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ABSTRACT

Learning effective representations in image-based environments is crucial for sam-
ple efficient Reinforcement Learning (RL). Unfortunately, in RL, representation
learning is confounded with the exploratory experience of the agent – learning
a useful representation requires diverse data, while effective exploration is only
possible with coherent representations. Furthermore, we would like to learn rep-
resentations that not only generalize across tasks but also accelerate downstream
exploration for efficient task-specific training. To address these challenges we
propose Proto-RL, a self-supervised framework that ties representation learn-
ing with exploration through prototypical representations. These prototypes
simultaneously serve as a summarization of the exploratory experience of an
agent as well as a basis for representing observations. We pre-train these task-
agnostic representations and prototypes on environments without downstream
task information. This enables state-of-the-art downstream policy learning on
a set of difficult continuous control tasks. Finally, we open-source our code
at https://github.com/denisyarats/proto.

1 INTRODUCTION

Reinforcement Learning (RL) with rich visual observations has proven to be a recipe for success in a
variety of domains ranging from gameplay Mnih et al. (2013); Silver et al. (2016) to robotics Levine
et al. (2015). A crucial ingredient for successful image-based RL is to learn an encoder that maps
the high-dimensional input to a compact representation capturing the latent state of the environment.
Standard RL methods can then be applied using the latent representation to efficiently learn policies.
Unfortunately, representation learning in RL poses several challenges.

First, fitting encoders using the scarce supervisory signal from rewards alone is sample inefficient
and leads to poor performance. Prior work Srinivas et al. (2020); Yarats et al. (2019) addresses this
problem by leveraging self-supervised techniques alongside standard image-based RL, which leads
to more robust and effective representations. However, such techniques are limited to settings that
have access to task-specific rewards during representation learning.

A second, more fundamental challenge is that in the context of RL, representation learning is
intimately connected to the exploration of the environment and vice-versa Sekar et al. (2020); Liu
& Abbeel (2021). The data observed by the agent is non-stationary and depends on the regions of
state space covered during exploration. If exploration is ineffective, the latent space produced by
the encoder cannot properly characterize all parts of the environment, degrading performance for
downstream tasks. Conversely, the exploration strategy cannot be defined directly on input images
since no algorithm would be able to exhaustively explore all possible images. Hence, a representation
accurately capturing the latent state of the environment is needed so that the agent can distinguish
novel latent states from those already visited and focus exploration on the former. This leads to a
chicken and egg problem, where learning useful representations requires diverse data, while effective
exploration is only possible with coherent representations.

Finally, a desirable property of latent representations is to generalize across tasks defined in the same
environment. This requires the representation to support a wide range of policies. Furthermore, the
representation should also facilitate exploration for new tasks through the organization inherent in the
latent space. Recent approaches to representation learning in RL Srinivas et al. (2020); Laskin et al.
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(a) Evolution of the state-visitation distribution and prototypes during the task-agnostic pre-training phase of
Proto-RL.
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(b) Evolution of the state-visitation distribution during the downstream RL phase of Proto-RL for the Reach
Center task.

Figure 1: An example of Proto-RL running on the pixel-based U-maze pointmass environment with
(a) task-agnostic pre-training, followed by (b) downstream RL. (a): task-agnostic exploration and
representation learning stage. The state-visitation distribution is shown in blue, which converges
to uniform coverage with sufficient steps. Red points depict the prototypes via closest states in the
embedding space. (b): subsequent application to the Reach Center task with sparse reward. Note
the rapid exploration of the environment facilitated by the pre-trained prototypes (and embedding
function). Proto-RL discovers the goal location in only 200k steps, while other methods struggle to
solve the task. The experiment details are provided in Appendix D.

(2020); Yarats et al. (2021) are often effective for a specific task but the representations obtained are
intrinsically tied to it and often perform poorly on small variations to the objective. Furthermore,
when attempting a new task, even with a representation that generalizes well, the agent is still required
to explore the environment during policy learning.

In this work, we address the three challenges described above through Proto-RL, a framework for
image-based RL that learns self-supervised visual representations without access to task-specific
rewards. Concretely, we consider the few-shot unsupervised RL setting, which consists of two distinct
phases. In the first phase, the agent explores an environment in a task-agnostic fashion to learn its
visual representations. Then in the second phase, given the learned representations, the agent is
required to solve a downstream task with as few environment interactions as possible. Such a setup
evaluates the agent’s ability to quickly solve a new task without any prior knowledge of it.

During the first phase Proto-RL learns an encoder to embed visual observations in a low-dimensional
latent space, along with a set of prototypical embeddings, which we refer to as prototypes (Asano
et al., 2020; Caron et al., 2021) that form the basis of this latent space. To effectively explore the
environment in the absence of task rewards, Proto-RL trains a policy that maximizes intrinsic reward
measured by particle-based entropy (Singh et al., 2003). The latent embeddings and prototypes are
trained together on observations from the exploration policy. The policy receives intrinsic reward
computed using current prototypes to encourage the visitation of unexplored regions of state space.
During the second phase Proto-RL uses the pre-trained encoder along with the prototypes to accelerate
RL for downstream tasks.

Figure 1 illustrates the behavior of Proto-RL in an image-based navigation task. In particular,
it shows the effectiveness of the unsupervised exploration strategy to thoroughly cover the state
space, thus providing a diverse enough dataset for representation learning. Proto-RL also returns
discrete prototypes that are evenly spread over the state space and are used to improve exploration
during the downstream stage. An accurate representation of the latent state, together with efficient
prototype-based exploration, leads Proto-RL to achieve state-of-the-art performance.
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To summarize, this paper makes the following contributions: (i) We propose a novel task-agnostic pre-
training scheme that learns an embedding function, along with a set of prototypical representations
directly from visual observations; (ii) we demonstrate the ability of the learned representations and
prototypes to generalize to unseen downstream tasks from the DeepMind Control Suite (Tassa et al.,
2018), with significant improvements over current state-of-the-art methods; (iii) we show that the
prototypes and learned representation enables efficient downstream exploration, especially in sparse
reward settings.

2 RELATED WORK

In this section we provide a brief description on the most relevant work and ideas that Proto-RL builds
on top of.

Self-supervised learning in Computer Vision (CV) Self-supervision has proven to be an effective
technique to learn representations from large amounts of unlabeled data Vincent et al. (2008); Doersch
et al. (2015); Wang & Gupta (2015); Noroozi & Favaro (2016); Zhang et al. (2017); Gidaris et al.
(2018). Several creative ideas have been used to self-supervise such as video tracking Wang et al.
(2019), augmentation prediction Chen et al. (2020), and puzzle solving Noroozi & Favaro (2016)
among others. Such pre-trained representations provide a strong initialization for downstream
finetuning for tasks such as image classification Chen et al. (2020); Hénaff et al. (2019); Wu et al.
(2018); He et al. (2020). Proto-RL is partly inspired by SwAV (Caron et al., 2021), where prototypical
representations are learned through contrastive losses van den Oord et al. (2018) that encourage
consistency across random augmentations of the input. However, unlike SwAV that learns on a
stationary dataset of images, Proto-RL operates in dynamic environments in an RL setting that
inherently produces non-stationary data distributions for learning.

Representation learning in RL To enable sample efficient RL from pixels, several researchers
have taken inspiration from the successes of representation learning in computer vision and looked
at learning coherent latent representations alongside RL. SAC-AE (Yarats et al., 2019), SLAC Lee
et al. (2019a), demonstrated how auto-encoders can be used to learn representations that improve RL.
Following this, CURL (Srinivas et al., 2020), SPR Schwarzer et al. (2020), ATC Stooke et al. (2020)
used losses that encourage consistency across random observational augmentations to further improve
sample-efficiency. Model-based RL has also looked at learning these representations from predictive
losses Hafner et al. (2018; 2019); Yan et al. (2020); Finn et al. (2015); Agrawal et al. (2016). We note
that these works in general focus on learning continuous representations of the environment through
interactive experience without explicitly encouraging exploration. In contrast, Proto-RL not only
learns representations on interactive experience, but also uses prototypes for effective exploration.

Exploration and Intrinsic Motivation in RL A fundamental problem in RL is exploring the state
space of the underlying MDP, especially in cases where the reward is sparse or absent. Approaches
that tackle this problem are generally task-agnostic and exploit various inductive biases that correlate
positively with efficient exploration. Prior approaches include using state visitation counts (Bellemare
et al., 2016; Ostrovski et al., 2017), curiosity-driven exploration (Pathak et al., 2017a), distilling
random networks Burda et al. (2018), hindsight relabeling (Andrychowicz et al., 2017), state visitation
entropy maximization (Hazan et al., 2019; Mutti et al., 2020; Liu & Abbeel, 2021), ensemble
disagreement (Sekar et al., 2020), among others. Proto-RL builds on these ideas and focuses on
exploration by maximizing the entropy of the state visitation distribution (Hazan et al., 2019).
However, in contrast to prior work (Liu & Abbeel, 2021), Proto-RL uses prototypical representations
to better estimate entropy, which improves downstream exploration.

3 BACKGROUND

3.1 TASK-AGNOSTIC RL FROM IMAGES

We formulate task-agnostic image-based control as an infinite-horizon partially observable Markov
Decision Process (POMDP) (Bellman, 1957; Kaelbling et al., 1998) without rewards, as a tuple
M = (O,A, P, γ, d0), where O is the high-dimensional observation space (image pixels), A is the

3



Published as a conference paper at ICLR 2021

Aug

Observation

- Stop Gradient

View Representation Projection

Intrinsic

Reward

Prediction Probabilities

Codes

Softmax

XEnt Loss
Exploration


Policy/Value

Loss

 Sinkhorn

Clustering


(over batch)

Prototypes

Aug

Online

Target

...

Figure 2: Proto-RL proposes a self-supervised scheme that learns to encode high-dimensional image
observations xt, xt+1, using an encoder fθ along with a set of prototypes {ci}Mi=1 that defines the
basis of the latent space. Learning is done by optimizing the clustering assignment loss LSSL. To
encourage exploration, prototypes are simultaneously used to compute an entropy-based intrinsic
reward r̂t that is maximized by the exploration agent. To decouple representation learning from the
exploration task, we block the gradients of the agent’s RL loss LRL from updating the encoder and
prototypes. See Section 4 for a full description.

action space, P : O∗ ×A → ∆(O) is the transition function1 that defines a probability distribution
over the next observation given the sequence of past observations and the current action, γ ∈ [0, 1)
is a discount factor, and d0 ∈ ∆(O) is the distribution of the initial observation o0. Per common
practice (Mnih et al., 2013), throughout the paper the task-agnostic POMDP is converted into a
task-agnostic MDP (Bellman, 1957) (X ,A, P, γ, d0) by stacking three consecutive previous image
observations into a trajectory snippet xt = {ot,ot−1,ot−2} and defining the corresponding state
space X and the transition function xt+1 ∼ P (·|xt,at). Any policy π : X → ∆(A) induces
discounted state visitation distribution dπ(x) = (1 − γ)

∑∞
t=0 γ

tdπt (x), where dπt (x) = P (xt =
x|x0 ∼ d0,∀t′ < t,at′ ∼ π(·|xt′),xt′+1 ∼ P (·|xt′ ,at′)). Similar to Hazan et al. (2019); Lee et al.
(2019b); Mutti et al. (2020), we focus on the exploratory goal of finding the policy π that maximizes
the entropy H(dπ) = −

∑
x d

π(x) log(dπ(x)) of the state visitation distribution.

3.2 TASK-SPECIFIC RL FROM IMAGES

In the downstream RL setup the reward-free MDP is extended with a reward functionR : S×A → R
to form the task-specific MDP (X ,A, P,R, γ, d0). The objective then is to find a policy π : X →
∆(A) to maximize the expected discounted sum of rewards Eπ[

∑∞
t=0 γ

trt], where x0 ∼ d0, and ∀t
we have at ∼ π(·|xt), xt+1 ∼ P (·|xt,at), and rt = R(xt,at).

3.3 NEAREST NEIGHBOR ENTROPY ESTIMATION

Estimation of entropy for a distribution p(X ) defined on a q-dimensional space X ⊆ Rq is often
done via Monte Carlo using a finite set of samples X = {xi}Ni=1 ∼ p(X ) to obtain ĤX(p) =

− 1
N

∑N
i=1 log p(xi). However, this estimator requires the ability to not only sample from p, but also

to estimate pointwise density. This is often intractable in high-dimensional continuous spaces, such
as those in image-based RL. An alternative approach is to use a non-parametric Nearest Neighbor
(NN) based entropy estimator Singh et al. (2003):

Ĥk,X(p) = − 1

N

N∑
i=1

ln
kΓ(q/2 + 1)

Nπq/2Rqi,k,X
+ Ck,

where Γ is the gamma function, Ck = ln k − Γ′(k)
Γ(k) is the bias correction term, and Ri,k,X =

‖xi−NNk,X(xi)‖ is the Euclidean distance between xi and its kth nearest neighbor from the dataset
X , defined as NNk,X(xi).

1We denote by O∗ an arbitrarily long sequence of observations and by ∆(O) a distribution over the space of
observations O.
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Going forward, we are only interested in the proportional estimation of entropy that simplifies the
estimator:

Ĥk,X(p) ∝
N∑
i=1

ln ‖xi −NNk,X(xi)‖. (1)

Here, each point xi contributes an amount proportional to ‖xi −NNk,X(xi)‖ to the total entropy of
the dataset X . This estimator is shown to be asymptotically unbiased and consistent (Singh et al.,
2003).

4 PROTO-RL ALGORITHM

In this section, we provide technical details on Proto-RL. Our goal is to learn visual representations
in a task-agnostic fashion through interactions with a task-agnostic POMDP (see Section 3.1 for
terminology and setup). To do this, we design a self-supervised scheme that fits an encoder that
embeds high-dimensional observations to low-dimensional latent states and defines an exploration
strategy that allows for the discovery of diverse transitions. In Section 4.1, we describe our represen-
tation learning framework, which focuses on learning prototypes that form the basis for our visual
embeddings. In Section 4.2, we describe how these prototypes yield a metric that enables entropy-
based exploration. Both the representations and the exploration are learned simultaneously and are
collectively referred to as Proto-RL, which is summarized in Section 4.3. Once the representations
are learned, we describe how they can accelerate downstream learning of tasks in Section 4.4.

4.1 PROTOTYPICAL REPRESENTATION LEARNING

Our framework learns a visual encoder that maps pixels to continuous latent embeddings, as well as a
basis within this latent space, as defined by a set of prototypical vectors. Our novel self-supervised
scheme trains the encoder and prototypes simultaneously by projecting observation encodings onto
clusters (prototypes) and comparing them with cluster assignment targets. These are produced by a
projection of the encodings of the next observation onto the prototypes, constrained to ensure uniform
prototype coverage over the dataset. Our approach draws inspiration from the recent CV approach
SwAV (Caron et al., 2021), adapting these ideas to the non-stationary RL setting.

The Proto-RL framework, illustrated in Figure 2, computes representations as follows. The augmented
input frames xt are mapped to a continuous embedding yt using the convolutional image encoder fθ.
yt then undergoes a projection by the MLP network gθ to produce latent vector zt, and then another
MLP network vθ to attain features ut. The final step is to project ut into a basis defined by a set of
M continuous vectors {ci}Mi=1, which we call prototypes. This is done by using a softmax to produce
pt, a probability vector over the M prototypes whose components are:

p
(i)
t =

exp(ûTt ci/τ)∑M
k=1 exp(ûTt ck/τ)

, where ût =
ut
‖ut‖2

and τ is the softmax temperature hyper-parameter.

Learning involves simultaneously training (1) the encoder fθ, (2) the projector gθ, (3) the predictor
vθ and (4) the prototype vectors {ci}Mi=1. These form the online network. To optimize the online
parameters, a target network is used to produce a target probability vector qt+1. The target network
inputs the next augmented observation xt+1 and encodes it using the target encoder fξ to produce
continuous embedding yt+1, then yt+1 is fed to the target projector gξ to produce latent encodings
zt+1. These target projections is then used to compute a target probability vector qt+1 using the
prototypes. Intuitively, the vector qt+1 represents the soft assignment of the target embedding to
the prototypes. To ensure equal partitioning of the prototypes across all embeddings, we employ
the Sinkhorn-Knopp clustering procedure (Cuturi, 2013; Caron et al., 2021), which is run over a
mini-batch of embeddings. This clustering procedure constrains each prototype is assigned to the
same number of samples in the batch while maintaining complete coverage. Operationally, given
a batch size of B, the Sinkhorn-Knopp procedure begins with a M ×B matrix with each element
initialized to ẑTt+1,bcm, where ẑ = z/‖z‖2. It then iteratively produces a doubly-normalized matrix,
the columns of which comprise qt+1 for the batch. The corresponding pt and qt+1 are then used to
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Figure 3: The entropy-based intrinsic reward used by Proto-RL. This employs a nearest-neighbor esti-
mator (Equation (1)) computed over a set of embeddings Q that are uniformly drawn from clustering
of a batch of encoded observations {zi}Bi=1 with the current prototypes {ci}Mi=1. See Section 4.2 for
more details.

compute a cross-entropy loss:

LSSL(pt, qt+1) = −qTt+1 log pt.

Importantly, the gradient of this loss is only used to update the online network parameters (e.g. θ and
{ci}Mi=1), while being blocked in the target network. The weights of the target network ξ are instead
updated using the exponential moving average of online network weights θ. Note that this update,
and the use of predictor vθ introduce an asymmetry between the two networks that prevents collapse
to trivial solutions Grill et al. (2020). The pseudo-code for our framework is provided in Appendix C.

Architectures The online and target encoders fθ and fξ both use the architecture from SAC-
AE (Yarats et al., 2019). The online and target projectors gθ and gξ are linear layers with 128 outputs.
The online predictor vθ is a 2-layer MLP with ReLU non-linearities. Proto-RL learns M = 512
prototypes, each parameterized as a 128-dimensional real vector.

Data The learning framework described above implements a novel contrastive scheme which
compares views of two consecutive observations xt and xt+1, augmented with random image
shifts Yarats et al. (2021). This differs from other representation learning for RL approaches such as
CURL (Srinivas et al., 2020), which contrasts two different views of the same observation xt, and
ATC (Stooke et al., 2020), which uses temporal contrast over a trajectory snippet. As mentioned
in Section 3.1, the input x consists of a stack of three image frames. New data is gathered via an
unsupervised exploration policy that uses current embeddings yt, projections zt and prototypes
{ci}Mi=1, which we detail next.

4.2 MAXIMUM ENTROPY EXPLORATION

When reward signal is absent and no assumptions about the MDP can be made, one possible
intrinsic objective for the agent is to learn a policy which maximizes the entropy Ĥk,X∼dπ(·)(d

π)
of the discounted state visitation distribution dπ(x), per Equation (1). Although the estimator is
asymptotically unbiased and consistent (Singh et al., 2003), applying it in practice poses several
challenges that we address using the learned encoder and prototypes (Section 4.1).

First, estimation in the original high-dimensional image space X is a poor metric for measuring
similarity. To this end, we estimate entropy using Euclidean distance to the kth nearest neighbor in
the low-dimensional learned latent space: Ĥk,Z∼dπ(·)(d

π) ∝
∑N
i=1 ln ‖zi − NNk,Z(zi)‖, where

zi = gθ(fθ(xi)) and Z = {zi}Ni=1.

Second, finding the kth nearest neighbor over the entire dataset Z becomes computationally expensive
as the dataset grows in size. One possible solution, proposed by Liu & Abbeel (2021), is to constrain
the search to a random batch B of embeddings uniformly drawn from the replay buffer Z as
Ĥk,B∼Z(dπ). Empirically, this approximation leads to a high variance estimate. For example, in
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Figure 4: Single task evaluation using eight challenging environments from DeepMind Control Suite.
For each method (except for DrQ and Plan2Explore), we first perform task-agnostic pretraining
for 500k environment steps, before introducing task reward and training for a further 500k steps.
DrQ uses task reward from the outset. Plan2Explore, being model-based, uses an intermediate
methodology, described in Section 5.1. Proto-RL consistently beats the baselines and in many cases
exceeds the fully supervised approach of DrQ.

a recently discovered part of the environment the state density in the buffer will be low, thus the
estimated distance will be unduly large. To mitigate the problem of under-representation of novel
states, we use a dataset rebalancing scheme that up-weights novel embeddings and down-weights
common ones. This is done by clustering the candidates using the learned prototypes and then
uniformly sampling from these clusters. To implement this for each prototype cj we compute a

softmax distribution wj with components w(i)
j =

exp(ẑi
T cj)∑B

k=1 exp(ẑk
T cj)

over a batch of L2 normalized

projections {ẑi}Bi=1 and then sample a constant number of candidates from this distribution. The
sampled candidates are stored in a queue Q of a fixed size M × T , where T candidates are used per
cluster.

Finally, Proto-RL modifies an original task-agnostic transition (xt,at,xt+1) by encoding visual
observations with the online encoder fθ into embeddings yt = fθ(xt) and yt+1 = fθ(xt+1), then
adding the entropy-based intrinsic reward computed using the candidate set Q as:

r̂t = ‖zt+1 −NNk,Q(zt+1)‖. (2)

The proposed scheme is visualized in Figure 3.

4.3 PRETRAINING WITH TASK-AGNOSTIC RL

To collect a diverse dataset for enabling representation learning, Proto-RL simultaneously trains an
exploration RL agent to optimize the intrinsic reward specified by Equation (2). The RL agent is
trained on transitions (yt,at, r̂t,yt+1) described above. Importantly, We block the gradients from the
RL loss LRL, defined in Appendix A, in order to learn task-agnostic representations and prototypes.
The RL agent is implemented using SAC (Haarnoja et al., 2018).

4.4 APPLICATION TO DOWNSTREAM TASKS

To perform downstream RL training we (i) use the online encoder fθ to map image observations
xt,xt+1 into embeddings yt,yt+1 and (ii) augment the extrinsic reward rt with the intrinsic reward
r̂t, scaled by hyper-parameter α. This results into the modified transitions (yt,at, rt + αr̂t,yt+1),
which are then used to train a standard state-based RL algorithm. In this work, since we are interested
in studying the effects of the task-agnostic representation alone, we freeze the encoder and prototypes.
However, we note that finetuning representations and prototypes during downstream RL is also
compatible with our framework.
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Figure 5: Multi-task evaluation using two domains from DeepMind Control Suite, with four tasks in
each. We perform task-agnostic pre-training for 500k steps in each domain. The frozen representation
and prototypes are then applied separately to each of the four tasks, training for additional 500k steps
with the task reward. DrQ performance is measured after training for 500k steps. The results show
that the representations learned by Proto-RL generalize well and enable efficient learning of multiple
downstream tasks.

5 EXPERIMENTS

In this section we discuss empirical results on using Proto-RL for learning visual representations.
We begin by describing our experimental setup and evaluation protocols. We then use this setting to
answer the following questions: (a) Does task-agnostic pre-training improve downstream task-specific
RL? (b) How well do the learned representations transfer to different tasks? (c) How important is
exploration during representation learning? (d) Can the pre-trained prototypes be used to improve
downstream exploration?

5.1 EXPERIMENTAL SETUP

Our agents operate in the few-shot unsupervised RL setting with two learning phases. In the task-
agnostic phase the agent is allowed to interact with an environment, but it does not have access to any
information about the downstream task that the agent will be asked to solve in the next phase. In the
downstream RL phase, rewards associated with a task are revealed to the agent. In our experiments,
agents are allowed 500k environment interactions in the task-agnostic phase, followed by 500k
additional interactions with the environment in the downstream RL phase.

Environment Details We use the DeepMind Control Suite (Tassa et al., 2018), a challenging
benchmark for image-based RL. Following prior work, visual observations are represented as 84×
84× 3 pixel renderings. The episode length is 1000 for all tasks, except Reach Duplo, where it is 250.
A fixed action repeat R = 2 (Hafner et al., 2019) is applied across all environments. Each agent’s
performance is evaluated over 10 episodes every 10000 environment steps. All figures plot the mean
performance over 10 random seeds, together with ±1 standard deviation shading.

Hyper-parameters Proto-RL is trained using Adam (Kingma & Ba, 2014) with learning rate 10−4

and mini-batch size of 512. The downstream exploration hyper-parameter is α = 0.2 and the number
of cluster candidates is set to T = 4. We use SAC implementation from Yarats & Kostrikov (2020).

Baselines To contextualize the results of Proto-RL, we compare with the following baseline algo-
rithms:

• Random exploration: The agent is based on DrQ (Yarats et al., 2021) and it explores the
environment using a random policy during the task-agnostic phase. We then freeze the
learned encoder to provide representations for task-specific RL training.

• Curiosity Pathak et al. (2017b): This agent explores the environment using a curiosity-driven
intrinsic motivation reward along with learning continuous visual representations using DrQ.

• APT Liu & Abbeel (2021): The agent explores the environment using an entropy-driven
intrinsic motivation reward along with learning continuous visual representations. Since
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Figure 6: Varying the amount of task-agnostic pre-training on three different tasks from DeepMind
Control Suite. Subsequent task-specific training (on top of the frozen representation) uses 500k steps.
Proto-RL is able to explore state space sufficiently within 200k steps to learn representations that can
support downstream tasks.

APT does not use prototypical representations, entropy is measured through sampling of
observations from the replay buffer.

• Plan2Explore Sekar et al. (2020): Here, a model-based algorithm Dreamer (Hafner et al.,
2019) is used in conjunction with Curiosity Pathak et al. (2017b) to explore the environment.
However, since Plan2Explore uses model-based optimization while Proto-RL and other
baselines are model-free, we only denote the final performance of Plan2Explore to avoid
ambiguities in step-wise comparisons. Furthermore, Plan2Explore is provided with an
estimate of the reward function of the downstream task at the end of the task-agnostic
pre-training, which allows it to leverage the model to plan directly for a task-specific policy
in a zero-shot manner. On the other hand, all other baselines have to learn the reward
function directly in downstream RL.

• DrQ Yarats et al. (2021): Here, a state-of-the-art method for task-specific RL is trained on
task-specific rewards for 1M steps to anchor the performance ranges.

The full experimental setup and details on baselines are described in Appendix B.

5.2 TASK-AGNOSTIC PRE-TRAINING

We present results on eight environments in Figure 4, with extended results on sixteen environments
in Appendix F. Proto-RL significantly improves upon Random exploration and APT across all envi-
ronments, while being better than Curiosity based exploration in 7/8 environments. This demonstrates
that in the context of model-free RL, Proto-RL provides state-of-the-art downstream task learning.
Furthermore, Proto-RL trained on 500k task-agnostic environment interactions achieves competitive
performance to the model-based algorithm Plan2Explore2 that is trained on 1M unsupervised steps,
followed by the 200k fine-tuning steps with reward.

Perhaps a more exciting result is that Proto-RL trained with 500k steps of downstream RL out-
performs DrQ trained on 1M steps in 6/8 environments. This demonstrates how task-agnostic
representation learning can enable superior downstream RL and achieve state-of-the-art image-based
RL results. Note, that these environments are indeed among the hardest image-based environments
from DeepMind Control Suite (Tassa et al., 2018).

5.3 MULTI-TASK GENERALIZATION

As pointed out in the introduction, one desirable property of task-agnostic representations is that
they can effectively generalize across different downstream tasks defined in the same environment.
To highlight this ability of Proto-RL, we present results on RL training on different downstream
tasks in Figure 5. After 500k steps of downstream RL, Proto-RL significantly outperforms all the
baselines we compare with. We believe this ability of prototypes to accelerate downstream task
learning through both better representations and exploration is key to unlock more effective and
robust generalization in image-based RL tasks, as it is case in computer vision. Details about the
multi-task environments are provided in Appendix E.

2Note that we only compare on environments reported in the original paper since the publicly released code
underperforms the reported numbers.
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Figure 7: Evaluation regime from Figure 4 for Proto-RL but varying the balance between exploration
and downstream reward using hyper-parameter α. We see that α > 0 facilitates learning, especially
in the sparse reward tasks such as Cartpole Swingup Sparse and Reach Duplo.

5.4 EFFICIENCY OF TASK-AGNOSTIC PRE-TRAINING

In the previous experiments we describe the performance of various unsupervised RL algorithms
on the 500k task-agnostic steps benchmark. However, this raises a question on how many such
unsupervised steps are required to learn representations that can accelerate downstream tasks. In Fig-
ure 6 we present comparisons on 200k, 500k, and 1M steps of task-agnostic training. We find that
Proto-RL consistently outperforms the baselines across the various splits. Interestingly, on Walker
Run we see that for the baselines, performance drops with increased task-agnostic training, which
highlights the difficulty in learning generalizable representations without overfitting to the explored
data.

5.5 DOWNSTREAM EXPLORATION

A key differentiating factor of Proto-RL compared to current relevant methods is that prototypes
enable exploration even during downstream task RL. To understand the importance of this, we study
of effect of the hyper-parameter α that trades off the task reward with our entropy-based intrinsic
reward in Figure 7. Across all the tasks, using α = 0 i.e., not using the prototype-driven exploration,
underperforms every experiment that uses α ≥ 0.1. Notably, for sparse reward tasks like Cartpole
Swingup Sparse and Reach Duplo α ≥ 0.1 is significantly better that α = 0. This highlights
the importance of using prototypes that summarize the exploratory experience in an environment.
Interestingly, even without using the prototype-driven exploration, Proto-RL is able to solve all tasks
with a performance that is still competitive with the baselines. This shows that the image embeddings
learned during the task-agnostic pre-training are indeed effective in solving the downstream tasks.

6 CONCLUSION

In this paper we present Proto-RL, an unsupervised representation learning algorithm for RL. Proto-
RL simultaneously learns representations and prototypes from visual inputs while exploring envi-
ronments in a task-agnostic fashion. Empirically, the learned representations and prototypes enable
state-of-the-art exploration and learning of downstream objectives, as well as effective generalization
across multiple tasks. We believe Proto-RL brings us a step closer to “fine-tuning" in RL, a process
that is commonplace in modern computer vision and natural language processing. It also opens up
several directions for future research such as understanding the theoretical underpinnings of discrete
representations, applications to robotics and offline RL.
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APPENDIX

A EXTENDED BACKGROUND

Soft Actor-Critic The Soft Actor-Critic (SAC) (Haarnoja et al., 2018) is an off-policy model-free
RL algorithm that instantiates an actor-critic framework by learning a state-action value functionQθ, a
stochastic policy πθ and a temperature α over a discounted infinite-horizon MDP (X ,A, P,R, γ, d0)
by optimizing a γ-discounted maximum-entropy objective (Ziebart et al., 2008). With a slight abuse
of notation, we define both the actor and critic learnable parameters by θ. SAC parametrizes the actor
policy πθ(at|xt) via a tanh-Gaussian defined as at = tanh(µθ(xt) +σθ(xt)ε), where ε ∼ N (0, 1),
µθ and σθ are parametric mean and standard deviation. The SAC’s critic Qθ(xt,at) is parametrized
as an MLP neural network.

The policy evaluation step learns the critic Qθ(xt,at) network by optimizing the one-step soft
Bellman residual:

LQ(D) = E(xt,at,xt+1)∼D
at+1∼π(·|xt+1)

[(Qθ(xt,at)− yt)2] and

yt = R(xt,at) + γ[Qθ′(xt+1,at+1)− α log πθ(at+1|xt+1)],

whereD is a replay buffer of transitions, θ′ is an exponential moving average of θ as done in (Lillicrap
et al., 2015). SAC uses clipped double-Q learning (van Hasselt et al., 2015; Fujimoto et al., 2018),
which we omit from our notation for simplicity but employ in practice.

The policy improvement step then fits the actor πθ(at|st) network by optimizing the following
objective:

Lπ(D) = Ext∼D[DKL(πθ(·|xt)|| exp{ 1

α
Qθ(xt, ·)})].

Finally, the temperature α is learned with the loss:

Lα(D) = E xt∼D
at∼πθ(·|xt)

[−α log πθ(at|xt)− αH̄],

where H̄ ∈ R is the target entropy hyper-parameter that the policy tries to match, which in practice is
set to H̄ = −|A|. The overall optimization objective of SAC equals to:

LSAC(D) = Lπ(D) + LQ(D) + Lα(D).

We use the LSAC loss as LRL in Proto-RL.

B EXPERIMENTAL SETUP

B.1 THE DEEPMIND CONTROL SUITE SETTINGS

To benchmark our method we use the DeepMind Control Suite (DMC) (Tassa et al., 2018), a
challenging set of image-based continuous control tasks. The episode length of each task is 1000
steps, except for Reach Duplo, where it is set to 250. Following Hafner et al. (2019), we set the
action repeat hyper-parameter to 2. An environment observation x ∈ X is constructed as a stack of 3
consecutive frames (Mnih et al., 2013), where each frame is an RGB rendering of size 3× 84× 84
from the 0th camera, except for the Quadruped environment, where we use the 2th camera (Hafner
et al., 2019), this results into a pixel tensor of size 9× 84× 84. Finally, we divide each pixel’s value
by 255 to scale it down to [0, 1] range.

B.2 PROTOTYPICAL REPRESENTATION LEARNING

Encoder We use the convolutional encoder architecture from SAC-AE Yarats et al. (2019) to
parametrize both the online and target encoders fθ and fξ . This convnet consists of four convolutional
layers with 3× 3 kernels and 32 channels. The ReLU activation is applied after each convolutional
layer. We use stride to 1 everywhere, except of the first conv layer, which has stride 2. The convnet
inputs tensors of dimensions 9×84×84 and outputs flatten representations of sizeR = 32×35×35 =
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39200.
Projector The online and target projectors gθ and gξ are just single linear layer 39200 → 128
projections.
Predictor The online vθ projector is an MLP with 128→ 512→ 128 architecture and ReLU hidden
activations.
Prototypes Proto-RL learns M = 512 prototypes (128-dimensional continuous vectors), where the
softmax temperature is set to τ = 0.1. To compute the cluster assignments target we employ the
Sinkhorn-Knopp algorithm (Cuturi, 2013), which performs n = 3 relaxation iterations per training
step.

We train the online network parameters θ and prototypes {ci}Mi=1 using stochastic gradient optimiza-
tion with Adam (Kingma & Ba, 2014), where the learning rate is set to 10−4 and minibatch size to
512. The target network parameters ξ being computed as an exponential moving average of θ with
momentum τenc = 0.05.

B.3 ENTROPY-BASED INTRINSIC REWARD

Entropy is being computed in 128-dimensional latent space that is produced by the online encoder fθ
and projector gθ. We maintain an online candidates queue Q of fixed size M ×T = 512× 4 = 2048,
where each of M = 512 prototypes has exactly T = 4 candidates. The downstream exploration
bonus coefficient is set to α = 0.2.

B.4 SOFT-ACTOR CRITIC ARCHITECTURE

Our SAC (Haarnoja et al., 2018) implementation is based on
github.com/denisyarats/pytorch_sac Yarats & Kostrikov (2020) with the fol-
lowing modifications. We add a fully-connected layer of 39200→ 50 with LayerNorm (Ba et al.,
2016) activation to both actor and critic networks. We also set learning rate to 10−4, minibatch size
to 512, actor update frequency to 1, and critic target momentum to 0.01.

B.5 TASK-AGNOSTIC PRE-TRAINING SETUP

Proto-RL simultaneously trains representations (see Appendix B.2) and exploration RL agent (see Ap-
pendix B.4) by jointly optimizing LSSL and LRL losses. We perform RL training in the off-policy
fashion by maintainng a replay buffer of size 105. The exploration agent first collects 1000 seed
transitions by using a random policy and stores them into the replay buffer. Further training tran-
sitions are collected by sampling actions from the exploration policy. One training update to the
representations and exploration agent is performed every time a new transition is received. Given
the episode’s length of 1000 and fixed action repeat of 2 we thus perform 500 training updates per a
training episode. In order to learn task-agnostic representations the online encoder fθ and prototypes
{ci}Mi=1 are only being updated with the gradients from the LSSL loss, while the gradients from the
LRL loss are being blocked. After pre-training we fix the online encoder fθ, online projector gθ and
prototypes {ci}Mi=1 and prevent them from any further updates during the downstream training.

B.6 TASK-SPECIFIC RL SETUP

During downstream training we train a task RL agent (see Appendix B.4 for details) on the fixed
representations obtained from the encoder fθ. We also employ the pre-trained prototypes to compute
intrinsic reward to combine it together with the true task reward. To ensure initial exploration we
initialize the task agent’s actor using the exploration actor’s weights.

B.7 FULL LIST OF HYPER-PARAMETERS

B.8 BASELINES

Random We implement the Random agent baseline based on DrQ (Yarats et al., 2021). Specifically,
during the task-agnostic phase the agent uses a random exploration policy to collect a replay buffer,
which is used by DrQ to pre-train the convolutional encoder. During the downstream training, we
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Table 1: Proto-RL list of hyper-parameters.

Parameter Setting
Replay buffer capacity 100000
Seed steps 1000
Minibatch size 512
Action repeat 2
Discount (γ) 0.99
Optimizer Adam
Learning rate 10−4

Critic target update frequency 2
Critic target EMA momentum (τQ) 0.01
Actor update frequency 2
Actor log stddev bounds [−10, 2]
Encoder target update frequency 2
Encoder target EMA momentum (τenc) 0.05
SAC entropy temperature 0.1
Number of prototypes (M ) 512
Number of candidates per prototype (T ) 4
Representation dimensionality (R) 39200
Latent dimensionality (D) 128
Softmax temperature (τ ) 0.1
k in NN 3
Intrinsic reward coefficient (α) 0.2

freeze the encoder convnet and use the downstream task reward to train a DrQ policy on the fixed
encoder.

Curiosity We adapt ICM (Pathak et al., 2017a) to the off-policy continuous control setting. To
facilitate this, we augment DrQ (Yarats et al., 2021) with the ICM module that inputs encoded visual
observations and learns forward and inverse dynamics models. The ICM module first projects the
visual representations with a linear layer to 50-dimensional latent vectors. These vectors are then fed
into the forward and inverse dynamics, which are parametrized by two layers MLPs with 1024 hidden
units and ReLU nonlinearities. As per Pathak et al. (2017a), we use the forward prediction error
and an intrinsic signal. We found that normalizing the curiosity reward by a running estimate of its
standard deviation and then transforming with the log_plus_one function leads to better performance.
During the task-agnostic phase the exploration agent is tasked to optimize the curiosity-based intrinsic
reward. After pre-training is completed, we, again, freeze the encoder convnet and use it together
with a downstream agent to optimize the target task.

APT As no original implementation is provided by Liu & Abbeel (2021), we chose to implement
APT ourselves follow Liu & Abbeel (2021) as close as possible. The only difference to the original
implementation is that we freeze the convolution encoder weights of APT during the downstream
training to facilitate fair comparison withing our setup. This is in contrast to the setup from Liu &
Abbeel (2021), where the encoder fine-tuning is allowed.

Plan2Explore We obtain results for Plan2Explore from the Table 2 in Sekar et al. (2020). We
reemphasize that a direct comparison of our method to Plan2Explore is not meaningful as Sekar et al.
(2020) use a different methodology and setup. Specifically, Sekar et al. (2020) allows pre-training
of the reward model using the task specific rewards during the task-agnostic phase, which leaks the
downstream task information. Furthermore, Plan2Explore preserves the replay buffer collected during
the task-agnostic phase and uses it during the downstream training, our setup, on the other hand,
completely disregards the task-agnostic transitions in the downstream stage. Finally, Plan2Explore
allows further fine-tuning of the world-model during the downstream phase, while we keep the
pre-trained representations fixed.
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C PROTO-RL PSEUDO CODE

Algorithm 1 Pseudocode for Proto-RL training routine in a PyTorch-like style.

# C: M prototypes of size D (DxM)
# Q: queue of MxT candidates ((MxT)xD)
# fθ, gθ, vθ: online encoder, projector, and predictor
# fξ, gξ: target encoder and projector
# tau: momentum
# temp: temperature

# sample a minibatch of B transitions without reward from the replay buffer
# (xt, at, xt+1): state (Bx9x84x84), action (Bx|A|), next state (Bx9x84x84)
for (xt, at, xt+1) in replay_buffer:

update_representations(xt, xt+1)
with torch.no_grad():

rt = compute_rewards(xt+1) # compute entropy-based task-agnostic reward using the next
state xt+1

# decouple representations from RL
with torch.no_grad():

yt = fθ(xt) # obtain representations (BxR)
yt+1 = fθ(xt+1) # obtain representations (BxR)

# train exploration RL agent on an augmented minibatch of B transitions (yt, at, rt, yt+1)
update_rl(yt, at, rt, yt+1) # standard state-based SAC

# self-supervised representation learning routine
# xt, xt+1: state (Bx9x84x84) and next state (Bx9x84x84)
def update_representations(xt, xt+1):

with torch.no_grad():
C = normalize(C, dim=0, p=2) # normalize prototypes

# online network
xt = aug(xt) # random-shift view (Bx9x84x84)
yt = fθ(xt) # obtain representations (BxR)
zt = gθ(yt) # obtain projections (BxD)
ut = vθ(zt) # obtain predictions (BxD)
ut = normalize(ut, dim=1, p=2) # normalization (BxD)
pt = softmax(mm(ut, C) / temp, dim=1) # assignment probabilities (BxM)
# target network (gradient is blocked)
with torch.no_grad():

xt+1 = aug(xt+1) # random-shift view (Bx9x84x84)
yt+1 = fξ(xt+1) # representation (BxR)
zt+1 = gξ(yt+1) # representation (BxD)
zt+1 = normalize(zt+1, dim=1, p=2) # normalization (BxD)
qt+1 = sinkhorn(mm(zt+1, C) / temp) # target assignments (BxM)

# cluster assignment loss
loss = -mean(sum(qt+1 * log(pt), dim=1))
# SGD update for online network and prototypes
loss.backward()
update(θ, C)
# EMA update for the target encoder
ξ = tau * ξ + (1 - tau) * θ

# Sinkhorn-Knopp algorithm
# S: dot products matrix (BxM)
def sinkhorn(S, n=3):

S = exp(S).T
S /= sum(S)
r, c = ones(M) / M, ones(B) / B
for _ in range(n):

u = sum(S, dim=1)
S *= (r / u).unsqueeze(1)
S *= (c / sum(Q, dim=0)).unsqueeze(0)

return (S / sum(S, dim=0, keepdim=True)).T # target assignments (BxM)

# entropy-based task-agnostic reward computation
# x: state (Bx9x84x84)
def compute_rewards(x):

y = fθ(x) # obtain representations (BxR)
z = gθ(y) # obtain projections (BxD)
z = normalize(z, dim=1, p=2) # normalization (BxD)
w = softmax(mm(z, C).T, dim=1) # candidates softmax probabilities (MxB)
i = Categorical(w).sample() # one sample per row (Mx1)
candidates = z[i] # select M candidates (MxD)
enqueue(Q, candidates) # append the M candidates to the candidates Q, maintain the fixed (

MxT) size

# find k-nearest neighbor for each sample in z (BxD) over the candidates queue Q ((MxT)xD)
dists = norm(z[:, None, :] - Q[None, :, :], dim=-1, p=2) # pairwise L2 distances (Bx(MxT))

between y and Q
topk_dists, _ = topk(dists, k=3, dim=1, largest=False) # compute topk distances (Bx3)
r = topk_dists[:, -1:] # rewards (Bx1) are defined as L2 distances to the k-nearest

neighbor from Q
return r
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D THE POINTMASS MAZE EXPERIMENT DETAILS

The U-maze environment is based on the PointMass Easy task from DMC (Tassa et al., 2018) with
the following modifications. First, we add three walls to the MuJoCo model:

<default class="wall">
<geom type="box" material="site"/>

</default>
<geom name="maze_x" class="wall" pos="-.1 0 .02" zaxis="1 0 0" size=".02 .1 .02"/>
<geom name="maze_neg_x" class="wall" pos=".1 0 .02" zaxis="1 0 0" size=".02 .1 .02"/>
<geom name="maze_y" class="wall" pos="0 .12 .02" zaxis="0 1 0" size=".12 .02 .02"/>

We then modify initial state distribution of the point mass from being uniform across the entire
[−0.3, 0.3]× [−0.3, 0.3] grid, to be uniformly distributed across a much smaller region of the state
space situated in the top-left corner [−0.3,−0.15]× [0.15, 0.3]. During the task-agnostic stage there
is no target location and the agent explores the state space by optimizing the entropy-based intrinsic
reward. During the task-specif phase, we place a target location at the center [0, 0] of the grid with
radius 0.07. The agent receives reward of 1 if it reaches the target location, otherwise it receives no
reward. The contrived initial state distribution and sparse reward function make this task extremely
hard from the exploration point of view.

E THE MULTITASK EXPERIMENT DETAILS

Walker We add four additional tasks Run Forward, Run Backward, Flip Forward,
and Flip Backward to the Walker environment from DMC that require the agent to
run forward/backward, flip forward/backward correspondingly. These tasks are similar
to the Cheetah tasks from Plan2Explore (Sekar et al., 2020) that are implemented in
github.com/ramanans1/dm_control.

Reach Duplo In this set of tasks the agent is required to reach the lego block that is placed in four
different fixed locations: Top Left [−0.09, 0.09], Top Right [0.09, 0.09], Bottom Left [−0.09,−0.09],
and Bottom Right [0.09,−0.09]. These task are based on the Reach Duplo environment from DMC.
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F FULL RESULTS FOR THE TASK-AGNOSTIC PRE-TRAINING EXPERIMENT

We conduct the experiment defined in Section 5.2 on an extended set of 16 environments from
DMC (Tassa et al., 2018) and provide them in Figure 8.
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Figure 8: Single task evaluation using a full set of 16 challenging environments from DeepMind
Control Suite. For each method (except for DrQ and Plan2Explore), we first perform task-agnostic
pretraining for 500k environment steps, before introducing task reward and training for a further
500k steps. DrQ uses task reward from the outset. Plan2Explore, being model-based, uses an
intermediate methodology. Proto-RL consistently beats the baselines and in many cases exceeds the
fully supervised approach of DrQ.
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G FULL RESULTS FOR THE EFFICIENCY OF TASK-AGNOSTIC PRE-TRAINING
EXPERIMENT

In Figure 9 we provide full results of the experiment from Section 5.4.
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Figure 9: Varying the amount of task-agnostic pre-training on three different tasks from DeepMind
Control Suite. Subsequent task-specific training (on top of the frozen representation) uses 500k steps.
Proto-RL is able to explore state space sufficiently within 200k steps to learn representations that can
support downstream tasks.

H FULL RESULTS FOR THE DOWNSTREAM EXPLORATION EXPERIMENT

In Figure 10 we provide full results of the experiment from Section 5.5.
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Figure 10: Evaluation regime from Figure 4 for Proto-RL but varying the balance between exploration
and downstream reward using hyper-parameter α. We see that α > 0 facilitates learning, especially
in the sparse reward tasks such as Cartpole Swingup Sparse and Reach Duplo.
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