as a sum of sparsely occurring features:29

x =
∑

i Sifi where Si is the subspace where feature i lives, specified by a d × di matrix whose30

columns are basis vectors of the subspace, and fi is a random variable taking values in Rdi , where31

di is the dimension of feature i. Each feature fi is sparse, supported on a small fraction of the data:32

pi = Pr[fi ̸= 0] ≪ 1, so each activation vector is a sum of only a small subset of all features.33

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

Figure 1: SAE scaling on a toy feature manifold S1. We train ReLU SAEs with an L1 sparsity
penalty to reconstruct points on the circle S1 ⊆ R2. We find that SAEs can slightly reduce their total
loss by “tiling” the manifold with more sparsely activating latents. For SAEs with 4, 8, and 24 latents,
we show the data (S1) in grey, the SAE’s reconstruction in black, the decoder latent directions as
arrows, and indicate the part of the circle that each latent fires on as colored arcs. If SAEs can reduce
loss by “tiling” a manifold in this way, they may do this at the expense of learning rarer features.

SAEs: Sparse autoencoders attempt to reconstruct activation vectors as a sum of sparsely activating34

latents, consisting of an encoding step f̂ = Enc(x) = σ(Wex+ be) where σ is a nonlinearity and35

f̂ ∈ RN , and a decoding step x̂ = Dec(f̂) = Wdf̂ + bd. Sparse autoencoders are trained with SGD36

on a loss L = ∥x− x̂∥22 + λS(f̂) where S(f̂) is a sparsity-encouraging loss like ∥f̂∥1 or ∥f̂∥0.37

2.2 Assumption: SAE optimization reduces to a latent allocation problem38

We assume that SAEs learn solutions where each latent j is specific to a particular feature i, so that
f̂j ̸= 0 only if fi ̸= 0. We further assume that the SAE latent decoder directions for the latents
associated with feature i lie within the subspace Si, and that the subspaces where features live are
orthogonal, i.e., Si ⊥ Sk if i ̸= k. It follows that the SAE loss on any sample x is the sum of losses
on samples where each active feature had fired alone: if A(x) are the “active” features i where fi ̸= 0
on x, then

L(x) = L

 ∑
i∈A(x)

Sifi

 assumption
=

∑
i∈A(x)

L(Sifi).

We note that feature absorption and related phenomena [27] and the non-orthogonality of features
in practice violate these assumptions, but we will accept them for the sake of expedience. If SAE
latents are specific to features, then an optimal SAE’s loss on a feature i will be determined by the
number of latents ni the SAE allocates to reconstructing feature i, which we denote Li(ni), and will
be determined by the geometry of the feature fi. The expected loss across activations x is then:

Ex [L(x)] = Ex

 ∑
i∈A(x)

L(Sifi)

 =
∑
i

piL(Sifi) =
∑
i

piLi(ni)

We therefore reduce the SAE optimization problem to the problem of choosing how many latents ni to39

allocate to each feature i in the data. To understand SAE scaling behavior, we solve for the allocation40

of latents to each feature ni that minimizes
∑

i piLi(ni) given a distribution over feature frequencies41

pi, the per-feature loss curves Li, and the constraint on the total number of latents
∑

i ni = N .42

2.3 Warm-up on discrete features43

To get comfortable with this formulation, we first apply it to the simplest case where all features44

are discrete. We imagine that for all features i, di = 1 and fi = 1 on the fraction pi of samples45

where feature i is present and is 0 otherwise. For each feature i, an SAE incurs loss 1 if ni = 046

(reconstruction loss = 1 and sparsity loss = 0). If ni = 1, it can perfectly reconstruct the feature,47

incurring sparsity loss λ with L0 or L1 sparsity loss. Therefore L(n) = 1 if ni < 1 else λ.48

2

A model of SAE scaling on feature manifolds
If SAEs allocate latents to solve the following optimization problem...

then, as in the neural scaling model from Brill (2024), there are two regimes:

Good regime:

Number of manifolds discovered: Number of manifolds discovered:

Pathological regime:

Figure 2: Left: Application of Brill’s (2024) [24] capacity-allocation model to SAE scaling. Right:
numerical simulation of SAE scaling when the most frequently occurring feature is a manifold with
loss scaling as L(n) ∝ n−β and all other features are discrete. We see that if β ≪ α, then a simulated
SAE with 100 million latents discovers only 3 million features.

With total loss
∑

i piL(ni) and N latents in our SAE we see that the optimal solution is to allocate49

one latent to the most commonly occurring N features. In this setup, then, the effect of scaling50

SAEs is to learn an increasing number of discrete features in the data, in decreasing order of51

their frequency. We will often be interested in the number of features “discovered” by the SAE52

D(N) = |{i : ni > 0}|. In this setting, D(N) = N . To recover the power law scaling that53

SAEs exhibit empirically, we only need to assume that pi ∝ i−(1+α). With this assumption, the54

improvement in total loss from adding a marginal latent i follows pi(1− λ), and integrating from55

i = 1 . . . N we get that the total loss drops off as a power law L(N) ∝ N−α. We note that this model56

of SAE scaling mirrors the “quanta” model of neural scaling from [28], where here the “quanta” are57

features. This picture also agrees with the finding from [15] that SAEs learn features for concepts in58

data approximately in order of the frequencies (roughly Zipfian) at which those concepts occur.59

2.4 Intuition behind pathological manifold scaling60

Recently, several works have commented on the existence of feature manifolds [12, 23] (multi-61

dimensional features) [22] in neural networks. In our formalism above, these are features i with62

di > 1 and where the range of fi is a manifold embedded in Rdi . With feature manifolds, instead63

of having a discrete Li(ni) curve like above, Li might drop off slowly as ni grows. To show that64

this is possible, in Figure 1, we show the scaling curve for ReLU SAEs (σ = ReLU) trained with L165

penalty to reconstruct points on a circle x ∈ S1 ⊆ R2. We observe that these SAEs can gradually66

reduce their total loss by more finely “tiling” the manifold with latents that activate more sparsely,67

and that this manifold can accommodate dozens of latents before loss plateaus. While such solutions68

ruthlessly minimize the SAE loss, it is not obvious that they would be better from an interpretability69

standpoint. Our fundamental concern is that if Li(ni) curves decrease gradually, it could be optimal70

for an SAE to tile common feature manifolds instead of discovering rarer features in data.71

2.5 Solution for power-law L(n) following Brill (2024)72

We assume that feature frequencies decay as a power law pi ∝ i−(1+α) and that all features have73

the same power law per-feature loss curve Li(ni) = n−β
i . In this setting, our model of SAE scaling74

directly corresponds to the model of neural scaling from Brill (2024) [24], where neural networks75

allocate units of capacity ni towards approximating functions on distinct power-law distributed76

data manifolds, with per-manifold loss scaling as n−c/D
i . We show similar derivations to Brill [24]77

in Appendix B and summarize the core results in Figure 2 (left).78

In our notation, there is a key threshold: α < β. When α < β, D(N) ∝ N , so the “efficiency”79

at which SAEs discover features D(N)/N tends towards a constant. However, when β < α, then80

D(N) ∝ N
1+β
1+α , and so D(N)/N tends towards 0. This illustrates the core dynamic of concern:81

3

100 101 102 103 104

Number of Latents

10 1

100

To
ta

l S
AE

 L
os

s

ReLU SAE Scaling on Hyperspheres
S^1
S^2
S^3
S^4
S^5
S^6
S^7
S^8

100 101 102 103 104

Number of Latents

100

To
ta

l S
AE

 L
os

s

ReLU SAE Scaling on Empty Balls
manifold dim=2
manifold dim=3
manifold dim=4
manifold dim=5
manifold dim=6
manifold dim=7
manifold dim=8
manifold dim=9

Figure 3: ReLU SAE scaling on individual toy feature manifolds, showing how L(n) curves depend
on feature geometry. We train with L1 sparsity λ = 0.1. Left: SAE scaling on unit hyperspheres of
varying dimension. Right: SAE scaling on points sampled in {x : 0.5 < |x| < 2}.

when SAEs can continue to reduce loss by “tiling” common feature manifolds, then it can be optimal82

for them to do this at the expense of discovering other, rarer features.83

2.6 Numerical simulation84

While our mathematical model above assumed that all features have the same Li(ni) curve, we can85

run numerical simulations with arbitrary Li(ni) curves. In Figure 2 (right), we conduct simulations86

where the first feature scales as n−β but all other features are discrete and scale as step functions87

1n=0, and with pi ∝ i−(1+0.5). We find that, with only a single feature with power-law L(ni) scaling,88

when β < α this feature begins to absorb the vast majority of latents in the SAE once N is large.89

3 SAE scaling on synthetic features and on real neural networks90

In our analysis, whether SAEs will scale pathologically depends on the shape of their per-feature loss91

curves Li(ni). We showed one such L(n) curve in Figure 1, but we further explore this by training92

SAEs on a variety of synthetic manifolds in Figure 3 and in Appendix Figure 6. Overall, we find that93

the shape of the L(n) curve depends on the manifold geometry, with some manifolds accommodating94

many thousands of latents without saturating loss while on others the loss curve plateaus very quickly95

(effectively β → ∞). In Appendix A.1, we provide further discussion on what α and β may be, and96

whether SAEs might be scaling pathologically, in practice.97

When a large number of SAE latents are allocated to a relatively low-dimensional feature manifold,98

we’d expect the cosine similarities between the decoder latents allocated to that manifold to be close99

to 1. In Appendix E, we show the distribution over decoder latent nearest neighbor cosine similarities100

for SAEs trained on LLM and vision model activations, and find some differences between them.101

4 Discussion102

In this short paper, we have described a model of SAE scaling which reduces the SAE optimization103

problem to the problem of optimally allocating different numbers of SAE latents to different features104

in data. As in the model of scaling from Brill [24] SAE scaling laws either result from an underlying105

power law distribution over features pi ∝ i−(1+α), or from the improvements in loss from tiling106

common feature manifolds following a power law Li(ni) ∝ n−β
i . When β < α, SAE latents could107

massively accumulate on commonly occurring feature manifolds.108

Unfortunately, we do not resolve the question of whether SAEs are in this pathological scaling regime109

in practice. Our uncertainty is due to our knowing neither the distribution over true feature frequencies110

(determining α) nor the geometry of real-world neural network feature manifolds (which determines111

β). We give some additional commentary in Appendix A.1. We view this work as primarily about112

framing, rather than completely answering, this interesting problem.113

4

References114

[1] Andrew Ng et al. Sparse autoencoder. CS294A Lecture notes, 72(2011):1–19, 2011.115

[2] Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-116

erly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,117

Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex118

Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter,119

Tom Henighan, and Christopher Olah. Towards monosemanticity: Decomposing language120

models with dictionary learning. Transformer Circuits Thread, 2023. https://transformer-121

circuits.pub/2023/monosemantic-features/index.html.122

[3] Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma,123

János Kramár, Rohin Shah, and Neel Nanda. Improving dictionary learning with gated sparse124

autoencoders. arXiv preprint arXiv:2404.16014, 2024.125

[4] Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya126

Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. arXiv127

preprint arXiv:2406.04093, 2024.128

[5] Bart Bussmann, Patrick Leask, and Neel Nanda. Batchtopk sparse autoencoders. arXiv preprint129

arXiv:2412.06410, 2024.130

[6] Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma,131

János Kramár, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu132

sparse autoencoders. arXiv preprint arXiv:2407.14435, 2024.133

[7] Thomas Fel, Ekdeep Singh Lubana, Jacob S Prince, Matthew Kowal, Victor Boutin, Isabel134

Papadimitriou, Binxu Wang, Martin Wattenberg, Demba Ba, and Talia Konkle. Archetypal sae:135

Adaptive and stable dictionary learning for concept extraction in large vision models. arXiv136

preprint arXiv:2502.12892, 2025.137

[8] Valérie Costa, Thomas Fel, Ekdeep Singh Lubana, Bahareh Tolooshams, and Demba Ba. From138

flat to hierarchical: Extracting sparse representations with matching pursuit. arXiv preprint139

arXiv:2506.03093, 2025.140

[9] Mark Muchane, Sean Richardson, Kiho Park, and Victor Veitch. Incorporating hierarchical141

semantics in sparse autoencoder architectures. arXiv preprint arXiv:2506.01197, 2025.142

[10] Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable llm feature143

circuits. Advances in Neural Information Processing Systems, 37:24375–24410, 2024.144

[11] Jack Lindsey, Adly Templeton, Jonathan Marcus, Thomas Conerly, Joshua Batson, and Christo-145

pher Olah. Sparse crosscoders for cross-layer features and model diffing, October 2024. URL146

https://transformer-circuits.pub/2024/crosscoders/index.html. Research up-147

date.148

[12] Liv Gorton. Group crosscoders for mechanistic analysis of symmetry. arXiv preprint149

arXiv:2410.24184, 2024.150

[13] Julian Minder, Clément Dumas, Caden Juang, Bilal Chugtai, and Neel Nanda. Robustly151

identifying concepts introduced during chat fine-tuning using crosscoders. arXiv preprint152

arXiv:2504.02922, 2025.153

[14] Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes Gurnee, Nicholas L. Turner, Brian154

Chen, Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael155

Sklar, Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas156

Henighan, Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam157

Zimmerman, Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. Circuit tracing:158

Revealing computational graphs in language models. Transformer Circuits Thread, 2025. URL159

https://transformer-circuits.pub/2025/attribution-graphs/methods.html.160

5

https://transformer-circuits.pub/2024/crosscoders/index.html
https://transformer-circuits.pub/2025/attribution-graphs/methods.html

[15] Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian161

Chen, Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham,162

Nicholas L Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R.163

Sumers, Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom164

Henighan. Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet.165

Transformer Circuits Thread, 2024. URL https://transformer-circuits.pub/2024/166

scaling-monosemanticity/index.html.167

[16] Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat,168

Vikrant Varma, János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open169

sparse autoencoders everywhere all at once on gemma 2. arXiv preprint arXiv:2408.05147,170

2024.171

[17] Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L.172

Turner, Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael173

Sklar, Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas174

Henighan, Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam175

Zimmerman, Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. On the176

biology of a large language model. Transformer Circuits Thread, 2025. URL https:177

//transformer-circuits.pub/2025/attribution-graphs/biology.html.178

[18] Jack Lindsey, Tom Conerly, Adly Templeton, Jonathan Marcus, and Tom Henighan. Scaling179

laws for dictionary learning, April 2024. URL https://transformer-circuits.pub/180

2024/april-update/index.html#scaling-laws. Circuits Updates — April 2024.181

[19] Chris Olah and Adam Jermyn. The dark matter of neural networks? Transformer Circuits182

Thread, July 2024. URL https://transformer-circuits.pub/2024/july-update/183

index.html#dark-matter. Part of Circuits Updates - July 2024, Anthropic Interpretability184

Team.185

[20] Róbert Csordás, Christopher Potts, Christopher D Manning, and Atticus Geiger. Recurrent186

neural networks learn to store and generate sequences using non-linear representations. arXiv187

preprint arXiv:2408.10920, 2024.188

[21] Sai Sumedh R Hindupur, Ekdeep Singh Lubana, Thomas Fel, and Demba Ba. Projecting189

assumptions: The duality between sparse autoencoders and concept geometry. arXiv preprint190

arXiv:2503.01822, 2025.191

[22] Joshua Engels, Eric J Michaud, Isaac Liao, Wes Gurnee, and Max Tegmark. Not all language192

model features are one-dimensionally linear. arXiv preprint arXiv:2405.14860, 2024.193

[23] Alexander Modell, Patrick Rubin-Delanchy, and Nick Whiteley. The origins of representation194

manifolds in large language models. arXiv preprint arXiv:2505.18235, 2025.195

[24] Ari Brill. Neural scaling laws rooted in the data distribution. arXiv preprint arXiv:2412.07942,196

2024.197

[25] Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna198

Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse,199

Sam McCandlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah.200

Toy models of superposition. Transformer Circuits Thread, 2022. https://transformer-201

circuits.pub/2022/toy model/index.html.202

[26] Joshua Engels, Logan Riggs, and Max Tegmark. Decomposing the dark matter of sparse203

autoencoders. arXiv preprint arXiv:2410.14670, 2024.204

[27] David Chanin, James Wilken-Smith, Tomáš Dulka, Hardik Bhatnagar, Satvik Golechha, and205

Joseph Bloom. A is for absorption: Studying feature splitting and absorption in sparse autoen-206

coders. arXiv preprint arXiv:2409.14507, 2024.207

[28] Eric Michaud, Ziming Liu, Uzay Girit, and Max Tegmark. The quantization model of neural208

scaling. Advances in Neural Information Processing Systems, 36:28699–28722, 2023.209

6

https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2024/april-update/index.html#scaling-laws
https://transformer-circuits.pub/2024/april-update/index.html#scaling-laws
https://transformer-circuits.pub/2024/april-update/index.html#scaling-laws
https://transformer-circuits.pub/2024/july-update/index.html#dark-matter
https://transformer-circuits.pub/2024/july-update/index.html#dark-matter
https://transformer-circuits.pub/2024/july-update/index.html#dark-matter

[29] Demian Till. Do sparse autoencoders find “true features”? https://www.lesswrong.210

com/posts/QoR8noAB3Mp2KBA4B/do-sparse-autoencoders-find-true-features,211

02 2024. Accessed: 2025-08-11.212

[30] Evan Anders, Clement Neo, Jason Hoelscher-Obermaier, and Jessica N.213

Howard. Sparse autoencoders find composed features in small toy214

models. https://www.lesswrong.com/posts/a5wwqza2cY3W7L9cj/215

sparse-autoencoders-find-composed-features-in-small-toy, 03 2024. Ac-216

cessed: 2025-08-11.217

[31] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,218

Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language219

models. arXiv preprint arXiv:2001.08361, 2020.220

[32] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza221

Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.222

Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.223

[33] Chris Olah. What is a linear representation? what is a multidimensional feature? Trans-224

former Circuits Thread, July 2024. URL https://transformer-circuits.pub/2024/225

july-update/index.html#linear-representations. Part of Circuits Updates - July226

2024, Anthropic Interpretability Team.227

[34] Tom Conerly, Adly Templeton, Trenton Bricken, Jonathan Marcus, and Tom Henighan. Up-228

date on how we train saes. Transformer Circuits Thread, April 2024. URL https://229

transformer-circuits.pub/2024/april-update/index.html#training-saes. Part230

of Circuits Updates - April 2024, Anthropic Interpretability Team.231

[35] Tom Conerly, Hoagy Cunningham, Adly Templeton, Jack Lindsey, Basil Hosmer, and Adam232

Jermyn. Dictionary learning optimization techniques. Transformer Circuits Thread, Jan-233

uary 2025. URL https://transformer-circuits.pub/2025/january-update/index.234

html#DL. Part of Circuits Updates - January 2025, Anthropic Interpretability Team.235

A Additional discussion236

A.1 Are real SAEs in the pathological regime?237

It is worth attempting to say more about whether SAEs are in the pathological scaling regime in238

practice. As we stated in Section 2.5, this depends on the rate at which the feature frequencies pi ∝239

i−(1+α) decay vs. the rate at which the per-feature SAE loss decays L(ni) ∝ i−β . In Appendix B,240

following Brill (2024) [24], we show that when α < β, the efficiency at which SAEs discover features241

D(N)/N approaches a reasonable constant, but when β < α, D(N)/N approaches 0 as N → ∞.242

Whether feature manifolds could cause pathological SAE scaling in the real world depends then on243

the real α (assuming it’s even a power law) and β (assuming Li(ni) is also a power law ∝ n−β
i).244

What is α?: We first speculate on what α may be. One way of trying to measure this is to look at245

how the latent activation frequencies decay when sorted by frequency. For a few Gemma Scope246

SAEs [16], we show these curves in Figure 4, and measure slopes between −0.57 and −0.74. If247

there was a one-to-one relationship between SAE latents and features in the data, then this would248

imply an α ≈ 0.5 to α ≈ 0.7. However, feature absorption [27], the learning of compositional249

features [29, 30], and latents tiling a feature manifold could distort the relationship between the true250

feature frequencies and the latent activation frequencies.251

Another highly speculative way of trying to estimate α could be to look at the exponents of neural252

scaling laws for models like those the SAE is being trained on. The idea here is that if the “features”253

are the computational units of neural networks that ref [28] called the “quanta”, then the underlying254

neural scaling law slope would reflect the distribution over feature occurrences. Neural scaling255

exponents for language models (w.r.t. network parameters) (αN in the scaling law N−αN have256

been measured to have an αN 0.07 [31] and 0.34 [32], potentially implying a distribution over257

quanta/features pi ∝ i−(1+α) with exponent α in that same range.258

7

https://www.lesswrong.com/posts/QoR8noAB3Mp2KBA4B/do-sparse-autoencoders-find-true-features
https://www.lesswrong.com/posts/QoR8noAB3Mp2KBA4B/do-sparse-autoencoders-find-true-features
https://www.lesswrong.com/posts/QoR8noAB3Mp2KBA4B/do-sparse-autoencoders-find-true-features
https://www.lesswrong.com/posts/a5wwqza2cY3W7L9cj/sparse-autoencoders-find-composed-features-in-small-toy
https://www.lesswrong.com/posts/a5wwqza2cY3W7L9cj/sparse-autoencoders-find-composed-features-in-small-toy
https://www.lesswrong.com/posts/a5wwqza2cY3W7L9cj/sparse-autoencoders-find-composed-features-in-small-toy
https://transformer-circuits.pub/2024/july-update/index.html#linear-representations
https://transformer-circuits.pub/2024/july-update/index.html#linear-representations
https://transformer-circuits.pub/2024/july-update/index.html#linear-representations
https://transformer-circuits.pub/2024/april-update/index.html#training-saes
https://transformer-circuits.pub/2024/april-update/index.html#training-saes
https://transformer-circuits.pub/2024/april-update/index.html#training-saes
https://transformer-circuits.pub/2025/january-update/index.html#DL
https://transformer-circuits.pub/2025/january-update/index.html#DL
https://transformer-circuits.pub/2025/january-update/index.html#DL

100 101 102 103 104 105

latent index

10 5

10 3

10 1

la
te

nt
 fi

rin
g

fre
qu

en
cy

16k slope: -0.74
32k slope: -0.57

Gemma scope layer 12 SAE latent firing frequencies

16k latents
32k latents
65k latents

Figure 4: Frequencies at which latents fire in gemma scope SAEs, sorted by frequency. We measure
the power law decay exponent between latent 102 and 104 to be -0.74 for an SAE with 16k latents
and -0.57 for an SAE with 32k latents.

Figure 5: Measured slopes of Li curves for ReLU L1 SAEs trained on hyperspheres.

What is β?: In Figure 3 and Figure 6, we show L(n) scaling curves for SAEs reconstructing single259

synthetic feature manifolds. We find that these curves depend on the feature geometry. In particular,260

we see that when reconstructing hollow hyperspheres, we can observe gradual L(n) scaling. The261

higher-dimensional hyperspheres in particular can accommodate at least 104 latents without loss262

plateauing. In Figure 5, we plot the slope that we measure for these curves between 102 and 104263

latents, and measure a β of roughly 0.05 for hyperspheres with dimension 6-8.264

However, in the more realistic setting where there is variation in the radial direction–the intensity that265

features fire [19]–we see that manifolds tend to saturate very quickly. It appears that the saturation266

happens when ni ≈ 2di, likely corresponding to solutions where the SAE latents form a basis for the267

subspace where the feature is embedded (or rather use two latents for each basis direction, one in the268

“positive” direction and one in the “negative” direction since latents can only fire positively).269

Therefore, the slope of the Li(ni) curve, and whether SAEs can use a large number of latents to270

reduce loss on feature manifolds, depends on the geometry of the manifold. Our experiments so far271

indicate that in the more realistic setting where there is variation in the radial direction (which was272

seen in practice in ref [22]), that SAEs do not discover solutions which take advantage of a large273

number of latents, and instead learn a basis solution. This is probably the strongest argument274

against the possibility of feature manifolds causing pathological SAE scaling.275

8

Lastly, we note that we are unsure how “ripples” [33] in feature manifolds could affect SAE scaling276

on them. If a feature manifold is intrinsically low dimensional, but ripples through a large number of277

other dimensions, we could imagine SAE solutions potentially looking different.278

B Derivations279

B.1 Loss decomposition into per-feature terms280

We work under the assumptions in §2.2: (i) feature-specific latents—each latent j fires only when281

a unique feature i(j) is active; (ii) decoder respect for subspaces—decoder columns for latents282

assigned to feature i lie in span(Si); and (iii) orthogonal feature subspaces—span(Si) ⊥ span(Sk)283

for i ̸= k.284

Additivity of sparsity. For a sample x =
∑

i∈A(x) Sifi, feature-specificity implies f̂j(x) = 0285

unless i(j) ∈ A(x). For separable sparsity penalties (L0/L1), S(f̂) =
∑

j s(f̂j), so286

S(f̂(x)) =
∑

i∈A(x)

∑
j: i(j)=i

s(f̂j(x)) .

Thus the sparsity cost splits across active features.287

Orthogonal reconstruction. Write the model reconstruction as x̂ =
∑

i x̂i, with x̂i :=288 ∑
j: i(j)=i wj f̂j ∈ span(Si) by (ii). Then, using (iii),289

∥x− x̂∥22 =
∥∥∥∑

i

(
Sifi − x̂i

)∥∥∥2
2
=

∑
i

∥Sifi − x̂i∥22 .

Hence the per-sample objective L(x) = ∥x− x̂∥22 +λS(f̂) decomposes as a sum over features active290

on that sample. Taking expectations and letting ni be the number of latents allocated to feature i, we291

obtain292

Ex

[
L(x)

]
=

∑
i

pi Li(ni),
∑
i

ni = N (1)

where pi := Pr[fi ̸= 0] and Li(ni) is the (feature-i) expected reconstruction-plus-sparsity loss293

achieved with ni latents restricted to span(Si). We note that the derivations below closely follow294

those in Brill (2024) [24], adapted to our SAE setting with appropriate changes in notation and295

interpretation. We show them here for convenience.296

B.2 Scaling setup and notation297

We study the optimal latent allocation ni minimizing (1) under two empirical power-law regularities:298

pi ∝ i−(1+α) (features sorted by frequency), Li(n) ≡ L(n) ∝ n−β ,

with α, β > 0.1 Define the discovery count299

D(N) :=
∣∣{ i : ni > 0 }

∣∣
and the total expected loss L(N) :=

∑
i piL(ni) at total width N . A standard Lagrange multiplier300

treatment (continuous relaxation) yields301

ni ∝ p
1

1+β

i ∝ i−γ , γ :=
1 + α

1 + β
. (2)

In practice there is a cutoff index ic (“last discovered feature”) with nic ≈ 1 and ni ≲ 1 for i > ic.302

Then D(N) ≍ ic and303

N =
∑
i≤ic

ni ∝
∑
i≤ic

i−γ .

Two regimes follow depending on whether the allocation tail-sum diverges or converges.304

1Constants are inessential for power-law exponents and are dropped.

9

B.3 Case β < α (simple, latent accumulation on frequent features)305

Here γ > 1, so
∑

i≥1 i
−γ converges to a constant Z(γ). From (2), N ∝

∑
i≤ic

i−γ → Z(γ) implies306

the proportionality constant in (2) scales as κ ∝ N . The discovery cutoff is set by nic ≈ 1:307

1 ≈ κ i−γ
c =⇒ ic ∝ κ1/γ ∝ N

1
γ = N

1+β
1+α .

Thus308

D(N) ∝ N
1+β
1+α (sublinear discovery). (3)

For the loss, the discovered part scales as309 ∑
i≤ic

pi n
−β
i ∝ κ−β

∑
i≤ic

i−γ ∝ κ−β ∝ N−β ,

while the undiscovered tail
∑

i>ic
pi ∝ i−α

c ∝ N−α(1+β)/(1+α) decays faster since α > β. There-310

fore311

L(N) ∝ N−β . (4)

Intuitively, the SAE keeps shaving loss on common feature manifolds; discovery lags.312

B.4 Case α < β (benign, feature discovery keeps up)313

Now γ < 1, so
∑

i≤ic
i−γ ∝ i1−γ

c . Using N ∝ κ i1−γ
c and the threshold 1 ≈ κ i−γ

c , we eliminate κ314

to find315

N ∝ ic =⇒ D(N) ∝ N.

For the loss over discovered features,316 ∑
i≤ic

pi n
−β
i ∝ κ−β

∑
i≤ic

i−γ ∝ i−βγ
c i1−γ

c = i 1−(1+α)
c = i−α

c ∝ N−α.

The undiscovered tail obeys
∑

i>ic
pi ∝ i−α

c ∝ N−α, so both pieces match and317

L(N) ∝ N−α. (5)

Here, extra width primarily buys new features rather than over-tiling old manifolds; loss scaling318

mirrors the frequency tail.319

C Additional Experimental Details320

For Figure 3 and Figure 6, we trained SAEs on synthetic feature manifolds. For these experiments,321

we trained for 12000 steps, with a batch size of 2048, and a learning rate of 10−3 with the Adam322

optimizer. For the L1 penalty calculation, we use the trick of multiplying the decoder vector L2323

norms by the latent activation [34].324

D SAE scaling curves on synthetic manifolds325

In Figure 6, we show JumpReLU SAE scaling on individual feature manifolds like we did for ReLU326

SAEs in Figure 3.327

E SAE feature geometry on LLMs and vision models328

E.1 JumpReLU Gemma Scope SAEs329

If a large number of latents “tile” a single low-dimensional feature manifold, then we would expect330

the decoder directions for those SAE latents to have neighbors with high cosine similarity. One can331

see this effect directly in Figure 1, where we see that the SAE decoder latents begin to be arranged332

quite tightly together along the manifold. In this section, we study whether SAEs on real neural333

10

100 101 102

Number of Latents

10 1

100

To
ta

l S
AE

 L
os

s

JumpReLU SAE Scaling on Hyperspheres
S^1
S^2
S^3
S^4
S^5
S^6
S^7
S^8

100 101 102

Number of Latents

100

To
ta

l S
AE

 L
os

s

JumpReLU SAE Scaling on Empty Balls
manifold dim=2
manifold dim=3
manifold dim=4
manifold dim=5
manifold dim=6
manifold dim=7
manifold dim=8
manifold dim=9

Figure 6: JumpReLU SAE scaling on individual toy feature manifolds, showing how L(n) curves
depend on feature geometry. We train with the tanh loss from [35] with c = 0.1 and λs = 1.0.
Left: JumpReLU SAE scaling on unit hyperspheres of varying dimension. Right: JumpReLU SAE
scaling on points sampled in {x : 0.5 < |x| < 2}. We see that, like with ReLU SAEs, that when
there is variation in the radial direction between samples that our SAEs do not learn solutions which
can continue to accommodate latents, and instead plateau after allocating roughly 2di latents to the
feature manifold.

network activations have large numbers of latents with very high cosine similarity to their nearest334

neighbor.335

We first study this in the Gemma Scope SAEs [16]. In Figure 7, we plot the distribution over cosine336

similarities between decoder latent vectors and their nearest neighbor for Gemma Scope SAEs on337

layer 12 (residual stream) of gemma-2-2b. While the distribution is skewed substantially higher than338

one would expect if all latent decoder vectors were random (and thus approximately orthogonal), we339

do not overall see a very large fraction of latents with extremely high cosine similarity to their nearest340

neighbor.341

Intriguingly though, for some SAEs we do see a small uptick on the right side of this distribution,342

where between 10-100 latents have cosine similarity > 0.97 with their nearest neighbor. When we343

investigated these latents in one SAE (width 262k, average l0 121), we found that for each of these344

latents, their nearest neighbor was dead (across a dataset of over 250 million tokens). These latents345

are not then being used to very sparsely reconstruct points on a manifold, and instead seem to be an346

artifact of the training process. However, the alive latents in this set are not typical SAE latents. A347

large number of these latents fire on tokens representing single numerical digits and single alphabet348

characters. We do not have an explanation of this phenomenon, but wonder whether there may be349

some underlying manifold representation which the SAE at one point in training tried to “tile”, but350

then when the latents got too close, one of them was killed to reduce the L0 loss.351

E.2 ReLU L1 SAEs on Inception-v1352

We also study the geometry of latent decoder directions on SAEs trained on Inception-v1 activations.353

We train SAEs on activations from mixed3b using an L1 coefficient, λ, of 1, a learning rate of 10−4,354

and an expansion factor of 16 (a total of 7680 latents).355

In Figure 8, we find that on Inception-v1, a meaningful fraction of SAE latents have very high356

cosine similarity with their nearest neighbor. We note however that this could be due to latents being357

duplicated, which is not strongly disincentivized by the L1 loss, as pointed out in [13].358

11

0.0 0.5 1.0
Cosine similarity

100

101

102

103

Co
un

t

width_32k

average_l0_12
average_l0_22
average_l0_40
average_l0_76
average_l0_155
average_l0_360

0.0 0.5 1.0
Cosine similarity

100

101

102

103

Co
un

t

width_65k

average_l0_21
average_l0_38
average_l0_72
average_l0_141
average_l0_297

0.5 1.0
Cosine similarity

101

102

103

Co
un

t

width_131k

average_l0_12
average_l0_20
average_l0_36
average_l0_67
average_l0_129
average_l0_264

0.5 1.0
Cosine similarity

101

102

103

104

Co
un

t

width_262k

average_l0_11
average_l0_21
average_l0_36
average_l0_67
average_l0_121
average_l0_243

0.5 1.0
Cosine similarity

101

103

Co
un

t

width_524k

average_l0_22
average_l0_29
average_l0_46
average_l0_65
average_l0_115
average_l0_227

0.5 1.0
Cosine similarity

102

104

Co
un

t

width_1m

average_l0_19
average_l0_26
average_l0_58
average_l0_73
average_l0_107
average_l0_207

gemma-scope-2b-pt-res layer_12
Decoder distribution over cosine similarities to nearest neighbor

Figure 7: Distribution over cosine similarities between decoder vectors and their nearest neighbor.

Figure 8: Distribution over pairwise cosine similarities for Inception V1.

12

	Introduction
	A model of sparse autoencoder scaling
	The structure of data and the SAE architecture
	Assumption: SAE optimization reduces to a latent allocation problem
	Warm-up on discrete features
	Intuition behind pathological manifold scaling
	Solution for power-law L(n) following Brill (2024)
	Numerical simulation

	SAE scaling on synthetic features and on real neural networks
	Discussion
	Additional discussion
	Are real SAEs in the pathological regime?

	Derivations
	Loss decomposition into per-feature terms
	Scaling setup and notation
	Case beta<alpha (simple, latent accumulation on frequent features)
	Case alpha<beta (benign, feature discovery keeps up)

	Additional Experimental Details
	SAE scaling curves on synthetic manifolds
	SAE feature geometry on LLMs and vision models
	JumpReLU Gemma Scope SAEs
	ReLU L1 SAEs on Inception-v1

