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Abstract

Agent-based models (ABMs) are flexible tools for simulating complex systems, but
their calibration is difficult because their likelihoods are intractable and simulations
are expensive. Two modern approaches tackle this challenge: automatic differenti-
ation (AD), which makes simulators differentiable to enable gradient-based optimi-
sation, and simulation-based inference (SBI), which learns approximate posteriors
from simulated data without changing the simulator. Despite their growing use for
inferring belief distributions over model parameters, these methods have not been
directly compared for ABMs. We present an empirical study comparing AD-based
variational inference and SBI on a spatial SIRS model. We evaluate the methods
based on the trade-offs they present between predictive accuracy, sample efficiency,
and implementation complexity. While our results suggest that SBI is preferable
for ABMs with low-dimensional parameter spaces, they also highlight the need
for future research, which we outline in our discussion. Code for reproducibility is
available athttps://github. com/SteamedGit/ad_vs_sbi_workshop.

1 Introduction

Agent-based models (ABMs) simulate complex systems by specifying rules for individual agents
and observing the emergent behaviour that arises from their interactions. This bottom-up modelling
paradigm is widely used in epidemiology, ecology, and the social sciences because it naturally captures
heterogeneity, spatial structure, and nonlinear feedbacks. However, calibrating ABMs to data remains
challenging: their likelihood functions are typically intractable, and simulations are computationally
expensive, making standard Bayesian or maximum-likelihood approaches impractical [1} [2].

Two modern approaches have emerged to address these problems. The first is to make simulators dif-
ferentiable and perform gradient-based inference using automatic differentiation (AD). Differentiable
ABMs [3, 4] enable gradient-based optimisation and variational inference that directly use gradient
information, often by replacing discrete choices with continuous relaxations (e.g., Gumbel-Softmax
[S]) or by applying reparameterisation tricks. The second approach is simulation-based inference
(SBI) [6, 2], which treats the simulator as a black box and trains neural conditional density or ratio es-
timators from simulated parameter-data pairs (0, x) to approximate the posterior distribution p(6 | ).
SBI does not require modifying the simulator, allowing it to be applied to legacy code and to systems
with discrete or otherwise non-differentiable dynamics.

These two paradigms trade different kinds of cost and benefit. AD-based inference can be sample-
efficient and fast at test time because gradients guide optimisation, but it usually requires substantial
engineering to make the simulator differentiable and can introduce bias from relaxations. SBI is easier
to deploy on off-the-shelf simulators but can require large numbers of simulator runs and careful
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representation learning or summary-statistic design, especially when outputs are high-dimensional
and structured in space and time.

Despite their complementary strengths, AD and SBI have not been systematically compared on
ABMs. In this paper, we provide such a comparison on a spatial SIRS-style ABM with local contact
dynamics. Our contributions are:

* A controlled empirical comparison of AD-based and SBI-based variational inference on a
spatiotemporal ABM.

* An open-source differentiable ABM implemented in JAX [[7] with accompanying scripts
to validate the correctness of the AD gradients against finite difference baselines to enable
further work in this area.

2 Background

2.1 Simulation-based inference.

Simulation-based inference (SBI) provides Bayesian inference for complex simulators whose likeli-
hood functions are intractable but from which data can be simulated. The goal is to infer parameters
6 given observed data x,,s When one can only draw samples x ~ p(z | #) from a simulator. Modern
SBI algorithms train neural networks to approximate either the likelihood p(z | 9), the likelihood
ratio p(x | 0)/p(z), or the posterior p(f | x) directly from simulated pairs (6, x) [6].

SBI methods can be either amortised or sequential. In amortised SBI, the estimator is trained once
using parameters sampled from the prior and can then infer posteriors for arbitrary observations.
Sequential variants, such as Sequential Neural Posterior Estimation (SNPE), Sequential Neural
Likelihood Estimation (SNLE), and Sequential Neural Ratio Estimation (SNRE), refine the proposal
distribution over several rounds so that subsequent simulations concentrate in regions of high posterior
probability [2]. Sequential Neural Variational Inference (SNVI) [8] unifies these approaches under a
single variational framework. It combines SNLE (or SNRE) with variational inference; after training
an approximate likelihood £,,(x|6), the divergence D between a neural posterior estimator g4 and an
approximate posterior with normalizing constant Z is minimised,

arg;nin D(qy(0) || £y (xobs|0)p(0)/2Z) .

This objective reveals that the main SBI families—posterior, likelihood, and ratio estimation—can
all be interpreted within a common variational framework. SNVI provides a unifying view of SBI
objectives and training procedures, clarifying how existing methods relate under a shared variational
principle. Like other SBI approaches, SNVI operates on black-box stochastic simulators and does
not require access to simulator gradients.

2.2 Generalized Variational Inference.

Generalized Variational Inference (GVI) [9] extends standard variational inference by replacing both
the log-likelihood and the Kullback-Leibler (KL) divergence in the evidence lower bound with more
general loss and divergence functions. In standard variational inference, the goal is to approximate
the posterior p(0 | zons) With a tractable distribution g4 (#) by maximising the ELBO,

Lvi(gs) = Eq, o) [log p(zons | 0)] — KL(gs(0) || p(8)).

This objective corresponds to minimising a reverse-KL divergence between ¢,(¢) and the true
posterior and is optimal when the model is well specified. However, in practice, simulators and
generative models are often misspecified or contain unmodelled stochasticity, in which case strict
likelihood-based objectives can be overly restrictive.

GVl introduces flexibility by defining a broader objective
Lavi(gs) = Eq, ) [d(ons, 0)] + D (g4(0) || p(0)),

where d(xops, 0) is any user-defined loss measuring data—model fit (“pseudo-likelihood”) and D is
any divergence or regulariser on the variational distribution. Different choices of (d, D) recover



many known methods: the standard ELBO (log-loss with KL), 5-VAEs (scaled KL), power posteriors
(a-divergences), and robust generalised Bayes updates. The GVI framework therefore encompasses
both classical and robust Bayesian updating while preserving desirable theoretical properties such as
coherence and posterior consistency under mild assumptions.

For differentiable simulators, the GVI objective can be optimised directly using AD through the
simulator, enabling gradient-based updates of variational parameters. For black-box simulators,
GVI principles can be combined with neural density estimators to approximate the expectations in
Lav1, as in recent Generalized Bayesian Inference (GBI) methods [10]. This connection places both
AD-based variational approaches and SBI methods such as SNVI within a shared variational family:
they differ mainly in how the expected loss is estimated: via simulator gradients in AD-based GVI,
or via amortised neural estimators in SBI.

3 Methods

We compare two inference strategies on the same spatial SIRS agent-based model: (i) simulation-
based inference using Sequential Neural Variational Inference (SNVI) and (ii) automatic-
differentiation-based Generalized Variational Inference (GVI).

SIRS Model. We use a grid-based spatial Susceptible-Infected-Recovered-Susceptible (SIRS)
model on a N x N grid with M agents. Infection occurs with probability pinfect When susceptible
agents have an infected neighbour. Infected agents recover with probability precover, and recovered
agents lose immunity with probability pya.n.. We make the model differentiable using Gumbel-
Softmax sampling for all discrete transitions [5] (Figure[Tb). Although the underlying ABM operates
on a grid, the observations with which we calibrate are ABM state-count timeseries (Figure [Tal).
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(a) Stochasticity of ABM state-count timeseries (b) Evolution of the ABM on a 10 x 10 grid

Figure 1: (a) Several realisations drawn from the ABM with the shaded region indicating the 95th
percentile interval. (b) The underlying spatiotemporal structure. Grey regions are unoccupied.

SNVI. SNVI [8] performs Bayesian inference by optimising a variational lower bound on the
marginal likelihood. The variational posterior g is parametrised by a normalising flow and a neural
likelihood (or neural ratio) estimator £y, is substituted for the likelihood. We adopt the formulation
based on a variational bound of the Rényi a-divergenceE] [IL1L 12, 18], which generalises the standard

ELBO objective:
1 Ly (x]0)p(6)\ ' "
1—a log <EQ¢(9) [( q¢(9) :

Lower a values (o < 1) emphasise coverage, while higher values focus on mode-seeking accuracy.
Training proceeds for 7' sequential rounds: at each round we sample {6;}; from the current
proposal, generate simulations, update the neural likelihood (or neural ratio) estimator, update the
neural posterior estimator by gradient ascent on Lgnvr,q. and set the next-round proposal to the
current posterior estimate. This focuses simulation effort on high-posterior regions without requiring

Lsnvia(ge) =

2Our experiments with the default forward-KL variant proved to be too unstable.



simulator gradients. In this work, we use SNVI with a neural likelihood estimator and henceforth
refer to the method as SNVLI.

GVI. For the differentiable simulator we perform Generalized Variational Inference [9} 4]. We
approximate the posterior by a normalizing-flow variational family ¢4 (#) and minimise the objective
proposed in [13]:

Lavi = wEy, g)[d(zobs, 0)] +KL(gs(0) [ p(9)) .

where d(xons, 0) is a differentiable discrepancy loss (e.g., squared error between simulated and
observed summary statistics) and w is a scalar weighting that controls the influence of the data-fit term
relative to the prior. Gradients of Lgv1 with respect to ¢ are obtained via automatic differentiation
through the differentiable ABM using reparameterised samples from g (6).

Both methods therefore optimise variational objectives but differ in how they estimate expectations:
SNVLI uses neural estimators on black-box simulators, while GVI uses pathwise gradients through a
differentiable simulator.

4 Experiments

Since we do not have access to the classical posterior and GVI targets a generalised posterior, we
opted to compare the methods in terms of the quality of their predictions using the Negative Log
Predictive Density (NLPD). These comparisons were also made across different ABM sampling
budgets in order to characterise the sample efficiency of the calibration techniques. Sample efficiency
is important, because in practice, a major bottleneck is the computational cost of sampling from the
ABM. The learning rates of SNVLI and AD GVI were tuned for each of the sampling budgets and
since it was unclear a priori what the appropriate setting of w in Lgyr should be, we tuned two
different variants. In Figure 2] SNVLI outperforms both variants of AD GVI at each sampling budget,
is more sample efficient than the w = le3 variant, and unlike AD GVI, appears to monotonically
improve as the sample budget increases. We provide more detail on the experimental setup in the
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Figure 2: NLPD of the calibration techniques as the ABM sample budget increases

5 Discussion and future work

Our results suggest that for ABMs with low-dimensional parameter spaces, the effort required to make
them differentiable may not be worthwhile. However, our experimentation is not comprehensive; we
compared these methods on a single calibration task and only considered a single way of scaling the
ABM sample budget. For SNVLI, we increased the number of simulations per round and for AD
GVI we scaled the number of optimisation steps; however, we could have instead scaled the number
of samples per optimisation step. It is also important that principled methods for determining the
GVI objective’s data-fit term are developed as it directly impacts the concentration of the generalised
posterior. Finally, future work would do well to include GVI with unbiased score-based gradient
estimators in the comparison, as previous work [4] has shown it to work well for low-dimensional
parameter spaces.
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A Differentiable SIRS ABM

The ABM on which we test the calibration approaches is a grid-based spatial SIRS ABM implemented
in JAX [[7]. The state of the ABM with a N x N grid is represented by a 3 x N x N array where the
agents have a one-hot encoding in the three channels. A susceptible agent can only be infected by
infected agents within its von Neumann neighbourhood [14]. Furthermore, since the cell is infected
by each neighbour with probability pinsect, the effective probability of infection is given by

Deffective = 1- (]- - pinfect)nddj

b

where n,4; is the number of infected neighbours within the von Neumann neighbourhood. This
number can be obtained for all the susceptible agents by performing a 2D convolution between the
infected channel of the grid and the neighbourhood matrix,

010
Vw=[1 0 1}.
010

The spread of infection can then be computed by a single Bernoulli sampling operation across the
grid followed by the masking out of entries that do not correspond to susceptible agents. Similarly,
the recovery of agents and the waning of immunity can also be computed by Bernoulli sampling
followed by masking. In order to make the ABM differentiable we replaced all the discrete sampling
operations with an implementation of Gumbel-Softmax sampling [5]] that allows for masking out
parts of the sample by multiplying by a floating-point representation of a Boolean mask.

Table 1: True SIRS ABM parameters for synthetic data generation

Parameter Value
General Parameters

Grid Size 40 x 40
Number of Simulation Steps 20
Gumbel Softmax Temperature 0.05
Target Parameters for Inference

Infection Probability (pinfect) 0.6
Recovery Probability (Precover) 0.3

Waning Immunity Probability (pyane) 0.1

Fixed Initial Conditions

Total Population 1280
Number of Initial Infected 160
Number of Initial Recovered 80

B Neural Network Architectures, Training and Evaluation

All the hyperparameter sweeps were performed on a computer with 15 GB of RAM and a NVIDIA
T4 GPU. The AD GVI models train in seconds on a laptop GPU and sbi [15] notes that GPU
acceleration is not necessary for most of its models.

AD GVI. The variational distribution is parametrised by a masked autoregressive flow [[16, [17]
implemented in FlowJAX [[18]. The discrepancy loss d(xops, ) is the MSE between x5 and a batch
of realisations {z;}2 | sampled from the ABM with parameter 6. Throughout our experiments we
sample 10 ABM realisations per optimisation step; two ELBO samples and 5 ABM samples per
discrepancy loss evaluation (i.e. B = 5). Training is performed using AdamW [19] and we scale the
number of ABM samples by increasing the number of optimisation steps. However, as we noted in
Section[5} we could have instead fixed the number of optimisation steps and scaled the number of
ABM samples per step.

SNVLI. We use the sbi package’s [15] implementation of SNVLI with default settings apart
from using the objective based on the a-divergence instead of the default forward KL divergence.



Following the suggestions of Glockler et al. [8] in the SNVI paper, we set « = 0.1 and use the
’Sticking the Landing’ gradient estimator [20]. Throughout our experiments we use two rounds of
inference and we scale the number of ABM samples by increasing the number of ABM simulations
sampled within each round. We could have alternatively scaled the number of rounds; however, this
is less desirable since each round requires training two normalising flow models to convergence.

Evaluation. We generated 100 groundtruth realisations from the ABM for the NLPD calculation.
For each trained model, we sampled 1000 parameters, used realisations generated by those parameters
to fit a Kernel Density Estimate of the posterior predictive distribution and calculated the NLPD of
the groundtruth realisations using that estimate. In order to reduce the dimensionality of the posterior
predictive distribution, we only calculated the NLPD on the Infected and Recovered portions of the
timeseries. This is justified since N§ . .cptibie = NTotal = Nnfected — Nhocovered- FOT completeness
we also include all the posteriors and posterior predictive distributions in the next section of the
Appendices.

C Posteriors and Predictive Distributions
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Figure 3: Posteriors for SNVLI
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Figure 4: Posteriors for AD GVI (w = 1e3)
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Figure 6: 95% Highest Density Intervals (HDIs) of the posterior predictive distributions with
groundtruth ABM realisations overlaid.
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