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ABSTRACT

Mixup, introduced by Zhang et al., is a regularization technique for training neu-
ral networks that generates convex combinations of input samples and their cor-
responding labels. Motivated by this approach, Huang et al. proposed InstaHide,
an image encryption method designed to preserve the discriminative properties
of data while protecting original information during collaborative training across
multiple parties. However, recent studies by Carlini et al., Luo et al., and Chen
et al. have demonstrated that attacks exploiting the linear system generated by
the mixup procedure can compromise the security guarantees of InstaHide. To
address this vulnerability, we propose a modified mixing procedure that intro-
duces perturbations into samples before forming convex combinations, making
the associated linear inverse problem ill-conditioned for adversaries. We present a
theoretical worst-case security analysis and empirically evaluate the performance
of our method in mitigating such attacks. Our results indicate that robust attack
mitigation can be achieved by increasing the perturbation level, without causing a
significant reduction in classification accuracy. Furthermore, we compare the per-
formance of our approach with that of InstaHide on standard benchmark datasets,
including MNIST, CIFAR-10, and CIFAR-100.

1 INTRODUCTION

Data mixing was initially introduced as a dataset augmentation technique, generating new samples
by computing weighted averages of subsets from the original dataset Zhang et al. (2017). Origi-
nally designed as a regularization method for training neural networks, this approach has also been
adapted for privacy-preserving protocols, as the mixing process obscures the original data during
model training Liu et al. (2019); Fu et al. (2019).

Although the mixup strategy appears to preserve privacy without significantly degrading model per-
formance, directly applying the method proposed by Zhang et al. (2017) can introduce vulnerabili-
ties that allow attackers to recover private data under certain conditions Huang et al. (2020):

1. Mixup samples from a private dataset only: If mixup samples are generated exclusively
from a private dataset, an attacker can identify which samples share a common private com-
ponent by analyzing the expected value of the dot product between mixup samples. Once a
set of related mixup samples is identified, the common private sample can be reconstructed
by averaging these samples.

2. Mixup samples from both private and public datasets: When mixup samples are gen-
erated using both private and public datasets, repetitions of private samples in the mixup
process can be avoided by leveraging the public dataset. However, since the public dataset
is accessible, an attacker can perform a similar statistical analysis to identify which public
samples were used in the mixup. Once the public components are determined, the private
sample can be trivially reconstructed.

Building on their security analysis, Huang et al. (2020) proposed a mixup-based algorithm called
InstaHide. The key innovation of their method is the application of a sign-flipping mask to images
generated by computing a weighted sum of both public and private samples. The authors analyzed
the security of InstaHide and formally proved that its security depends on the computational hard-
ness of the subset-sum problem. However, the assumptions underlying their security model do not
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accurately reflect the properties of real-world data. In particular, Huang et al. (2020) assumed that
each sample consists of an arbitrary sequence of values. For example, in the context of images, this
assumption implies that pixels are independently and randomly distributed, which does not hold in
practice. Consequently, although the security proof is mathematically valid, it does not offer prac-
tical security guarantees. This limitation was highlighted by Carlini et al. (2021a), who developed
efficient attacks on samples generated by the InstaHide algorithm, enabling near-complete recovery
of the original data.

2 CONTRIBUTIONS

The primary contribution of this paper, presented in Section 3, is a mixup algorithm designed to
address a key vulnerability exploited by all major attacks on InstaHide, the repeated use of the same
private sample across multiple mixup operations. In Section 4, we analyze three prominent attacks
targeting InstaHide and evaluate their effectiveness against our proposed method. Furthermore, we
introduce a theorem that formalizes the security guarantees of our algorithm under the assumption
that the data follows an isotropic Gaussian distribution.

Experimental results, reported in Section 5, show that our approach maintains classification accu-
racy within 5% of InstaHide’s performance on three benchmark datasets: MNIST, CIFAR-10, and
CIFAR-100. We also provide empirical evidence quantifying the extent to which an adversary can
reconstruct original samples from the mixed data and mixing weights, across various parameter set-
tings of our algorithm. These results demonstrate that our mixup procedure effectively protects the
original data while incurring only a minimal reduction in accuracy.

3 SINGULARIZED MIXUP

In this section, we introduce our algorithm, which is based on the singularization framework. This
approach enhances security by ensuring that each execution is unique, thereby making it broadly
applicable to a variety of systems Gaber et al. (2023). Singularization has previously been used to
strengthen encryption algorithms without modifying their underlying structure Macario-Rat & Plesa
(2024), which motivates our adoption of this framework in the design of our mixup algorithm.

We begin with a brief overview of InstaHide, followed by a detailed description of our proposed
algorithm.

3.1 INSTAHIDE ALGORITHM

Consider a private dataset (xi, yi)
n
i=1 consisting of n samples, where xi ∈ Rd denotes the input

example and yi ∈ Rc is the corresponding one-hot encoded label.

The fundamental idea behind Mixup, as introduced by Zhang et al. (2017), is to replace each data
point with a convex combination of the current sample and k − 1 other samples selected uniformly
at random from the dataset. Specifically, each new data point is generated by taking a weighted
average of k instances and their associated labels:

x̃i ← wi1xi +

k−1∑
j=2

wijxπi(j) (1)

ỹi ← wi1yi +

k−1∑
j=2

wijyπi(j) (2)

where {(x̃i, ỹi)}ni=1 represents the encoded dataset and πi is a random permutation over
{1, 2, . . . , n}.
The InstaHide approach builds upon Mixup but introduces two key modifications:
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1. Public images: InstaHide augments the private dataset with samples from public datasets,
expanding the pool of mixing samples to (xi, yi)

n
i=1 ∪ (xi, yi)

n+m
i=n+1, where m denotes the

size of the public dataset.
2. Sign mask: The sign of each pixel in a mixup image is randomly flipped using a random

sign mask σi ∼ Λd
±.

As a result equations (1) and (2) are modified as follows:

x̃i ← σi ◦

wi1xi +

ks−1∑
j=2

wijxπi(j) +

k−kt∑
j=ks+1

wijxπip (j)

 (3)

ỹi ← wi1yi +

ks−1∑
j=2

wijyπi(j) (4)

Here, ks denotes the number of private images, kt the number of public images, and πip is a random
permutation over the set {n+1, . . . , n+m}. Note that public images are used solely as a source of
structured noise, and their labels are not included in the mix.

The InstaHide mixing procedure can also be expressed using linear operators. Let X be the n × d
matrix of original samples, where the i-th row of X is xi; let X̃ be the n × d matrix of mixup
samples, where the i-th row of X̃ is x̃i; let W be the n× n matrix of weights, where the i-th row of

W is wi; and let E be the n×d noise matrix, where the i-th row of E is given by
k−kt∑

j=ks+1

wijxπip (j)
.

The InstaHide process can then be written as:

X̃ = σ (WX + E) (5)

This formulation has important implications for security analysis. Specifically, recovering the pri-
vate images, up to the sign of each pixel, given the encoded samples and the mixing weights, reduces
to solving a linear system of equations with added noise.

3.2 SINGULARIZATION ALGORITHM

The principal aim of the singularization algorithm is to transform the original dataset {(xi, yi)}ni=1
into a new set {(x̃i, ỹi)}ni=1 such that the resulting dataset preserves the discriminative characteristics
of the original data, while ensuring that the original data cannot be recovered.

A key vulnerability of the InstaHide algorithm arises from the possibility that two encoded samples
may share the same original input during the mixup process. This issue is inherent to the mixup
strategy underlying InstaHide: the algorithm generates an encoded dataset of the same size as the
original, with each encoded sample constructed as a convex combination of ks samples selected
from the original dataset. Even when public data is included, InstaHide often incorporates multiple
private samples in each combination. This enables an attacker to cluster encoded samples based
on shared private components and subsequently reconstruct the original private image from each
cluster. In principle, this recovery is feasible because, from the attacker’s perspective, the shared
sample appears as a consistent signal, while the other components act as noise that can be filtered
out.

In our method, each encoded input is constructed to include exactly one private data point, while the
remaining k− 1 components consist of noise added prior to the mixup operation. Introducing noise
before the weighted sum makes it significantly more challenging for an attacker to filter out, and if
the noise level is sufficiently high, inverting the process becomes an ill-conditioned problem. Unlike
InstaHide, our approach does not require public data or the use of sign-flipping masks. Previous
attacks Carlini et al. (2021a); Chen et al. (2020); Luo et al. (2022) have demonstrated that sign-
flipping masks can be circumvented by analyzing the absolute values of the mixed images, and that
public images act as noise, which tends to average out when multiple mixup samples are examined.

Our singularization algorithm is presented in Algorithm 1.

3
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Algorithm 1 Singularized Mixup
Require: Dataset {(xi, yi)}ni=1; mixing parameter k; error norm r
Ensure: Mixed dataset {(x̃i, ỹi)}ni=1

1: πj ∼ Uniform(Sn), j = {2, 3, . . . , k} //Sample k − 1 random permutations
2: for each i = 1 to n do
3: (wi1, . . . , wk) ∼ Dirichlet(1, 1, . . . , 1) //Sample mixing coefficients
4: x̃i ← wi1xi

5: ỹi ← wi1yi
6: for each j = 2 to k do
7: eij ∼ Uniform (B (0, r)) //Sample a noise vector with norm at most r
8: x̃i ← x̃i + wij

(
xπj(i) + eij

)
9: ỹi ← ỹi + wijyπj(i)

10: end for
11: end for
12: return {(x̃i, ỹi)}ni=1

Similarly to (5), Algorithm 1 can also be expressed in matrix form. The matrices X , X̃ , and W
retain the same definitions as in (5); however, in our case, the noise matrix E is not constructed from
public images but is instead defined by noise vectors. Specifically, the i-th row of E is given by
k∑

j=2

wijeij . We have:

X̃ = WX + E (6)

It is important to note that, in our algorithm, noise is added to each private sample xi prior to
computing the mixup result x̃. Specifically, the mixing coefficient applied to xπj(i) is identical to
the coefficient applied to the corresponding noise term eij . This differs from the approach described
in (3), where the weights assigned to public images are distinct from those associated with private
images. In our configuration, this coupling between the noise and the private data makes inverting
the algorithm an ill-conditioned problem.

3.3 PRACTICAL INSTANTIATION

Similar to InstaHide Huang et al. (2020), the primary application of our algorithm is in privacy-
preserving collaborative training. Suppose there are multiple parties, each possessing a private local
dataset. These parties aim to jointly train a deep neural network on the combined data without
exposing the sensitive information contained in their individual datasets. The following general
framework demonstrates how Algorithm 1 can be integrated to achieve this goal:

1. All parties agree on a common preprocessing technique to be applied locally. For instance,
in the context of image data, participants may choose to standardize the images or extract
feature representations using a publicly available pretrained model, such as ResNet He et al.
(2016).

2. Each party independently transforms its local dataset by applying Algorithm 1, thereby
generating a set of mixup samples. Each sample consists of a mixup example and its
corresponding mixup label.

3. The resulting data is then transmitted to a central server, which is responsible for training
the deep learning model. Upon completion, the trained model is distributed back to the
parties for local use.

The security of this protocol depends on the effectiveness of Algorithm 1 in protecting the privacy
of local datasets. In particular, the central server, which only receives the mixup samples, should not
be able to reconstruct the original data from these representations.
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4 SECURITY ANALYSIS

In this section, we analyze the security of the proposed scheme and examine its resilience against
three major attacks on the InstaHide system, as described in Carlini et al. (2021a), Chen et al. (2020),
and Luo et al. (2022).

We first outline the attack strategy introduced by Carlini et al. (2021a), which applies directly to
InstaHide without requiring additional assumptions and forms the basis for the subsequent attacks.

The attack described by Carlini et al. (2021a) targets the reconstruction of the noisy linear system
of equations produced by the InstaHide algorithm. To accomplish this, the adversary must first
identify which private images contribute to each encoded image. The core methodology involves
generating encoded images from public data using InstaHide and training a neural network to predict
whether pairs of encoded images share a common private image. Although one might expect that
randomly flipping the sign of each pixel in the encoded images would hinder the training process, the
authors demonstrate that this challenge can be circumvented by using the absolute values of the pixel
intensities. Once the neural network is trained, the attacker can infer which private images are shared
between encoded pairs. Since the weights used to generate each encoded image are revealed through
the encoded labels, the adversary can then construct and solve a noisy linear system, where the noise
results from the inclusion of public images. Notably, because different public images are used across
encoded samples, this noise can be modeled as samples from a mean-zero Gaussian distribution,
which averages out over many equations. This approach enables the attacker to recover the private
images, up to the sign of each pixel. To further enhance the visual quality of the reconstructed
images, a recoloring scheme is applied.

In contrast to the attack described by Carlini et al. (2021a), the approach proposed in Chen et al.
(2020) assumes that the original data follows a Gaussian distribution. Under this assumption, the
encoded dataset exhibits a folded Gaussian distribution when considering the absolute values of the
pixel intensities. With access to a large number of mixup images, the attacker can estimate the
covariance matrix of the encoded data, which corresponds to the Gram matrix formed by the weight
vectors used in the mixup process. By analyzing this Gram matrix, the attacker can infer which
private images are present in each mixup image. Similar to the method in Carlini et al. (2021a), the
attacker can subsequently recover the private images, up to the sign of each pixel, by solving the
resulting linear system of equations.

To counter the attack introduced by Carlini et al. (2021a), Luo et al. (2022) proposed employing
image augmentation techniques—such as shifting, cropping, rotation, and translation—to disrupt
geometric pixel alignment. This strategy aims to prevent attackers from accurately reconstructing
the system of equations underlying the mixup process. Their method shares similarities with ours,
as both approaches seek to avoid the repetition of identical images across multiple encoded samples.
However, as demonstrated by Luo et al. (2022), such defenses can be circumvented by training a
fusion-denoising network to reconstruct private images.

In their attack, similar to the approach in Carlini et al. (2021a), the attacker trains a comparison
network to determine whether two encoded images share a common private image. Using this
information, they cluster encoded images that contain the same private image, even if different
augmented versions are used. To align features within each cluster, a fusion-denoising network
is employed: a convolutional neural network (CNN) first downsamples the images to mitigate the
effects of geometric transformations, followed by a transpose CNN for upsampling. The outputs
from each encoded image are then fused, either by averaging or by selecting the maximum value,
and the resulting image is passed through a denoising network to recover the private image.

The attacks proposed in Carlini et al. (2021a) and Chen et al. (2020) are not effective against our
algorithm due to the addition of noise. With respect to the attack in Luo et al. (2022), our method
does not rely on geometric transformations, making the fusion-denoising attack less applicable.
To prevent situations in which two noisy samples of the same image share common features that
could be exploited by image relaxation techniques, we ensure that the noise added to each private
sample is several orders of magnitude greater than the average distance between two distinct private
samples. This strategy significantly reduces the risk of feature overlap between noisy samples,
thereby enhancing the security of our scheme.
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Although our mechanism may prevent an attacker from forming clusters and reconstructing the
system of equations described in (6), we adopt a conservative security assumption by considering a
strong adversary who is capable of doing so. This approach is motivated by the observation that, in
all three attacks, the adversary is able to determine whether two encoded images share a common
private image. In Carlini et al. (2021a) and Chen et al. (2020), the sign mask applied by InstaHide
is neutralized by taking the absolute value, while in Luo et al. (2022), the use of augmented images
is still insufficient to prevent clustering.

In the context of the system in (6), we assume the adversary knows the matrix X̃ of encoded images
and the matrix W of weights, and seeks to recover the matrix X of original samples. In the case of
mean-zero isotropic Gaussian data, this intuition is formally captured by the following theorem:
Theorem 4.1. Let X = {x1, . . . , xn} be points in Rd independently sampled from N (0, σ2I). Fix
xi ∈ X and let ε ∈ (0, 1). Then for

r = σ

√√√√2d+ 4

√
d log

(
n− 1

ε

)
+ 4 log

(
n− 1

ε

)
, (7)

we have P (∀j ̸= i : ∥xj − xi∥ ≤ r) ≥ 1− ε.

Equivalently, P (∃j ̸= i : ∥xj − xi∥ > r) ≤ ε.

Proof. Since xi, xj ∼ N (0, σ2I) independently, we have xj − xi ∼ N (0, 2σ2I). Therefore,

∥xj − xi∥2

2σ2
∼ χ2

d. (8)

By the Chernoff bound for chi-squared random variables ?, for any t > 0,

P
(
χ2
d ≥ d+ 2

√
dt+ 2t

)
≤ e−t. (9)

Setting t = log
(
n−1
ε

)
and substituting:

P

(
∥xj − xi∥2 ≥ 2σ2

(
d+ 2

√
d log

(
n− 1

ε

)
+ 2 log

(
n− 1

ε

)))
≤ e− log(n−1

ε ) (10)

=
ε

n− 1
. (11)

Taking square roots of the argument inside the probability:

P

∥xj − xi∥ ≥ σ

√√√√2d+ 4

√
d log

(
n− 1

ε

)
+ 4 log

(
n− 1

ε

) ≤ ε

n− 1
. (12)

Therefore, for each fixed j ̸= i:

P (∥xj − xi∥ ≤ r) ≥ 1− ε

n− 1
. (13)

By the union bound:

P (∃j ̸= i : ∥xj − xi∥ > r) = P

⋃
j ̸=i

{∥xj − xi∥ > r}

 (14)

≤
∑
j ̸=i

P (∥xj − xi∥ > r) (15)

≤ (n− 1) · ε

n− 1
= ε. (16)

This establishes P (∀j ̸= i : ∥xj − xi∥ ≤ r) ≥ 1− ε.
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Remark 4.2. The theorem shows that the radius required for ε-coverage grows as O(σ
√
log n),

which is significantly smaller than the typical inter-point distance O(σ
√
d) in high dimensions.

This reflects the concentration of measure phenomenon in Gaussian distributions.

What theorem tell us is that when the noise is large enough, i.e., r ≥ than the probability of finding a
point outside the ball centered at the recovered point and with radius given by the norm of the error
which was added during the miuxp computation in ALgorithm 1 is less than a chosen threshold ϵ.

5 EXPERIMENTS

Our experiments are designed to evaluate both the accuracy loss relative to InstaHide and the attack
resilience of our proposed algorithm.

Setup: We conduct our experiments on three widely used benchmark datasets: MNIST LeCun
(1998), CIFAR-10, and CIFAR-100 Krizhevsky et al. (2009). All implementations are carried out
using the PyTorch framework Paszke et al. (2019). For the classification accuracy experiments, we
utilize feature representations obtained from the output of the final convolutional layer of publicly
available pretrained image models. In the adversarial attack experiments, the raw images serve as
inputs to our proposed algorithm. Specifically, feature maps are extracted using a pretrained ResNet-
18 model for MNIST and CIFAR-10, and a pretrained ResNet-34 model for CIFAR-100.

Accuracy: The input to Algorithm 1 consists of feature maps corresponding to images from the
selected benchmark datasets. The subsequent output of the algorithm is then classified using a
convolutional neural network. We evaluate our algorithm for k = 4 and k = 6, and for each value of
k, we consider six distinct noise norms, each determined by a multiplication factor mf . Specifically,
the noise norm r is calculated as the product of mf and the average distance between two randomly
selected samples. The choice of the average inter-sample distance as a baseline is motivated by
the findings of Luo et al. (2022), which demonstrate that attacks can be effective when private
images are insufficiently perturbed, thereby enabling adversaries to exploit structural similarities
between the transformed and original images. In our experiments, we set mf ∈ 1, 2, 4, 8, 16, 32.
The results are presented in Table 1. As with InstaHide, the accuracy decreases as k increases, and
for our algorithm, the accuracy also decreases as mf increases. This behavior with respect to mf
is expected, since the norm of the noise is on the order of a constant factor mf times the average
distance between pairs of different images. For large values of mf , the difference in accuracy
between Singularized-Mixup and InstaHide increases, but for moderate values it remains within a
maximum of 5%. This characterizes the tradeoff between security and privacy, which is common
to all learnable obfuscation solutions, because mf directly influences the security of the scheme. A
larger mf induces more noise, making it more difficult for the attacker to recover the original data.

Table 1: Comparison of InstaHide and Singularized Mixup (S-Mixup for short) over MNIST,
CIFAR-10, and CIFAR-100 for k ∈ {4, 6} and mf ∈ {1, 2, 4, 8, 16, 32}.

Setting MNIST CIFAR-10 CIFAR-100
k mf InstaHide S-Mixup InstaHide S-Mixup InstaHide S-Mixup
4 1 99.66 99.46 91.20 91.94 74.01 75.82
4 2 99.66 99.44 91.20 91.82 74.01 75.68
4 4 99.66 99.28 91.20 89.95 74.01 73.78
4 8 99.66 98.56 91.20 86.73 74.01 68.97
4 16 99.66 97.13 91.20 83.57 74.01 59.93
4 32 99.66 95.40 91.20 81.08 74.01 48.38
6 1 99.44 99.40 85.25 91.85 69.09 74.44
6 2 99.44 99.37 85.25 91.25 69.09 74.22
6 4 99.44 99.12 85.25 89.23 69.09 72.11
6 8 99.44 98.37 85.25 85.87 69.09 67.41
6 16 99.44 96.62 85.25 82.38 69.09 56.62
6 32 99.44 94.52 85.25 78.94 69.09 41.01

Security:

7
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Table 2: Comparison between InstaHide and Singularized Mixup (S-Mixup) for noise levels selected
according to the security analysis.

mf InstaHide S-Mixup
MNIST 32 99.66 95.40

CIFAR-10 8 91.20 86.73
CIFAR-100 8 74.01 68.97

To recover the original images from their mixed representations, we employ a gradient descent-based
optimization procedure inspired by the strategy in Luo et al. (2022). In this setting, we assume that
the attacker has prior knowledge of the mixing process, specifically the mixing matrix, and leverages
this information to guide the recovery. The attacker also incorporates prior assumptions about the
structure and statistics of natural images by introducing regularization terms into the loss function.
The composite loss consists of a reconstruction term, which measures the mean squared error be-
tween the observed mixed images and the reconstructed mixtures (obtained by linearly combining
the recovered images using the mixing matrix), a total variation regularization term to encourage
spatial smoothness and suppress noise, and an L2 norm penalty to prevent implausibly large pixel
values. These regularization terms encode prior knowledge about natural images, such as their ten-
dency to be spatially smooth and to have bounded intensity values. The optimization is performed
using the Adam optimizer, with the recovered images constrained to a fixed range after each update
to ensure plausible pixel values.

Figure 1 shows the average distance between an original image and its corresponding recovered
image for different noise levels and k = 4. To better illustrate the tradeoff between security and
utility, Figure 2 presents the average recovered image from each dataset for each noise level. We
observe that for the simpler MNIST dataset, a large noise multiplier is required; in this case, mf =
32 provides the best security. For more complex data, such as CIFAR-10 and CIFAR-100, a noise
factor of mf = 8 is sufficient to prevent the recovery of the original image. This behavior is due
to the fact that as more complex data is included in each mixup, it becomes more difficult for the
attacker to reverse the operation, even at lower noise levels. Table 2 presents a comparison of the
classification accuracy between InstaHide and our algorithm for the noise levels identified in the
security analysis. As shown, the reduction in accuracy remains within a 5% margin.

Figure 1: Average distance between original images and their recovered counterparts.

8
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Figure 2: Each pair of rows shows the averaged recovered image for each dataset. In each pair,
the first row displays the original images, while the second row shows the corresponding recovered
images. The first two rows correspond to MNIST images, the next two rows to CIFAR-10 images,
and the last two rows to CIFAR-100 images.

6 CONCLUSIONS

In this paper, we introduced a novel mixup algorithm within the singularization framework. Our
approach adds noise of a specified magnitude to all but the target sample in each convex combination.
This design is motivated by three major attacks on InstaHide, which exploited the repeated use of
the same private image across multiple mixup images. Such repetition enables attackers to cluster
mixup images that share a common private image and subsequently recover the private image by
averaging out the other components as noise.

Similar to InstaHide, a necessary condition for any successful attack on our algorithm is the ability
to cluster mixup images that share a common private image, even in the presence of noise. Without
this clustering step, inverting individual mixup images is information-theoretically infeasible. While
our Singularized-Mixup procedure may also hinder clustering, we conservatively assume a more
powerful attacker who has access to the entire weight matrix. Our primary focus is to demonstrate
that, even under this strong threat model, sufficiently large noise prevents reliable recovery of the
original samples.

Experimentally, we compared our method to InstaHide and evaluated the trade-off between security
and utility across different noise magnitudes. At the optimal balance point, we identified noise
levels that effectively prevent attackers from recovering original samples, while incurring only a 5%
accuracy loss compared to InstaHide.

REPRODUCIBILITY STATEMENT

All source code used in this study is publicly available, along with detailed instructions to reproduce
the experiments described in this paper. The data utilized comes from publicly accessible benchmark
datasets. For additional details regarding the experimental setup and procedures, please refer to the
Appendix F.
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A APPENDIX

You may include other additional sections here.

B CHEN ATTACK

The attack described in Chen et al. (2020) simplifies the InstaHide problem by assuming that the
matrix X ∈ Rd×n of images is Gaussian, i.e., its entries are chosen i.i.d. from N (0, 1). Let
p1, . . . , pd ∈ Rn be the rows of X . Consider wi1, dots, wm ∈ Rn the unknown selection vectors
chosen from a distribution D. S ⊂ {1, . . . ,m} be the coorsinates of the public imges and Sc =
{1, . . . , n} S be the coordinates of the private images. Let [v]S ∈ R|S| be the restriction of a vector
v to the coordinates indexed by S. Each selection sector generates an encoded image as:

x̃i = |Xwi| (17)

In InstaHide, the sign of each pixel from an encoded image is randomly flipped, but as the authors
remarks, the two notations are interchangeable.

The attack goes like follows:

1. Learning the public coordinates of any selection vector In the first step, the attacker
determines the weights associated with the public images from each selection vector. Con-
sidering the matrix

N = Ep,x̃

[
x̃2 · ([p]S [p]⊺S − Id)

]
11
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where x̃ = |⟨w, p⟩|, p ∼ N (0, Id). It can be proven that N is a rank-1 matrix proportional
to [w]S [w]

⊺
S . Moreover, N can be approximated by

N̂ =
1

d

d∑
i=1

x̃2
i · ([pi]S [pi]

⊺
S − Id) .

2. Recovering the Gram Matrix Since the previous steps recovers the coordinates of the
public images in each selection vector, for the simplicty of the description, consider that all
images are private, i.e., Sc = {1, . . . , n}. Consider the matrix X̃ ∈ Rm×d where each line
is an encoded images:

X̃ =

 |⟨p1, w1⟩| · · · |⟨pd, w1⟩|
...

. . .
...

|⟨p1, wm⟩| · · · |⟨pd, wm⟩|

 (18)

We can use the columns of X̃ to estimate the covariance matrix M̃ of the folded Gaussian
distributionN fold(0,M), since each column is drawn independently from this distribution.
The covariance matrix M is, in fact, the rescaled m ×m Gram matrix whose entries are
proportional to the dot product of any two selection vectors; that is, the element at position
(i, j) in the matrix M is given by k · ⟨wi, wij⟩.

3. Floral submatrices
The previous step of the attack shows the dot product between any two selection vectors,
i.e., ⟨wi, wij⟩, thus the attacker know how many private images are common between two
encoded images. In order to identify which private images are common (not only how
many), the attacker identifies in M floral submatrices. The rows/columns of a floral sub-
matrix can be indexed by all subsets of size k of a set of k + 2 elements where its entries
are the interscetion sizes between the subsets. More intuitively, the attacker exploits the
fact that the subsets of size k of of the set {1, . . . , k + 2} are uniquily identified by their
pairwise intersection sizes.

4. Determining the private images
uppose the attacker has identified a floral matrix in the previous steps, which corresponds
to the selection vectors wi1, . . . , wit , where t =

(
k+2
k

)
. The structure of the floral matrix

encodes information about the indices of private images that are common between pairs of
selection vectors. Specifically, the row and column indices of the matrix indicate which
private images are shared. This allows the attacker to construct a system of equations of
the form |⟨wij , pl⟩| = x̃l for all l ∈ 1, . . . , d, where pl denotes the private images and x̃l

are known quantities.
From another perspective, each row or column of the floral submatrix can be indexed by a
subset of size k from a set of size k+2. Each element in such a subset represents the index
of a private image. For any given element in the floral matrix—which itself is a submatrix
of the Gram matrix M—the position of the element along the rows provides the attacker
with a set of k private image indices, while the position along the columns provides another
set of k indices. By intersecting these two sets, the attacker can determine which private
images are common between the selection vectors associated with the corresponding row
and column. Solving the resulting system of equations enables the attacker to recover the
indices of the private images.

C LUO ATTACK

In Luo et al. (2022), the authors observed that the method proposed by Carlini in Carlini et al.
(2021a) can be mitigated by applying data augmentation before the mixup process. To address this,
they introduce a new approach that successfully bypasses this mitigation strategy. Their method
operates as follows:

1. In the first step, the attacker computes the absolute value of each pixel in every encoded
image.

12
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2. Next, a similarity score is calculated for every pair of encoded images to determine, with
high probability, whether a given pair is derived from the same private image. To com-
pute this score, the authors propose a comparative network that takes as input both high-
resolution and low-resolution versions of the image pairs. This approach yields better re-
sults than the standard ResNet architecture used by Carlini. Based on the similarity scores,
the attacker clusters the encoded images, with each cluster corresponding to a distinct pri-
vate image.

3. For each cluster obtained in the previous step, the attacker re-weights all encoded images
using the weights associated with the corresponding private image. These weights can
be easily inferred from the associated encoded labels. Subsequently, a neural network
is trained to perform image relaxation and fusion. This strategy counteracts the effects of
geometric image augmentation by generating a set of features that are invariant to geometric
transformations. An initial version of the private image is then constructed in the fusion
step by combining these feature maps.

4. In the final step, the attacker trains an additional neural network to denoise the image pro-
duced in the previous stage.

D CARLINI ATTACK

The attack consists of two main stages. In the first stage, the attacker determines the two private
images used to generate each encoded image during the mixing process. In the second stage, the
attacker reconstructs the private images by solving a noisy linear system of equations:

1. The attacker computes the absolute value of each mixup encoding to counteract the random
sign changes introduced by the mask σi in (3).

2. To identify whether two encoded images share at least one common private image, the at-
tacker calculates a similarity function between each pair of encoded images. This similarity
function is approximated using a neural network trained on public data transformed via the
mixup algorithm. Using the similarity scores, the attacker constructs a weighted graph
where vertices represent encoded samples, and edge weights correspond to the similarity
function’s output.

3. Based on the weighted graph, the attacker identifies densely connected cliques, enabling
clustering of encoded samples that share a common private image. Each cluster is repre-
sented as a set Si, 1 ≤ i ≤ n, where each set contains encoded samples derived from the
same private image.

4. Since each encoded image is generated by mixing two private images, the attacker con-
structs a bipartite similarity graph connecting encoded images to the sets identified in the
previous step. Edge weights represent the distance between an encoded image xi and a set
Si. This step determines, for each encoded image, the two sets corresponding to the private
images used in its construction.

5. Using the bipartite graph, the attacker maps each encoded image to two sets, representing
the private images involved in its generation during the mixup process.

6. The attacker recovers the weights used to generate each encoded image by analyzing the
mixup of the labels, as described in (4). Since the labels are one-hot encoded, recovering
the associated weights is straightforward.

7. Finally, the attacker constructs a matrix B ∈ Rn×d, where each row corresponds to an
encoded image x̃i, i.e., Bi = x̃i. A sparse matrix M ∈ Rn×n is also constructed, where
each row contains two non-zero entries representing the weights wi1 and wi

2 associated
with the private images used to compute the corresponding encoded image. Let A ∈ Rn×d

represent the matrix of private images, where each row Ai = xi. The attacker solves the
noisy linear system B = M ·A+e, where e represents the public images used in the mixup.
This system can be efficiently solved using gradient descent.
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E MORE RELATED WORK

Liu et al. (2020) proposed a different approach, where a classifier is trained on mixup samples and
images to produce mixup results that can later be de-mixed. Unlike previous methods, this approach
does not involve training on mixup samples followed by inference on original data. Instead, both
training and inference are performed on mixup data, with the inference process generating mixup
results that can then be used to recover the correct labels.

In a more recent study, Wang et al. (2024) proposed a mixup-like approach to mitigate model inver-
sion attacks on face recognition systems. Instead of mixing images directly, the authors suggested
mixing samples in the frequency domain. Additionally, they employed a reinforcement learning
strategy to dynamically determine the number of images to mix, balancing privacy and utility. Sim-
ilarly, Xiang et al. (2023) introduced a mixing strategy to preserve image privacy during training.
Their method involves splitting each image into multiple blocks and replacing parts of these blocks
with corresponding blocks from other images with the same label. In another study, Li et al. pro-
posed a new privacy metric called Visual Feature Entropy (VFE), calculated for a region of an image
as the sum of squared gradients with respect to both axes. This metric aims to quantify the amount
of information that needs protection by analyzing the entropy of a region. The authors’ mixing strat-
egy involves shuffling pixels within an image based on the VFE metric. Although this method does
not involve computing a weighted sum, it can be interpreted as a form of intra-image data mixing.
Eloul et al. (2024) present the concept of mixing gradients in federated learning to enhance security
against gradient inversion attacks. Although their method does not involve using random weights for
gradient mixing, their straightforward approach of directly averaging gradients across a batch, com-
bined with modifications to the loss function, significantly improves resistance to gradient inversion
attacks.

The concept of data mixing is rooted in the broader idea of learnable obfuscation, which encom-
passes techniques designed to transform data in a way that allows algorithms to learn from the
transformed data while safeguarding the privacy of the original data He et al. (2020); Yala et al.;
Taki & Mastorakis (2024); Popescu et al. (2022); Nythia et al. (2017). For instance, in Nythia et al.
(2017), the authors propose using the Arnold transformation to scramble images before inputting
them into a face recognition system. This transformation rearranges image pixels by mapping each
pixel to a new location determined by a linear transformation.

In Popescu et al. (2022), a method combining Variational Autoencoders (VAEs) with a substitution
technique is introduced to protect medical images during neural network analysis. The approach
involves training a VAE to reconstruct the image and then applying a substitution table to the latent
space representation of the data. Similarly, Taki & Mastorakis (2024) presents a method to ensure the
privacy of both training data and neural network architecture. For image data, the authors propose
transforming it into a higher-dimensional space. To protect the architecture, they introduce random
subnetworks with synthetic parameters that do not affect the network’s accuracy or data flow.

The NeuraCrypt method, proposed in Yala et al., protects data privacy by transforming it with a ran-
dom neural network. This approach is extended to enable privacy-preserving collaborative training,
where all parties share transformed data with a central server. For the server to learn patterns from
the combined datasets, all parties must use the same neural network for data transformation. Fi-
nally, He et al. (2020) introduces a privacy-preserving method that applies a linear transformation to
each data sample. The authors also provide formal proofs demonstrating the information-theoretic
security of their approach under specific conditions.

A common characteristic of learnable obfuscation techniques is that the same transforma-
tion—though potentially generated using independently chosen random parameters—must be ap-
plied to all samples in the dataset being protected. This creates a notable vulnerability: such tech-
niques cannot provide security against chosen-plaintext attacks. This limitation, formally introduced
and proven in Xiao et al. (2024), highlights an inherent weakness in these methods. Informally,
learnable obfuscation can protect the privacy of plaintext data only under the assumption that the
attacker does not have prior knowledge of the original data.

At first glance, this assumption may seem reasonable, as protecting data already known to an at-
tacker might appear unnecessary. However, in practical scenarios, this assumption often fails. For
instance, to improve the generalization capabilities of a machine learning model, private datasets
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are frequently augmented with publicly available data. For example, a private image dataset might
be enriched with images from CIFAR-100 Krizhevsky et al. (2009). To preserve the discriminative
properties of the data and enable the model to generalize, the added public data must undergo the
same transformation used to protect the private dataset.

This practice introduces a significant risk: an attacker with access to both the original public dataset
and its transformed version could potentially design algorithms to reverse-engineer the transfor-
mation applied to the private data. An example of this vulnerability is described in Carlini et al.
(2021b), where the authors successfully developed an algorithm to solve the NeuraCrypt challenge
Yala et al., effectively bypassing the intended privacy protections.

F EXPERIMENTAL DETAILS

All experiments were developed using the PyTorch framework and performed on an NVIDIA L4
GPU with 24 GB of available VRAM. Across all datasets, we consistently used a batch size of 128.
For optimization, we employed the AdamW optimizer with a weight decay of 1 × 10−4. The initial
learning rate was set to 0.001 for all benchmarks, and we utilized a cosine annealing learning rate
scheduler.

Our experimental evaluation was conducted on three distinct benchmarks using ResNet architec-
tures (He et al., 2016), with specific configurations detailed in Table 3. A key aspect of our method-
ology is the exclusive use of the feature extraction layers from these architectures; the final classifier
layers were omitted as our focus is on training features. For all datasets we apply similar transfor-
mations, which consist of a resize operation (224 pixels height and width) and a normalization. The
MNIST dataset is also adjusted such that it has three channels, making it compatible with the chosen
architectures.

Table 3: The configurations used within experiments for each dataset. The mean and standard
deviation values for MNIST are for a single channel, while for CIFAR datasets they correspond to
the (R, G, B) channels.

Dataset Architecture Epochs Mean Std.

MNIST ResNet18 120 0.1307 0.3081
CIFAR-10 ResNet18 200 [0.4914, 0.4822, 0.4465] [0.2470, 0.2435, 0.2616]
CIFAR-100 ResNet34 200 [0.5071, 0.4867, 0.4408] [0.2675, 0.2565, 0.2761]

The training objective was to minimize the following loss function, which is designed for our Mixup
implementation:

L = − 1

N

N∑
i=1

C∑
j=1

yij log(softmax(oi)j) (19)

where N is the batch size, C is the number of classes, yi is the (potentially soft) label for sample i,
and oi is the model output for sample i. In PyTorch, this is implemented as:

loss = -(labels * torch.log_softmax(outputs, dim=1)).sum(dim=1).mean()

For the final classification step, we used a custom feed-forward neural network with three dense
layers. The first and second of these dense layers are followed by batch normalization, GELU
activation, and then a dropout. The precise structure of this neural network is described by the
following equation:

Classifier(x;ncls) = Flatten(x) → Linearin;1024 → BN1024 → GELU → Dropout(0.5)
→ Linear1024;512 → BN512 → GELU → Dropout(0.5)
→ Linear512;ncls (20)

The ncls term represents the number of classes that the classification must be made on (e.g., 10 for
MNIST). The in dimension of the flattened tensor x within the first linear layer is 25088 (512×7×7
for ResNet18 and ResNet34).
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G THE USE OF LARGE LANGUAGE MODELS

We utilized Large Language Models (LLMs) in three specific ways during this work. First, after
conducting a manual review of the state of the art using traditional search engines such as Google
Scholar, we used LLMs to assist in identifying additional relevant papers. Second, LLMs were
employed to help implement the experiments described in this study. Third, LLMs were used for
grammar correction and minor improvements to the flow of the text. Importantly, LLMs were not
used to generate or write any paragraphs; their role in writing was limited to minor edits and en-
hancements.
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