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Abstract
Temporal Sentence Grounding (TSG), which aims to localize events
in untrimmed videos with a given language query, has been widely
studied in the last decades. However, recently researchers have
demonstrated that previous approaches are severely limited in out-
of-distribution generalization, thus proposing the De-biased TSG
challenge which requires models to overcome weakness towards
outlier test samples. In this paper, we design a novel framework,
termed Counterfactually Augmented Event Matching (CAEM),
which incorporates counterfactual data augmentation to learn event-
query joint representations to resist the training bias. Specifically, it
consists of three components: (1) A Temporal Counterfactual Aug-
mentation module that generates counterfactual video-text pairs by
temporally delaying events in the untrimmed video, enhancing the
model’s capacity for counterfactual thinking. (2) An Event-Query
Matching model that is used to learn joint representations and
predict corresponding matching scores for each event candidate.
(3) A Counterfact-Adaptive Framework (CAF) that incorporates
the counterfactual consistency rules on the matching process of
the same event-query pairs, furtherly mitigating the bias learned
from training sets. Extensive experimental results conducted on
two widely used DTSG datasets, i.e., Charades-CD and ActivityNet-
CD, show that our our proposed CAEMmethod outperforms recent
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state-of-the-art methods. Our implementation code is available at
https://github.com/CFM-MSG/CAEM_Code.
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1 Introduction
Temporal Sentence Grounding (TSG) task [1–4] aims at localizing
video events from untrimmed long videos in terms of given text
queries. In previous works, the TSGmodels followed a prior assump-
tion that the training and testing samples are under Independent-
Identical-Distribution (IID) settings. However, test samples from the
real-world environment are unpredictable, which could be outlier
samples and lead to Out-Of-Distribution (OOD) problems. Recently,
researchers [5, 6] demonstrated that the conventional TSG methods
suffer from heavily biased training data and show limited gener-
alization on outlier data. As is illustrated in Fig. 1(a), the target
moments in IID data share a similar statistical distribution with
the training data, while the target moments in OOD data show a
shifted distribution, simulating the open-world outlier test samples.
According to the initial works [5, 6] on exploring the bias in TSG
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Figure 1: (a) An illustration of the Training, Test-IID, and
Test-OOD distributions of the DTSG challenge. (b) The con-
ventional TSG pipeline first generates event candidates and
then predicts matching scores. (c) Our causal graph, where
𝐸,𝑄, 𝐿,𝑀 , and 𝑆 represent Events, Queries, Locations, Multi-
modal Representations, and Scores respectively.

task, the previous TSG methods [1, 3, 4, 7, 8] heavily overfit spu-
rious correlations between video-text pairs and manual temporal
annotations, leading to dramatically dropped performance on OOD
test samples. To this end, exploring De-biased TSG (DTSG) methods,
which could overcome the weakness of model generalization, is be-
coming an emerging task, raising wide attraction to the community
of multimodal learning and multimedia applications.

Following the mentioned initial works [5, 6], a group of works
[5, 6, 9–11] are proposed to tackle the DTSG task. Most of these
methods incorporated causal reasoning [5, 6, 12] or data augmen-
tation [9, 10] into the TSG task and achieved promising de-biased
ability in the challenging DTSG task. Although these methods have
made promising progress in avoiding the direct influence of anno-
tation bias on prediction results, they ignore the indirect impact
of the local location of visual content on the learned event-query
joint representations, which is an essential intermediate process for
conventional TSG paradigm. As illustrated in Fig. 1(b), the widely
adopted TSG paradigm, i.e., proposal-based pipeline [1, 3, 4, 7],
firstly generates video candidates and then assigns the matching
score for ranking. In such a paradigm, the TSGmodels are trained to
discriminate well-matched event-query pairs, instead of predicting
the temporal location directly. Hence, we consider the causal graph
in Fig. 1(c), where the joint representations have three independent
parent nodes: text query, video event and event location.

In this paper, we propose a novel DTSG approach for resisting
training bias in learning event-query matching, termed Counter-
factually Augmented Event Matching (CAEM). Concretely, we first
devise a Temporal Counterfact Augmentation (TCA) module to fa-
cilitate TSG models with counterfactual thinking ability. We ob-
served that the process of annotating moments, which is actually
matching event-query pairs manually, depends on the currently
observed video content sequence. However, such a process forgo
teaching the model the ability of counterfactual thinking, i.e.,What

if the target moment does not happen at this time but in the rest
of the given videos? To this end, we propose the TCA module to
generate counterfactuals by delaying the observed events to later
moments. The counterfactuals are used to train our models with
the observed factual data jointly. Secondly, we design an Event-
Query Matching (EQM) model that follows the proposal-based TSG
pipeline illustrated in Fig. 1(b) to predict event-query matching
scores. Finally, considering the causal graph depicted in Fig. 1(c),
we introduce the Counterfactual Adaptive Framework (CAF), which
learns event-query joint representations and integrates counterfac-
tual consistency rules [13, 14] to ensure consistent semantics for
identical events occurring in different contexts.

We evaluate our proposed CAEM method on two widely used
DTSG benchmark datasets, i.e., Charades-CD and ActivityNet-CD.
Additionally, we also generalize it on two benchmark datasets with
novel text queries. Extensive experimental results prove our method
outperforms recent state-of-the-art methods on the DTSG task.

Overall, our contributions can be summarized as follows:
• We propose a novel method termed Counterfactually Aug-
mented Event Matching (CAEM) for the De-biased Temporal
Sentence Grounding task. It is significantly bias-resist on
imbalanced training data and remarkably improves the gen-
eralization ability toward OOD test samples.

• We devise a Temporal Counterfact Augmentation that cre-
ates counterfactual perturbations on temporal locations of
video events. It effectively introduces counterfactual think-
ing in TSG models thus improving generalization ability.

• We design a Counterfact-Adaptive Framework that learns
event-query joint representations in both observed and coun-
terfactual training samples. It follows the counterfactual con-
sistency rule to maintain semantical consistency.

2 Related Works
Out-Of-Distribution Generalization. The OOD generalization
endeavors to train a model using data from the training environ-
ments so that it can effectively generalize to unfamiliar environ-
ments. As a challenging but practical problem, the OOD generaliza-
tion, numerous algorithms [15–17] have been devised to enhance
OOD generalization. One set of methodologies concentrates on
reducing the disparities among the training environments [15, 18].
The meta-learning domain generalization method [19] utilizes a
meta-learning approach and introduces simulated training and test-
ing distributional shifts during training. In [16, 17, 20], robust opti-
mization is employed to train models for minimizing the worst-case
training loss across a predetermined set of groups, while several
approaches [18, 21] incorporate adversarial training to enhance
OOD generalization performance. Additionally, the OOD general-
ization has been also widely explored in multimodal learning tasks,
such as multimodal fusion analysis [22–25], vision-language under-
standing [26–28], or multimedia content retrieval [5, 6, 29–31], etc..
Particularly, Yuan et al. [5] and Yang et al. [6] raised a discussion on
the temporal out-of-distribution problems in the temporal sentence
grounding task, which motivated us to develop this work.
De-biased Temporal Sentence Grounding. As a fundamental
problem in multimodal video understanding, the temporal sentence
grounding task [3, 4, 32, 33] has been studied for several years



Counterfactually Augmented Event Matching for De-biased Temporal Sentence Grounding MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

The man then runs around 
being <MASK> by the bull.

…

The man then runs around 
being <MASK> by the bull.

…

…

Original Moment

New Moment
Delaying

Irrelevant Events

Person drinks 
from a glass

3D
CNN

GloVe

3D
CNN

GloVe

Event-Query Matching Model (EQM)
VLTrans

VLTrans*

Shared
Classifier

Shared
Classifier

Ground 
Truth IoU

Ground 
Truth IoU

EQM
(Factual)

EQM
(Counterfactual)

Temporal Counterfactual Augmentation

Counterfact-Adaptive Framework

Model Inference

Add & 
Ranking

Matching 
Score Map

Matching 
Score Map

Figure 2: An illustration of our proposed CAEM method. It consists of three key components: (1) Temporal Counterfactual
Augmentation which aims to generate counterfactuals where the target events are delaying, (2) Event-Query Matching model
which is used for learning event-query joint representations and predicting matching scores, and (3) Counterfact-Adaptive
Framework that maintains consistent semantics of identical events occurring in different moments.

and achieves promising performance via manual annotations with
sufficient temporal cues. However, recent studies [5, 6] empirically
demonstrated that the previous methods have defects in outlier
test samples, showing limited generalization on unpredictable sam-
ples from the real world. To this end, more researchers focus on a
more challenging task, i.e., De-biased Temporal Sentence Ground-
ing (DTSG) [9–11, 34], which aims at resisting training bias and
improving model generalization on outlier test data. Specifically,
Yuan et al. [5] proposed the initial DTSG work on exploring the per-
formance of TSGmodels on IID and OOD test samples and proposed
a corresponding solution for this challenge. Yang et al. [6] proposed
a causality-inspired TSG framework that builds a structural causal
model to capture the true effect of query and video content on the
prediction. Nevertheless, all these DTSG methods studied the direct
impacts on temporal predictions caused by biased training data, but
ignore the truth that TSG methods select predictions by evaluating
the matching scores of event-query joint representations. Inspired
by this observation, we aim at developing a more effective DTSG
method against training bias.
Counterfactual Data Augmentation. The concept of counterfac-
tuals originates from causal inference [35–37], where it pertains to
hypothetical situations contrary to observed facts. In the context of
data augmentation, counterfactuals represent plausible variations
of existing data points that maintain their fundamental charac-
teristics while introducing changes that are consistent with the
underlying data distribution. In recent years, CDA has garnered
significant attention across various domains, including recommen-
dation systems [38–40], natural language processing [41–43], and
multimodal learning [44–47]. For example, Wang et al. [38] pro-
posed a CDA-based framework to mitigate the impact of imperfect
training data and empower sequential recommendation models.
Dixit et al. [41] devised a two-stage counterfactual data augmenta-
tion for large-scale pre-trained language models, achieving better
generalization to OOD data. Overall, by exploring counterfactual

spaces, CDA enables models to learn from a more diverse range of
scenarios, thereby improving model robustness to handle unseen
instances and adapt to real-world outlier data. To this end, we in-
corporate the CDA into DTSG task for improving the resistency
against training bias caused by manual annotations.

3 Proposal Method
3.1 Preliminary
Problem Formulation. We represent the untrimmed video set
as 𝑉 , while the text query set is represented as 𝑄 . For each case,
the input can be represented as a pair consisting of untrimmed
video 𝑣 and a sentence query 𝑞. Let 𝑡s and 𝑡e be the start and
end time of one target video event respectively, and let M𝜃 rep-
resent the TSG model, the goal of TSG task can be formulated as
M𝜃 (𝑣, 𝑞 ;𝑉 ,𝑄, 𝐿) → {(𝑡𝑘s , 𝑡𝑘e )}𝐾𝑘=1, 𝑡

𝑘
s < 𝑡𝑘e . (𝑡s, 𝑡e)𝑘 is the 𝑘-th re-

trieved moment in the ranked list of candidates. 𝐾 is the number of
predicted candidates. 𝐿 represents the manual temporal annotations
of training sets. Particularly, let 𝐿iid and 𝐿ood represent the ground
truth of two test datasets sharing identical distribution and out-
lier distribution with the training set 𝐿, M𝜃 is expected to achieve
promising performance on both test datasets synchronously, which
requires better generalization ability.
Causal Graph in Our CAEM Method. The causal graph is a
directed acyclic graph that reveals the causal relationships among
variables. The nodes denote the variables and the edges represent
the causal relationships among variables. As the proposal-based
pipeline of TSG methods firstly generates video event candidates
and then measures matching scores between each event and text
queries, we describe causalities among five variables: text query 𝑄 ,
video event 𝐸, corresponding temporal location in the video 𝐿, the
joint event-query representations𝑀 and predicted matching score
𝑆 . Concretely, we illustrate the causal graph in Fig. 1(c) to show how
the variables {𝑄, 𝐸, 𝐿,𝑀, 𝑆} interact with each other through the
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Figure 3: An illustration of our Temporal Counterfactual
Augmentation: at the annotated moment, we delay the
matched video events to those video parts that have not been
observed, thus generating a counterfactual that the event-
query matching does not happen currently but later.

causal links, where the direct link denotes the causality between
two nodes: cause → effect. The temporal location in the video 𝐿
will influence indirectly the predicted matching scores 𝑆 between
text queries 𝑄 and video events 𝐸 via the joint representations𝑀 .

3.2 Temporal Counterfactual Augmentation
Discussions on Factual Event-Query Matching Annotations.
Given a video that contains multiple events, it can be regarded as
a time series of visual signals, and its semantics are aligned with
the textual modalities along the temporal dimension. Such a priori
condition leads to directed contextual information, thus we humans
tend to discriminate if an event happens by considering current
situations and previous memories. For example, we illustrate a
typical case in Fig. 3. For any annotator, who is asked to determine
the starting and ending timestamp with the given text query, it
firstly watches the video until the described event begins at this
time, and then keeps recording in mind until it ends. In this way, an
annotated moment is generated, which represents an observed fact
that the required event happened at this moment and the query is
expected to build a strong correlation with this video content.
Counterfactual Data Generation. In the context of the discus-
sions above, we find that humans don’t have to observe the rest of
this video to discriminate the matching relationships between video
events and textual queries. Therefore, we argue that the event-query
matching should be context-irrelevant since the semantics video
event is complete enough to build flawless matching pairs with text
queries. As illustrated in Fig. 4, we raise counterfactual thinking in
determining if the event happens at a particular moment:What if
the event is not observed now but later? Under the counterfactual
consistency rule [13, 14], if the event does not happen at the current
moment but still happens in the unobserved rest part of the video,
the matching correlations should be established consistently.

To this end, we incorporate counterfactual thinking in data aug-
mentation and propose a novel strategy for counterfactual data
generation. Specifically, we denote any annotated video-text pair
selected from the training set as (𝑣 , 𝑞, 𝑙), where 𝑙 = (𝑡𝑠 , 𝑡𝑒 ) is the
normalized moment, and denote the lengths of video as 𝑙v. For
short events which satisfy 𝑙/𝑙v < 0.5, we move the event frames
entirely and insert them at 𝑡𝑠 + 𝜌 with a random ratio 𝜙 , delaying
the annotated event to (𝑡𝑠 + 𝜌1, 𝑡𝑒 + 𝜌1). Here 𝜌1 ∈ [0, 1 − 𝑡𝑒 ] is a
random relative temporal distance. Moreover, for those events that

satisfy 𝑙/𝑙v ≥ 0.5, we pad a group of video frames with complete
event semantics at the beginning of the video sample, extending
the video length into (1 + 𝜌2) ∗ 𝑙v, where 𝜌2 ∈ [0, 3 ∗ (𝑡𝑒 − 𝑡𝑠 )] is a
random relative temporal distance similarly. Here we also conduct
the extending operation with a random ratio 𝜙 . Particularly, the
padded video frames are selected from the training set, which is a
complete event from another video. In this way, we can get a group
of counterfactually augmented training pairs, which can be used to
train our models with original factual data jointly.

3.3 Event-Query Matching Model
Feature Extraction. Following the previous methods [5, 10, 34],
we extract the video and text features in an offline manner. Firstly,
given an untrimmed video 𝑉 , we adopt the pre-trained visual back-
bones [48, 49] to extract the visual features. Moreover, we employ
the GloVe [50] to extract the word-level embeddings of each sen-
tence query 𝑄 . Specifically, we apply mean pooling on the frame-
level representations within each clip to obtain video feature se-
quence, represented as FV =

{
f𝑖V |𝑖 = 1, 2, ..., 𝑙V

}
, where f𝑖V ∈ R𝑑𝑉

denote the 𝑖-th clip feature and 𝑙V is the video feature length. For
the query sentence 𝑄 , the feature sequence consists of multiple
word-level embeddings, denoted as FQ =

{
f 𝑗Q |𝑖 = 1, 2, ..., 𝑙Q

}
, where

f 𝑗Q ∈ R𝑑𝑄 and 𝑙Q are the 𝑗-th word feature and the number of words
respectively.
Event-Query Joint Representation. To learn an effective joint
representation for event-query pairs, we incorporate vision-language
transformers [51] into temporal adjacent networks [3]. Concretely,
the vision-language transformers are deployed to conduct cross-
modal interactions thus learning fine-grained multimodal repre-
sentations that contain both visual and textual information. Fur-
thermore, we leverage the temporal adjacent map [3] to generate
abundant candidates, where the representation of each candidate
is composed of multiple multimodal tokens sampled from the out-
put of vision-language transformers. Let the VLTrans (·) denote
vision-language transformers, we formulate this process as follows:

EV, EQ = VLTrans(FV, [hcls;Mask(FQ)]), (1)

where Mask (·) is a random mask operation: we adopt masked lan-
guage modeling [51] here to learn more semantics from textual
queries. hcls is the <CLS> token and [; ] is the concatenation opera-
tion. EV =

{
e𝑖V |𝑖 = 1, 2, ..., 𝑙V

}
and EQ =

{
ecls, e𝑖Q |𝑖 = 1, 2, ..., 𝑙Q

}
are

vision-aware and text-aware multimodal token sequence respec-
tively, ecls, e𝑖V, e

𝑖
Q ∈ R𝑑h .

Following that, we generate a temporal adjacent map [3] illus-
trated in Fig. 2, and fill each grid with composed features sampled
from the vision-aware multimodal tokens. In this temporal adjacent
map, the grid in (𝑡𝑖 , 𝑡 𝑗 ) represents a candidate event starting at
𝑡𝑖 and ending at 𝑡 𝑗 timestamps in the untrimmed videos, where
0 <= 𝑡𝑖 <= 𝑡 𝑗 <= 𝑙V. Take the grid (𝑡𝑖 , 𝑡 𝑗 ) as an example, we denote
the process of filling multimodal features as follows:

e(𝑡𝑖 ,𝑡 𝑗 )M = W1e
𝑡𝑖
V +W2e

𝑡 𝑗
V +W1e

⌊ (𝑡𝑖+𝑡 𝑗 )/2⌉
V + b, (2)

whereW1,2,3 are learnable parameter matrics and ⌊·⌉ represents the
rounding operation. b is the bias matrix. e(𝑡𝑖 ,𝑡 𝑗 )M is the event-query
joint representation for a candidate event at (𝑡𝑖 , 𝑡 𝑗 ).
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Semantic Consistency Learning. As the matched event-query
pairs share the same semantic in both vision and text modalities,
we firstly leverage cross-modal contrastive learning to guide our
model to learn semantic consistency. Specifically, given the feature
of the target event e+M, and the global text-aware token ecls, we
project these features into a joint embedding space and let the
model distinguish between anchor sample and negative samples.
Let 𝑁𝑣 represent a set of features containing e+M and the negative
samples of mis-matched event-query pairs from the same and other
videos, the contrastive learning loss can be formulated as follows:

𝐿𝑐𝑙 = E∼𝑝 (Σ)

− log
©«

exp
(
S
(
𝑓𝑣

(
e+M

)
𝑓𝑞 (ecls)

)
/𝜏
)

∑
𝜅∈𝑁𝑣

exp
(
S
(
𝑓𝑣

(
e𝜅M

)
𝑓𝑞 (ecls)

)
/𝜏
) ª®®¬

 , (3)
where S (·) is the cosine similarity calculation. 𝑝 (Σ) represents the
expected distribution depicting the correlations of {𝑉 ,𝑄, 𝐿}. 𝜏 is a
temperature factor. 𝑓𝑣 and 𝑓𝑞 are project layers with normalizing
operations for visual and textual modalities respectively.

Additionally, we also employ the widely used Masked Language
Modeling (MLM) to exploit the semantics hidden in textual queries.
Given the text-aware multimodal token sequence EQ, we predict
the masked words in Mask(FQ). Take the 𝑖-th word masked as an
example, the training loss for MLM is denoted as follows:

𝐿𝑚𝑙𝑚 = E∼𝑝 (Σ) [− log𝑝 (𝑤𝑖 |𝑤1,𝑤2, ...,𝑤𝑖−1,𝑤𝑖+1, ...,𝑤𝑙𝑄 )], (4)

where𝑤𝑖 represents 𝑖-th word at the original textual query sentence.
Overall, the loss function of the Semantic Consistency Learning
can be summarized as 𝐿𝑆𝐶𝐿 = 𝐿𝑐𝑙 + 𝐿𝑚𝑙𝑚 .
Temporal Supervision Perception.We devise two parts of loss
functions to perceive direct supervision signals from the manual
annotations, i.e., matching confidence and relative location modi-
fication. The first part is used to guide our model to discriminate
whether an event-query pair, which has been represented as com-
posed multimodal features, is well-matched. Moreover, as the tem-
poral adjacent map is pre-defined manually, we also incorporate
the second part, i.e., relative location modification to enable our
model to predict a subtle relative location for each grid. Specifically,
the matching confidence can be calculated as follows:
𝐿𝑚𝑠 = E∼𝑝 (Σ) [E∼𝑝 (𝑆 |Σ) [(−𝑠𝑖 log 𝑠𝑖 − (1 − 𝑠𝑖 ) log (1 − 𝑠𝑖 ))]],

(5)
where 𝑠𝑖 = 𝑓𝑠 (e𝑖M) is a predicted matching score of the 𝑖-th can-
didate event in the temporal adjacent map, and 𝑓𝑠 is a classifier.
Meanwhile, 𝑠𝑖 is a ground truth matching score of the 𝑖-th can-
didate event, which is generated by calculating the temporal IoU
score between the pre-defined temporal adjacent map and manual
annotations, such as:

𝑠 (𝑡𝑖𝑠 ,𝑡𝑖𝑒 ) =
min(𝑡𝑒 , 𝑡𝑖𝑒 ) −max(𝑡𝑠 , 𝑡𝑖𝑠 )
max(𝑡𝑒 , 𝑡𝑖𝑒 ) −min(𝑡𝑠 , 𝑡𝑖𝑠 )

, (6)

where (𝑡𝑖𝑠 , 𝑡𝑖𝑒 ) represents normalized timestamps in the 𝑖-th grid at
the temporal adjacent map and ground truth, while (𝑡𝑠 , 𝑡𝑒 ) is the
normalized ground truth. Similarly, the second part loss used for
relative location modification can be formulated as:

𝐿𝑟𝑙𝑚 = E∼𝑝 (Σ) [E∼𝑝 (𝑆 |Σ) [
��𝑟 𝑖𝑠 + 𝑡𝑖𝑠 − 𝑡𝑠 �� + ��𝑟 𝑖𝑒 + 𝑡𝑖𝑒 − 𝑡𝑒 ��]], (7)

where (𝑟 𝑖𝑠 , 𝑟 𝑖𝑒 ) = 𝑓𝑟 (e𝑖M), which is the margin distance between
the pre-defined location (𝑡𝑖𝑠 , 𝑡𝑖𝑒 ) and ground truth location (𝑡𝑠 , 𝑡𝑒 ).

Here 𝑓𝑟 is a regression head for predicting margin distance. Overall,
the training objective for perceiving temporal supervision can be
summarized as: 𝐿𝑇𝑆𝑃 = 𝐿𝑚𝑠 + 𝐿𝑟𝑙𝑚 .

3.4 Counterfact-Adaptive Framework
Training the Event-Query Matching Model with our counterfactu-
ally augmented video-text pairs could enhance the counterfactual
thinking ability, but the intervented video frame order may also
show influence in vision-language transformers as the changed
token sequences. To this end, we furtherly propose the Counterfact-
Adaptive Framework to overcome this defect.
Pseudo-Siamese Transformers. As the goal of our Counterfact-
Adaptive Framework is to mitigate the influence caused by the
changed token sequences in transformers, we firstly extend the
Vision-Language Transformers into a pseudo-siamese architecture
[52]. As illustrated in Fig. 2, we employ two groups of vision-
language transformers with the same architecture but unshared
parameters. They are designed to handle different inputs: one is
asked to process the original training data while the other one aims
to process the counterfactually augmented data. Specifically, let F∗V
represent the counterfactual augmented video features, we denote
the pseudo-siamese vision-language transformers as follows:{

EV, EQ = VLTrans(FV, [hcls;Mask(FQ)]),
E∗V, E

∗
Q = VLTrans∗ (F∗V, [h

∗
cls;Mask(FQ)]),

(8)

where “∗” denotes the pipeline for counterfactual augmented data.
We employ two group of unshared learnable matrices, i.e.,W1,2,3
and W∗

1,2,3 to fill multimodal features for each candidate in two
pipeline respectively. Similarly, we also calculate the Semantic Con-
sistency Learning loss for two pipelines separately, i.e., 𝐿SCL and
𝐿∗SCL. Finally, we employ a shared classifier to predict matching
score for each candidate for both two vision-language transformers
and combine them to learn final matching scores. Similarly, take
the 𝑖-th candidate event as an example, the process of predicting
the final matching score can be denoted as: 𝑠 ′

𝑖
= 𝑓𝑠 (e𝑖M) + 𝜆𝑓𝑠 (e𝑖∗M),

where e𝑖M and e𝑖∗M are the multimodal features of 𝑖-th candidate
event in the two predicted temporal adjacent map. 𝑠 ′

𝑖
and 𝑓𝑠 (·) are

predicted final matching score and shared 𝑓𝑠 (·) classifier.
Counterfactual Consistency Learning. Following the counter-
factual consistency rule [13, 14], if the event does happen in the rest
of the videos, the event-query pairs should also be well-matched.
In other words, the completeness of semantics in the same video
events should be maintained. To this end, we leverage contrastive
learning to align the multimodal representations of the same event
from both two pipelines. Specifically, let êM and ê∗M represent the
multimodal representations for ground truth events in factual and
counterfactual pipelines, the loss function of counterfactual consis-
tency learning can be represented as:

𝐿𝐶𝐶𝐿 = E∼𝑝 (Σ)

− log
©«

exp
(
S
(
𝑓𝑣

(
ê∗M

)
𝑓𝑣

(
ê+M

))
/𝜏
)

∑
ê𝑛M∈𝑁𝑒

exp
(
S
(
𝑓𝑣

(
ê∗M

)
𝑓𝑣

(
ê𝑛M

))
/𝜏
) ª®®¬

 .
(9)

Here ê+M and ê𝑛M represent multimodal representations of the same
and different events respectively. 𝑁𝑒 represent a set of features
containing ê+M and negative samples. 𝜏 is the temperature factor.
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4 Experiments
4.1 Experimental Settings
Datasets.Weevaluate our proposed CAEMmodels on theCharades-
CD and ActivityNet-CD [5] datasets, which are repartitioned to
evaluate the performance and generalizing ability of TSG models.
In the two datasets, the target moments of samples in the training,
val, and test-iid sets are independent and identically distributed
(denoted as IID), while the test-ood set contains out-of-distribution
(denoted as OOD) samples. Moreover, we also generalize our pro-
posed CAEM method on the Charades-CG and ActivityNet-CG [53]
datasets, which contain normal test queries where all words are
seen in the training set (denoted as Trivial) and generalized test
queries with unseen words in the training set (denoted as Novel).
Implementation Details and Metrics. Following the previous
methods [3, 5, 11, 34], we adopt the off-the-shelf video features
that are extracted by pre-trained 3D CNN backbones [48, 49]. The
visual features and textual embeddings are projected into 256 di-
mensions before sending to vision-language transformers, and the
hidden dimension of transformers is also set to 256. As for the
hyperparameters, we set the random ratio 𝜙 in the Temporal Coun-
terfactual Augmentation to 0.5. The balance factor 𝜆 for calculating
the final matching score in the Counterfact-Adaptive Framework
is set to 0.6. The temporal factor in 𝐿SCL and 𝐿CCL is set to 0.1. the
training stage, we employ the Adam optimizer [54] is employed
to update the parameters with the learning rate set to 4 × 10−4 on
a single Nvidia A6000 with 64 batch size. During the evaluation
and testing stages, we adopt the widely used de-biased recall met-
rics proposed by [5], which evaluate the model generalization on
OOD samples by discounting the normal recall metrics for sup-
pressing the performance of speculation methods that over-rely on
moments annotation biases. Moreover, as a number of D-TSG meth-
ods [9, 11, 12, 34] employed conventional recall metrics to evaluate
the model performance on the D-TSG task, we also evaluate our
model under the same metrics for fair comparisons.

4.2 Overall Comparision
We compare our proposed CAEM method with recent state-of-the-
art methods [5, 6, 10, 11, 34, 55]. For fairness, we adopt two types
of metrics, i.e., De-Biased Metrics [5] and Normal Metrics [1, 7],
covering all previous methods evaluated with different metrics.
Specifically, we summarize the counterpart methods as following
two groups: (1) De-Biased Metrics: TCN-DCM [6], MDD [5], Multi-
NA [10], and DFM [11]. (2) Normal Metrics: D-TSG [12], SVTG [9],
MomentDiff [55], and BSSARD [34]. To further show the effec-
tiveness of our method, we also make fair comparisons with the
latest methods that show generalization on text modality on the
Charades-CG and ActivityNet-CG [53], including VISA [53], VDI
[56], SSL2CG [57], and MESM [58].
Comparisons with Recent DTSG Methods. We report the ex-
perimental results on Charades-CD and ActivityNet-CD [5] in Table
1 and Table 2. By comparing our proposed CAEM method and the
recent state-of-the-art methods, we list the following observations:
(1) Our method consistently outperforms these counterpart meth-
ods on both benchmark datasets. Particularly, on the OOD test of
the Charades-CD dataset, our method achieves 4% and 7% absolute
improvements on the de-biased discounted metric dR@1, IoU=0.5,

Table 1: Comparisons with recent state-of-the-art DTSG
methods on the Charades-CD datasets.

Method Venue dR@1, IoU=0.5 dR@1, IoU=0.7
IID OOD IID OOD

VSLNet [4] ACL’20 47.60 32.72 29.88 19.61
2D-TAN [3] AAAI’20 46.48 30.77 28.76 13.73

TCN-DCM [6] SIGIR’21 52.50 40.51 35.28 21.02
MDD [5] TOMM’22 52.78 40.39 34.71 22.70

Multi-NA [10] AAAI’23 53.82 39.86 34.47 21.38
DFM [11] ACM MM’23 56.38 44.01 34.87 22.28
CAEM Ours 63.38 48.72 43.76 26.36

Method Venue R@1, IoU=0.5 R@1, IoU=0.7
IID OOD IID OOD

D-TSG [12] ACM MM’22 53.34 41.42 31.35 22.04
SVTG [9] ECCV’22 57.59 46.67 37.79 27.08

MomentDiff [55] NeurIPS’23 - 47.17 - 22.98
BSSARD [34] AAAI’24 55.65 47.20 36.33 27.17

CAEM Ours 68.53 54.42 46.17 28.29

Table 2: Comparisons with recent state-of-the-art DTSG
methods on the ActivityNet-CD datasets.

Method Venue dR@1, IoU=0.5 dR@1, IoU=0.7
IID OOD IID OOD

VSLNet [4] ACL’20 39.86 19.57 26.45 11.14
2D-TAN [3] AAAI’20 40.87 18.86 27.36 9.77

TCN-DCM [6] SIGIR’21 42.15 20.86 29.69 11.07
MDD [5] TOMM’22 43.63 20.80 31.44 11.66

Multi-NA [10] AAAI’23 41.67 20.78 28.82 11.03
DFM [11] ACM MM’23 45.92 24.32 32.18 12.72
CAEM Ours 46.07 26.42 33.92 14.80

Method Venue R@1, IoU=0.5 R@1, IoU=0.7
IID OOD IID OOD

SVTG [9] ECCV’22 48.07 24.57 32.15 13.21
MomentDiff [55] NeurIPS’23 - 26.96 - 13.69
BSSARD [34] AAAI’24 49.67 27.02 33.72 14.93

CAEM Ours 51.55 28.98 36.36 15.54

and conventional metric R@1, IoU=0.5 compared with existing
state-of-the-arts. It demonstrates that our method shows better
generalization towards OOD samples. This is because our proposed
CAEMmethod leverages the TCA and CAF designs, which enhance
counterfactual thinking in learning joint representations ofmatched
query-event pairs, thus showing better generalization compared
with others. (2) By comparing the improvements achieved by our
method on the Charades-CD and ActivityNet-CD datasets, it can be
observed that our proposed CAEM method shows more superiority
over the former benchmark dataset. One probable reason is the
described events in the ActivityNet-CD dataset contain more com-
plicated semantics. These complex queries raise more challenges in
learning joint representations for matched event-query pairs.
Model Generalization onNovel Queries.We generalize our pro-
posed CAEMmethod on two additional TSGmethods, i.e., Charades-
CG and ActivityNet-CG, which contain novel words in test queries
that are unseen in the training set. According to the experimental
results in Table 3, we can observe that our proposed CAEM meth-
ods also achieve superior results and outperform existing methods
with remarkable margins. Specifically, compared with the latest
state-of-the-art method SSL2CG [57], which aims to improve the
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generalization ofmodels towards novel word orword-level composi-
tions via self-supervised contrastive learning, our method achieves
approximate 2% absolute improvements at least on all the met-
rics. Such results demonstrate that our proposed CAEM methods
also show superior generalization toward text queries with unseen
words. This is because our method focuses on the causal struc-
ture of learning joint representations with textual queries, events,
and temporal locations, instead of processing a single modality or
predicting grounding results directly.

Table 3: Experimental results with novel words in text
queries on the Charades-CG and ActivityNet-CG datasets.

Charades-CG

Method Venue R@1, IoU=0.5 R@1, IoU=0.7
Trivial Novel Trivial Novel

VSLNet [4] ACL’20 45.91 25.60 19.80 10.07
2D-TAN [3] CVPR’20 48.58 29.36 26.49 13.21
VISA [53] CVPR’22 53.20 42.35 26.52 20.88
VDI [56] CVPR’23 - 46.47 - 28.63

SSL2CG [57] CVPR’23 58.14 50.36 37.98 28.78
MESM [58] AAAI’24 - 50.50 - 33.67
CAEM Ours 62.27 54.10 39.44 35.97

ActivityNet-CG

Method Venue R@1, IoU=0.5 R@1, IoU=0.7
Trivial Novel Trivial Novel

VSLNet [4] ACL’20 39.27 21.68 23.12 9.94
2D-TAN [3] CVPR’20 44.50 23.86 26.03 10.37
VISA [53] CVPR’22 47.13 30.14 29.64 15.90
VDI [56] CVPR’23 - 32.35 - 16.02

SSL2CG [57] CVPR’23 49.63 30.15 31.73 14.97
CAEM Ours 51.99 32.52 34.36 16.45

4.3 Further Analysis
Ablation Studies. To explore the impact of different model compo-
nents in our proposed CAEM method, we conduct ablation studies
on the three key modules. Specifically, the experimental results are
illustrated in Table 4, and we can observe that: (1) The SCL performs
a crucial role for IID test samples. By comparing the second and
third lines in the upper subtable, we find that the ablated model SCL
+ TCA achieves remarkable improvements over the ablated model
TCA. Moreover, the comparisons between TCA + CAF and the com-
plete model SCL + TCA + CAF also illustrate the effectiveness of
SCL. This is because the SCL is used to guide our model to learn
hidden semantics in text queries and video events, and further align
them within a common space. (2) The TCA significantly mitigates
the bias in the training set and enhances the generalization ability
of our models toward out-of-distribution test samples. We can see
that the ablated models with TCA consistently achieve remarkable
improvements on the OOD test results, as the TCA is used to teach
models counterfactual thinking. (3) Moreover, we can also note
that the CAF effectively boosts the comprehensive performance
on both IID and OOD test samples. Facilitated with the CAF mod-
ule, the models achieve the best performance on most metrics and
outperform other ablated models with remarkable margins.
Analysis on Temporal Counterfactual Augmentation. To fur-
therly demonstrate the effectiveness of our proposed TCA module,
we conduct more analysis on the random ratio 𝜙 which controls

Table 4: Experimental results of ablation studies on the
Charades-CD datasets.

SCL TCA CAF dR@1, IoU=0.3 dR@1, IoU=0.5 dR@1, IoU=0.7
IID OOD IID OOD IID OOD

! % % 67.60 56.20 58.95 44.37 41.85 23.99
% ! % 67.04 59.32 58.86 48.00 41.55 27.47
! ! % 68.56 58.69 61.34 46.34 42.18 26.12
% ! ! 69.56 59.80 62.28 48.01 41.81 26.04
! ! ! 70.22 60.57 63.38 48.72 43.76 26.36

0.2 0.3 0.4 0.5 0.6 0.7
Random Ratio

20

30

40

50

dR
@

1,
 Io

U
=0

.7
(%

)

Test-IID Test-OOD D-Ratio

36

38

40

42

44

Charades-CD

0.1 0.2 0.3 0.4 0.5 0.6
Random Ratio

10

15

20

25

30

35 Test-IID Test-OOD D-Ratio

54

55

56

57

58ActivityNet-CD

D
is

co
un

t R
at

io
 (%

)

Figure 4: Analysis for the influence on model performance
of Discount Ratio Δ (denoted as D-Ratio) and of RandomRa-
tio 𝜙 in TCA on Charades-CD and ActivityNet-CD datasets.

if a sample will be transformed to a counterfactual case. Specifi-
cally, we adjust 𝜙 from low to high and observe how the model
performance on OOD test samples fluctuates. Moreover, here we
also adopt a discount ratio between the test results of IID and OOD
sets to quantify the general performance, which could be calculated
as: Δ = (𝑅IID − 𝑅OOD)/𝑅IID. Here 𝑅IID and 𝑅OOD represent model
performance on IID and OOD test samples respectively. Note that
lower Δ means better general performance of a DTSG model.

By observing the experimental results illustrated in Fig. 4, we
can see that our model achieves the best performance on OOD test
samples when the random ratio 𝜙 is near 0.5. Moreover, with a low
or over-high random ratio 𝜙 , the performance drops dramatically.
One probable reason is the delicate balance between factuals and
counterfactuals: A low random ratio undermines the effectiveness
of TCA while an over-high random ratio increases the difficulty of
exploiting the counterfactual consistency rule in CAF, thus both
lead to poor generalization toward OOD samples.
Analysis on Counterfact-Adaptive Framework. We also con-
duct further analysis of the CAF module to show its superiority.
Specifically, we follow the experiments adopted in the analysis of
TCA to explore how the performance of models facilitated by CAF
fluctuates with the random ratio 𝜙 . Moreover, we also observe the
influence of the balance factor 𝜆 by evaluating the improvements
of dR@1, IoU=0.5 achieved by our complete CAEM over CAEM w/o
CAF. The experimental results above are illustrated in Fig. 4 and
Fig. 5 respectively. In the context of the illustrations, we can ob-
serve that: (1) The CAF significantly boosts the effectiveness of our
proposed TCA module. By comparing the ablated model CAEM w/o
CAF and the complete model CAEM, we find the CAF consistently
brings better improvements under different random ratio conditions.
It demonstrates the superiority of introducing the counterfactual
consistency rule into our models for learning semantic-invariable
matching between video events and textual queries. (2) Higher bal-
ance factor 𝜆 can lead to a degeneration of general performance.
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Figure 5: Further analysis w.r.t. CAF module on the Charades-CD and ActivityNet-CD datasets, including model performance
under different Random Ratios 𝜙 and the performance improvements brought by CAF under different balance factors 𝜆.

With 𝜆 increasing, the IID performance is decreased while the OOD
performance is improving gradually. We speculate that this is due
to models increasingly emphasizing counterfactual consistency at
the expense of overall model flexibility. When 𝜆 is set too high, the
model becomes overly focused on imaging counterfactual instances,
at the cost of learning meaningful semantic representations and
capturing diverse patterns in the data.

Table 5: Analysis with respect to the training objectives in
Event-Query Matching Model on the Charades-CD datasets.

𝐿rlm 𝐿mlm 𝐿cl
dR@1, IoU=0.3 dR@1, IoU=0.5 dR@1, IoU=0.7
IID OOD IID OOD IID OOD

% % % 67.27 57.78 57.64 45.37 39.18 25.69
! % % 69.56 59.80 62.28 48.01 41.81 26.04
! ! % 70.12 59.16 62.91 46.41 41.49 26.25
! % ! 68.19 60.24 59.94 48.22 42.32 26.22
! ! ! 70.22 60.57 63.38 48.72 43.76 26.36

Analysis onEvent-QueryMatchingModel.Wealso take a closer
look at the Event-Query Matching (EQM) model by conducting fur-
ther ablation studies on the training objectives, including relative
location modification loss 𝐿rlm, masked language modeling loss
𝐿mlm, and cross-modal contrastive learning loss 𝐿cl. According to
the experimental results in Table 4, we list the following observa-
tions: (1) 𝐿rlm performs an essential role in our EQM model for
both IID and OOD performance. We can see that the model perfor-
mance on both IID and OOD drops dramatically without 𝐿rlm. This
is because the representations of event candidates in our EQM are
learned with the compositions of vision-aware tokens, which have
fixed mapping temporal locations determined manually. 𝐿rlm aims
to teach our model to learn relative temporal locations between
these fixed temporal locations and ground truth. (2) Both 𝐿cl and
𝐿mlm show effectiveness in model performance. This is because the
two training objectives are designed to exploit the hidden semantics
and learn cross-modal alignment for better joint representations.
Qualitative Analysis. We illustrate two typical test cases from
the Charades-CD and ActivityNet-CD datasets in Fig. 6. Moreover,
to show the generalization of DTSG models, we also visualize the
distributions of the training set following [10, 11]. By observing the
visualization results, we can see that our proposed CAEM method
precisely localizes the target event that is the most relevant to the
given text query. Specifically, compared with the state-of-the-art
DTSG method BSSARD [34], our CAEM method achieves more

3.9s                                             BAASRD(AAAI’ 24)                                               127.5s

0s 131.5sQuery: The man adds detergent to a garment and squeezes and rinse

51.2s        Ground Truth          90.7s
49.7s             CAEM(Ours)              92.6s

Query: A person in the bathroom is closing a window0s 30.1s

4.2s                          Ground Truth                         18.8s
3.8s                             CAEM(Ours)                           18.6s

3.9s   BAASRD(AAAI’ 24)   8.4s

Left:
(a) ActivityNet-CD

Right: 
(b) Charades-CD

Figure 6: Visualizations of grounding results of OOD test
samples from (a) ActivityNet-CD and (b) Charades-CD
datasets and corresponding distributions of training sets.

accurate grounding results. Moreover, by observing the distribu-
tions illustrated in Fig. 6(a) and (b), we can also find that our CAEM
method shows better generalization on OOD test samples. It proves
the effectiveness of our solution again, which introduces counter-
factual data augmentation and consistency rule into event-query
matching to achieve better generalization.

5 Conclusion
In this paper, we proposed a novel method, termed Counterfactually
Augmented Event Matching (CAEM), for the De-biased Temporal
Sentence Grounding (DTSG) task. It aims to improve OOD gen-
eralization in localizing video events with given text queries by
introducing counterfactual data augmentation and consistency rule
into event-query matching. Thorough experiments on three bench-
mark datasets demonstrated our proposed method established new
state-of-the-art performance on the DTSG task. For future work,
we will study the bias in multimodal learning, and explore corre-
sponding solutions for causal reasoning.
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