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Abstract

Geocoding, the task of converting unstructured
text to structured spatial data, has recently seen
progress thanks to a variety of new datasets,
evaluation metrics, and machine-learning al-
gorithms. We provide a survey to review, or-
ganize and analyze recent work on geocod-
ing (also known as toponym resolution) where
the text is matched to geospatial coordinates
and/or ontologies. We summarize the findings
of this research and suggest some promising
directions for future work.

1 Introduction

Geocoding, also called toponym resolution or to-
ponym disambiguation, is the subtask of geopars-
ing that disambiguates place names in text. The
goal of geocoding is, given a textual mention of a
location, to choose the corresponding geospatial co-
ordinates, geospatial polygon, or entry in a geospa-
tial database. Geocoders must handle place names
(known as foponyms) that refer to more than one ge-
ographical location (e.g., Paris can refer to a town
in the state of Texas in the United States, or the cap-
ital city of France), and geographical locations that
may be referred to by more than one name (e.g.,
Leeuwarden and Ljouwert are two names for the
same city in the Netherlands), as shown in fig. 1.
Geocoding plays a critical role in tasks such as
tracking the evolution and emergence of infectious
diseases (Hay et al., 2013), analyzing and searching
documents by geography (Bhargava et al., 2017),
geospatial analysis of historical events (Tateosian
et al., 2017), and disaster response mechanisms
(Ashktorab et al., 2014; de Bruijn et al., 2018).
The field of geocoding, previously dominated
by geographical information systems communities,
has seen a recent surge in interest from the natural
language processing community due to the inter-
esting linguistic challenges this task presents. The
four most recent geocoding datasets (see table 1)
were all published at venues in the ACL Anthology.
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Figure 1: An illustrative example of geocoding chal-
lenges. One toponym (Paris) can refer to more than
one geographical location (a town in the state of Texas
in the United States or the capital city of France in Eu-
rope), and a geographical location may be referred to
by more than one toponym (Leeuwarden and Ljouwert
are two names for the same city in the Netherlands).

And the recent ACL-SIGLEX sponsored SemEval
2019 Task 12: Toponym Resolution in Scientific
Papers (Weissenbacher et al., 2019) resulted in sev-
eral new natural language processing approaches
to geocoding. The field has thus changed substan-
tially since the most recent survey of geocoding
(Gritta et al., 2017), including a doubling of the
number of geocoding datasets, and the advent of
modern neural network approaches to geocoding.

The field would thus benefit from a survey
and critical evaluation of the currently available
datasets, evaluation metrics, and geocoding algo-
rithms. Our contributions are:

* the first survey on geocoding to include recent
deep learning approaches

* coverage of new geocoding datasets (which
increased by 100% since 2017) and geocoding
systems (which increased by 50% since 2017)

* discussion of new directions, such as polygon-
based prediction

In the remainder of this article, we first highlight
some previous geocoding surveys (section 2) and
explain the scope of the current survey (section 3).
We then categorize the features of recent geocod-



ing datasets (section 4), compare different choices
for geocoding evaluation metrics (section 5), and
break down the different types of features and ar-
chitectures used by geocoding systems (section 6).
We conclude with a discussion of where the field
should head next (section 7).

2 Background

An early formal survey of geocoding is Leidner
(2007). This Ph.D. thesis distinguished the tasks
of finding place names (known as geotagging or
toponym recognition) from linking place names to
databases (known as geocoding or toponym reso-
lution). They found that most geocoding methods
were based on combining natural language process-
ing techniques, such as lexical string matching or
word sense matching, with geographic heuristics,
such as spatial-distance minimum and population
maximum. Most geocoders studied in this thesis
were rule-based.

Monteiro et al. (2016) surveyed work on predict-
ing document-level geographic scope, which of-
ten includes mention-level geocoding as one of its
steps. Most of this survey focused on the document-
level task, but the geocoding section found tech-
niques similar to those found by Leidner (2007).

Gritta et al. (2017) reviewed both geotagging
and geocoding, and proposed a new dataset, Wik-
ToR. The survey portion of this article compared
datasets for geoparsing, explored heuristics of rule-
based and feature-based machine learning-based
geocoders, summarized evaluation metrics, and
classified common errors from several geocoders
(misspellings, case sensitivity, processing fictional
and historical text presents, etc.). Gritta et al.
(2017) concluded that future geoparsers would
need to utilize semantics and context, not just syn-
tax and word forms as the geocoders of the time.

Geocoding research since these previous surveys
has changed in several important ways, as will be
described in the remainder of this article. Most
notably, new datasets and evaluation metrics are
enabling new polygon-based views of the problem,
and deep learning methods are offering new algo-
rithms and new approaches for geocoding.

3 Scope

We focus on the geocoding problem, where men-
tions of place names are resolved to database en-
tries or polygons. We thus searched the Google
Scholar and Semantic Scholar search engines

for papers matching any of the keyword queries:
geocoding, geoparsing, geolocation, toponym res-
olution, toponym disambiguation, or spatial infor-
mation extraxtion. From the results, we excluded
articles that described tasks other than mention-
level geocoding, for example:

* matching a full document or full microblog
post to a single location (Luo et al., 2020;
Hoang and Mothe, 2018; Kumar and Singh,
2019; Lee et al., 2015)

* geographic document retrieval and classifica-
tion (Gey et al., 2005; Adams and McKenzie,
2018)

* matching typonyms to each other within a
geographical database (Santos et al., 2018)

We also excluded papers published before 2010
(e.g., Smith and Crane, 2001), as they have been
covered thoroughly by prior surveys.

In total, we reviewed more than 60 papers and
included more than 30 of them in this survey.

4 Geocoding Datasets

Many geocoding corpora have been proposed,
drawn from different domains, linking to differ-
ent geographic databases, with different forms of
geocoding labels, and with varying sizes in terms of
both articles/messages and toponyms. Table 1 cites
and summarizes these datasets, and the following
sections walk through some of the dimensions over
which the datasets vary.

4.1 Domains

The news domain is the most common target for
geocoding corpora, covering sources like broad-
cast conversation, broadcast news, and news mag-
azines. Examples include the ACE 2005 English
SpatialML Annotations (ACS), the Local Global
Lexicon (LGL), CLUST, TR-NEWS, GeoVirus,
and GeoWebNews. Though all these datasets in-
clude news text, they vary in what toponyms are
included. For example, LGL is based on local
and small U.S. news sources with most toponyms
smaller than a U.S. state, while GeoVirus focuses
on news about global disease outbreaks and epi-
demics with larger, often country-level, toponyms.

Web text is also a common target for geocoding
corpora. Wikipedia Toponym Retrieval (WikToR)
and GeoCoDe are both based on Wikipedia pages.
ACS, mentioned above, also includes newsgroup
and weblog data. And social media, specifically



Geographic

Articles /

Corpus Domain Database Label Type Messages Toponyms
ACS, Mani et al. (2010) News GeoNames Point 428 4783
LGL, Lieberman et al. (2010) News GeoNames Point & GeoNamesID 588 4793
CLUST, Lieberman and Samet (2011) News GeoNames Point & GeoNamesID 1082 11564
7G, Zhang and Gelernter (2014) Twitter GeoNames Point & GeoNamesID 956 1393
WOTR, DeLozier et al. (2016) Historical OpenStreetMap Point & Polygon 9653 10380
WikTOR, Gritta et al. (2017) Wikipedia  GeoNames Point 5000 25000
Prussian , Ardanuy and Sporleder (2017) Historical ~ GeoNames Point N/A 1529
Belgian, Ardanuy and Sporleder (2017) Historical ~ GeoNames Point N/A 544
Antilles, Ardanuy and Sporleder (2017) Historical ~ GeoNames Point N/A 301
EastIndies, Ardanuy and Sporleder (2017) Historical GeoNames Point N/A 210
DRegional, Ardanuy and Sporleder (2017) Historical ~ GeoNames Point N/A 1037
TR-NEWS, Kamalloo and Rafiei (2018) Historical GeoNames Point & GeoNamesID 118 1274
GeoCorpora, Wallgriin et al. (2018) Twitter GeoNames Point & GeoNamesID 211 2966
GeoVirus, Gritta et al. (2018) News GeoNames Point 229 2167
GeoWebNews, Gritta et al. (2019) News GeoNames Point & GeoNamesID 200 5121
SemEval-2019-12, Weissenbacher et al. (2019) Scientific GeoNames Point & GeoNamesID 150 8360
GeoCoDe, Laparra and Bethard (2020) Wikipedia OpenStreetMap Polygon 360187 360187

Table 1: Summary of geocoding datasets covered by this survey, sorted by year of creation.

Twitter, is the target for ZG and GeoCorpora. These
corpora vary as widely as the internet text upon
which they are based. For example, GeoCoDe and
WikToR include the first paragraphs of Wikipedia
articles, while ZG and GeoCorpora contain Twit-
ter messages with place names that were highly
ambiguous and mostly unambiguous, respectively.
Other geocoding domains are less common, but
have included areas such as historical documents
and scientific journal articles. The Official Records
of the War of the Rebellion (WOTR) corpus an-
notates historical toponyms of the U.S. Civil War.
Ardanuy and Sporleder (2017) created 5 histori-
cal multi-lingual datesets based on national, re-
gional, local, and colonial historical newspapers.
The SemEval-2019 Task 12 dataset is based on
scientific journal papers from PubMed Central'.

4.2 Geographic Databases

All geocoding corpora rely on some database of
geographic knowledge, sometimes also called a
gazetteer or ontology. Such a database includes
canonical names for places along with their ge-
ographic attributes such as latitude/longitude or
geospatial polygon, and may include other infor-
mation, such as population or type of place.
Most geocoding corpora have used GeoNames
as their geographic database, including ACS, LGL,
CLUST, ZG, WikToR, TR-NEWS, GeoCorpora,
GeoVirus, GeoWebNews, and SemEval-2019-12.
GeoNames is a crowdsourced database of geospa-
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'https://www.ncbi.nlm.nih.gov/pmc/
tools/openftlist/
https://www.geonames.org/

tial locations, with almost 7 million entries and a
variety of information such as feature type (country,
city, river, mountain, etc.), population, elevation,
and positions within a political geographic hierar-
chy. The freely available version of GeoNames
contains only a (latitude, longitude) point for each
location, with the polygons only available with a
premium data subscription, so most corpora based
on GeoNames do not use geospatial polygons.

Geocoding corpora where recognizing geospa-
tial polygons is important have typically turned
to OpenStreetMap’. OpenStreetMap is another
crowdsourced database of geospatial locations,
which contains both (latitude, longitude) points
and geospatial polygons for its locations. WOTR
and GeoCoDe are based on OpenStreetMap.

4.3 Geospatial Label Types

Three different types of geospatial labels have been
considered in geocoding corpora: database entries,
(latitude, longitude) points, and polygons. All cor-
pora except WTOR and GeoCoDe assign to each
place name the (latitude, longitude) point that rep-
resents its geospatial center on the globe. Many of
the GeoNames-based corpora (LGL, CLUST, TR-
NEWS, GeoCorpora, GeoWebNews, and SemEval-
2019-12) also assign to each place name its Geo-
Names database ID. The WTOR corpus assigns
to each place name a point or a polygon, and
GeoCoDe assigns to each place name only a poly-
gon. Figure 2 shows an example of a polygon
annotation from GeoCoDe.

*https://www.openstreetmap.org/
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Biancavilla is a town in the
southern Italy.

Figure 2: The red-shaded area is the polygon label for
Biancavilla, which is defined by the set of its boundary
coordinates retrieved from OpenStreetMap.

4.4 Analysis: Geocoding Datasets

The most compelling improvements in geocoding
datasets have been in the variety of domains, mov-
ing from exclusively news to include historical
documents, scientific documents, Wikipedia, and
social media. Less change has been seen in geo-
graphic databases, where GeoNames is still domi-
nant over OpenStreetMap, and in geospatial label
types, where points are still dominant over poly-
gons. These latter two issues are intertwined: Geo-
Names polygons are only available for a fee, while
OpenStreetMap polygons are freely available.

5 Geocoding Evaluation Metrics

Geocoding systems are evaluated on geocoding
corpora using metrics that depend on the corpus’s
geospatial label type.

5.1 Database entry correctness metrics

When the target label type is a geospatial database
entry ID, common evaluation metrics for multi-
class classification tasks are applied. These metrics
can also be used for corpora with (latitude, longi-
tude) point labels by breaking the globe down into
a discrete grid of geospatial tiles, and treating each
geospatial tile like a database entry.

Accuracy is the number of place names where
the system has predicted the correct database entry,
divided by the number of place names. Accuracy is
sometimes also called Precision@] or P@1 when
there is only one correct answer (as in the case for
current geocoding datasets) and when the ranking-
based system is turned into a classifier by taking
the top-ranked result as its prediction (the current
standard for geocoding evaluation).

U
Accuracy = —

U]

where U is the set of human-annotated place names,
U is the set of place names where the system’s
single prediction or top-1 ranked result is correct.

5.2 Point distance metrics

When the target label type is a (latitude, longi-
tude) point, common evaluation metrics attempt to
measure the distance between the system-predicted
point and the human-annotated point.

Mean error distance calculates the mean over
all predictions of the distance between each system-
predicted and human-annotated point:

Z dis(ls(u), lp(u))

. U
MeanErrorDist = “<

U
where U is the set of all human-annotated place
names, [s(u) is the system-predicted (latitude, lon-
gitude) point for place name wu, I}, () is the human-
annotated (latitude, longitude) point for place name
u, and dis is the distance between the two points
on the surface of the globe.

Median Error Distance is defined in a similar
way to mean error distance, but takes the median
of the error distances rather than the mean.

Accuracy @k km/miles measures the fraction of
system-predicted (latitude, longitude) points that
were less than k km/miles away from the human-
annotated (latitude, longitude) points. Formally:

Hulu € U A dis(ls(u),lp(u)) <= k}|
U]
where U, [, l},, and dis are defined as above, and

k is a hyper-parameter. A common choice for k is
161 (Cheng et al., 2010).

Area Under the Curve (AUC) calculates the
area under the curve of the distribution of geocod-
ing error distances. A geocoding system is better if
the area under the curve is smaller. Formally:

AccQk =

AUC — In Actual ErrorDistance

MazxPossible Errors
where Actual ErrorDistance is the area under
the curve, and MaxPossibleErrors is the far-
thest distance between two places on earth.

5.3 Polygon-based metrics

When the target label type is a polygon, eval-
uation metrics attempt to compare the overlap
between the system-predicted polygon and the
human-annotated polygon.



. e Database  Polygon
GeoCoder Implementation Prediction Type Independent based
Edinburgh Parser (Grover et al., 2010) Rule-based Ranking No No
TGBRW-2010 (Tobin et al., 2010) Rule-based Ranking No No
MAC-2010 (Martins et al., 2010) Machine Learning Ranking No No
1Geo (Lieberman et al., 2010) Rule-based Ranking No No
LS-2011 (Lieberman and Samet, 2011) Rule-based Ranking No No
MG (Freire et al., 2011) Machine Learning Ranking No No
CLAVIN (Berico Technologies, 2012) Rule-based Ranking No No
LS-2012 (Lieberman and Samet, 2012) Machine Learning Ranking No No
GeoTxt (Karimzadeh et al., 2013) Rule-based Ranking No No
SPIDER (Speriosu and Baldridge, 2013) Machine Learning Ranking No No
WISTR (Speriosu and Baldridge, 2013) Machine Learning Ranking No No
TRAWL (Speriosu and Baldridge, 2013) Machine Learning Ranking No No
CMU-Geolocator (Zhang and Gelernter, 2014) Machine Learning Ranking No No
SMFCM-2015 (Santos et al., 2015) Machine Learning Ranking No No
Topocluster (DeLozier et al., 2015) Machine Learning Classification Yes No
GeoSem (Ardanuy and Sporleder, 2017) Machine Learning Ranking No No
CBH, SHS Kamalloo and Rafiei (2018) Machine Learning Ranking No No
CamCoder (Gritta et al., 2018) Deep Learning Classification No No
DM_NLP (Wang et al., 2019) Machine Learning Ranking No No
CME-2019 (Cardoso et al., 2019) Deep Learning  Classification & Regression Yes No
MLG (Kulkarni et al., 2020) Deep Learning Classification Yes No
LB-2020 (Laparra and Bethard, 2020) Rule-based Regression Yes Yes

Table 2: Summary of geocoding systems covered by this survey, sorted by year of creation.

Polygon-based precision and recall were pro-
posed by Laparra and Bethard (2020) based on
the intersection of system-predicted and human-
annotated geometries. Formally:

area(S; N H;)
Precision —
recision = Z “area(S)
e\S\
area(S; N H;)
Recall =
cea | Z area(H;)

where the S is the system-predicted set of polygons
and H is the human-annotated set of polygons.

5.4 Analysis: Geocoding Evaluation Metrics

In point-based metrics, median error distance is
generally preferred to mean error distance, as the
latter is sensitive to outliers. For example, Gritta
et al. (2017) found that the bulk of errors are trig-
gered by roughly 20% of the places and the errors
from the remaining places are relatively low. AUC
is generally preferred to Accuracy @k km/miles be-
cause in AUC, the difference between two small
errors (such as 10 and 20 km) is more significant
than the same difference between two large errors
(such as 110 and 120 km) (Jurgens et al., 2015).
Polygon-based metrics have so far only been ap-
plied to datasets with polygon labels, but future
work should consider applying them to datasets
with database entry labels. This could give credit
when two database entries are equally applicable

(e.g., a mention of Dallas that is ambiguous be-
tween city and county) and the polygons overlap
(e.g., Dallas city, GeoNames ID 4684888, makes
up most of Dallas county, GeoNames ID 4684904).

6 Geocoding Systems

Table 2 summarizes the approaches of geocoders
over the last decade. These models have differ-
ent approaches to the prediction problem, ranging
from ranking to classification to regression. They
implement their predictive models with technology
ranging from hand-constructed rules and heuristics,
to feature-based machine-learning models, to deep
learning (i.e., neural network) models that learn
their own features.

6.1 Prediction Types

Ranking is the most common approach to
making geospatial predictions (Edinburgh Parser,
TGBRW-2010, MAC-2010, IGeo, LS-2011, MG,
CLAVIN, LS-2012, WISTR, GeoTxt, CMU-
Geolocator, SMFCM-2015, GeoSem, CBH, SHS,
DM _NLP). For example, most rule-based systems
index their geospatial database with a search sys-
tem like Lucene (https://lucene.apache.org/),
and query that index to produce a ranked list of can-
didate database entries. This ranked list may be
further re-ranked based on other features such as
population or proximity. The type of scores using
in re-ranking include binary classification score
(MG, LS-2012, WISTR, CMU-Geolocator, CBH,


https://lucene.apache.org/

SHS, DM _NLP), regression distance MAC-2010,
the precision at the first position of the ranked list
SMFCM-2015, and heuristics based on informa-
tion in the geospatial database (Edinburgh Parser,
TGBRW-2010, IGeo, LS-2011, CLAVIN, GeoTxt).

Classification is commonly used in making
geospatial predictions when the Earth’s surface
has been discretized into tiny areas (Topocluster,
CamCoder, CME-2019, MLG). For example, Cam-
Coder divides the Earth’s surface into 7,823 tiles,
and then changes the geospatial label of each to-
ponym to the tile containing its coordinate. Cam-
Coder then directly predicts one of 7823 classes
for each toponym mention.

Regression is sometimes used for geospatial pre-
dictions when the label type is a (latitude, longi-
tude) point or a polygon (CME-2019, LB-2020).
For example, LB-2020 predict a set of coordinates
(i.e., a polygon) by applying operations over refer-
ence geometries, where the operations take sets of
coordinates as inputs and produce sets of coordi-
nates as outputs. Regression approaches to geocod-
ing are rare because directly predicting coordinates
over the entire surface of the Earth is challenging.

6.2 Features and Heuristics

All geocoding systems combine string matching
(exact string matching, Levenshtein distance, etc.)
with other features and/or heuristics (population,
words in nearby context, etc.). Details of such
features are described in this section.

String match checks whether the place name
matches any names in the geospatial database
(Edinburgh Parser, TGBRW-2010, MAC-2010,
1Geo, LS-2011, MG, CLAVIN, GeoTxt, CMU-
Geolocator, SMFCM-2015, GeoSem, CBH, SHS,
DM_NLP). String matching can be done exactly,
or approximately with edit distance metrics like
Levenshtein Distance. For example, GeoTxt calcu-
lates the Levenshtein Distance between the place
name in the text and each candidate entry from the
geospatial database, and selects the candidate with
the lowest edit distance.

Population looks at the size of the population
associated with candidate database entry, typically
preferring more populous entries to less popu-
lous ones (Edinburgh Parser, TGBRW-2010, MAC-
2010, IGeo, LS-2011, MG, LS-2012, CLAVIN,
GeoTxt, CMU-Geolocator, SMFCM-2015, CBH,

SHS, CamCoder, DM _NLP). For example, when
the Edinburgh Parser geocodes the text I love Paris,
it resolves Paris to PARIS, FRANCE instead of
PARIS, TX, U.S. since the former has a greater
population in the geospatial database.

Type of place looks at the geospatial feature
type (country, city, river, populated place, facil-
ity, etc.) of a candidate database entry, typi-
cally preferring the more geographically promi-
nent ones (Edinburgh Parser, TGBRW-2010, MAC-
2010, IGeo, LS-2011, MG, CLAVIN, LS-2012,
GeoTxt, TRAWL, CMU-Geolocator, SMFCM-
2015, GeoSem, CBH, SHS, DM_NLP). For ex-
ample, TGBRW-2010 prefers “populated places”
to “facilities” such as farms and mines, when there
are multiple candidate geospatial labels.

Words in the nearby context are used to disam-
biguate ambiguous place names (LS-2012, WISTR,
CMU-Geolocator, SMFCM-2015, Topocluster,
GeoSem, CBH, SHS, DM_NLP, CamCoder, CME-
2019, MLG). Ways of using context words range
from simple to complex. For example, WISTR
uses a context window of 20 words on each side
of the target place name, aiming to benefit from
location-oriented words such as uptown and beach.
In contrast, CMU-Geolocator searches for common
country and state names in other nearby location
expressions, using these mostly unambiguous place
names to help resolve the target place name.

One sense per referent is a heuristic that as-
sumes that all occurrences of a unique place name
in the same document will refer to the same
geographical database entry (Edinburgh Parser,
TGBRW-2010, IGeo, LS-2011, GeoTxt, CBH,
SHS, DM_NLP). For example, after each time that
1Geo resolves a place name to a geospatial label,
it propagates the same resolution to all identical
place names in the remainder of the document.

Spatial minimality is a heuristic that assumes
that place names in a text tend to refer to geospatial
regions that are in close spatial proximity to each
other (Edinburgh Parser, TGBRW-2010, IGeo, LS-
2011, CLAVIN, SPIDER, Topocluster, GeoSem,
CBH, SHS). For example, when IGeo geocodes the
text 96 miles south of Phoenix, Arizona, just outside
of Tucson, it takes Tucson as an “anchor’” toponym
and resolves that first to get a target region. Then
for Phoenix, it selects the geospatial label that is
most geographically proximate to the target region.



6.3 Implementation Types

Rule-based systems use hand-crafted rules and
heuristics to predict a geospatial label for a place
name (Edinburgh Parser, TGBRW-2010, IGeo, LS-
2011, CLAVIN, GeoTxt, LB-2020). The rule bases
range in size from 2 to more than 200 rules, and
rules may be formalized in rule grammars or de-
fined more informally and provided as code. For ex-
ample, IGeo uses a rule defined via code to identify
place names in comma groups (e.g., "New York,
Chicago and Los Angeles”, all major cities in the
U.S.), and then resolves all toponyms by applying
a heuristic uniformly across the entire group. As
another example, LB-2020 uses 219 synchronous
grammar rules to parse a target polygon from refer-
ence polygons by constructing a tree of geometric
operators (e.g., BETWEEN(p1, p2) calculates the
region between geolocation polygons p; and p2).

Feature-based machine-learning systems use
many of the same features and heuristics of
rule-based systems, but provide these as input
to a supervised classifier that makes the predic-
tion of a geospatial label (MAC-2010, MG, LS-
2012, WISTR, CMU-Geolocator, SMFCM-2015,
Topocluster, GeoSem, CBH, SHS, DM _NLP).
They typically operate in a two-step rank-then-
rerank framework, where first an information re-
trieval system produces candidate geospatial la-
bels, then a supervised machine-learning model
produces a score for each candidate, and the can-
didates are reranked by these scores. Classifica-
tion and ranking algorithms include logistic regres-
sion (WISTR), support vector machines (MAC-
2010, CMU-Geolocator), random forests (MG, LS-
2012), stacked LightGBMs (DM_NLP), and Lamb-
daMART (SMFCM-2015). For example, MAC-
2010 trains a support vector machine regression
model using features such as the population and
the number of alternative names for each candidate.

Deep learning systems often approach geocod-
ing as a one-step classification problem by dividing
the Earth’s surface into an N x N grid, where the
neural network attempts to map place names and
their features to one of these N x N categories
(CamCoder, CME-2019, MLGQG). Each system has
a unique neural architecture for combining inputs
to make predictions, typically based on either con-
volutional neural networks (CNNs) or recurrent
neural networks (RNNs).

CamCoder was the first deep learning based-

geocoder. Its lexical model uses CNNs to create
vectors representing context words (a window of
200 words, location mentions excluded), location
mentions (context words excluded) and the target
place name. Its geospatial model produces a vec-
tor using a geospatial label’s population (from the
database) as its prior probability. CamCoder con-
catenates the lexical and geospatial vectors for the
final classification.

MLG is also a CNN-based geocoder, but it does
not use population or other geospatial database in-
formation. It captures lexical features in a similar
manner to CamCoder, but takes advantage of the
S2 geometry (https://s2geometry.io/) to repre-
sent its geospatial output space in hierarchical grid-
cells from coarse to fine-grained. MLG can predict
the geospatial label of a place name at multiple S2
levels by mutually maximizing both precision and
generalization of predictions.

CME-2019 is an RNN-based geocoder that uses
HEALPix geometry (Gorski et al., 2005) to dis-
cretize the Earth’s surface. It uses long short-term
memory network with pre-trained Elmo embed-
dings (Peters et al., 2018) to create vectors repre-
senting the place name, local context (50 words
around the place name), and larger context (para-
graph or 500 words around the place name). The
three vectors are concatenated and used to predict
both the class of the HEALPix region and the coor-
dinates of the centroid of the HEALPix class. This
joint learning approach allows the two tasks to be
mutually promoted and restricted.

6.4 Analysis: Geocoding Systems

Despite much variability in choice of evaluation
dataset, the LGL, WikTOR, GeoVirus, and WOTR
datasets have been shared by multiple geocoders,
so we summarize the reported results in table 3.
Neural network models (CamCoder, CME-2019,
and MLG) perform only slightly better than prior
models on LGL and GeoVirus. (Though CME-
2019 has larger gains LGL, it doesn’t evaluate on
GeoVirus). Neural network models achieve larger
gains on WikTOR and WOTR, likely because these
larger datasets (10,000+ toponyms) provide more
training data to the data-hungry neural networks.
WikTOR was also specifically designed to counter-
act the population heuristic popular in prior models,
and WOTR’s narrow domain (American Civil War
military reports) likely has a similar effect.

While the advent of recent deep learning ap-
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Accuracy@161km (1)

Mean error distance (])

GeoCoder LGL GeoVirus WikTOR WOTR LGL GeoVirus WikTOR WOTR
Edinburgh Parser (Grover et al., 2010) 76 78 42 - 8 5 31 -
CLAVIN (Berico Technologies, 2012) 71 79 16 - 13 6 43 -
GeoTxt (Karimzadeh et al., 2013) 68 79 18 - 14 6 47 -
SPIDER (Speriosu and Baldridge, 2013) 68 - - 67 12 - - 4.8
SMFCM-2015 (Santos et al., 2015) 71 - - - 8 - - -
Topocluster (DeLozier et al., 2015) 63 - 26 - 12 - 38 -
GeoSem (Ardanuy and Sporleder, 2017) - - - 68 - - - 4.5
CamCoder (Gritta et al., 2018) 76 82 65 - 7 3 11 -
CME-2019 (Cardoso et al., 2019) 86 - - 82 2.4 - - 1.6
MLG (Kulkarni et al., 2020) 73 85 85 - 6.2 2.8 3.5 -

Table 3: Reported results on LGL, WikToR, GeoVirus, and WOTR. For accuracy @ 161km, larger is better (1). For

mean error distance, smaller is better ({.).

proaches is an exciting step forward for geocod-
ing research, most such models include only a few
of the many features investigated by feature-based
architectures. For example, no deep learning mod-
els yet incorporate document-level consistency fea-
tures like one sense per referent, geospatial consis-
tency features like spatial minimality, or database
information beyond population.

7 Future Directions

A key direction of future research will be output
representations. Many past geocoders focused on
mapping place names to geospatial database entries
(see column 4 of table 2). This was convenient,
enabling fast resolution by applying standard in-
formation retrieval models to propose candidate
entries from the database, but was limited by the
simple types of matching that information retrieval
systems could perform. Modern deep learning ap-
proaches to geocoding allow more complex match-
ing of place names to geospatial locations, but typ-
ically rely on discretizing the Earth’s surface into
tiles to constrain the size of the network’s output
space. For the neural networks to achieve the fine-
grained level of geocoding available in geocoding
databases, they may need to consider hierarchical
output spaces (e.g., Kulkarni et al., 2020) or com-
positional output spaces (e.g., Laparra and Bethard,
2020) that can express the necessary level of detail
without exploding the output space.

Another key direction of future research will be
the structure and evaluation of geocoding datasets.
Most existing datasets and systems treat geocod-
ing as a problem of identifying points rather than
polygons (see column 4 of table 1 and column 5
of table 2). Yet the vast majority of real places
in geospatial databases are complex polygons (as

in fig. 2), not simple points. More polygon-based
datasets are needed, especially ones like GeoCoDe
(Laparra and Bethard, 2020) that include complex
descriptions of locations (e.g., between the towns
of Adrano and S. Maria di Licodia) and not just
explicit place names (e.g., Paris). The current state-
of-the-art for complex geographical description
geocoding is rule-based, but more polygon-based
datasets will drive algorithmic research that can
improve upon these rule-based systems with some
of the insights gained from deep neural network
approaches to explicit place name geocoding.

Finally, geocoding evaluation is still an open
research area. Future research will likely extend
some of the new polygon-based evaluation met-
rics. For example, using polygon precision and
recall would give credit to a geocoding system
that predicted the GeoNames entry Nakhon Sawan
even if the annotated data used the entry Changwat
Nakhon Sawan, since the polygons of these two
place names are nearly identical.

8 Conclusion

After surveying a decade of work on geocoding,
we have identifed several trends. First, combining
contextual features with geospatial database infor-
mation makes geocoders more powerful. Second,
like much of NLP, geocoders have moved from rule-
based systems to feature-based machine-learning
systems to deep-learning systems. Third, the older
rank-then-rerank approaches, combining informa-
tion retrieval and supervised classification, are be-
ing replaced by direct classification approaches,
where the Earth’s surface is discretized into many
small tiles. Finally, the field of geocoding is just
beginning to look beyond a point-based view of
locations to a more realistic polygon-based view.
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