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ABSTRACT

Prompt learning for vision-language models, e.g., CoOp, has shown great success
in adapting CLIP to different downstream tasks, making it a promising solution
for federated learning due to computational reasons. Existing prompt learning
techniques replace hand-crafted text prompts with learned vectors that offer im-
provements on seen classes, but struggle to generalize to unseen classes. Our work
addresses this challenge by proposing Federated Text-driven Prompt Generation
(FedTPG), which learns a unified prompt generation network across multiple re-
mote clients in a scalable manner. The prompt generation network is conditioned
on task-related text input, thus is context-aware, making it suitable to generalize
for both seen and unseen classes. Our comprehensive empirical evaluations on
nine diverse image classification datasets show that our method is superior to ex-
isting federated prompt learning methods, achieving better overall generalization
on both seen and unseen classes, as well as datasets.

1 INTRODUCTION

Vision-language models (VLMs) have recently emerged as a transformative technology for machine
learning applications. Seminal contributions like Contrastive Language-Image Pretraining (CLIP)
Radford et al. (2021) have demonstrated unprecedented capabilities in diverse image classification
tasks. One often leverages manually-engineered text prompts, such as “a photo of a [class],” to
utilize CLIP’s rich semantic features (Jia et al., 2021). CLIP has shown its robustness and versatility
in handling a wide range of image distributions. These properties make CLIP naturally aligned
with the objective of Federated Learning (FL), a decentralized approach to train machine learning
models with data privacy. However, high computational and communication costs associated with
server-client interaction make the training of CLIP impractical in the FL setting. This motivates us
to explore more efficient and effective methods to adapt the advantages of CLIP in FL.

Emerging prompt learning methodologies based on CLIP such as Context Optimization (CoOp)
have revealed that fine-tuning CLIP can be made more efficient by substituting hand-crafted prompts
with learnable soft prompt vectors in a few-shot learning paradigm (Perez et al., 2021) for one down-
stream task in centralized learning (Zhou et al., 2022b;a; Zhu et al., 2022; Yao et al., 2023).Existing
federated prompt learning method, Federated Context Optimization (FedCoOp) (Guo et al., 2023b),
adapts the learning paradigm of CoOp to FL by learning a unified set of prompt vectors across mul-
tiple clients with different datasets. FedCoOp improves over CLIP on the seen (during training)
classes in each client, but it struggles to generalize on the unseen classes (not included in training).
Similarly, prompt vectors optimized on seen classification tasks fail to generalize to new tasks of
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Figure 1: Our proposed prompt generator generates prompt vectors conditioning on the target clas-
sification task-related text input. Leveraging contextual awareness, the generated prompt vectors
enrich CLIP with context information in the text input and can generalize to unseen classes.

different contexts (e.g., from object recognition to texture classification). Unless otherwise noted,
we refer to “task” as an image classification dataset within the context of this work.

Instead of learning one unified set of prompt vectors for different classification tasks, we propose
to convert text input containing task-specific semantic information to context-aware prompt vectors.
Benefiting from context information in text input, we aim to generate prompt vectors that generalize
well to classification tasks that have not been previously observed (refer Figure 1 for an illustration
of the concept). Following that, we propose Federated Text-driven Prompt Generation (FedTPG),
which learns a lightweight unified prompt generator across multiple clients collaboratively. Each
client optimizes the prompt generator locally for its classification task described by few-shot image-
text pairs, followed by the FL server-client communication to obtain the global prompt generator
model. An overview of our FedTPG with two remote clients is shown in Figure 2. By training
on various image classification tasks, our prompt generator learns to generate prompt vectors condi-
tioned on context-related text inputs. Leveraging contextual awareness, the generated prompt vectors
differentiate themselves across various tasks and enrich CLIP with context information of the target
task. Our comprehensive evaluation on nine diverse image classification datasets demonstrate that
FedTPG has improved generalization over the existing prompt learning method FedCoOp on unseen
classes by 4.32% and unseen datasets by 1.82%, on average.

We summarize the contributions of our work as follows: (1) We develop a text-driven prompt gener-
ation (TPG) technique to improve the generalization performance from observed classification tasks
to new classification tasks with different contexts. Instead of learning fixed prompt vectors, the
prompt generator converts task-related text input to context-aware prompt vectors for various image
classification tasks. (2) We propose FedTPG, a scalable way of learning a unified, generalized text-
driven prompt generator across multiple clients with various classification tasks collaboratively. (3)
We undertake exhaustive empirical analysis using nine datasets to validate the efficacy of FedTPG.
Our comparative studies with existing federated prompt learning methods demonstrate FedTPG’s
superior generalization performance on image classification tasks encompassing a range of domains.

2 RELATED WORK

Visual-Language Model Prompt Learning. Prompt learning, a variation of fine-tuning VLMs,
has shown considerable promise in enhancing the task-specific performance of existing pre-trained
models under few-shot settings. A significant advancement in this direction was CoOp (Zhou et al.,
2022b), which introduced the notion of optimizing continual prompt context vectors for better task
adaptation. CoCoOp (Zhou et al., 2022a) generates prompt vectors conditioning on images with a
neural network. Several other works have also explored the interplay between textual prompts and
visual inputs (Zang et al., 2022; Li et al., 2023b; Xing et al., 2022). Specifically, MaPLe (Khattak
et al., 2023) extends the prompt learning paradigm by integrating both visual and textual information
for a more robust task adaptation. Bulat & Tzimiropoulos (2023); Yao et al. (2023) explore text-to-
text optimization to encourage natural language-aware soft prompting in VLMs. Chen et al. (2022;
2023b) extend CoOp by learning multiple prompts to describe different characteristics of a category.
Concurrent with our work, Wang et al. (2023b); Udandarao et al. (2023) propose to utilize auxiliary
images to improve the model performance on unseen tasks. Different than learning one model for
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Figure 2: Our proposed FedTPG learns a unified prompt generator over the frozen CLIP model
for converting task-related text input T to context-aware prompt vectors. The prompt generator is
learned across multiple clients with different classification datasets collaboratively.

one task in all prior works, we focus on learning one unified model that generalizes well across a
broad spectrum of tasks and domains with task-related text inputs.

Federated Learning with Visual-Language Models. Federated Learning (FL) (McMahan et al.,
2017) has emerged as a pivotal paradigm for decentralized training of machine learning models
on heterogeneous data (Li et al., 2023a).Recently, fine-tuning of VLMs has been extended to the
federated setting to reduce the computational burden on a single device.FedCLIP (Lu et al., 2023)
proposes an extension of standard fine-tuning of CLIP to the FL setting to enable strong performance
and personalization. Halbe et al. (2023) provides a continual lifelong prompt learning mechanism
to mitigate the effect of client drift. Wang et al. (2023a) further showcase the corrective attribute of
prompts in the snapshot compressive imaging application domain while Chen et al. (2023a) high-
light the adaptability of federated prompt-based methods to diverse data landscapes beyond visual
and textual data for weather forecasting. Of relevance to our approach is PromptFL (Guo et al.,
2023b)1, which proposes a FL framework for prompt learning that enables participants to coopera-
tively learn a common prompt vector. Su et al. (2022) who delve into the cross-domain applicability
of federated prompt learning in VLMs, and Guo et al. (2023a) who combine a federated prompt
learning scheme with personalized spacial visual features. A key distinction between these meth-
ods and our approach is our use of a learnable text-conditioned prompt generator which improves
generalization performance on both seen and unseen tasks, a typically unexplored setting for VLMs
under the FL scheme. Concurrent with our work, Yang et al. (2023) propose a prompt generator with
a cross-attention mechanism similar to our approach. In addition to their focus on using a frozen
ViT backend, we hypothesize that their dependence on fixed client-specific features learned from
seen clients would limit their generalization to unseen tasks. In comparison, our prompt generation
depends on text inputs and has no hurdles in generalizing to unseen tasks.

3 METHOD

In this section, we present our problem setup of FL in Section 3.1, followed by our text-driven
prompt generation technique in Section 3.2 and finally propose our FedTPG algorithm that deploys
text-driven prompt generation in FL in Section 3.3.

3.1 PROBLEM SETUP

We consider a federated network setting with one central server for model aggregation and multiple
remote clients, where each client i has a private classification dataset with labeled images (x, y) ∼
Di from ni classes with class name tokens {ci,j}ni

j=1 (a sample setting with two remote clients is
depicted in Figure 2). Data distribution across the federated network follows a non-IID setup where
clients contain samples from a disjoint set of classes. The goal of FL framework in our setup is

1For the sake of presentation, we name PromptFL as FedCoOp, as PromptFL adapts CoOp to the FL setting.
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to jointly learn one model that not only solves different image classification tasks spanning across
multiple remote clients but also attains generalization ability to unseen classes and datasets. In
contrast to the setting in FL literature (Kairouz et al., 2021), our consideration of generalization
to unseen classes and datasets makes the setup more challenging. Following the recent success of
VLMs like CLIP across a broad range of tasks (Radford et al., 2021), we look into the adaptation of
CLIP models in our FL framework to achieve our goal of generalization.

CLIP is a large VLM with an image encoder Eimage and a text encoder Etext, and can classify
images utilizing linguistic knowledge. In our FL setup, we consider each client to have access to an
off-the-shelf pretrained CLIP model. We focus on adapting the pretrained CLIP model collabora-
tively across all clients. However, updating large models like CLIP requires extensive computational
power and bandwidth, making it impractical for FL applications. Recently, prompt learning has been
used to offer a computation and communication efficient FL framework e.g., FedCoOp (Guo et al.,
2023b) for adapting a frozen CLIP across multiple clients. Specifically, hand-crafted text prompts
(e.g., “a photo of a [class]”) for Etext are replaced with trainable prompt vectors v1, v2, ..., vm, while
keeping CLIP weights unaltered. In federated prompt learning, lightweight trainable prompt vectors
are shared across clients at each communication round and updated with local training on client data.

In this work, our goal is to learn a FL prompt model that can solve various image classification tasks
across multiple clients and also generalize to novel classes or image classification tasks from new
clients, which can be challenging to existing methods like FedCoOp. Zhou et al. (2022a) have shown
that CoOp’s prompt vectors, optimized for observed classes, fail to generalize to novel classes. We
notice a similar generalization issue in FedCoOp i.e., learned unified prompt vectors perform well
on the seen classification tasks across remote clients, but fail to generalize to tasks with different
contexts (e.g., from object recognition to texture classification). We attribute this behavior to the
fixed nature of soft prompts and not being able to adjust to the context of the task. To address this,
we propose a novel strategy that alters how the soft prompt vectors are obtained. Instead of directly
learning the soft prompts, we learn a text-driven prompt generation module that takes task-related
text input and transforms it into context-aware prompt vectors, which we detail in the next section.

3.2 TEXT-DRIVEN PROMPT GENERATION

We develop a prompt generation module fθ that generates context-aware prompt vectors conditioned
on the target classification task-related text inputs, as shown in Figure 1. The text input is translated
to text embeddings T and the prompt generator fθ converts these text embeddings T to a set of
m-length input prompt vectors P ∈ Rm×d for Etext as:

P = {vk}mk=1 = fθ(T ). (1)

Context-related text input can be obtained from the natural language description. We find that avail-
able candidate class names naturally represent context-related text for the classification task ([class
0], [class 1], ..., [class n]). We translate the natural language class names to text embeddings as
T = {Etext(cj)}nj=1 ∈ Rn×d, a set of embeddings of n class name tokens cj from CLIP text
encoder2. Besides, prompt generator fθ is a lightweight cross-attention module comprising of learn-
able parameters ϕ,Q ∈ Rm×d,WK ∈ Rd×d,WV ∈ Rd×d. Given the text embeddings T we have:

fθ(T ) = hϕ(CrossAttention(Q,KT , VT )) with KT = T ×WK , VT = T ×WV . (2)

The prompt generator transforms context information from the text embeddings T into key and value
vectors KT and VT respectively. Cross-attention layer merges these vectors with the learnable query
vector Q, and hidden layers hϕ projects cross-attention layer output to prompt vectors P .

Prompt vector for each class j is defined as tj = P ∪ {cj}, concatenating generated context prompt
vectors P and text token of class name cj . Given an input image x and prompt vectors for all n
candidate classes, the prediction probability of CLIP for a classification task is computed as follows:

pθ(y = j|x, T ) = exp(cos(Eimage(x), Etext(tj))/τ)∑n
i exp(cos(Eimage(x), Etext(ti))/τ)

. (3)

Text embeddings T produced from a well-pretrained text encoder like CLIP provides rich and mean-
ingful context information for a given text. The prompt generator fθ should serve to extract and

2For simplicity, we consider a single client with index i = 1, and remove the client’s index i in notations.
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Algorithm 1: FedTPG Algorithm

Input: No. of communication rounds R, No. of local epochs K, initialization parameters θ0.
Server executes:
Initialize prompt generator fθ parameters with θ0.
for r ← 0 to R do

Pick a random subset of remote clients as Sr.
for i ∈ Sr in parallel do

Send the current global model θr to client i.
Receive locally updated θr+1

i from Local Client Training.
end
Aggregate the updated model parameters θr+1 = 1

|Sr|
∑

i∈Sr θ
r+1
i .

end
Obtain the final model parameter θR.
Local Client Training:
Obtain the set of class name embeddings Ti = {Etext(ci,j)}ni

j=1.
for k ← 0 to K do

Generate the context prompt vectors Pr
i = fθr

i
(Ti).

Get the prompt vectors for each class tri,j = Pr
i ∪ {ci,j}.

Update parameters θr to θr+1
i locally using eqs. (3) to (5) on (x, y) ∼ Di.

end

transfer context-critical information from the already meaningful embeddings T to prompt vectors
P . Training fθ on different classification tasks from diverse contexts would facilitate its conver-
gence to produce generalized context-aware prompt vectors, and thus improve prediction precision
of pθ(y = j|x, T ) on unseen classes. In practical scenarios, the data encompassing a wide range of
classification tasks is typically distributed across different clients. Addressing this, we next present
a scalable way of learning the prompt generator across multiple clients collaboratively.

3.3 LOCAL TRAINING AND SERVER AGGREGATION

We incorporate our prompt generation module in FL settings, where multiple remote clients han-
dling diverse image classification tasks train the prompt generator fθ collaboratively. We refer this
approach as Federated Text-driven Prompt Generation (FedTPG). We outline the training pipeline
of our FedTPG in Algorithm 1. Initially, the server initializes fθ parameters randomly with θ0 and
then at each communication round, a random subset of remote clients Sr retrieve the up-to-date fθ
parameters for local training. Below we describe the training steps of FedTPG at each round r:

• Step I: Remote client i in Sr receives current up-to-date parameters θr to configure the local fθr .
• Step II: At each client, the frozen CLIP text encoder Etext provides text embeddings of the local

available class name tokens Ti = {Etext(ci,j)}ni
j=1. The prompt generator fθr , the frozen CLIP

model, the context text embeddings Ti, and the dataset Di together define the local objective as:

Li(θ
r; Ti) = −E(x,y)∈Di

y log pθr (y|x, Ti), (4)

where pθr (y|x, Ti) is defined in eq. (3). By utilizing an optimizer, e.g. SGD, we can estimate the
unbiased gradient of Li(θ

r; Ti) with respect to θr and get the updated parameters θr+1
i after K

iterations with a learning rate ηr as:

θr+1
i = SGDK(ηr, θr, Ti, Li) (5)

• Step III: After local few-shot training, all the remote clients in Sr send back their locally updated
prompt generator θr+1

i to the server for aggregation: θr+1 = 1
|Sr|

∑
i∈Sr θ

r+1
i .

After performing Step I-III for R communication rounds, FedTPG obtains the final model parame-
ters θR. We argue that the proposed FedTPG can achieve the generalization goal from two aspects:
(1) unlike existing prompt learning techniques that directly learn a fixed prompt vector, our TPG
method captures a richer contextual and semantic information for each local classification task; (2)
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Caltech101
Flowers102
FGVCAircraft
UCF101
OxfordPets
Food101
DTD
StanfordCars
SUN397
CoOp
FedCoOp

(a) CoOp and FedCoOp’s prompts

FedTPG:Base
FedTPG:New
FedTPG:Local

(b) FedTPG’s prompts

FedTPG:Base
FedTPG:New
ZeroFedTPG:Base
ZeroFedTPG:New

(c) Zero-shot FedTPG’s prompts

Figure 3: 3D visualization (after PCA) of soft prompt vectors. (a) CoOp learns diverged prompt vec-
tors on each dataset individually, while FedCoOp learns one unified set of prompt vectors for tasks
with various contexts (b) FedTPG’s prompt generator learned on bases classes generates context-
aware prompt vectors for each task. (c) FedTPG’s prompt generator learned on ImageNet generates
context-ware prompt vectors for nine unseen datasets aligned with the generated vectors in (b).

through the FL collaboration framework, diverse contextual and semantic information across multi-
ple remote clients with different tasks benefit the model learning well. Multiple clients encode text
embeddings based on their distinct tasks, enabling the global model to serve a variety of contexts
without overfitting to a specific task. Overall, the federated model can potentially learn a richer
set of semantic features, and facilities better “transfer learning” capabilities, enabling the model to
generalize well to both seen and new unseen tasks (that includes both classes and datasets).

4 EXPERIMENTS

We evaluate the proposed method FedTPG mainly on two benchmarks: (1) generalization to unseen
related classes in Section 4.1, (2) generalization to unseen datasets in Section 4.2. We also provide
ablation studies to evaluate FedTPG’s robustness under various settings in Section 4.3.

Baselines. We compare FedTPG with (i) CLIP with hand-crafted text prompt template, e.g.,
“a photo of a [class]”; (ii) CoOp (Zhou et al., 2022b) with learnable prompt vectors replacing
hand-crafted text prompts. CoOp is trained on each client individually to provide a baseline of local
training. (iii) FedCoOp (Guo et al., 2023b), a FL variant of CoOp. The unified prompt vectors are
learned across multiple clients with federated averaging. (iv) FedKgCoOp, a FL variant of KgCoOp
(Yao et al., 2023). KgCoOp improves over CoOp on generalization performance by adding a reg-
ularization of minimizing the discrepancy between learned prompts and the hand-crafted prompts.
(v) FedCoCoOp, a FL variant of CoCoOp (Zhou et al., 2022a). CoCoOp generates prompt vectors
conditioning on images with a neural network. (vi) FedMaple, a FL variant of Maple (Khattak et al.,
2023). Maple learns prompt vectors for both vision and text encoders. We develop all FL variants
of existing prompt learning approaches with FedAvg (McMahan et al., 2017). For all FL methods,
one unified model learned across clients is used for the evaluation of different datasets.

Implementation Details. All methods are built on a frozen CLIP with ViT-B/16 backbone. FedTPG
learns a unified prompt generator parameterized by a four-head cross-attention layer with layer norm
and a MLP (hϕ) consisting of two linear layers with ReLU. The dimension of vectors Q, KT , VT
in the cross-attention layer, and linear layers in hϕ is 512. The length m of prompt vectors is 4, and
the dimension d is 512. Please refer to Appendix A and Appendix B for more details.

4.1 GENERALIZATION TO SEEN AND UNSEEN CLASSES

Datasets. We employ nine image datasets including Caltech101 (Fei-Fei et al., 2004), OxfordPets
(Parkhi et al., 2012), StanfordCars (Krause et al., 2013), Flowers102 (Nilsback & Zisserman, 2008),
Food101 (Bossard et al., 2014), FGVCAircraft (Maji et al., 2013), SUN397 (Xiao et al., 2010),
UCF101 (Soomro et al., 2012), and DTD (Cimpoi et al., 2014).

Experimental setup. We split the classes of each dataset equally into two groups, one as base
classes and the other as new classes. Images from base classes are available for training, while the
images from new classes are used for evaluating the generalization performance. We perform all
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Table 1: Accuracies (%) on clients’ local tasks (seen), base (seen) classes, and new (unseen) classes.
FedTPG achieves the superior generalization performance over existing prompt learning methods
and their FL variants, and the highest harmonic mean (HM) of three benchmark results.

(a) Average over 9 datasets.

Local Base New HM

CLIP 76.72 70.52 75.78 74.24
CoOp 83.67 71.49 71.15 75.01

FedCoOp 81.75 74.50 71.70 75.75
FedKgCoOp 78.38 72.18 75.87 75.39
FedCoCoOp 81.41 73.87 65.98 73.21

FedMaple 81.63 74.44 70.59 75.28

FedTPG 80.75 73.68 76.02 76.70

(b) Caltech101.

Local Base New HM

CLIP 97.57 96.97 93.89 96.12
CoOp 97.79 94.02 93.1 94.93

FedCoOp 96.97 96.69 92.79 95.45
FedKgCoOp 97.65 97.24 94.79 96.54
FedCoCoOp 96.71 94.41 91.59 94.19

FedMaple 97.00 95.41 90.06 94.06

FedTPG 97.59 97.08 95.24 96.62
(c) Flowers102.

Local Base New HM

CLIP 82.58 72.18 77.94 77.33
CoOp 97.27 69.37 71.95 77.73

FedCoOp 94.44 76.40 70.12 79.16
FedKgCoOp 84.59 72.11 77.06 77.59
FedCoCoOp 94.00 77.49 65.63 77.31

FedMaple 94.28 76.44 68.51 78.35

FedTPG 90.76 71.80 77.76 79.35

(d) FGVCAircraft.

Local Base New HM

CLIP 30.59 27.55 35.81 30.96
CoOp 36.88 28.30 28.59 30.79

FedCoOp 36.29 32.41 30.95 33.07
FedKgCoOp 33.68 29.79 34.01 32.37
FedCoCoOp 35.21 31.93 22.67 28.89

FedMaple 35.83 31.39 32.34 33.08

FedTPG 34.68 30.82 35.18 33.44
(e) UCF101.

Local Base New HM

CLIP 80.75 70.58 77.5 76.04
CoOp 88.37 69.62 68.09 74.32

FedCoOp 86.13 75.65 70.60 76.93
FedKgCoOp 82.66 73.14 76.36 77.19
FedCoCoOp 84.92 75.23 64.25 73.83

FedMaple 84.17 75.12 68.68 75.46

FedTPG 85.64 74.89 76.64 78.79

(f) OxfordPets.

Local Base New HM

CLIP 91.33 91.33 97.04 93.16
CoOp 94.89 94.89 96.60 95.46

FedCoOp 93.31 93.32 95.39 94.00
FedKgCoOp 91.58 91.58 96.53 93.17
FedCoCoOp 92.34 92.34 87.36 90.61

FedMaple 95.00 95.00 97.09 95.68

FedTPG 94.70 94.69 95.79 95.06
(g) Food101.

Local Base New HM

CLIP 94.39 90.16 91.25 91.90
CoOp 93.98 88.20 88.22 90.05

FedCoOp 93.52 88.63 88.47 90.15
FedKgCoOp 94.19 89.94 91.81 91.95
FedCoCoOp 93.24 87.57 84.95 88.45

FedMaple 93.95 89.43 89.60 90.94

FedTPG 94.09 89.87 91.64 91.83

(h) DTD.

Local Base New HM

CLIP 53.13 53.01 58.21 54.68
CoOp 72.34 72.34 54.99 65.46

FedCoOp 68.67 68.67 52.74 62.39
FedKgCoOp 58.76 58.75 59.61 59.04
FedCoCoOp 68.63 68.63 45.77 58.83

FedMaple 68.28 68.28 46.61 59.11

FedTPG 63.62 63.62 60.51 62.55
(i) StanfordCars.

Local Base New HM

CLIP 71.51 63.44 74.9 69.61
CoOp 78.65 61.34 70.17 69.33

FedCoOp 74.53 66.16 72.32 70.82
FedKgCoOp 71.89 64.33 75.71 70.32
FedCoCoOp 76.62 66.51 66.40 69.52

FedMaple 74.76 66.26 71.33 70.60

FedTPG 74.54 66.34 74.26 71.50

(j) SUN397.

Local Base New HM

CLIP 88.66 69.41 75.46 77.05
CoOp 92.83 65.29 68.62 73.78

FedCoOp 91.93 72.34 71.89 77.70
FedKgCoOp 90.38 72.72 76.94 79.34
FedCoCoOp 91.44 69.76 65.36 73.94

FedMaple 91.40 72.66 71.33 77.47

FedTPG 91.11 74.01 77.13 80.10

FL methods under a non-IID FL setting, where the base classes of all nine datasets are distributed
to multiple clients. Each client owns n = 20 completely disjoint classes where each class has
eight labeled images for few-shot training. We report the classification accuracies on clients’ lo-
cal classification tasks, on the base classes (combining classes from multiple clients), on the new
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Table 2: Accuracies (%) on ImageNet (seen) and domain-shifted ImageNet variants (unseen).
FedTPG consistently outperforms other baselines on both source dataset and domain-shifed datsets.

ImageNet ImageNetV2 ImageNet-S ImageNet-A ImageNet-R Average

CLIP 66.75 60.79 46.12 47.79 74.00 57.18
FedCoOp 67.80 61.59 45.61 48.78 74.49 57.62

FedKgCoOp 67.53 61.60 46.69 48.37 74.71 57.84
FedCoCoOp 68.51 62.29 46.90 50.33 76.49 59.00

FedMaple 66.96 60.65 44.69 46.24 74.62 56.55

FedTPG 69.51 62.90 47.65 49.97 76.35 59.22

Table 3: Accuracies (%) on source (seen) and target (unseen) datasets. FedTPG consistently outper-
forms other federated prompt learning methods on both source dataset and unseen target datsets.

Source Target
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CLIP 66.75 92.90 71.29 24.72 66.75 89.15 86.09 44.33 65.29 62.59 47.68 65.08
FedCoOp 67.80 91.87 68.13 21.44 64.13 88.70 85.85 42.43 63.59 62.77 43.26 63.22

FedKgCoOp 67.53 93.63 69.31 23.06 64.46 88.55 85.37 44.74 64.99 63.85 43.29 64.13
FedCoCoOp 68.51 94.11 66.34 20.79 62.75 89.04 85.40 43.20 63.98 64.02 55.40 64.50

FedMaple 66.96 92.49 68.25 23.52 60.32 89.67 83.52 44.68 60.16 61.85 45.38 62.98

FedTPG 69.51 93.75 70.04 23.22 64.72 90.60 85.91 46.25 63.98 66.78 47.86 65.31

classes in Table 1. We report the harmonic mean (HM) of these three accuracies showing the overall
performance. All results are averaged over three independent runs.

Quantitative results. As shown in Table 1(a), the proposed FedTPG achieves the best average
accuracy on new classes, showing its advanced generalization ability. FedTPG also achieves the
highest harmonic mean which averages the accuracies on clients’ local tasks, base classes, and
new classes. Although the prompt generator is trained on local tasks consisting of a few classes,
it generalizes well to a more complex classification task one the base classes (combining classes
from multiple clients), and a novel classification task on the unseen classes. Due to the non-IID
setting, CoOp outperforms the FL methods on the corresponding local task but fails to generalize
to other base classes and new classes. Benefiting from learning across multiple clients, FedCoOp,
FedCoCoOp and FedMalpe improve a lot on base classes, however, have degraded performance on
new classes, highlighting the generalization challenge in federated prompt learning. FedKgCoOp
has an improved accuracy on new classes with a cost of performance degradation on base classes
and local tasks, resulting from the difficulties of balancing the CLIP loss and the regularization term.

Qualitative analysis. We visualize the prompt vectors learned by CoOp on each dataset individually
and the unified prompt vectors learned by FedCoOp in Figure 3 (a), and the prompt vectors gener-
ated by FedTPG in Figure 3 (b). We can see that CoOp learns different optimal prompt vectors on
each dataset. However, the unified prompt vectors learned by FedCoOp are not flexible enough to fit
the context of all different datasets. In comparison, FedTPG learns to generate task-specific prompt
vectors conditioning on the context-related text input. From Figure 3 (b) we can see the prompt
vectors generated on clients (stars) sharing data from the same dataset are automatically clustered
together, showcasing that the prompt generator learns to extract context information from the text
input. Also, although the model is not trained on base-class classification and new-class classifi-
cation, their associated generated prompt vectors (triangle for base, square for new) are clustered
based on the dataset context accordingly, explaining FedTPG’s strong generalization ability.

4.2 GENERALIZATION TO UNSEEN DATASETS

Datasets. For evaluating the generalization to unseen datasets, we train all models on ImageNet,
and test the model on two benchmarks: (1) four variants of ImageNet containing various types of
domain shifting: including ImageNetV2, ImageNet-Sketch, ImageNet-A, and ImageNet-R; (2) ten
unseen datasets including nine datasets used in Table 1 and EuroSAT (Helber et al., 2019).

8



Published as a conference paper at ICLR 2024

Table 4: Ablation study: three trials where each client owns n = {5, 10, 20} disjoint classes.
FedTPG consistently achieves the highest harmonic mean (HM).

n=5 n=10 n=20

Base New HM Base New HM Base New HM

FedCoOp 69.53 70.05 69.69 72.15 70.61 71.37 74.50 71.70 73.07
FedKgCoOp 70.83 75.55 73.11 71.18 75.81 73.42 72.18 75.87 73.98

FedTPG 71.08 75.51 73.23 72.15 75.84 73.95 73.68 76.02 74.83
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Figure 4: (a) FedTPG gets improved when increasing the number of shots (for training), and has the
best results when using more than one shot. (b) FedTPG is robust to the participation rate of clients.

Experimental setup. We consider a non-IID setting with 200 clients. Each client owns n = 5
disjoint classes. At each communication round, random 10% clients contribute to the model update.
We also consider a few-shot setting, where eight labeled images are available in each class. We only
consider FL baselines in this setting. All results are averaged over three independent runs.

Results. Our proposed FedTPG improves over other FL prompt methods on ImageNet and other
variants of ImageNet consistently as shown in Table 2. On the more challenging unseen datasets,
while all the existing methods sacrifice their performance, FedTPG avoids the overfitting problem as
the compared FL prompt methods, outperforming CLIP as shown in Table 3. Although the prompt
generator is trained on images and class names from ImageNet, the model learns a generalizable
function mapping the context-related text embeddings T to task-specific prompt vectors as visual-
ized in Figure 3 (c), improving the classification accuracy on datasets with totally different context,
e.g., from object recognition to texture classification. We can see that the prompt vectors generated
by FedTPG trained on ImageNet are aligned with the prompt vectors generated by FedTPG trained
on these nine datasets, which demonstrates its cross-dataset transferability.

4.3 ABLATION STUDIES

Size of clients: To understand the impact of the number of classes owned by the client, we conduct
three trials where each client owns n = {5, 10, 20} disjoint classes, and number of shots is 8. As
shown in Table 4, FedTPG outperforms FL baselines in all cases in terms of the harmonic mean.

Number of shots:In Figure 4(a), we show FedTPG consistently improves over FedCoOp with vary-
ing number of shots, and outperforms FedKgCoOp, when the number of shots is larger than one.

Participation rate of clients: In Figure 4(b), we show that FedTPG consistently outperforms Fed-
CoOp and FedKgCoOp, when the participation rate of clients varies from 10% to 100%.

5 CONCLUSION

This paper addresses the challenge of generalization in adapting CLIP to the FL setting. We pro-
pose a novel Federated Text-driven Prompt Generation (FedTPG) algorithm, which learns a unified
prompt generator across multiple clients. The prompt generator converts task-related text inputs
to context-aware prompt vectors. Our comprehensive experiments demonstrate FedTPG’s superior
generalization performance, outperforming existing FL prompt methods by decent margins.
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A EXPERIMENT SETUP DETAILS

A.1 DATASET AND HYPER-PARAMETER DETAILS

We follow the settings in Zhou et al. (2022b) to conduct the experiments in this paper with the nine
classification datasets for generalization on seen to unseen classes, and four variants of ImageNet
datasets for domain shifting, where the statistical details are presented in Table 5.

For each compared FL approach and each classification task, via grid search, the learning rate of the
SGD optimizer was set to η = 0.003 with a decay rate 1e−5 and a momentum of 0.9. The local
SGD training step is set to K = 1. The number of communication rounds is 500. The batch size is
200. By default, all the experimental results in the paper are obtained by averaging from three runs
with different random seeds.

A.2 FEDERATED LEARNING SETUP DETAILS

Experimental Setup for Seen and Unseen Classes in Table 1 To evaluate the generalization
ability for the proposed FedTPG and compared FL approaches from in the paper, we monitor the
model performance on the following three benchmark accuracies: (1) The local classification accu-
racy, representing the performance of local clients’ classification tasks on local available classes; (2)
The base classification accuracy, representing the performance against all seen classes (combining
classes from multiple clients) in a dataset in the FL network; (3) The new classification accuracy,
which indicates the performance on unseen classes but within the domain of seen classes. We report
the harmonic mean (HM) of these three accuracies on each classification task, as shown in Table 1.

In the FL data partition process for Table 1, we first split the classes of the considered 9 classification
datasets equally into two groups Ds and Du, denotes seen and unseen groups respectively. Then we
split the classes within Ds to the 30 remote clients, where each remote client has n = 20 classes in
each local dataset Di. For each class, the number of image-text paired data shots is set to 8. During
the FL training process, the participation rate of remote clients is set to 100% and the communication
round is set to 500.

Experimental Setup for Unseen Datasets in Table 2 and Table 3 To evaluate the generaliza-
tion ability of FedTPG on unseen datasets during training, we consider the following two settings:
(1) Domain Shifting, where we monitor the performance of model by training with ImageNet and
testing on four variants of ImageNet, including ImageNetV2, ImageNet-Sketch, ImageNet-A, and
ImageNet-R; (2) Unseen Datasets, where we evaluate the performance of trained model in (1) on
nine unseen datasets, including Caltech101, OxfordPets, StanfordCars, Flowers102, Food101, FGV-
CAircraft, SUN397, UCF101, and DTD. During the training process, we set the FL network with
200 remote clients where each client has n = 5 classes of 8-shots training data disjointly. The par-
ticipation rate of remote clients is set to 10% that |Sr| = 20 and the global communication round is
set to R = 500 to obtain θR.

Experimental Setup for Ablation Study in Table 4 and Figure 4 We study the impact of the
number of classes owned by each client at Table 4 from the introduced local, base and new classifi-
cation accuracies with the same setup in Table 1 where a full client participation is performed with
R = 500 and number of shots is 8. Specifically, we perform the data partition with the disjoint rule
during class splitting: when n = 5, we set the number of clients to 119; when n = 10, we set the
number of clients to 59; and when n = 20, we set the number of clients to 20, respectively.

The study of the number of shots is shown in Figure 4(b), where we set the number of clients to 30
with n = 20 and the client participation rate is 100% in each round where R = 500. The study of
the participation rate is shown in Figure 4(b), where we set the number of clients to 30 with n = 20
and the number of shots is 8.

Then, we monitor the impact of the FL client participation rate in each communication round as
shown in Figure 4(a). We formulate the FL network with 30 clients where n = 20 and the number
of shots is 8. Four client participation rates in {10%, 40%, 70%, 100}% are considered during the
model training process with R = 500.
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Table 5: Dataset statistical details on class, training and test splits, prompt template.

Dataset Classes Train Test Hand-crafted prompt template

ImageNet 1000 1.28M 50,000 A photo of a [class]
Caltech101 101 4,128 2,465 A photo of a [class]
Flowers102 102 4,093 2,463 A photo of a [class], a type of flower

FGVCAircraft 100 3,334 3,333 A photo of a [class], a type of aircraft
UCF101 101 7,639 3,783 A photo of a person doing [class]

OxfordPets 37 2,944 3,369 A photo of a [class], a type of pet
Food101 101 50,500 30,300 A photo of a [class], a type of food

DTD 47 2,820 1,692 A photo of a [class], a type of texture
StanfordCars 196 6,509 8,041 A photo of a [class]

SUN397 397 15,880 19,850 A photo of a [class]
EuroSAT 10 13500 8,100 A centered satellite photo of [class]

ImageNetV2 1000 N/A 10,000 A photo of a [class]
ImageNet-Sketch 1000 N/A 50,889 A photo of a [class]

ImageNet-A 200 N/A 7500 A photo of a [class]
ImageNet-R 200 N/A 30,000 A photo of a [class]

B ADDITIONAL RESULTS

Size of clients. Table 6 and Table 7 show the detailed results of FedTPG and the compared FL
baselines on the benchmark of seen and unseen classes with n = 5 and n = 10, respectively. The
results of Table 6 and Table 7 are the detailed results of Table 4 in the main paper, where we would
like to claim that the HM results in the main paper are the harmonic mean of the base accuracy
and the new accuracy, while the results in Table 6 and Table 7 are the harmonic mean of the local
accuracy, the base accuracy and the new accuracy that leads to the difference in some columns. The
results show that similar to the results of n = 20 in Table 1, the proposed FedTPG achieves the best
average accuracy on unseen classes, and achieves the best new performance for 3 tasks while the
second best new performance for most of the other tasks. We can also observe that as n increases,
the advantage of FedTPG against other approaches becomes more significant. This supports our
theoretical claim that the unified prompt generator in FedTPG generalizes better on unobserved
classification tasks, especially for challenging scenarios.
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Table 6: Accuracies (%) on clients’ local tasks (seen), base (seen) classes, and new (unseen) classes.
Each client has labeled images from five disjoint classes. The number of shot is 8 and n = 5.

(a) Average over 9 datasets.

Local Base New HM

CLIP 86.25 70.52 75.78 76.98
FedCoOp 89.38 69.53 70.05 74.74

FedKgCoOp 86.63 70.83 75.55 77.12

FedTPG 87.78 71.08 75.51 77.51

(b) Caltech101.

Local Base New HM

CLIP 97.40 96.97 93.89 96.06
FedCoOp 97.19 93.67 92.14 94.28

FedKgCoOp 97.95 96.57 94.21 96.22

FedTPG 97.31 94.00 94.43 95.22
(c) Flowers102.

Local Base New HM

CLIP 91.12 72.18 77.94 79.66
FedCoOp 97.89 70.65 74.47 79.37

FedKgCoOp 89.96 70.27 76.51 78.09

FedTPG 94.20 70.23 76.77 79.20

(d) FGVCAircraft.

Local Base New HM

CLIP 49.04 27.55 35.81 35.45
FedCoOp 55.82 25.45 26.57 31.63

FedKgCoOp 51.98 28.89 33.75 35.93

FedTPG 53.62 26.38 33.92 34.87
(e) UCF101.

Local Base New HM

CLIP 88.78 70.58 77.50 78.25
FedCoOp 90.71 69.75 65.33 73.77

FedKgCoOp 87.68 70.06 76.14 77.29

FedTPG 88.53 71.20 75.96 77.91

(f) OxfordPets.

Local Base New HM

CLIP 96.75 91.33 97.04 94.96
FedCoOp 98.08 91.92 94.57 94.79

FedKgCoOp 96.65 91.34 96.16 94.66

FedTPG 97.96 91.39 96.03 95.04
(g) Foods102.

Local Base New HM

CLIP 97.57 90.16 91.25 92.88
FedCoOp 97.17 88.27 86.67 90.48

FedKgCoOp 97.42 89.59 91.52 92.72

FedTPG 97.34 89.24 91.31 92.51

(h) DTD.

Local Base New HM

CLIP 79.55 53.01 58.21 61.71
FedCoOp 86.94 54.40 51.45 60.83

FedKgCoOp 80.50 55.47 60.26 63.77

FedTPG 82.72 60.19 61.53 66.73
(i) StanfordCars.

Local Base New HM

CLIP 83.06 63.44 74.90 72.90
FedCoOp 86.06 64.84 71.77 73.22

FedKgCoOp 83.42 63.84 75.85 73.46

FedTPG 83.75 63.92 72.35 72.45

(j) SUN397.

Local Base New HM

CLIP 93.02 69.41 75.46 78.10
FedCoOp 94.55 66.83 67.44 74.32

FedKgCoOp 94.12 71.45 75.52 79.23

FedTPG 94.56 73.17 77.24 80.67
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Table 7: Accuracies (%) on clients’ local tasks (seen), base (seen) classes, and new (unseen) classes.
Each client has labeled images from ten disjoint classes. The number of shot is 8 and n = 10.

(a) Average over 9 datasets.

Local Base New HM

CLIP 80.57 70.52 75.78 75.40
FedCoOp 85.64 72.15 70.61 75.57

FedKgCoOp 81.39 71.18 75.81 75.90

FedTPG 83.49 72.17 75.84 76.89

(b) Caltech101.

Local Base New HM

CLIP 97.83 96.97 93.89 96.20
FedCoOp 97.45 94.56 93.46 95.13

FedKgCoOp 97.64 96.80 93.99 96.12

FedTPG 98.03 95.83 94.58 96.13
(c) Flowers102.

Local Base New HM

CLIP 84.58 72.18 77.94 77.91
FedCoOp 97.17 73.33 71.10 78.96

FedKgCoOp 84.77 71.93 76.80 77.48

FedTPG 90.03 71.58 77.08 78.85

(d) FGVCAircraft.

Local Base New HM

CLIP 37.88 27.55 35.81 33.10
FedCoOp 44.00 27.23 25.76 30.53

FedKgCoOp 38.53 26.86 35.06 32.71

FedTPG 41.74 28.44 35.05 34.21
(e) UCF101.

Local Base New HM

CLIP 83.65 70.58 77.5 76.87
FedCoOp 87.56 73.53 71.76 77.01

FedKgCoOp 84.00 71.25 76.11 76.77

FedTPG 85.78 72.15 76.05 77.59

(f) OxfordPets.

Local Base New HM

CLIP 93.26 91.33 97.04 93.82
FedCoOp 95.95 92.36 91.60 93.27

FedKgCoOp 92.55 90.32 96.36 93.01

FedTPG 95.86 93.92 96.73 95.48
(g) Foods102.

Local Base New HM

CLIP 95.94 90.16 91.25 92.38
FedCoOp 95.18 88.21 89.91 90.72

FedKgCoOp 95.81 89.88 91.66 92.38

FedTPG 95.73 89.93 91.63 92.36

(h) DTD.

Local Base New HM

CLIP 62.74 53.01 58.21 57.71
FedCoOp 78.15 63.11 49.65 61.50

FedKgCoOp 68.10 57.12 60.26 61.49

FedTPG 71.41 59.52 60.18 63.26
(i) StanfordCars.

Local Base New HM

CLIP 78.29 63.44 74.9 71.62
FedCoOp 81.23 65.76 70.93 72.09

FedKgCoOp 78.82 64.13 75.52 72.25

FedTPG 80.15 65.33 74.62 72.84

(j) SUN397.

Local Base New HM

CLIP 90.96 69.41 75.46 77.61
FedCoOp 94.07 71.32 72.10 77.88

FedKgCoOp 92.28 72.36 76.47 79.51

FedTPG 92.71 72.90 76.62 79.88
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