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Abstract

Integrating self-supervised learning (SSL) prior to supervised learning (SL) is a prevalent
strategy for enhancing model performance, especially in scenarios with limited labeled data.
Nonetheless, this approach inherently introduces a trade-off between computational efficiency
and performance gains. Although SSL significantly improves representation learning, it neces-
sitates an additional and often computationally expensive training phase, posing substantial
overhead in resource-constrained environments. To mitigate these limitations, we propose
MixTraining, a novel training framework designed to interleave multiple epochs of SSL
and SL within a unified mixtraining phase. This phase enables a seamless transition between
self-supervised and supervised objectives, facilitating enhanced synergy and improved overall
accuracy. Additionally, MixTraining consolidates shared computational steps, thereby
reducing redundant computations and lowering overall training latency. Comprehensive ex-
perimental evaluations demonstrate that MixTraining provides a superior trade-off between
computational efficiency and model performance compared to conventional training pipelines.
Specifically, on the TinyImageNet dataset using the ViT-Tiny model, MixTraining achieves
an absolute accuracy improvement of 8.81% (a relative gain of 18.89%) while concurrently
accelerating training by 1.29×.

1 Introduction

Self-supervised learning (SSL) has emerged as a powerful paradigm for learning general representations from
unlabeled data, significantly improving performance on downstream tasks (Brown et al., 2020; He et al.,
2022). The standard approach combines SSL with supervised learning (SL) into a two-phase pipeline: first
training a model on unlabeled data to learn general representations, then adapting it to specific tasks using
labeled data. This SSL+SL pipeline has become the de facto standard across computer vision (Chen et al.,
2020; He et al., 2020, 2022; Wang et al., 2023b), natural language processing (Devlin et al., 2019; Radford
et al., 2019; Brown et al., 2020; Ouyang et al., 2022; Min et al., 2023), and speech recognition (Hsu et al.,
2021; Chen et al., 2022), particularly excelling in data-scarce scenarios where labeled examples are limited.

However, this two-phase pipeline introduces a fundamental trade-off between computational efficiency and
model performance. While the first phase of SSL improves downstream accuracy, it requires substantial
additional computation that can be prohibitive in resource-constrained environments. In fact, the SSL phase
often demands hundreds or thousands of GPU-days before any task-specific training begins (Kaplan et al.,
2020; Dosovitskiy et al., 2020; Chung et al., 2024). This computational overhead creates a significant barrier
for practitioners, particularly those who must train models from scratch due to data privacy requirements,
domain-specific constraints, or the absence of suitable pretrained models.

The abrupt transition between SSL and SL phases in the standard pipeline also presents optimization
challenges. The model must suddenly shift from optimizing self-supervised objectives (e.g., reconstruction
loss) to supervised objectives (e.g., classification loss), potentially causing training instability and suboptimal
adaptation (Peters et al., 2019; Mosbach et al., 2020; Kumar et al., 2022). This discontinuous transition may
prevent the model from fully leveraging the synergies between self-supervised and supervised learning signals.
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Figure 1: MixTraining demonstrates significant accuracy and computation gains over standard self-
supervised learning and supervised learning pipeline across various data limitations levels (10%, 50%, and
100%). Experiments are conducted on the TinyImageNet dataset with the ViT-Tiny model; Each set of three
points on the same line represents results obtained with different training durations (50, 75, and 100 epochs).

To address these limitations, we propose MixTraining, a novel training framework that introduces a
dedicated mixtraining phase between the SSL and SL phases. Our key insight is that the rigid separation
between SSL and SL phases in conventional pipelines is neither necessary nor optimal. As illustrated in Fig. 2,
the mixtraining phase jointly optimizes both self-supervised and supervised objectives, creating a smooth
transition that better preserves learned representations while adapting to downstream tasks. Our design
also consolidate what would be separate forward and backward passes in the standard pipeline into unified
operations (see Fig. 3 for details), substantially reducing training time while improving model performance.

As shown in Fig. 1, MixTraining consistently achieves superior accuracy and lower training latency across
varying data availability levels and training durations. For example, on the full TinyImageNet dataset,
MixTraining delivers an 18.89% relative improvement in accuracy (8.81% absolute) and achieves 1.29×
speedup over the standard SSL+SL pipeline. The advantage becomes even more pronounced under severe
data constraints: at 10% data availability, MixTraining improves accuracy by 105.58% (10.78% absolute)
and reduces training latency by 1.24×.

Contributions. We introduce the MixTraining framework, which enhances both computational efficiency
and model performance over the conventional SSL+SL pipeline. Our core contributions are:

• Superior accuracy through smooth objective transition. MixTraining introduces a mixtraining
phase that creates a gradual transition between self-supervised and supervised objectives, avoiding the
abrupt shift that can destabilize training in standard pipelines. This smooth transition leads to consistently
higher accuracy across all evaluated settings. On TinyImageNet with ViT-Tiny, this design achieves an
18.89% relative accuracy gain over the standard SSL+SL baseline.

• Computational efficiency via unified forward/backward passes. By merging SSL and SL epochs
into a joint optimization phase, MixTraining consolidates separate forward and backward passes over
the backbone into single operations. Since backbone computations typically dominate training cost (the
backbone is usually much larger than task-specific heads), this system-level optimization yields substantial
speedups (e.g., 1.29× for ViT-T on TinyImageNet) while simultaneously improving accuracy.

• Robust generalization across diverse settings. MixTraining demonstrates consistent Pareto
improvements over SSL+SL baselines across different experimental configurations, including multiple
architectures (ViT, ResNet), datasets (CIFAR-10, CIFAR-100, TinyImageNet), data limitation levels (from
10% to 100%), and training epochs. The framework’s modular design enables integration with existing
SSL+SL pipelines with minimal modifications.
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Scope and Applicability. It is important to clarify that MixTraining does not aim to replace the
existing pretraining-finetuning paradigm when high-quality pretrained models are readily available. Instead,
our framework targets scenarios where practitioners must train models from scratch due to data privacy
constraints, domain-specific requirements where generic pretrained models prove inadequate, or the absence
of suitable pretrained models. In these settings, MixTraining provides a more efficient alternative to the
standard SSL+SL pipeline, achieving superior performance while reducing training latency.

Organization. The remainder of this paper is structured as follows. Section 2 reviews related work.
Section 3 introduces the MixTraining framework, detailing its design intuition and operational procedure.
Section 4 presents comprehensive empirical evaluations across multiple datasets and architectures. Section 5
concludes with a discussion of limitations and future directions.

2 Related Work

Learning Pipelines and the Compute-Performance Trade-off. Early deep learning models primarily
relied on supervised learning (SL) with large labeled datasets (Krizhevsky et al., 2012; Simonyan & Zisserman,
2014; He et al., 2016). More recently, self-supervised learning (SSL) has emerged as a powerful paradigm for
learning transferable representations without labels, giving rise to a training pipeline that first leverages SSL
for representation learning and then adapts the model to downstream tasks via supervised learning. This
SSL+SL pipeline has been widely adopted across domains, including computer vision (Chen et al., 2020; He
et al., 2020, 2022; Wang et al., 2023b), natural language processing (Devlin et al., 2019; Radford et al., 2019;
Brown et al., 2020; Ouyang et al., 2022; Min et al., 2023), and speech recognition (Hsu et al., 2021; Chen
et al., 2022). While SSL+SL consistently improves accuracy over SL alone, especially in low-label regimes, it
incurs a substantial increase in compute due to the additional SSL phase (Kaplan et al., 2020; Chung et al.,
2024), leading to a compute-performance trade-off between the two approaches. Recent work has begun to
examine aspects of this trade-off; for example, Liu et al. (2024) explore strategies to reduce the compute cost
of the SSL stage. In this work, we directly study on the compute-performance trade-off between SSL+SL
and SL, and propose a new MixTraining pipeline that adds a dedicated mixtraining phase between SSL
and SL, yielding Pareto improvements in both accuracy and compute efficiency over the standard SSL+SL
pipeline.

Modifications to Learning Objectives. A broad class of methods modifies learning objectives to improve
generalization, robustness, or stability. One important direction explores the synergy between different
objectives, such as combining self-supervised learning and supervised learning objectives. Prior studies in this
space have focused on domain adaptation (Pan et al., 2020; Berthelot et al., 2021), mitigating catastrophic
forgetting (He et al., 2021; Mehta et al., 2023), and improving data efficiency (Zhai et al., 2019; Khosla et al.,
2020; Yao et al., 2022; Zhang et al., 2024). Another related line of work mixes up data from different sources
or domains to bridge distribution gaps or regularize decision boundaries (Zhang et al., 2017; Yun et al., 2019;
Verma et al., 2019; Liu et al., 2022; Zou et al., 2023), often by constructing intermediate representations
that incorporate information from multiple domains or tasks. Our work is inspired by these lines of research
but differs in both purpose and design: we introduce a dedicated mixtraining phase between SSL and SL
to smooth the transition between two learning different objectives, and we design this phase for compute
efficiency by merging forward and backward passes over the shared backbone—an aspect not addressed in
prior work.

Efficient Training of Deep Neural Networks. A substantial body of research has focused on reducing
the computational and data costs of training deep neural networks while maintaining competitive performance.
Model compression techniques (Han et al., 2015a,b; Jacob et al., 2018; Frankle & Carbin, 2018; Blalock et al.,
2020; Li et al., 2023) reduce network size and complexity through pruning, weight sharing, quantization, or
other architectural simplifications, thereby lowering both memory footprint and FLOPs for more efficient
training and deployment. Parameter-efficient finetuning methods (Hu et al., 2021; Ding et al., 2023; Han et al.,
2024) freeze most of the backbone and introduce small trainable modules or low-rank adaptations, greatly
reducing optimization cost while preserving downstream performance. Data-efficient training strategies
(Bengar et al., 2021; Mindermann et al., 2022; Wang et al., 2023a; Bhatt et al., 2024) accelerate convergence
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(a) Standard SSL+SL Framework (b) SSL+SL w/ MixTraining Framework
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Figure 2: Comparison of MixTraining with the standard SSL+SL framework. (a) The standard SSL+SL
framework features an abrupt transition from self-supervised objective (objssl) to supervised objective (objsl).
(b) Our MixTraining framework creates an dedicated mixtraining phase in the middle. The mixtraining
phase optimizes towards a mixed objective (objmix), which enables a smooth transition from the self-supervised
objective to the supervised objective.

by prioritizing informative examples, filtering redundant or noisy data, or leveraging pretrained models
for improved initialization. These approaches target model, parameter, or data-level efficiency, and are
complementary to our pipeline-level strategy: MixTraining could be integrated with these techniques to
further improve its efficiency.

3 Methodology

We briefly introduce the standard self-supervised learning and supervised learning (SSL+SL) pipeline in
Section 3.1. We introduce our MixTraining framework in Section 3.2, which consists of its design intuition
(Section 3.2.1) and operational procedure (Section 3.2.2).

3.1 Background: The Standard Self-supervised Learning and Supervised Learning Pipeline

The standard self-supervised learning and supervised learning pipeline consists of two separate phases: a
self-supervised learning (SSL) phase and a supervised learning (SL) phase. In the self-supervised learning
phase, a backbone model with a self-supervised learning head is trained to help the model learn general feature
representations. Specifically, this process usually relies on learning from unlabeled data with reconstruction
tasks (Hinton & Zemel, 1993; Hinton & Salakhutdinov, 2006; Michelucci, 2022) or predicting manually masked
tokens (Devlin et al., 2019; He et al., 2022). The backbone model is further refined in the supervised learning
phase, together with a supervised learning head. This step adapts the model to downstream tasks, usually
achieving better performances than directly training the downstream tasks. Fig. 2(a) shows the standard
SSL+SL framework, which has now become the go-to approach for improving the performance of AI models
(Wang et al., 2023b; Min et al., 2023).

3.2 A New Framework: MixTraining

3.2.1 Design Intuition behind MixTraining

While the standard SSL+SL framework has achieved remarkable success, its self-supervised learning and
supervised learning phases are completely separated, leaving limited opportunity for interaction or further
optimization. To enable closer interactions between these two phases, we propose a novel MixTraining
framework—as shown in Fig. 2—which effectively merges several self-supervised learning and supervised
learning epochs into an additional mixtraining phase, featuring a smooth transition between learning objectives.

MixTraining introduces a new mixtraining phase that allows joint updates of self-supervised and supervised
objectives, which is in contrast with the standard SSL+SL framework where one first updates the self-
supervised objective and then updates the supervised objective. At a high level, the benefits of this phase
are rooted in the dedicated joint optimization objective. The joint objective can be easily understood as a
weighted average of the self-supervised objective and the supervised objective to balance these two objectives.
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Figure 3: Comparison of MixTraining with the standard SSL+SL framework. MixTraining achieves
computation gains over the standard SSL+SL framework. Top: Standard SSL+SL. Data first goes through a
self-supervised learning pass (Fssl,1 → Fssl,2 → Bssl,2 → Bssl,1) and then goes through a supervised learning
pass (Fsl,1 → Fsl,2 → Bsl,2 → Bsl,1). Bottom: MixTraining. We merge two forward passes (Fssl,1 and
Fsl,1) over the backbone model together into a single pass Fmix,1, and use its result for both self-supervised
head and supervised head; the backward passes (Bssl,1 and Bsl,1) are merged into Bmix,1 (bottom left). Our
modifications reduce computation requirements and allow better parallelization (bottom right).

We next explain the design intuition behind the mixtraining phase to achieve both computation gains and
accuracy gains.

Accuracy Gains. Since the self-supervised learning phase aims at learning general representations and the
following supervised learning phase aims at learning task-specific information, intuitively, these two phases
optimize the model in different directions. The standard SSL+SL framework features an abrupt change in
optimization directions during the transition from self-supervised learning and supervised learning (Fig. 2(a)),
which may cause instability in model performance (Mosbach et al., 2020). Indeed, there are also studies
show that, in certain settings, supervised learning in the second phase can lead to worse model performance
(Peters et al., 2019; Kumar et al., 2022). In our MixTraining framework, the mixtraining phase creates
a middle ground, i.e., a weighted combination of two objectives, allowing a rather smooth transition from
the self-supervised learning objectives to the supervised learning objective, as illustrated in Fig. 2(b). We
hypothesize that such a smooth transition avoids instability in phase transition, thus allowing the model to
better adapt to the target task and achieve higher accuracy; we empirically verify this hypothesis in Section 4.

Computation Gains. In the standard SSL+SL framework, we first run self-supervised learning passes
with data (xssl, yssl), and then run supervised learning passes with data (xsl, ysl). This process involves
forward/backward passes of both (xssl, yssl) and (xsl, ysl), and strictly follows a sequential order to compute
each sub-processes (top part of Fig. 3). In contrast, MixTraining aims to jointly optimize self-supervised and
supervised objectives. Specifically, it “merges” (xssl, yssl) and (xsl, ysl) into a mixed data (xmix, ymix) and thus
merging the separate forward passes over the backbone model into a single pass, and use its result for both
self-supervised head and supervised head; from the computation aspect, we also merge the backward passes of
self-supervised learning and supervised learning tasks over the backbone model into a single pass (bottom left
part of Fig. 3). Since the size of the backbone model is usually much larger than the size of self-supervised and
supervised heads (He et al., 2022; Du et al., 2021; Yang et al., 2023), the merge of forward/backward passes
over the backbone model allows us to reduce computation compared to the synchronous setting substantially.
Additionally, the merge of forward/backward passes over the backbone model allows better parallelization of
forward/backward passes over the self-supervised and supervised heads (right part of Fig. 3), which further
speeds up the computation.
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Algorithm 1 The MixTraining Framework
Input: Self-supervised learning epoch essl, Supervised learning epoch esl, mix-ratio ρ ∈ [0, 1].

1: Initialize model parameters θ.
2: Calculate mixtraining epoch emix via Eq. (1).
3: ▷ Vanilla Self-supervised Learning Phase
4: for e = 1 to essl − emix do
5: Conduct vanilla self-supervised learning phase w.r.t. self-supervised loss ℓssl(x; θ) to optimize θ.
6: ▷ MixTraining Phase
7: for e = 1 to emix do
8: Optimize the model parameter θ with respect to the joint optimization objective as in Eq. (3).
9: ▷ Vanilla Supervised Learning Phase

10: for e = 1 to esl − emix do
11: Conduct vanilla supervised learning phase w.r.t. supervised loss ℓsl(f(x), y; θ) to optimize θ.

3.2.2 The MixTraining Procedure

In this section, we introduce the operational procedure of our MixTraining framework in detail. Besides
the number of self-supervised learning epoch essl and the number of supervised learning epoch esl, Mix-
Training takes as input a hyperparameter mix-ratio ρ ∈ [0, 1] to determine the number of self-supervised
learning/supervised learning epochs emix to be merged into the mixtraining phase. We set

emix = ⌊ρ min(essl, esl)⌋. (1)

Our MixTraining framework then operates by running (i) the vanilla self-supervised learning phase for
essl − emix epochs, (ii) the mixtraining phase for emix epochs, and (iii) the vanilla supervised learning phase
for esl − emix epochs, as shown in Algorithm 1.

Since the self-supervised learning and supervised learning phases are standard, in the following, we mainly
discuss the mixtraining phase. In the mixtraining phase, we (i) design a mixing function g to generate a
mixed dataset, and (ii) design a joint optimization objective as supervision signal. We next highlight the
design choice for these two parts.

The Mixed Dataset. The goal of creating a mixed dataset Dmix = g(Dssl, Dsl) is to extract information
stored in self-supervised learning dataset Dssl = {xi}i and supervised learning dataset Dsl = {(xi, yi)}i,
featuring a smooth transition between two learning objectives Fig. 2 (b). In the simple case where self-
supervised learning and supervised learning use the same feature representation (i.e., xi), we can simply
set g(Dssl, Dsl) = Dsl. We remark that the importance of this simple case is usually overlooked: conducting
self-supervised learning and supervised learning on the same ImageNet dataset allows one to boost the top-1
classification accuracy from 82.5% to 84.9%, without using extra data (He et al., 2022).

We next discuss the general case where the self-supervised learning dataset is not the same as the supervised
learning dataset, i.e., Dssl ̸= Dsl. Inspired by the mixup method in machine learning to improve the
generalization and robustness to adversarial examples (Zhang et al., 2017), we consider a randomized mixing
function g, which randomly mixes up data points from both datasets. Specifically, we set

Dmix = g(Dssl, Dsl) = {(xmix, ysl) : xmix = λ xsl + (1 − λ) xssl, (xsl, ysl) ∈ Dsl, xssl ∈ Dssl}, (2)

where for each (xsl, ysl) ∈ Dsl, we randomly draw a self-supervised data point xssl from Dssl and generate
a mixup feature λ xsl + (1 − λ) xssl, where λ is a hyperparameter of user’s choice (we set λ = 0.5 in our
experiments to balance the contribution from both datasets). We adopt the supervised label ysl to provide
supervised signal since the self-supervised part typically doesn’t require labels.

The Joint Optimization Objective. Let θ denote the model parameters. Let ℓssl(x; θ) denote the self-
supervised loss, e.g., MSE reconstruction loss for masked autoencoders (He et al., 2022), and let ℓsl(f(x), y; θ)
denote the supervised loss, e.g., cross-entropy for image classification (Krizhevsky et al., 2012). Let Dssl
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represent the SSL dataset, which contains examples {xi}i, and Dsl represent the SL dataset, which also
contains examples {(xi, yi)}i. These datasets serve as the sources for self-supervised and supervised learning,
respectively. The classical SSL+SL framework first optimizes minθ Ex,y∼Dssl [ℓssl(x; θ)] and then optimizes
minθ Ex,y∼Dsl [ℓsl(f(x), y; θ)].

To integrate self-supervised and supervised learning objectives, MixTraining considers a weighted combina-
tion of these two objectives and optimizes the following goal:

min
θ

E(x,y)∼Dmix [α ℓssl(x; θ) + (1 − α) ℓsl(f(x), y; θ)], (3)

where Dmix is the mixed dataset and α is a hyperparameter loss-ratio designed to balance the focus between
learning general representations (by optimizing self-supervised loss ℓssl(x; θ)) and achieving specific target (by
optimizing supervised loss ℓsl(f(x), y; θ)).

4 Experiments

4.1 Setup

Datasets. We conduct experiments on standard computer vision datasets, including CIFAR-10 (Krizhevsky
et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), and TinyImageNet (Le & Yang, 2015).

Models. Our model consists of three components: a shared backbone model, a classification head for SL,
and a reconstruction head for SSL. We use the standard ViT-Tiny (ViT-T) (Dosovitskiy et al., 2020; Wu
et al., 2022) or standard ResNet-18 (He et al., 2016) as the backbone and the classification head. For the
reconstruction head, we use a masked autoencoder (MAE) decoder (He et al., 2022) of depth 2 for ViT-T and
a two-layer transposed convolution (Zeiler et al., 2010) for ResNet-18. MAE is used as the reconstruction task
for the ViT-T model, and the standard autoencoder (AE) (Hinton & Zemel, 1993) is used for the ResNet-18
model.

Baselines. We evaluate the performance of our algorithm (Algorithm 1) against the following baselines:

• Supervised learning (SL). Conduct standard supervised learning on the backbone and the classification
head with cross-entropy loss for esl epochs.

• Self-supervised learning + supervised learning (SSL+SL). Conduct self-supervised learning on the backbone
and the reconstruction head with MSE loss for essl epochs and then conduct standard supervised learning
with cross-entropy loss for esl epochs.

The comparison between SL and SSL+SL reflects the compute-performance trade-off: SSL+SL achieves
better performance at the cost of the added computation in the SSL-alone step. We aim to provide a better
compute-performance trade-off with MixTraining, i.e., a Pareto improvement over the SSL+SL baseline.

Evaluation Metrics. For each method, we measure its performance by the accuracy on the downstream
classification task and its computation cost by the training latency (i.e., the total wall-clock time). We report
the average accuracy and latency over 4 runs with different random seeds. We calculate the speedups of our
method as the ratio between the latency of SSL+SL and MixTraining.

Other Implementation Details. We conduct experiments across various data limitation levels by randomly
select a fraction of p data points from the original dataset; we choose p ∈ {10%, 25%, 50%, 75%, 100%}. In
our main experiments, we set training epoch esl = essl = 100, loss-ratio α = 0.5, and mix-ratio ρ = 0.5;
we conduct detailed parameter studies for these quantities in Section 4.3. We defer additional experimental
details to Appendix A.
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Table 1: Accuracy and latency comparison using the ViT-T model. We evaluate performance across various
data limitation levels p ∈ {10%, 25%, 50%, 75%, 100%}. The highest accuracy in each setting is highlighted
in bold). MixTraining achieves a Pareto improvement over the SSL+SL baseline, achieving higher
accuracy and lower latency in 15 out of 15 settings.

Datasets Baselines 10% 25% 50% 75% 100%
Accuracy↑ Latency(s)↓ Accuracy↑ Latency(s)↓ Accuracy↑ Latency(s)↓ Accuracy↑ Latency(s)↓ Accuracy↑ Latency(s)↓

TinyImageNet
SL 7.24% 1102.42 20.91% 2619.14 30.36% 5181.44 36.98% 7709.21 41.96% 10257.12

SSL+SL 10.21% 2382.06 21.78% 5813.27 34.30% 11449.43 42.73% 17296.22 46.65% 22917.29
MixTraining 20.99% 1913.75 31.43% 4516.69 42.77% 8868.88 49.30% 13304.60 55.46% 17795.47

CIFAR-10
SL 53.40% 589.44 66.03% 1335.79 75.00% 2593.27 79.22% 3844.27 81.52% 5155.59

SSL+SL 56.79% 1253.65 67.95% 2774.24 77.06% 5354.08 82.11% 7993.72 84.69% 10730.52
MixTraining 60.45% 962.16 72.61% 2206.13 79.95% 4247.78 83.97% 6234.03 87.13% 8274.45

CIFAR-100
SL 19.05% 609.11 31.49% 1346.96 42.50% 2580.08 48.97% 3814.54 54.72% 5022.96

SSL+SL 22.27% 1279.78 34.93% 2882.62 46.02% 5551.88 53.79% 8226.83 57.92% 10960.08
MixTraining 25.19% 1010.94 38.55% 2226.92 48.60% 4298.75 55.84% 6354.76 59.95% 8457.93

Table 2: Accuracy and latency comparison using the ResNet-18 model. We evaluate performance across
various data limitation levels p ∈ {10%, 25%, 50%, 75%, 100%}. The highest accuracy in each setting is
highlighted in bold (if gain ≥ 0.3%). MixTraining achieves a Pareto improvement over the SSL+SL
baseline, achieving higher accuracy and lower latency in 13 out of 15 settings. In the other 2
settings, MixTraining maintains comparable or slightly better accuracy while reducing training latency.

Datasets Baselines 10% 25% 50% 75% 100%
Accuracy↑ Latency(s)↓ Accuracy↑ Latency(s)↓ Accuracy↑ Latency(s)↓ Accuracy↑ Latency(s)↓ Accuracy↑ Latency(s)↓

TinyImageNet
SL 21.82% 730.56 32.42% 903.32 43.28% 1645.96 49.02% 2135.75 52.67% 2562.98

SSL+SL 22.16% 1510.34 32.89% 2577.98 43.58% 3893.67 48.96% 5770.75 52.93% 7412.92
MixTraining 22.66% 1298.08 34.37% 2392.82 44.62% 3591.22 49.43% 5276.08 52.98% 6329.25

CIFAR-10
SL 58.91% 393.29 72.63% 567.39 81.19% 964.66 84.81% 1243.09 86.89% 1524.69

SSL+SL 64.43% 879.90 76.42% 1169.64 81.23% 1496.17 84.97% 1716.29 86.87% 2177.03
MixTraining 67.53% 824.77 77.68% 1028.61 83.49% 1384.42 85.15% 1543.96 87.20% 2011.36

CIFAR-100
SL 25.49% 461.37 36.79% 671.45 48.71% 1066.57 54.17% 1204.52 58.24% 1546.02

SSL+SL 27.21% 841.69 40.44% 1102.13 48.91% 1439.27 53.91% 1687.70 58.33% 2071.19
MixTraining 27.94% 781.07 41.92% 1066.44 50.63% 1349.06 56.04% 1577.67 59.86% 1929.84

4.2 Main Results

We present our main experiment results in this section. Results across different data limitation levels are
provided in Section 4.2.1, and results with varying SSL and SL datasets are presented in Section 4.2.2.

4.2.1 Performance Analysis across Various Data Limitation Levels

In this section, we evaluate the performance of MixTraining across various data limitation levels. We conduct
experiments on CIFAR-10, CIFAR-100, and TinyImageNet datasets using different model architectures: we
present results with the ViT-T model in Table 1, and results with the ResNet-18 model in Table 2. As
expected, the comparison between SSL+SL and SL reflects a compute-performance trade-off: SSL+SL
achieves better accuracy at the cost of higher training latency. Our MixTraining method achieves a Pareto
improvement over the SSL+SL baseline: MixTraining achieves higher accuracy and lower latency
in 28 out of 30 settings. In the other 2 settings, MixTraining maintains comparable or slightly better
accuracy while reducing training latency.

Compared to baselines, MixTraining achieves significant accuracy gains: for instance, on the full TinyIma-
geNet dataset with the ViT-T model, MixTraining achieves 18.89% relative accuracy gain (8.81% absolute
accuracy gain) over SSL+SL and 32.17% relative accuracy gain (13.50% absolute accuracy gain) over SL.
The accuracy gains are more significant under limited data: for instance, on the TinyImageNet dataset and
at data limitation level of 10%, MixTraining achieves 105.58% relative accuracy gain (10.78% absolute
accuracy gain) over SSL+SL and 189.92% relative accuracy gain (13.75% absolute accuracy gain) over SL.
MixTraining also saves more compute (reflected as training latency) compared to SSL+SL. For instance,
on the full TinyImageNet dataset with the ViT-T model, MixTraining acheives 1.29× speedup compared to
SSL+SL. These results show that MixTraining provides a better compute-performance trade-off compared
to the standard SSL+SL pipeline across various data limitation levels.
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Table 3: Accuracy and latency comparison with different self-supervised and supervised datasets using the
ViT-T model. We use TinyImageNet as the self-supervised learning dataset and use CIFAR-10/CIFAR-100 as
the supervised learning dataset. The highest accuracy in each setting is highlighted in bold. MixTraining
achieves a Pareto improvement over the SSL+SL baseline, achieving higher accuracy and lower latency
in both settings.

Baselines TinyImageNet to CIFAR-10 TinyImageNet to CIFAR-100
Accuracy↑ Latency(s)↓ Accuracy↑ Latency(s)↓

SL 81.76% 5203.76 54.22% 5149.24
SSL+SL 84.48% 16815.33 56.22% 16582.02
MixTraining 89.19% 12098.50 58.49% 13742.15

Table 4: Accuracy and latency comparison with different self-supervised and supervised datasets using the
ResNet-18 model. We use TinyImageNet as the self-supervised learning dataset and use CIFAR-10/CIFAR-100
as the supervised learning dataset. The highest accuracy in each setting is highlighted in bold. MixTraining
achieves a Pareto improvement over the SSL+SL baseline, achieving higher accuracy and lower latency
in both settings.

Baselines TinyImageNet to CIFAR-10 TinyImageNet to CIFAR-100
Accuracy↑ Latency(s)↓ Accuracy↑ Latency(s)↓

SL 85.41% 1532.46 62.49% 1496.27
SSL+SL 88.79% 6247.53 66.19% 6364.51
MixTraining 89.95% 4865.75 67.74% 4921.08

4.2.2 Self-Supervised Learning and Supervised Learning on Different Datasets

In this section, we evaluate the performance of MixTraining in settings where the self-supervised learning
dataset and supervised learning dataset are different. We perform self-supervised learning on the TinyImageNet
dataset and supervised learning on the CIFAR-10 or CIFAR-100 datasets. We present the results using both
the ViT-T model (Table 3) and the ResNet-18 model (Table 4). The comparison between SSL+SL and
SL still reflects the compute-performance trade-off: SSL+SL achieves better accuracy at the cost of higher
training latency. Our MixTraining method achieves a Pareto improvement over the SSL+SL baseline:
MixTraining achieves higher accuracy and lower latency in all 4 settings.

Compared to baselines, MixTraining achieves significant accuracy gains: for instance, on the CIFAR-10
dataset with the ViT-T model, MixTraining achieves 5.58% relative accuracy gain (4.71% absolute accuracy
gain) over SSL+SL and 9.09% relative accuracy gain (7.43% absolute accuracy gain) over SL. In terms
of computation cost (reflected as training latency), MixTraining also saves more compute compared to
SSL+SL. For instance, on the CIFAR-10 dataset with the ViT-T model, MixTraining can achieve 1.39×
speedup compared to SSL+SL. These results show that MixTraining can provide a better compute-
performance trade-off compared to the standard SSL+SL pipeline, even when using different datasets for
self-supervised learning and supervised learning.

4.3 Parameter Study

In this section, we explore the impacts of varying loss-ratio α, mix-ratio ρ, and training epochs essl and
esl for MixTraining.

4.3.1 Impact of loss-ratio α

We study the impact of varying hyperparameter loss-ratio α on model accuracy in this section. We conduct
experiments with α ∈ {0.01, 0.1, 0.5, 0.9, 0.99} and report the accuracy in Table 5; we didn’t report the latency
since varying α doesn’t change the overall computation cost. As shown in Table 5, loss-ratio α = 0.5
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Table 5: Parameter study on loss-ratio α. We train the ViT-T model with full data and set ρ = 0.75; other
experimental settings remain the same as Table 1. The best and second-best accuracies are highlighted in
bold and underline, respectively.

α TinyImageNet CIFAR-10 CIFAR-100
0.01 41.58% 79.61% 52.58%
0.1 53.17% 82.19% 55.21%
0.5 53.86% 85.75% 58.88%
0.9 48.18% 86.13% 58.47%
0.99 42.67% 83.75% 56.04%

Table 6: Parameter study on mix-ratio ρ. We train the ViT-T model with full data and set α = 0.5; other
experimental settings remain the same as Table 1. The best and second-best accuracies are highlighted in
bold and underline, respectively.

ρ TinyImageNet CIFAR-10 CIFAR-100
0.25 55.08% 85.49% 60.98%
0.50 55.40% 85.54% 60.15%
0.75 53.86% 85.75% 58.88%
1.00 49.21% 84.33% 55.80%

generally leads to good accuracy gains—either achieving the highest accuracy (2 out of 3) or achieving
the second-best accuracy (1 out of 3). This indicates that a well-chosen α should appropriately balance
self-supervised learning and supervised learning objectives in MixTraining. An α = 0.5 allows the model to
focus on both self-supervised learning and supervised learning objectives. Therefore, we recommend setting
α = 0.5 in experiments.

4.3.2 Impact of mix-ratio ρ

We study the impact of varying the hyperparameter mix-ratio ρ on model accuracy in this section. We
conduct experiments with ρ ∈ {0.25, 0.5, 0.75, 1} and report the accuracy in Table 6; we didn’t report latency
since it is straightforward to see that large ρ reduces latency (Section 3.2). Values of ρ = 0.5 or ρ = 0.25
generally leads to good accuracy gains. Since larger ρ reduces latency, its selection should be guided by
individual priorities, such as accelerating the learning process or achieving higher accuracy.

4.3.3 Impact of Training Epochs

We study the impact of varying training epochs essl, esl on model accuracy and training latency. For simplicity,
we set essl = esl and choose its value from {50, 75, 100}. We conduct experiments across various choices
of data limitation levels p ∈ {10%, 25%, 50%, 75%, 100%}. Due to space limitations, we present results for
learning with full data (p = 100%) in the main content, and defer the complete results to Appendix A.4.

We present results with full data in Table 7. We observe that, compared to SL and SSL+SL, MixTraining
generally yields greater accuracy gains for added computation; for example, doubling the training epochs
from 50 to 100 results in a larger improvement in accuracy. Interestingly, MixTraining with essl = esl = 50
outperforms SL with esl = 100 and SSL+SL with essl = esl = 100 in terms of both accuracy and compute:
MixTraining simultaneously achieves higher accuracy and lower training latency. MixTraining consistently
acheives a Pareto improvement over the SSL+SL baseline: MixTraining achieves higher accuracy and
lower latency in all 9 out of 9 settings. Combining results in Appendix A.4 with data limitations levels
p ∈ {25%, 50%, 75%, 100%}, MixTraining achieves higher accuracy and lower latency in all 45 out
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Table 7: Parameter study on training epochs with full data using the ViT-T model. Results under other
data limitation levels p ∈ {10%, 25%, 50%, 75%} are deferred to Appendix A.4. The highest accuracy in each
setting is highlighted in bold. MixTraining achieves a Pareto improvement over the SSL+SL baseline,
achieving higher accuracy and lower latency in 9 out of 9 settings.

Datasets Computation (epoch) SL SSL+SL MixTraining
Accuracy↑ Latency(s)↓ Accuracy↑ Latency(s)↓ Accuracy↑ Latency(s)↓

TinyImageNet
50 39.75% 4957.82 42.16% 10714.36 50.96% 8410.97
75 41.74% 7560.40 44.22% 16498.39 53.09% 13111.49
100 41.96% 10257.12 46.65% 22917.29 55.46% 17795.47

CIFAR-10
50 80.78% 2489.38 83.75% 5365.33 85.60% 4193.42
75 81.59% 3818.88 84.48% 8070.96 86.79% 6515.22
100 81.52% 5155.59 84.69% 10730.52 87.13% 8274.45

CIFAR-100
50 54.25% 2713.55 56.91% 5763.71 58.67% 4421.63
75 54.71% 3881.84 56.95% 8104.50 59.11% 6459.23
100 54.72% 5022.96 57.92% 10960.08 59.95% 8457.93

of 45 settings. These improvements again demonstrate that MixTraining is a superior training pipeline
compared to the standard SSL+SL approach.

5 Conclusion

We introduced MixTraining, an innovative framework that interleaves multiple self-supervised learning
(SSL) and supervised learning (SL) epochs within a unified training phase, enabling a smooth transition
between the two learning objectives. By enhancing the synergy between SSL and SL, MixTraining achieves
significant accuracy improvements while consolidating shared computation steps to reduce computational
cost. Extensive experiments demonstrate that MixTraining offers a superior compute-performance trade-off
compared to the conventional SSL+SL pipeline: MixTraining achieves substantial improvements in model
accuracy while significantly reducing training latency.

An important next step is to evaluate MixTraining in larger-scale settings, using more powerful models such
as ViT-L/16 (Dosovitskiy et al., 2020; Zhai et al., 2022) and larger datasets such as ImageNet-21K (Ridnik
et al., 2021). However, conducting such large-scale experiments typically requires hundreds of TPU/GPU-
days (Dosovitskiy et al., 2020), which exceeds our current compute resources. Therefore, we focus our study
on relatively smaller-scale settings and provide extensive ablation analyses to support our findings. We leave
large-scale evaluations for future work.
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A Additional Implementation Details and Experimental Results

A.1 Software and Hardware Dependencies

All of the codes are based on PyTorch1 (Paszke et al., 2019) with timm library2 (Wightman et al., 2021). All
experiments in this paper are running on one NVIDIA RTX 6000 Ada GPU.

A.2 Computation Reuse for Different Self-Supervised Learning Approaches

Standard AE. Computation reuse in the standard AE approach is straightforward: the backbone outputs
are fed directly to both the reconstruction head and the classification head.

MAE. To enable compute reuse in MixTraining, we use a modified version of MAE. All input patches
are first processed by the backbone to produce feature representations. For the classification head, we use
all feature representations directly. For the reconstruction head, we randomly mask a subset of the feature
representations according to a predefined mask ratio and compute the reconstruction loss only on the masked
patches. This modification changes the reconstruction behavior of MAE but leaves the supervised learning
stage unchanged, which is the basis for performance evaluation in our experiments.

A.3 Implementation Details of Computer Vision Models

ResNet-18. Our ResNet-18 implementations are derived from the seminal work from He et al. (2016) on
deep residual networks. To facilitate self-supervised learning through autoencoders (AE), we augment the
ResNet architectures with two additional two-dimensional transposed convolution layers post-backbone for
the reconstruction task.

ViT-T. Our ViT-T implementations are largely derived from the seminal work from Wu et al. (2022)
and shrink the decoder to 2 layers as suggested in the reproduction challenge by Charisoudis et al. (2023).
Specifically, we set the embedding dimension (‘emb_dim’) to 192, with the encoder and decoder configured
to 12 and 2 layers respectively, alongside 3 heads each for both encoder and decoder. The masking ratio is
maintained at 0.75 as He et al. (2022) suggests. For the CIFAR-10, CIFAR-100 datasets, the image resolution
is standardized to 32 × 32 pixels with a patch size of 2, while the image resolution is 64 × 64 pixels with a
patch size of 4 for TinyImageNet to ensure uniform computational complexity across all experiments.

Preprocessing. For the preprocessing of CIFAR-10 and CIFAR-100, we adopt simple preprocessing as
in He et al. (2016), which randomly crops the images to a size of 32 × 32 pixels, with a padding of 4 pixels on
each side of the image, then randomly flips the images horizontally with a 50% probability. For TinyImageNet,
we follow preprocessing in the reproduction challenge by Charisoudis et al. (2023), aiming to maintain
consistency with established benchmarks and facilitate fair comparison.

Hyperparameters. Detailed training hyperparameters used in our experiments are summarized in Table 8
(ViT-T) and Table 9 (ResNet-18). For experiments on the TinyImageNet dataset using ViT-T, follow-
ing Charisoudis et al. (2023), we slightly modify the hyperparameters in Table 8: we set the base learning
rate to 1 × 10−3 and 2 × 10−3, the Adam betas to (0.9, 0.95) and (0.9, 0.999), and the weight decay to 0.15
and 0.05 for self-supervised and supervised learning, respectively.

A.4 Additional Experiment Results

We report additional experimental results across various data limitation levels and training epochs. Results
with full data are provided in main text (Section 4.3), and results with p ∈ {10%, 25%, 50%, 75%} data
limitation levels are presented in Tables 10 to 13. These results show that MixTraining provides a better
compute-performance trade-off compared to the standard SSL+SL pipeline: MixTraining achieves higher
accuracy and lower latency in all 36 out of 36 settings over SSL+SL.

1https://pytorch.org/
2https://huggingface.co/timm
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Table 8: Hyperparameters for ViT-T across self-supervised and supervised settings.

Hyperparameters Self-Supervised learning Supervised Learning
Batch Size 256 256
Base Learning Rate 1.5 × 10−4 1 × 10−3

Learning Rate Scheduler CosineAnnealing CosineAnnealing
Optimizer AdamW AdamW
Betas (0.9, 0.95) (0.9, 0.95)
Weight Decay 0.05 0.05
Warmup Epoch 20 5

Table 9: Hyperparameters for ResNet-18 across self-supervised and supervised settings.

Hyperparameters Self-Supervised learning Supervised Learning
Batch Size 256 256
Base Learning Rate 1 × 10−4 1 × 10−3

Learning Rate Scheduler CosineAnnealing CosineAnnealing
Optimizer AdamW AdamW
Betas (0.9, 0.95) (0.9, 0.95)
Weight Decay 0.05 0.05
Warmup Epoch 20 5

Table 10: Parameter study on training epochs under 10% data limitation using the ViT-T model. The highest
accuracy in each setting is highlighted in bold. MixTraining achieves a Pareto improvement over the
SSL+SL baseline, achieving higher accuracy and lower latency in 9 out of 9 settings.

Datasets Computation (epoch) SL SSL+SL MixTraining
Accuracy↑ Latency(s)↓ Accuracy↑ Latency(s)↓ Accuracy↑ Latency(s)↓

TinyImageNet
50 7.69% 536.82 8.67% 1136.96 16.53% 896.16
75 7.62% 809.11 9.89% 1762.56 20.23% 1376.22
100 7.24% 1102.42 10.21% 2382.06 20.99% 1913.75

CIFAR-10
50 53.28% 287.83 54.75% 637.27 57.60% 473.80
75 53.07% 434.86 55.59% 937.01 58.59% 742.53
100 53.40% 589.44 56.79% 1253.65 60.45% 962.16

CIFAR-100
50 19.08% 294.14 20.26% 677.26 23.36% 516.54
75 19.39% 464.97 21.15% 981.43 24.27% 770.75
100 19.05% 609.11 22.27% 1279.78 25.19% 1010.94

Table 11: Parameter study on training epochs under 25% data limitation using the ViT-T model. The highest
accuracy in each setting is highlighted in bold. MixTraining achieves a Pareto improvement over the
SSL+SL baseline, achieving higher accuracy and lower latency in 9 out of 9 settings.

Datasets Computation (epoch) SL SSL+SL MixTraining
Accuracy↑ Latency(s)↓ Accuracy↑ Latency(s)↓ Accuracy↑ Latency(s)↓

TinyImageNet
50 17.60% 1268.41 17.31% 2771.72 31.69% 2129.89
75 19.49% 1921.23 19.80% 4223.24 31.90% 3281.00
100 20.91% 2619.14 21.78% 5813.27 31.43% 4516.69

CIFAR-10
50 65.03% 646.45 67.65% 1409.32 70.69% 1076.16
75 65.69% 985.54 68.57% 2135.05 71.29% 1719.24
100 66.03% 1335.79 67.95% 2774.24 72.61% 2206.13

CIFAR-100
50 30.87% 651.25 34.46% 1517.26 36.87% 1161.89
75 31.21% 1033.91 35.05% 2237.72 38.43% 1720.56
100 31.49% 1346.96 34.93% 2882.62 38.55% 2226.92
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Table 12: Parameter study on training epochs under 50% data limitation using the ViT-T model. The highest
accuracy in each setting is highlighted in bold. MixTraining achieves a Pareto improvement over the
SSL+SL baseline, achieving higher accuracy and lower latency in 9 out of 9 settings.

Datasets Computation (epoch) SL SSL+SL MixTraining
Accuracy↑ Latency(s)↓ Accuracy↑ Latency(s)↓ Accuracy↑ Latency(s)↓

TinyImageNet
50 24.95% 2496.29 27.27% 5401.40 40.37% 4280.53
75 28.81% 3827.39 31.15% 8363.36 41.99% 6530.16
100 30.36% 5181.44 34.30% 11449.43 42.77% 8868.88

CIFAR-10
50 73.70% 1252.78 75.26% 2703.05 78.83% 2133.61
75 74.63% 1931.89 76.40% 4155.73 79.31% 3255.72
100 75.00% 2593.27 77.06% 5354.08 79.95% 4247.78

CIFAR-100
50 42.32% 1248.02 44.95% 2924.08 48.53% 2246.85
75 42.46% 1981.46 45.23% 4355.99 48.87% 3275.14
100 42.50% 2580.08 46.02% 5551.88 48.60% 4298.75

Table 13: Parameter study on training epochs under 75% data limitation using the ViT-T model. The highest
accuracy in each setting is highlighted in bold. MixTraining achieves a Pareto improvement over the
SSL+SL baseline, achieving higher accuracy and lower latency in 9 out of 9 settings.

Datasets Computation (epoch) SL SSL+SL MixTraining
Accuracy↑ Latency(s)↓ Accuracy↑ Latency(s)↓ Accuracy↑ Latency(s)↓

TinyImageNet
50 33.16% 3713.97 34.81% 8062.47 46.44% 6369.23
75 36.64% 5708.06 40.31% 12538.24 49.29% 9779.95
100 36.98% 7709.21 42.73% 17296.22 49.30% 13304.60

CIFAR-10
50 78.08% 1868.81 79.60% 4033.65 82.91% 3163.51
75 78.74% 2856.25 81.24% 6216.65 83.68% 4762.06
100 79.22% 3844.27 82.11% 7993.72 83.97% 6234.03

CIFAR-100
50 48.99% 2009.17 51.85% 4345.47 54.30% 3329.29
75 49.00% 2929.78 53.25% 6312.75 55.05% 4857.74
100 48.97% 3814.54 53.79% 8226.83 55.84% 6354.76
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