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Abstract

3D dense captioning is a task to localize ob-001
jects in a 3D scene and generate descriptive002
sentences for each object. Recent approaches in003
3D dense captioning have adopted transformer004
encoder-decoder frameworks from object de-005
tection to build an end-to-end pipeline without006
hand-crafted components. However, these ap-007
proaches struggle with contradicting objectives008
where a single query attention has to simulta-009
neously view both the tightly localized object010
regions and contextual environment. To over-011
come this challenge, we introduce SIA (See-012
It-All), a transformer pipeline that engages in013
3D dense captioning with a novel paradigm014
called late aggregation. SIA simultaneously de-015
codes two sets of queries—context query and016
instance query—where the instance query fo-017
cuses on localization and object attribute de-018
scriptions while the context query versatilely019
captures the region-of-interest of relationships020
between multiple objects or with the global021
scene, then aggregated afterwards (i.e., late ag-022
gregation) via simple distance-based measures.023
To further enhance the quality of contextual-024
ized caption generation, we design a novel ag-025
gregator (i.e., TGI-Aggregator) to generate a026
fully informed caption based on the surround-027
ing context, the global environment, and ob-028
ject instances. Extensive experiments on two029
of the most widely-used 3D dense captioning030
datasets (ScanRefer and Nr3D) demonstrate031
that our proposed method achieves a significant032
improvement over prior methods.033

1 Introduction034

3D dense captioning has been defined in former035

works (Chen et al., 2021, 2022; Yuan et al., 2022;036

Wang et al., 2022; Jiao et al., 2022; Cai et al., 2022;037

Chen et al., 2023a) as the task of localizing all the038

objects in a 3D scene (i.e., object detection) and039

generating descriptive sentences for each object040

(i.e., object caption generation). Early works incor-041

porated a two-stage “detect-then-describe" pipeline,042

where we first detect all the object proposals then 043

generate the captions for each object (Chen et al., 044

2021; Jiao et al., 2022; Wang et al., 2022; Zhong 045

et al., 2022; Cai et al., 2022; Chen et al., 2022; Yuan 046

et al., 2022). However, the sequential design, lack- 047

ing sufficient integration of contextual information 048

in these endeavors, has been limited in performance 049

and efficiency. 050

Succeeding work (Chen et al., 2023a) has em- 051

ulated the transformer encoder-decoder pipeline 052

from object detection (Carion et al., 2020) to al- 053

leviate these issues and fashioned an end-to-end 054

pipeline for 3D dense captioning. Powered by trans- 055

former attentions, these method contextualizes in- 056

dividual objects (i.e., self-attention with other pro- 057

posals throughout the global scene) to generate 058

dense captions. Nevertheless, compared to the no- 059

table advancements that object detection has experi- 060

enced, the direct application of this architecture has 061

failed to fully leverage the contextual information 062

required for 3D dense captioning. 063

Dense captioning has to perform precise ob- 064

ject localization while generating captions that ei- 065

ther independently describe an object’s attributes 066

(e.g., a wooden chair) or describe the object within 067

its contextual environment (e.g., a chair in front 068

of the TV). This presents a challenging scenario 069

where the feature representation for a single query 070

must encompass both accurate local features for 071

localization or attribute-based caption generation, 072

alongside incorporating contextual features that dy- 073

namically span neighboring regions or the broader 074

global scene. Focusing attention on local features 075

can enhance localization and detailed attribute de- 076

scription but reduce sensitivity to the surrounding 077

context. Conversely, spreading attention to include 078

the context can improve understanding of the envi- 079

ronmental description but at the cost of localization 080

accuracy. 081

In this paper, we propose a pipeline engaging a 082

novel late aggregation paradigm called SIA (i.e., 083
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Figure 1: Schematic diagrams illustrating paradigms of 3D dense captioning: (a) features are extracted from object
detectors, and their distance or relations are further aggregated to enhance features Cai et al. (2022) (b) proposals are
generated by voting, then the local-context features are aggregated with transformer attention Chen et al. (2023a) (c)
our proposed SIA separately encodes features with local boundaries and context features without such boundaries,
and aggregates the generated caption that involves identical objects afterward (i.e., late aggregation) (d) SIA with
further enhanced contextual features with our novel TGI-Aggregator (fTGI ) that aggregates local-context-global
features for a more contextualized caption generation.

See It All). Rather than assigning a query per084

object and training them to dynamically incorpo-085

rate local features, contextual information, and the086

global scene, SIA allocates a query per caption. To087

elaborate, SIA identifies a distinct region to focus088

on when generating each caption, then consolidates089

the outcomes concerning identical objects. Figure 1090

contrasts our proposed late aggregation approach091

with existing dense captioning paradigms. While092

previous works have either (a) extracted the fea-093

tures from localized object areas Cai et al. (2022)094

or (b) generated captions from features that have to095

perform both localization and proper caption pre-096

diction Chen et al. (2023a), SIA (c) focuses on each097

unique ROIs for each caption then aggregates the098

captions that include identical objects afterwards.099

This architecture (i.e., late aggregation) enables100

SIA to produce attribute captions and localization101

with features concentrated exclusively on specific102

local areas, while captions necessitating a broad103

range of contextual information can be crafted us-104

ing features gathered without the constraints of105

localization boundaries.106

To further refine the features for contextual107

captions, we designed a unique aggregator that108

generates captions based on the conTextual sur-109

roundings, Global descriptor, and Instance features110

(i.e., TGI-Aggregator, see Figure 1 (d)). Our TGI-111

Aggregator generates contextual caption based on112

the fully informed feature that can dynamically cap-113

ture the area of interest within the scene without114

the constraints of localization objectives. Extensive 115

experiments on two widely used benchmarks in 116

3D dense captioning (i.e., ScanRefer (Chen et al., 117

2020a) and Nr3D (Achlioptas et al., 2020)) show 118

that our proposed SIA surpasses prior approaches 119

by a large margin. The contribution of our paper 120

can be summarized as: 121

• We propose a new paradigm for 3D dense cap- 122

tioning (i.e., late aggregation). While previ- 123

ous work aggregates the instance and context 124

features first then generates captions, SIA gen- 125

erates local and contextual captions separately 126

and then aggregates the captions that involv- 127

ing identical objects. 128

• To further improve the quality of features 129

used for contextualized caption generation, 130

we propose a novel aggregator named TGI- 131

Aggregator. 132

• Our SIA achieves state-of-the-art performance 133

across multiple evaluation metrics on two 134

most widely used benchmarks. 135

2 Preliminary 136

In this preliminary, we start with a basic 137

transformer-based end-to-end 3D dense captioning 138

pipeline (Chen et al., 2023a). The caption heads are 139

attached on top of the existing 3D object detection 140

pipeline (Qi et al., 2019; Misra et al., 2021) with 141
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vote queries that establish captions for each pin-142

pointed object throughout the scene in an object-143

by-object manner. Afterward, we discuss why this144

object-centric application of transformer attention145

is unsuitable for 3D dense captioning.146

2.1 End-to-End 3D Object Detection147

3D object detection aims to identify and localize148

objects in 3D scenes. VoteNet (Qi et al., 2019) in-149

corporates an encoder-decoder architecture where150

the bounding boxes are predicted by aggregating151

the votes for the center coordinates. 3DETR (Misra152

et al., 2021) generates object queries by uniformly153

sampling seed points from a 3D scene. Vote2Cap-154

DETR (Chen et al., 2023a) uses vote queries that155

connects the object queries in 3DETR to VoteNet,156

resulting in better localization and improved train-157

ing efficiencies.158

2.2 Extension to 3D Dense Captioning159

The goal of 3D dense captioning is to localize ob-160

jects in a 3D scene and generate informative natu-161

ral language descriptions per object. An intuitive162

extension from object detection to 3D dense cap-163

tioning is simply applying a captioning head for164

each object proposals (Chen et al., 2023a). Given165

an input indoor 3D scene as a point cloud PC =166

[pin; fin] ∈ RN×(3+F ), where pin ∈ RN×3 is the167

absolute locations for each point and fin ∈ RN×F168

is additional input features for each point (Chen169

et al., 2020a, 2021), the objective of 3D dense cap-170

tioning is to generate a set of box-caption pairs171

(B̂, Ĉ) = {(b̂1, ĉ1), ..., (b̂K , ĉK)}, representing an172

estimation of K distinctive objects in this 3D scene.173

Captions are generated in parallel with bounding174

box prediction using a caption head. Since the175

aforementioned vote queries (i.e., pvote) fail to pro-176

vide adequate attributes and spatial relations for in-177

formative caption generation, the contextual infor-178

mation is leveraged through a separate lightweight179

transformer (Chen et al., 2023a).180

2.3 Retrospect on Object-Centric Captioning181

Current 3D dense captioning benchmarks require182

the model to generate multiple captions for each183

detected object. Therefore, it seems natural to ap-184

proach this task in an object-centric manner, where185

we generate captions per each object proposal.186

However, unlike object detection, dense captioning187

requires an extensive understanding of the scene,188

including the attributes of each object and the rel-189

ative information between objects and the global190

scene. Therefore, designating the queries per object 191

requires a single query attention to versatilely en- 192

compass the individual object and its surrounding 193

elements, failing to concentrate on the local ele- 194

ment it should describe effectively. To address this 195

issue and incorporate contextual scene information, 196

we propose a novel late aggregation approach for 197

3D dense captioning. 198

3 Method 199

In this section, we introduce a transformer encoder- 200

decoder pipeline that engages our novel late ag- 201

gregation paradigm for 3D dense captioning. In 202

previous methods, the transformer attention aggre- 203

gates contextual information per-object, where a 204

single feature is used to perform localization, gen- 205

erate localized attributes, and simultaneously cap- 206

ture the surrounding context area. SIA is designed 207

to capture the unique region of interest for each 208

caption. Local attribute descriptions are generated 209

with localized features, while contextualized cap- 210

tions that include relationships with other objects 211

or the entire scene are generated with a separately 212

decoded feature that is irrelevant to localization ob- 213

jectives. Then, captions involving identical objects 214

are aggregated via distance (i.e., late aggregation) 215

to consist the final caption. The overall pipeline is 216

illustrated in Figure 2. 217

3.1 Encoder 218

Given the input point cloud PC = [pin; fin] ∈ 219

RN×(3+F ), the input point cloud is first tok- 220

enized by a set-abstraction layer of PointNet++ (Qi 221

et al., 2017). The tokenized output is inputted 222

into a masked transformer encoder with the set- 223

abstraction layer, followed by two additional en- 224

coder layers. The final encoded scene tokens are 225

denoted as [penc; fenc] ∈ R1,024×(3+256). 226

3.2 Context Query and Instance Query 227

To disentangle the captions that are bound to a sin- 228

gle object and captions that include relative infor- 229

mation with other objects or the global scene, we 230

designate two separate instance query and context 231

query to each capture a unique region per caption 232

within the 3D scene. While the context query cap- 233

tures the local-global regions capable of captioning, 234

the instance query generates standard object local- 235

ization and attribute-related caption prediction for 236

each object. The two queries are decoded in parallel 237

and latter aggregated to consist the final caption. 238
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Figure 2: Overall architecture of SIA for 3D dense captioning. The caption query set is each designated to Instance
Query Decoder and Context Query Decoder. In the Instance Query Decoder, the caption based on the tight
localized area are generated along with object detection. In the Context Query Decoder, captions that require views
transcending single object localization such as captions containing relation between multiple objects or relation
between the scene are generated. The feature for this Unlocalized Caption Generation is further enhanced with our
novel TGI-Aggregator, that contextualizes the feature from conText regions, the Global scene, and Instances.

Context Query Generator. Given the encoded239

scene tokens [penc; fenc], we sample 512 context240

points pcseed with farthest point sampling (FPS) on241

penc. Then, the context query (pc, f c) is represented242

as:243

(pc, f c) =
(
pcseed,SAc(penc, fenc)

)
, (1)244

where SAc denotes the set-abstraction layer (Qi245

et al., 2017) with a radius of 1.2 and samples246

64 points for pc. All hyper-parameters are set ex-247

perimentally; please refer to Section 4.4 and Ap-248

pendix A for details.249

Instance Query Generator. The instance query250

is decoded to perform standard 3D object detec-251

tion and generate captions for the individual at-252

tributes of each object. Likewise, the instance query253

(po, fo) is written as:254

(po, fo) =
(
poseed +∆povote,SAo(penc, fenc)

)
, (2)255

where ∆povote = FFNo(fenc) is an offset that learns256

to shift the encoded points to object’s centers spa-257

tially by a feed-forward network FFNo, follow-258

ing (Chen et al., 2023a). SAo denotes the set-259

abstraction layer with a radius of 0.3 and samples260

16 points for po.261

3.3 Caption-Centric Decoding262

Given the context and instance queries, we build a263

parallel decoding pipeline where the Context De-264

coder describes contextual information between265
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Figure 3: Conceptual illustration of our TGI-Aggregator.
The Global Aggregator G(·) aggregates the decoded
context query V o and instance query V c to construct a
global descriptor V g . Then, the instance feature V o

i , the
nearest neighbor feature in V c, and the global descriptor
V g are concatenated to construct V a.

objects, and the Instance Decoder performs the lo- 266

calization and attribute description. We then feed 267

the decoded context query V c and instance query 268

V o to our TGI-Aggregator. 269

TGI-Aggregator. Figure 3 shows a conceptual 270

illustration of our TGI-Aggregator. To encompass 271

the understanding of the entire scene for each cap- 272

tion, we generate a global feature using all decoded 273

context queries V c, and instance queries V o; re- 274

lated experiments can be found in Section 4.4. We 275

deploy a clustering-based aggregator (Arandjelovic 276

et al., 2016) G(·). As a result, we obtain a global 277

descriptor V g ∈ R256 by V g = G(V c, V o). Then, 278
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we concatenate this global descriptor V g to each279

decoded instance query V o
i and K nearest features280

within V c in terms of spatial proximity to V o
i , re-281

sulting in an aggregated feature V a that contains282

a comprehensive information of conText, Global,283

and Instance. We set K to 16.284

Contextual Caption Generation. The output285

V a of our TGI-Aggregator contains features about286

contextual surroundings, global context, and in-287

stance information. Based on this feature, SIA288

can generate descriptions for relationships between289

multiple objects (e.g., the chair is next to a book-290

shelf) and global relationships (e.g., the table is in291

the middle of the room).292

Localization & Attribute Caption Generation.293

To predict localization and attribute descriptions294

for the participating instances, we feed the decoded295

instance query V o and parallelly feed it into the296

detection head and (shared) caption head. For lo-297

calization, we follow 3DETR (Misra et al., 2021),298

reformulating the box corner estimation as offset299

estimation from a query point to an object’s center300

and box size regression. All subtasks are imple-301

mented by FFNs. The object localization head is302

shared throughout the decoder layers.303

3.4 Training SIA304

To compare with previous object-centric methods305

using benchmark datasets, we construct the final306

caption to be object-centric. The final caption for307

the i-th object is obtained by simply concatenating308

the captions generated from V o
i and V a

i . Our SIA is309

trained and evaluated by locating all objects within310

a scene and comparing the final caption centered311

on each object with the ground-truth.312

Instance Query Loss. To train Instance Query313

Generator to find an object’s center by shift-314

ing points penc, we adopt the vote loss from315

VoteNet (Qi et al., 2019). Given the generated in-316

stance query (po, fo) and the encoded scene tokens317

(penc, fenc), the vote loss Lo is written as:318

Lo =
1

M

M∑
i=1

Ngt∑
j=1

∥poi − cntj∥1 · I(pienc), (3)319

where I(x) is an indicator function that equals 1320

when x ∈ Ij and 0 otherwise, Ngt is the number321

of instances in a 3D scene, M is the number of po,322

and cntj is the center of j-th instance Ij .323

Detection Loss. We use Hungarian match- 324

ing (Kuhn, 1955) to assign each proposal with the 325

ground-truth, following DETR (Carion et al., 2020). 326

The detection loss Ldet is written as: 327

Ldet = α1Lgiou +α2Lcls +α3Lcnt +α4Lsize, (4) 328

where α1 = 10, α2 = 1, α3 = 5, α4 = 1 are set 329

heuristically. The detection loss is applied across 330

all decoder layers for better convergence. 331

Caption Loss. Following the standard protocol 332

for image captioning, we first train caption heads 333

with standard cross-entropy loss for Maximum 334

Likelihood Estimation (MLE). In the MLE train- 335

ing, the model learns to predict the (t+ 1)-th word 336

ct+1
n based on the first t words c[1:t]n and the visual 337

features V . The loss function is established for the 338

final caption with length T is defined as follows: 339

Lcn =

T∑
t=1

Lcn(t) = −
T∑
t=1

log P̂

(
ct+1
n |V, c[1:t]n

)
,

(5) 340

Once the caption head is trained with word-level 341

supervision, it is further refined using Self-Critical 342

Sequence Training (SCST) (Rennie et al., 2017). In 343

this phase, the model produces multiple captions 344

ĉ1,...,k with a beam size of k, and an additional ĝ 345

using greedy search as a baseline. The loss function 346

for SCST is formulated as follows: 347

Lcn = −
k∑

i=1

(R(ĉi)−R(ĝ)) · 1

|ĉi|
log P̂ (ĉi|V).

(6) 348

The reward function R(·) is based on the 349

CIDEr (Vedantam et al., 2015) metric for caption 350

evaluation, and the logarithmic probability of the 351

caption ĉi is normalized by caption length |ĉi|, pro- 352

moting equal importance to captions of varying 353

lengths by the model. 354

Final Loss for SIA. Given the instance query 355

Loss Lo, the detection loss for the i-th decoder 356

layer as Li
det, and the average of the caption loss 357

Lcn within a batch denoted as Lcap, the final loss 358

L for SIA is written as: 359

L = β1Lo + β2

ndec-layer∑
i=1

Li
det + β3Lcap , (7) 360

where β1 = 10, β2 = 1, and β3 = 10. 361
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w/o additional 2D data w/ additional 2D data
Model Training IoU=0.25 IoU=0.50 IoU=0.25 IoU=0.50

C↑ B-4↑ M↑ R↑ C↑ B-4↑ M↑ R↑ C↑ B-4↑ M↑ R↑ C↑ B-4↑ M↑ R↑

Scan2Cap 53.73 34.25 26.14 54.95 35.20 22.36 21.44 43.57 56.82 34.18 26.29 55.27 39.08 23.32 21.97 44.78
D3Net - - - - - - - - - - - - 46.07 30.29 24.35 51.67

SpaCap3d 58.06 35.30 26.16 55.03 42.76 25.38 22.84 45.66 63.30 36.46 26.71 55.71 44.02 25.26 22.33 45.36
MORE 58.89 35.41 26.36 55.41 38.98 23.01 21.65 44.33 62.91 36.25 26.75 56.33 40.94 22.93 21.66 44.42
3DJCG 60.86 39.67 27.45 59.02 47.68 31.53 24.28 51.80 64.70 40.17 27.66 59.23 49.48 31.03 24.22 50.80

Contextual MLE - - - - 42.77 23.60 22.05 45.13 - - - - 46.11 25.47 22.64 45.96
REMAN - - - - - - - - 62.01 36.37 27.76 56.25 45.00 26.31 22.67 46.96
3D-VLP 64.09 39.84 27.65 58.78 50.02 31.87 24.53 51.17 70.73 41.03 28.14 59.72 54.94 32.31 24.83 51.51

Vote2Cap-DETR 71.45 39.34 28.25 59.33 61.81 34.46 26.22 54.40 72.79 39.17 28.06 59.23 59.32 32.42 25.28 52.38
Unit3D - - - - - - - - - - - - 46.69 27.22 21.91 45.98
Ours 78.68 43.25 29.21 63.06 73.22 40.91 28.19 60.46 78.05 42.16 28.74 61.70 69.86 37.89 27.04 57.33

Scan2Cap - - - - - - - - - - - - 48.38 26.09 22.15 44.74
D3Net - - - - - - - - - - - - 62.64 35.68 25.72 53.90

χ-Tran2Cap 58.81 34.17 25.81 54.10 41.52 23.83 21.90 44.97 61.83 35.65 26.61 54.70 43.87 25.05 22.46 45.28
Contextual SCST - - - - 50.29 25.64 22.57 44.71 - - - - 54.30 27.24 23.30 45.81

Vote2Cap-DETR 84.15 42.51 28.47 59.26 73.77 38.21 26.64 54.71 86.28 42.64 28.27 59.07 70.63 35.69 25.51 52.28
Ours 89.72 44.56 28.96 62.13 83.14 42.17 27.92 59.44 89.71 45.31 29.06 62.11 79.84 40.84 27.28 57.54

Table 1: Experimental results on the ScanRefer (Chen et al., 2020a). C, B-4, M, and R represent the captioning
metrics CIDEr (Vedantam et al., 2015), BLEU-4 (Papineni et al., 2002), METEOR (Banerjee and Lavie, 2005), and
ROUGE-L (Chin-Yew, 2004), respectively. A higher score for each indicates better performance.

4 Experiments362

4.1 Datasets and Metrics363

Datasets. In our studies, we focus on 3D dense364

captioning and employ two established datasets:365

ScanRefer (Chen et al., 2020a) and Nr3D (Achliop-366

tas et al., 2020). These datasets are rich in human-367

generated descriptions, with ScanRefer providing368

36, 665 descriptions for 7, 875 objects across 562369

scenes, and Nr3D offering 32, 919 descriptions for370

4, 664 objects in 511 scenes. For training, these de-371

scriptions and objects are derived from the ScanNet372

(Dai et al.) database, which comprises 1, 201 3D373

scenes. For evaluation, we use 9, 508 descriptions374

from ScanRefer and 8, 584 from Nr3D, correspond-375

ing to 2, 068 and 1, 214 objects across 141 and 130376

scenes, respectively, from the 312 3D scenes in the377

ScanNet validation set.378

Metrics. We evaluate the model using four types379

of performance metrics: CIDEr (Vedantam et al.,380

2015), BLEU-4 (Papineni et al., 2002), METEOR381

(Banerjee and Lavie, 2005), and ROUGE-L (Chin-382

Yew, 2004), denoted as C, B-4, M, and R, respec-383

tively. Following the previous studies (Chen et al.,384

2021; Cai et al., 2022; Jiao et al., 2022; Wang et al.,385

2022; Chen et al., 2023a), we first employ Non-386

Maximum Suppression (NMS) to eliminate redun-387

dant object predictions from the object proposals.388

Each proposal is represented as a pair consisting389

of a predicted bounding box b̂i and a generated390

caption ĉi. To assess both the model’s ability to391

locate objects and generate captions accurately, we392

employ the m@k, setting the IoU threshold k at 393

0.25 and 0.5 for our experiments, following (Chen 394

et al., 2021): 395

m@k =
1

N

N∑
i=1

m (ĉi, Ci)·I
{
IoU

(
b̂i, bi

)
≥ k

}
,

(8) 396

where N is the number of all annotated instances in 397

the evaluation set, and m represents the captioning 398

metrics C, B-4, M, and R. 399

4.2 Implementation Details 400

Our training phase is structured into three stages, 401

following the approach of (Chen et al., 2023a). Ini- 402

tially, we pre-train our network excluding the cap- 403

tion head on the ScanNet (Dai et al.) dataset for 404

1, 080 epochs. The batch size is 8. The loss function 405

is minimized using AdamW optimizer (Loshchilov 406

and Hutter, 2017), for which the initial learning rate 407

is 5× 10−4 and decreases to 10−6 according to a 408

cosine annealing schedule. We also apply a weight 409

decay of 0.1 and a gradient clipping of 0.1, as sug- 410

gested by (Misra et al., 2021). Afterward, start- 411

ing from the pre-trained weights, we jointly train 412

the entire model with the standard cross-entropy 413

loss for an additional 720 epochs on the ScanRe- 414

fer (Chen et al., 2020a) and Nr3D (Achlioptas et al., 415

2020) datasets, fixing the detector’s learning rate 416

at 10−6 and reducing the caption head’s from 10−4 417

to 10−6 to prevent over-fitting (about 20/17 hours 418

for ScanRefer/Nr3D). In the SCST (Rennie et al., 419

2017) phase, we adjust the caption head using a 420

batch size of 2 while keeping the detector fixed 421
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Model Training C@0.5 ↑ B-4@0.5 ↑ M@0.5 ↑ R@0.5 ↑

Scan2Cap 27.47 17.24 21.80 49.06
D3Net 33.85 20.70 23.13 53.38

SpaCap3d 33.71 19.92 22.61 50.50
3DJCG 38.06 22.82 23.77 52.99

Contextual MLE 35.26 20.42 22.77 50.78
REMAN 34.81 20.37 23.01 50.99

Vote2Cap-DETR 43.84 26.68 25.41 54.43
Ours 56.39 30.87 27.54 60.36

D3Net 38.42 22.22 24.74 54.37
χ-Tran2Cap 33.62 19.29 22.27 50.00
Contextual SCST 37.37 20.96 22.89 51.11

Vote2Cap-DETR 45.53 26.88 25.43 54.76
Ours 59.48 32.60 27.99 61.08

Table 2: Experimental results on the Nr3D (Achlioptas
et al., 2020) with IoU threshold at 0.5.

over a span of 180 epochs and maintain a constant422

learning rate of 10−6 (about 22/18 hours for Scan-423

Refer/Nr3D). In the experimental setup that uses424

additional 2D data, as shown in Table 1, we em-425

ploy the pre-trained ENet (Chen et al., 2020b) to426

extract 128-dimensional multiview features from427

2D ScanNet images, as in the (Chen et al., 2021).428

All experiments of our SIA are conducted with one429

Titan RTX GPU on PyTorch (Paszke et al., 2019).430

More details for implementation can be checked431

through the code to be released.432

4.3 Comparison with Existing Methods433

In this section, we benchmark our perfor-434

mance against eleven state-of-the-art methods:435

Scan2Cap (Chen et al., 2021), D3Net (Chen436

et al., 2022), SpaCap3D (Wang et al., 2022),437

MORE (Jiao et al., 2022), 3DJCG (Cai et al.,438

2022), Contextual (Zhong et al., 2022), RE-439

MAN (Mao et al., 2023), 3D-VLP (Jin et al.,440

2023), χ-Tran2Cap (Yuan et al., 2022), Vote2Cap-441

DETR (Chen et al., 2023a), and Unit3D (Chen442

et al., 2023b). We apply IoU thresholds of 0.25443

and 0.5 for ScanRefer (Chen et al., 2020a) as444

shown in Table 1 and an IoU threshold of 0.5 for445

Nr3D (Achlioptas et al., 2020) indicated in Table 2.446

For the baselines, we present the evaluation results447

reported in the original papers, and "-" in Table 1448

and Table 2 means that such results have not re-449

ported in the original paper or follow-up study.450

ScanRefer. Table 1 summaries the results on the451

ScanRefer dataset. Our method significantly sur-452

passes current methods in 3D dense captioning453

across all input data settings and IoU threshold con-454

figurations. We attribute this enhanced performance455

to our caption-centric attention mechanism. Unlike456

previous object-centric methods where surrounding457

information is bound to the center of object propos-458

IoU=0.50

Model C↑ B-4↑ M↑ R↑ mAP↑ AR↑

Vote2Cap-DETR 73.77 38.21 26.64 54.71 45.56 67.77
SIA using only V o 73.90 40.67 26.76 55.31 48.09 68.43

SIA w/o V g 81.45 41.19 26.33 56.71 48.74 68.13
SIA (Ours) 83.14 42.17 27.92 59.44 49.69 69.08

Table 3: Ablation study on the ScanRefer (Chen et al.,
2020a). The core components of SIA: i) decomposing
the query set into the instance query V o and the context
query V c, ii) generating the global feature V g, and iii)
aggregating the TGI feature V a.

Method C@0.5 ↑ B-4@0.5 ↑ M@0.5 ↑ R@0.5 ↑

Contexts V c 72.82 38.46 26.76 56.71
Single Instance V o

i & Contexts V c 72.89 38.21 27.04 57.33
Instances V o & Contexts V c (Ours) 73.22 40.91 28.19 60.46

Table 4: Ablation for how the instance feature V o and
the context features V c participate in the Global Ag-
gregator G(·) on the ScanRefer (Chen et al., 2020a). ·i
denotes a single i-th decoded query feature.

als, SIA directly targets the region-of-interest for 459

contextual captions with the context query while 460

simultaneously addressing object localization and 461

its attribute captions with the instance query. 462

Nr3D. The Nr3D dataset is designed to evaluate 463

the model’s performance in interpreting free-form 464

natural language descriptions of objects as spoken 465

by humans. Our SIA quantitatively demonstrates its 466

ability to generate various descriptions for an object 467

by showing state-of-the-art performance across all 468

evaluation metrics, as shown in Table 2. 469

4.4 Ablation Study and Discussion 470

The core components of SIA consist of three fac- 471

tors: i) decomposing the query set into instance 472

query V o and context query V c, ii) generating the 473

global descriptor V g, and iii) composing the fully 474

informed contextualized feature V a using our TGI- 475

Aggregator. In our ablation study, we validate that 476

every component of our proposed SIA positively 477

contributes to the final performance. 478

Instance Query Generator. We define SIA us- 479

ing only the Instance Query Generator (i.e., SIA 480

using only V o in Table 3) as our baseline and com- 481

pare it with Vote2Cap-DETR (Chen et al., 2023a), 482

an object-centric transformer encoder-decoder ar- 483

chitecture. The major difference between our base- 484

line and Vote2Cap-DETR is how we generate the 485

query set for instances. Vote2Cap-DETR uses far- 486

thest point sampling (FPS) to generate queries be- 487

fore the query coordinates are adjusted through 488
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C@0.5 ↑ B-4@0.5 ↑ M@0.5 ↑ R@0.5 ↑

SIA with GeM Pooling 66.97 36.97 26.76 56.71
SIA with NetVLAD (Ours) 73.22 40.91 28.19 60.46

Table 5: Experimental results comparing Global Aggre-
gators on the ScanRefer (Chen et al., 2020a).

voting. Therefore, if the coordinates are mistak-489

enly focused on a specific object after voting, fea-490

tures will be extracted from the same object. On491

the other hand, our baseline extracts the features492

from the candidate coordinates after the voting.493

This enhancement boosts localization performance494

in terms of mean Average Precision (mAP) and495

Average Recall (AR), naturally leading to improve-496

ments in dense captioning performance.497

Context Query Generator. SIA decomposes the498

role of queries into instance query V o that focuses499

on the object itself and context query V c that des-500

ignates the contextual region. SIA w/o V g in Ta-501

ble 3 shows the result of generating a caption using502

only context query V c and instance query V o in the503

TGI-aggregator, excluding the global descriptor. By504

showing high performance improvement compared505

to the results of SIA using only V o, we demonstrate506

the effectiveness of query set separation.507

TGI-Aggregator. As shown in Table 3, utiliz-508

ing a global descriptor V g in the TGI-Aggregator509

results in performance improvements across all as-510

pects. Table 4 shows our ablation study on how511

we aggregate the decoded context query V c and512

instance query V o to construct the global feature513

V g that is afterward fed to our TGI-Aggregator (re-514

call Figure 3). The scenarios include i) aggregating515

all context features V c, ii) gathering one instance516

feature V o
i with all context features V c, and iii)517

aggregating all instance and context features V o518

and V c to extract a global feature. Aggregating all519

instance and context features to create a global fea-520

ture results in the best performance. This implies521

that reflecting all instances and contexts is better522

when representing the entire scene.523

We also compare two of the most widely used524

aggregation frameworks for whole-scene represen-525

tation: GeM pooling (Radenović et al., 2019) and526

NetVLAD (Arandjelovic et al., 2016), as shown527

in Table 5. We empirically adopt NetVLAD for528

our Global Aggregator. In the TGI-Aggregator, we529

concatenate the global descriptor V g to each de-530

coded instance query V o
i and K nearest features531

within V c in terms of spatial proximity to V o
i . In532

Object scene0144_00 | 20 | nightstand

Only use V o "this is a brown nightstand ."

Only use V a "it is to the left of the bed ."

SIA "this is a brown nightstand . it is to the left of the bed ."

GT "there is a nightstand on the wall . it is to the left of a bed ."

Object scene0019_00 | 9 | vending_machine

Only use V o "the vending machine is a white rectangle ."

Only use V a "the vending machine is in the corner of the room ."

SIA "the vending machine is in the corner of the room . the vending
machine is a white rectangle ."

GT "this is a vending machine . it is in the corner of the room , by a
lamp ."

Figure 4: Qualitative results on the ScanRefer (Chen
et al., 2020a) generated from i) using only instance fea-
tures V o, ii) using the fully informed contextualized
feature V a from the TGI-Aggregator, and iii) concate-
nating both captions for the final caption of SIA.

the Appendix A.1, we provide analysis of hyper- 533

parameter K. 534

4.5 Qualitative Analysis 535

We qualitatively present the captions generated 536

from i) using only instance features V o, ii) using 537

only the fully informed contextualized feature V a 538

from the TGI-Aggregator, as shown in Figure 4. 539

It can be seen that while the captions generated 540

from V o includes descriptions for attributes, the 541

captions generated from V a includes contextual in- 542

formation such as relations with other objects and 543

the global scene. To demonstrate the effectiveness 544

of the proposed method, we also provide qualita- 545

tive results with the state-of-the-art models in the 546

Appendix A.2 and Figure 5. 547

5 Conclusion 548

In the 3D dense captioning task, the description of 549

an object within a 3D scene encompasses not only 550

the intrinsic characteristics of the object but also 551

the relationship with surrounding objects and the 552

spatial relationship of the object with respect to the 553

overall space. In this work, we propose a novel ap- 554

proach that independently generates captions with 555

different region of interests and aggregates them af- 556

terwards to enhance both local-global sensitivity of 557

descriptions. Extensive experiments on benchmark 558

datasets demonstrate that our method significantly 559

improves 3D dense captioning compared to previ- 560

ous approaches, thereby proving the importance 561

of an integrated understanding of the object, its 562

surroundings, and the entire space for caption gen- 563

eration. 564
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6 Limitations565

SIA still faces the limitations of prior set predic-566

tion architectures, where the number of instance567

and context queries must be heuristically deter-568

mined. Future work could explore methods that569

allow for the dynamic adjustment of instances and570

context query numbers based on the complexity of571

the scene.572

7 Ethical Considerations573

3D dense captioning is the task of locating objects574

in a 3D scene and generating captions for each ob-575

ject. Our proposed method, specifically designed576

for this task, is ethically sound, employing only577

publicly available datasets throughout our research.578

These benchmark datasets feature 3D indoor envi-579

ronments exclusively populated with objects.580
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A Details for SIA Design 728

A.1 Experiments on expansion of ROI radius 729

Table 6 is an experiment where we expand the ROI 730

radius of candidate feature extraction for each in- 731

stance. It can be observed that the results show 732

subpar performance compared to SIA. Note that 733

setting a new set of disentangled query set for 734

contextual information with a sufficient margin 735

shows substantial improvement in performance 736

(64.75→70.73→73.22) while simply expanding 737

the ROIs for each instance rather resulted in a huge 738

performance drop (64.75→56.62). This indicates 739

that simply expanding the ROI of individual ob- 740

jects can not substitute the rich information that 741

can be captured by directly attending to the context 742

region. 743

Analysis of hyper-parameter K. In the TGI- 744

Aggregator, we concatenate the global descriptor 745

V g to each decoded instance query V o
i and K near- 746

est features within V c in terms of spatial proximity 747

to V o
i . Based on the experimental results of Ta- 748

ble 7, we set K = 16. A performance decrease is 749

observed with K = 8, likely due to insufficient 750

contextual information, while K = 32 shows little 751

performance change despite significantly increas- 752

ing memory and execution time costs. 753

A.2 Qualitative Results 754

To demonstrate the effectiveness of the proposed 755

method, we provide qualitative results with the 756

state-of-the-art models: Scan2Cap (Chen et al., 757

2021), SpaCap3D (Wang et al., 2022), D3Net 758

(Chen et al., 2022), 3DJCG (Cai et al., 2022), and 759

Vote2Cap-DETR (Chen et al., 2023a). As shown in 760

Figure 5, given a 3D scene as input, the model lo- 761

calizes objects and generates captions that describe 762

the objects, which are then evaluated for perfor- 763

mance with the ground-truth for each object. The 764

ground-truth includes descriptions of the intrinsic 765

properties of the object (e.g., the monitor is black 766

and square.), explanations using the relationships 767

between objects (e.g., a picture is hanging on the 768

back wall with a couch below it.), and descriptions 769

of the object in the context of the entire space (e.g., 770

at the far end of the room.). Existing models, fo- 771

cusing on objects, generate captions limited to the 772

object and its immediate relations in a fixed format 773

(e.g., this is a black suitcase.). Our model can han- 774

dle not only object queries but also context queries, 775

allowing it to generate sentences in various formats 776

10
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C@0.5 ↑ B-4@0.5 ↑ M@0.5 ↑ R@0.5 ↑

Instance Query Generator with radius=0.3 64.75 36.76 26.23 55.63
Instance Query Generator with radius=0.8 56.62 34.77 24.84 52.03

Instance Query Generator with radius=0.3 & Context Query Generator with radius=0.8 70.73 39.13 27.89 56.33
Instance Query Generator with radius=0.3 & Context Query Generator with radius=1.2 73.22 40.91 28.19 60.46

Table 6: Experiments on expansion of ROI radius.

C@0.5 ↑ B-4@0.5 ↑ M@0.5 ↑ R@0.5 ↑

SIA with K=8 69.86 37.89 27.04 57.33
SIA with K=16 (Ours) 73.22 40.91 28.19 60.46

SIA with K=32 73.38 37.92 27.92 60.16

Table 7: Performance variation according to the size of
K on the ScanRefer (Chen et al., 2020a).

(e.g., the vending machine is a white rectangle.)777

and create descriptions of the entire space (e.g.,778

the vending machine is in the corner of the room.).779

These results emphasize the importance of an inte-780

grated understanding of the object, its surroundings,781

and the overall space in captioning.782
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Ours : the vending machine
is in the corner of the
room. the vending machine
is a white rectangle.

GT : this is a vending
machine. it is in the
corner of the room, by a
lamp.

scene0019_00|9|vending_machin
e

Scan2Cap : this is a white 
shelf. it is to the right 
of the door.

D3Net : this is a brown 
cabinet. it is to the 
right of the table.

SpaCap3D : this is a tall 
bookshelf. it is to the 
left of a bike.

Vote2Cap-DETR : the 
vending machine is on the 
wall. it is to the left 
of the room.

3DJCG : this is a brown
cabinet. it is to the 
right of the door.

Ours : this is a black
monitor. it is to the 
left of another monitor.

GT : the monitor is black
and square. the monitor
is between two others.

Scan2Cap : this is a white
monitor. it is behind a 
keyboard.

3DJCG : this is a black
monitor. it is on the 
right side of the table.

SpaCap3D : FTG.

Vote2Cap-DETR : this is a 
black monitor. it is to 
the left of the table.

D3Net : this is a black
monitor. the monitor is 
on the left side of the 
table.

scene0095_00|7|monitor

Ours : this is a black
computer tower. it is 
under a desk.

GT : this is a black
computer tower. it is 
located under a desk, 
under a monitor, at the
far end of the room.

Scan2Cap : this is a black
trash can. it is to the 
right of a desk.

3DJCG : the is a black
computer tower. it is 
under the desk.

SpaCap3D : this is a black
computer tower. it is 
under the desk.

Vote2Cap-DETR : this is a 
black computer tower. it 
is to the right of the 
desk.

D3Net : there is a  
printer. it is on the 
right side of the table.

scene0131_00|28|computer_tower

Ours : this is a black
suitcase. it is on the
floor.

GT : the black suitcase is
square and on the floor. 
it is to the right of the
office chair.

Scan2Cap : the suitcase is
black. it is to the left 
of the desk.

3DJCG : the is a black
suitcase. it is to the 
right of the bed.

SpaCap3D : the suitcase is 
on the floor. it is to 
the right of the chair.

Vote2Cap-DETR : this is a 
red suitcase. it is on 
the left of the bed.

D3Net : this is a black 
suitcase. it is to the 
left of the desk.

scene0435_00|60|suitcase

Ours : there is a 
rectangular picture. it 
is on the wall next to 
the window.

GT : a picture is hanging
on the back wall with a 
couch below it. there is 
a window to the right of
it.

Scan2Cap : FTG.

3DJCG : the picture is on 
the left side of the room. 
the picture is a the 
rectangle.

SpaCap3D : the picture is 
on the wall. it is to the 
left of the table right 
of the other picture.

Vote2Cap-DETR : the 
picture is on the wall. 
it is to the left of the 
table.

D3Net : this is a black
picture. the picture is 
on the left of the couch.

scene0608_00|13|picture

Figure 5: Qualitative results on the ScanRefer (Chen et al., 2020a). The yellow-highlighted sections show information
specific to the object itself, the green-highlighted sections describes the relationships between objects, and the
blue-highlighted sections depict the spatial position of the object in the 3D scene. Captions underlined in red indicate
incorrect descriptions. FTG. represent failures in caption generation due to low IoU.
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