
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AUGMENTED MIXUP PROCEDURE FOR
PRIVACY-PRESERVING COLLABORATIVE TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Mixup, introduced by Zhang et al., is a regularization technique for training neu-
ral networks that generates convex combinations of input samples and their cor-
responding labels. Motivated by this approach, Huang et al. proposed InstaHide,
an image encryption method designed to preserve the discriminative properties
of data while protecting original information during collaborative training across
multiple parties. However, recent studies by Carlini et al., Luo et al., and Chen
et al. have demonstrated that attacks exploiting the linear system generated by
the mixup procedure can compromise the security guarantees of InstaHide. To
address this vulnerability, we propose a modified mixing procedure that intro-
duces perturbations into samples before forming convex combinations, making
the associated linear inverse problem ill-conditioned for adversaries. We present a
theoretical worst-case security analysis and empirically evaluate the performance
of our method in mitigating such attacks. Our results indicate that robust attack
mitigation can be achieved by increasing the perturbation level, without causing a
significant reduction in classification accuracy. Furthermore, we compare the per-
formance of our approach with that of InstaHide on standard benchmark datasets,
including MNIST, CIFAR-10, CIFAR-100, and Tiny-ImageNet.

1 INTRODUCTION

Data mixing was initially introduced as a dataset augmentation technique, generating new samples
by computing weighted averages of subsets from the original dataset Zhang et al. (2017). Origi-
nally designed as a regularization method for training neural networks, this approach has also been
adapted for privacy-preserving protocols, as the mixing process obscures the original data during
model training Liu et al. (2019); Fu et al. (2019).

Although the mixup strategy appears to preserve privacy without significantly degrading model per-
formance, directly applying the method proposed by Zhang et al. (2017) can introduce vulnerabili-
ties that allow attackers to recover private data under certain conditions Huang et al. (2020):

1. Mixup samples from a private dataset only: If mixup samples are generated exclusively
from a private dataset, an attacker can identify which samples share a common private com-
ponent by analyzing the expected value of the dot product between mixup samples. Once a
set of related mixup samples is identified, the common private sample can be reconstructed
by averaging these samples.

2. Mixup samples from both private and public datasets: When mixup samples are gen-
erated using both private and public datasets, repetitions of private samples in the mixup
process can be avoided by leveraging the public dataset. However, since the public dataset
is accessible, an attacker can perform a similar statistical analysis to identify which public
samples were used in the mixup. Once the public components are determined, the private
sample can be trivially reconstructed.

Building on their security analysis, Huang et al. (2020) proposed a mixup-based algorithm called
InstaHide. The key innovation of their method is the application of a sign-flipping mask to images
generated by computing a weighted sum of both public and private samples. The authors analyzed
the security of InstaHide and formally proved that its security depends on the computational hard-
ness of the subset-sum problem. However, the assumptions underlying their security model do not

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

accurately reflect the properties of real-world data. In particular, Huang et al. (2020) assumed that
each sample consists of an arbitrary sequence of values. For example, in the context of images, this
assumption implies that pixels are independently and randomly distributed, which does not hold in
practice. Consequently, although the security proof is mathematically valid, it does not offer prac-
tical security guarantees. This limitation was highlighted by Carlini et al. (2021a), who developed
efficient attacks on samples generated by the InstaHide algorithm, enabling near-complete recovery
of the original data.

2 CONTRIBUTIONS

The primary contribution of this paper, presented in Section 3, is a singularized mixup algorithm that
resolves the core weakness exploited by major attacks on InstaHide: the repeated reuse of the same
private sample across mixtures. Our method mixes only two private images at a time and injects
structured noise into the non-target component, thereby eliminating the persistent signal required
for reconstruction attacks.

In Section 4, we develop a theoretical security analysis of the proposed mechanism. We establish
lower bounds on the achievable reconstruction error under an adversary with full knowledge of
the mixing weights, and we provide a principled way to choose the noise norm so that the SNR
associated with separating each encoded sample into signal and interference components remains
below a prescribed security parameter τ .

Section 5 presents an empirical study of both security and accuracy. We evaluate linear and nonlinear
attackers in a conservative threat model and show that, above a modest noise threshold, neither can
recover the underlying private images. At the same time, even when using a noise level far stricter
than what the theoretical bounds require, our method maintains accuracy comparable to InstaHide’s
strongest k = 4 configuration on MNIST, CIFAR-10, CIFAR-100, and Tiny-ImageNet. Overall, our
results demonstrate that the proposed mixup procedure provides strong protection against inversion
while preserving high downstream utility.

3 SINGULARIZED MIXUP

In this section, we introduce our algorithm, which is based on the singularization framework. This
approach enhances security by ensuring that each execution is unique, thereby making it broadly
applicable to a variety of systems Gaber et al. (2023). Singularization has previously been used to
strengthen encryption algorithms without modifying their underlying structure Macario-Rat & Plesa
(2024), which motivates our adoption of this framework in the design of our mixup algorithm.

We begin with a brief overview of InstaHide, followed by a detailed description of our proposed
algorithm.

3.1 INSTAHIDE ALGORITHM

Consider a private dataset (xi, yi)
n
i=1 consisting of n samples, where xi ∈ Rd denotes the input

example and yi ∈ Rc is the corresponding one-hot encoded label.

The fundamental idea behind Mixup, as introduced by Zhang et al. (2017), is to replace each data
point with a convex combination of the current sample and k − 1 other samples selected uniformly
at random from the dataset. Specifically, each new data point is generated by taking a weighted
average of k instances and their associated labels:

x̃i ← wi1xi +

k−1∑
j=2

wijxπi(j) (1)

ỹi ← wi1yi +

k−1∑
j=2

wijyπi(j) (2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where {(x̃i, ỹi)}ni=1 represents the encoded dataset and πi is a random permutation over
{1, 2, . . . , n}.
The InstaHide approach builds upon Mixup but introduces two key modifications:

1. Public images: InstaHide augments the private dataset with samples from public datasets,
expanding the pool of mixing samples to (xi, yi)

n
i=1 ∪ (xi, yi)

n+m
i=n+1, where m denotes the

size of the public dataset.

2. Sign mask: The sign of each pixel in a mixup image is randomly flipped using a random
sign mask σi ∼ Λd

±.

As a result, equations (1) and (2) are modified as follows:

x̃i ← σi ◦

wi1xi +

ks−1∑
j=2

wijxπi(j) +

k−kt∑
j=ks+1

wijxπip (j)

 (3)

ỹi ← wi1yi +

ks−1∑
j=2

wijyπi(j) (4)

Here, ks denotes the number of private images, kt the number of public images, and πip is a random
permutation over the set {n+1, . . . , n+m}. Note that public images are used solely as a source of
structured noise, and their labels are not included in the mix.

3.2 SINGULARIZATION ALGORITHM

The principal aim of the singularization algorithm is to transform the original dataset {(xi, yi)}ni=1
into a new set {(x̃i, ỹi)}ni=1 such that the resulting dataset preserves the discriminative characteristics
of the original data, while ensuring that the original data cannot be recovered.

A key vulnerability of the InstaHide algorithm arises from the possibility that two encoded samples
may share the same private input during the mixup process. This stems from InstaHide’s encoding
strategy, where each encoded sample is formed as a convex combination of two data points from the
original private dataset and k − 2 additional samples drawn from public sources. The inclusion of
multiple private samples in each encoded combination allows an attacker to group encoded samples
that share a common private component, making it possible to reconstruct the original private image
from these clusters. For the attacker, the repeated appearance of a private sample across different
encodings acts as a persistent signal, while the public components serve as noise that can be filtered
out through aggregation.

There are three primary distinctions between our approach and InstaHide. First, our method con-
structs each encoded input using exactly two private data points (k = 2), and does not incorporate
any public data. This design choice is motivated by security considerations. While InstaHide sug-
gests increasing k to mitigate brute-force attacks on the subset sum problem, Carlini et al. (2021a)
has demonstrated that larger values of k can actually reduce security. Specifically, when the mixing
weights are known, the resulting linear system becomes easier to solve, making it more vulnera-
ble to attack. By fixing k = 2 and relying exclusively on private data, our approach avoids these
vulnerabilities.

Second, we introduce noise only to the second private data point before performing the mixup op-
eration. This strategy is intended to tightly couple the noise with the private information, thereby
making it significantly more difficult for an adversary to recover the original data. When the noise
level is sufficiently high, inverting the process becomes an ill-conditioned problem, which further
enhances security.

Finally, our method does not require sign-flipping masks or the use of public images. Previous
attacks Carlini et al. (2021a); Chen et al. (2020); Luo et al. (2022) have shown that sign-flipping
masks can be circumvented by analyzing the absolute values of mixed images, thus limiting their
effectiveness as a privacy mechanism. Our singularization algorithm is presented in Algorithm 1.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 Singularized Mixup
Require: Dataset {(xi, yi)}ni=1; error norm r
Ensure: Mixed dataset {(x̃i, ỹi)}ni=1

1: π ∼ Uniform(Sn)
2: for each i = 1 to n do
3: wi ∼ Uniform([0, 1]2) and normalize such that ∥wi∥1 = 1 and ∥wi∥∞ ≤ α
4: ei ∼ Uniform(S(0, r))
5: x̃i ← wi1xi + wi2(xπ(i) + ei)
6: ỹi ← wi1yi + wi2yπ(i)
7: end for
8: return {(x̃i, ỹi)}ni=1

3.3 PRACTICAL INSTANTIATION

Similar to InstaHide Huang et al. (2020), the primary application of our algorithm is in privacy-
preserving collaborative training. Suppose there are multiple parties, each possessing a private local
dataset. These parties aim to jointly train a deep neural network on the combined data without
exposing the sensitive information contained in their individual datasets. The following general
framework demonstrates how Algorithm 1 can be integrated to achieve this goal:

1. All parties agree on a common preprocessing technique to be applied locally. For instance,
in the context of image data, participants may choose to standardize the images or extract
feature representations using a publicly available pretrained model, such as ResNet He et al.
(2016).

2. Each party independently transforms its local dataset by applying Algorithm 1, thereby
generating a set of mixup samples. Each sample consists of a mixup example and its
corresponding mixup label.

3. The resulting data is then transmitted to a central server, which is responsible for training
the deep learning model. Upon completion, the trained model is distributed back to the
parties for local use.

The security of this protocol depends on the effectiveness of Algorithm 1 in protecting the privacy
of local datasets. In particular, the central server, which only receives the mixup samples, should not
be able to reconstruct the original data from these representations.

4 SECURITY ANALYSIS

In this section, we analyze the security of the proposed scheme and evaluate its resilience to the
three principal attacks on the InstaHide framework, as presented in Carlini et al. (2021a), Chen et al.
(2020), and Luo et al. (2022). We begin by reviewing the attack strategy of Carlini et al. (2021a),
which applies directly to InstaHide without additional assumptions and forms the foundation for
subsequent attacks.

The attack of Carlini et al. (2021a) aims to recover the noisy linear system of equations generated
by the InstaHide encoding procedure. The adversary’s first task is to identify which private images
contribute to each encoded sample. To do so, the attacker generates encoded images using publicly
available data and trains a neural network to predict whether two encoded images share a common
private source image. Although InstaHide introduces random sign flips that might be expected
to impede this process, the authors show that taking the absolute value of each pixel effectively
removes this obstacle. Once trained, the comparison network allows the adversary to infer the
co-occurrence of private images across encoded samples. Since the mixing weights are revealed
through the encoded labels, the attacker can then assemble a noisy linear system whose noise arises
from the public images included in each mixup. Because the public images vary across samples,
this noise behaves approximately as mean-zero Gaussian and averages out across many equations.
Solving this system enables the attacker to reconstruct the private images up to a global sign per
pixel. A final recoloring step is applied to improve visual fidelity.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

In contrast, the attack of Chen et al. (2020) relies on an explicit distributional assumption: the orig-
inal images are modeled as Gaussian. Under this assumption, the absolute values of the encoded
samples follow a folded Gaussian distribution. Given sufficiently many mixup samples, the ad-
versary can estimate their covariance matrix, which corresponds to the Gram matrix of the mixing
weight vectors. From this Gram matrix, the adversary can determine which private images partici-
pate in each mixup. As in Carlini et al. (2021a), this identification step enables the construction of a
linear inverse problem whose solution yields the private images up to pixel-wise sign ambiguities.

To mitigate the attack of Carlini et al. (2021a), Luo et al. (2022) proposes introducing geometric
augmentations—such as shifting, cropping, rotation, and translation—to disrupt pixel-wise align-
ment before mixup. This defense seeks to prevent the formation of a consistent linear system that
attackers could invert. Their approach shares a broad motivation with ours: both aim to ensure
that identical images do not reappear across multiple encoded samples. However, Luo et al. (2022)
demonstrates that such augmentations can be circumvented. Specifically, the attacker trains a com-
parison network, as in Carlini et al. (2021a), to detect whether two encoded samples share a common
private image, even under geometric transformations. Encoded samples containing the same private
image are then clustered. Within each cluster, a fusion-denoising pipeline is applied: a convolu-
tional network first downsamples the encoded images to reduce geometric variability, a transpose
CNN upsamples the result, and multiple outputs are fused (by averaging or max-pooling) before
being passed through a denoising network that reconstructs the private image.

The attacks of Carlini et al. (2021a) and Chen et al. (2020) are ineffective against our method because
the injected noise disrupts the formation of stable linear systems. Moreover, unlike Luo et al. (2022),
our scheme does not rely on geometric transformations, thereby limiting the applicability of fusion-
denoising attacks. Although our mechanism is designed to prevent adversaries from forming clusters
or reconstructing underlying linear systems, we adopt a conservative security model in which the
adversary is assumed capable of doing so. This assumption is motivated by a common feature of
all three attacks: the ability to determine whether two encoded images share a private component.
In both Carlini et al. (2021a) and Chen et al. (2020), the random sign mask is rendered ineffective
by taking absolute values, while in Luo et al. (2022), geometric transformations do not prevent
clustering.

To assess the security of our singularized mixup algorithm, we characterize the reconstruction error
faced by an adversary attempting to invert the system of equations induced by Algorithm 1. We
assume the attacker has access to both the encoded samples and the mixing weights, and seeks to
recover the original data. In Theorem 4.1, we examine an adversary that does not leverage any struc-
tural prior, such as assuming the unknowns are images or adhere to particular statistical constraints.
The theorem shows that the expected Euclidean recovery error scales linearly with the noise radius
r.
Theorem 4.1. Let X ∈ Rn×d have rows x⊤

i . Algorithm 1 produces

x̃i = wi1 xi + wi2 (xπ(i) + ei), ei
i.i.d.∼ Uniform(S(0, r)),

with ∥wi∥1 = 1 and ∥wi∥∞ ≤ α. Let Pπ be the permutation matrix of π and define

D1 := diag(w11, . . . , wn1), D2 := diag(w12, . . . , wn2), W := D1 +D2Pπ,

and assume W is invertible. Then

X̃ = WX + E, Ei = wi2 ei.

For any estimator x̂i = x̂i(X̃,W),

sup
X∈Rn×d

E
[
∥xi − x̂i(X̃,W)∥22

]
≥ r2 Ti,

where

Ti :=

n∑
ℓ=1

(W−1)2iℓ w
2
ℓ2.

Proof. Since W is invertible, define

Y := W−1X̃ = X + Z, Z := W−1E.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Because Eℓ = wℓ2eℓ and eℓ are independent, mean-zero, and isotropic with

Cov(eℓ) =
r2

d
Id,

we have

Cov(Eℓ) = w2
ℓ2

r2

d
Id.

Thus

Cov(Zi) =

n∑
ℓ=1

(W−1)2iℓ Cov(Eℓ) =
r2

d
Ti Id,

and hence
E∥Zi∥22 = tr(Cov(Zi)) = r2 Ti.

Fix any estimator x̂i(X̃,W) and write δ(Y) := x̂i(X̃,W). Consider matrices X with all rows equal
to zero except the ith. For such X ,

Yi = xi + Zi, (Y−i, Zi) independent of xi.

Let m(Yi) := E[δ(Y) | Yi]. By Jensen’s inequality,

E
[
∥xi −m(Yi)∥22

]
≤ E

[
∥xi − δ(Y)∥22

]
for every xi ∈ Rd.

Now restrict attention to this one-dimensional family X parametrized by xi. We obtain the d-
dimensional location model

Yi = xi + Zi, xi ∈ Rd,

with fixed noise Zi. A standard Bayesian lower bound for location models implies

sup
xi∈Rd

E
[
∥xi −m(Yi)∥22

]
≥ E∥Zi∥22.

Combining the inequalities,

sup
X

E
[
∥xi − x̂i(X̃,W)∥22

]
≥ E∥Zi∥22 = r2 Ti.

This completes the proof.

While Theorem 4.1 provides a tight minimax lower bound on the MSE for estimators that lack prior
knowledge, it does not prescribe how to choose the noise norm r. Our goal is to select r such
that encoded samples do not leak meaningful information about the originals. We formalize this
through the signal-to-noise ratio (SNR) associated with the decomposition of each encoded sample
into signal and interference components. Motivated by the defense rationale in Luo et al. (2022),
where distinct augmented images are used to prevent redundancy in mixup inputs, we choose r
proportional to the typical separation between data points. Theorem 4.2 specifies how to select the
scaling parameter mf and thereby set r as a multiple of the average inter-sample distance so that the
resulting SNR falls below a prescribed threshold τ .
Theorem 4.2. Let {xi}ni=1 ⊂ Rd be i.i.d. samples of a subgaussian random vector X with E[X] = 0
and covariance Σ. Define

V = E
[
∥X∥22

]
= tr(Σ), D = E

[
∥X −X ′∥2

]
,

for an independent copy X ′. Set

c :=
D2

2V
∈ (0, 1],

so that D2 = 2cV (Jensen and independence give D2 ≤ 2V). Algorithm 1 outputs, for each i,

x̃i = wi1 xi + (1− wi1)
(
xπ(i) + ei

)
,

where 0 ≤ wi1 ≤ α almost surely for a given α ∈ (0, 1), and the error vectors satisfy

∥ei∥2 = r, r = mf D.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Assume that wi1 is independent of the data and that ei is independent of the data and of wi1. Define
the signal and interference components

Si = wi1 xi, Ii = (1− wi1)
(
xπ(i) + ei

)
,

and the expected signal-to-noise ratio

SNR =
E ∥Si∥22
E ∥Ii∥22

.

Then

SNR ≤ α2

(1− α)2
(
1 +

r2

V

) =
α2

(1− α)2

(
1 +

m2
fD

2

V

) =
α2

(1− α)2
(
1 + 2cm2

f

) .
Consequently, for any target τ > 0,

SNR ≤ τ whenever mf ≥

√
1

2c

(
α2

τ(1− α)2
− 1

)
.

Proof. Since 0 ≤ wi1 ≤ α a.s. and wi1 is independent of xi,
E ∥Si∥22 = E

[
w2

i1∥xi∥22
]
= E[w2

i1] E
[
∥X∥22

]
≤ α2V.

For the interference, using independence of wi1, X
′, ei, zero-mean E[X ′] = 0, and the polarization

identity,
E ∥Ii∥22 = E

[
(1− wi1)

2 ∥X ′ + ei∥22
]

= E
[
(1− wi1)

2
]
E
[
∥X ′∥22

]
+ E

[
(1− wi1)

2
]
E
[
∥ei∥22

]
+ 2E

[
(1− wi1)

2
]
E[⟨X ′, ei⟩] .

The cross term vanishes since E[X ′] = 0 and ei is independent of X ′. Hence

E ∥Ii∥22 = E
[
(1− wi1)

2
](
V + E∥ei∥22

)
.

Because 0 ≤ wi1 ≤ α a.s., we have (1− wi1) ≥ (1− α) a.s., whence

E
[
(1− wi1)

2
]
≥ (1− α)2.

By construction ∥ei∥2 = r deterministically, so E∥ei∥22 = r2. Therefore,

E ∥Ii∥22 ≥ (1− α)2
(
V + r2

)
.

Taking the ratio gives

SNR =
E ∥Si∥22
E ∥Ii∥22

≤ α2V

(1− α)2(V + r2)
=

α2

(1− α)2
(
1 + r2

V

) .
Substituting r = mfD yields

SNR ≤ α2

(1− α)2
(
1 +

m2
fD

2

V

) =
α2

(1− α)2
(
1 + 2cm2

f

) ,
because D2 = 2cV by definition of c. Finally, solving

α2

(1− α)2
(
1 + 2cm2

f

) ≤ τ

for mf gives

mf ≥

√
1

2c

(
α2

τ(1− α)2
− 1

)
,

which completes the proof.

Finally, although Theorem 4.1 characterizes the fundamental difficulty of inversion for adversaries
without prior information, practical attackers may possess substantial knowledge about the structure
or distribution of the underlying data. To bridge this gap, our experimental evaluation assesses the
performance of both linear and nonlinear estimators in realistic scenarios, thereby providing a more
comprehensive understanding of the scheme’s robustness against adversaries capable of exploiting
informative priors.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

Our experiments are designed to evaluate both the accuracy loss relative to InstaHide and the attack
resilience of our proposed algorithm.

Setup: We conduct our experiments on three widely used benchmark datasets: MNIST LeCun
(1998), CIFAR-10, CIFAR-100 Krizhevsky et al. (2009) and Tiny-ImageNet Le & Yang (2015).
All implementations are carried out using the PyTorch framework Paszke et al. (2019). For the
classification accuracy experiments, we utilize feature representations obtained from the output of
the final convolutional layer of publicly available pretrained image models. Specifically, feature
maps are extracted using a pretrained ResNet-18 model for MNIST and CIFAR-10, and a pretrained
ResNet-50 model for CIFAR-100 and Tiny-ImageNet.

Security:

In the following, we examine two distinct attack strategies for recovering the underlying images from
their mixed representations. The first is a linear inversion attack, which exploits the known linear
mixing process to directly reconstruct the sources. The second is a non-linear reconstruction attack
based on U-Net architectures, allowing the adversary to learn a more flexible, data-driven inverse
mapping. We evaluate the quality of the recovered images using the SNR for a range of values of
τ , with the noise norm chosen according to Theorem 4.2. In particular, we estimate the average
distance between two randomly selected images directly from the data and set the noise level r to
be this empirical average multiplied by the scaling factor prescribed by the theorem. This procedure
ensures that the noise magnitude is consistent with the theoretical regime under consideration.

For the linear inversion attack, we follow a gradient-descent–based reconstruction procedure in-
spired by Luo et al. (2022). In this setting, the adversary is assumed to know the linear mixing
matrix and uses this information to guide the recovery process. The loss function is built around a
linear reconstruction term that measures the mean squared error between the observed mixtures and
the linearly recomposed images obtained by applying the known mixing weights to the current esti-
mates. To stabilize this inversion, the attacker incorporates generic priors on natural images through
additional regularization terms: a total-variation penalty that promotes spatial smoothness and L2

penalty that discourages unrealistically large pixel values. These regularizers encode broad assump-
tions about natural images—namely smoothness and bounded intensity—without introducing any
nonlinear modeling. Optimization is carried out with Adam, and after each update the recovered
images are clipped to a fixed range to maintain plausible pixel values. The resulting reconstruction
performance is reported in Table 1, and Figure 3 shows the best recovered image for CIFAR-10
under the linear attack. Results for all datasets are provided in Appendix G.

Table 1: Average reconstruction SNR (dB) ± standard deviation for the linear attack for different
noise levels τ .

τ MNIST CIFAR-10 CIFAR-100 Tiny-ImageNet
100 8.19±0.31 0.85±2.69 0.94±3.01 1.24±2.47
10−1 0.09±0.14 −5.06±2.29 −4.86±2.52 −4.60±2.01
10−2 −2.79±0.09 −6.92±2.10 −6.66±2.30 −6.42±1.79
10−3 −3.65±0.08 −7.45±2.05 −7.17±2.24 −6.94±1.75
10−4 −3.90±0.09 −7.61±2.03 −7.32±2.22 −7.09±1.73
10−5 −3.98±0.09 −7.66±2.03 −7.37±2.22 −7.14±1.73
10−6 −4.01±0.09 −7.67±2.03 −7.38±2.22 −7.15±1.73

For the nonlinear attack, we replace the analytic inversion used in the linear setting with a learned
reconstruction model based on a U-Net architecture. The adversary is assumed to have access to
a collection of public images, which are used to train the network to map mixed inputs back to
clean sources. In our experiments, Tiny-ImageNet serves as the public dataset for training, while
CIFAR-10 plays the role of the private dataset used for evaluation. A separate U-Net is trained
for each value of τ , ensuring that the attacker can adapt to the corresponding noise magnitude.
Training is performed using an ℓ1 reconstruction loss together with total-variation regularization,
and predictions are kept within valid intensity ranges through standard normalization and clamping.
The resulting reconstruction SNR for all τ values are reported in Table 2. Figure 2 shows the best
recovered CIFAR-10 example across noise levels.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 1: Recovered images under the linear attack for decreasing noise levels τ

Table 2: Average reconstruction SNR (dB) ± standard deviation for the nonlinear attack across
noise levels τ .

τ 100 10−1 10−2 10−3 10−4 10−5 10−6

7.76±3.46 7.27±3.39 5.44±2.93 2.84±2.28 −0.13±0.54 −0.13±0.53 −0.14±0.58

Figure 2: Nonlinear (U-Net) attack on CIFAR-10: ground truth, mixed inputs, and recovered images
across noise levels τ
Accuracy:

The security analysis indicates that, although the nonlinear attack is noticeably more powerful than
the linear one for τ ≥ 10−4, the original image remains unrecoverable across all datasets even at
this relatively small noise level. Since τ = 10−4 already suffices to prevent meaningful reconstruc-
tion, we adopt a conservative stance and conduct all accuracy experiments at an even stricter privacy
setting, using τ = 10−6 uniformly across datasets. At this noise level, we train a standard convo-
lutional classifier on mixed representations and report the resulting test accuracy for each dataset.
We then compare these results with the best-performing configuration of InstaHide (with k = 4) to
quantify the utility–privacy trade-off under a conservative noise regime. The full accuracy results
are summarized in Table 3.

Table 3: Test accuracy (%) at τ = 10−6 compared with the best reported InstaHide configuration
(k = 4).

Method MNIST CIFAR-10 CIFAR-100 Tiny-ImageNet
InstaHide (k = 4) 99.66 91.20 74.01 –
Ours (τ = 10−6) 99.32 90.51 75.99 72.50

The accuracy results in Table 3 show that, even under the conservative noise setting τ =
10−6—significantly stricter than what is needed to prevent both linear and nonlinear reconstruc-
tion—the loss in predictive performance remains negligible across all datasets. On MNIST and

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

CIFAR-10, our approach matches the accuracy of InstaHide with k = 4, and on CIFAR-100 and
Tiny-ImageNet it even yields modest improvements. These findings indicate that strong recon-
struction resistance does not come at the expense of meaningful degradation in downstream util-
ity: despite enforcing a noise level far below the threshold where the nonlinear attacker fails (i.e.,
τ ≈ 10−4), the mixed representations still support high classification accuracy. Overall, the re-
sults demonstrate that our method provides robust security guarantees while preserving competitive
model performance across diverse datasets.

We additionally evaluate our method in a federated learning setting by partitioning the CIFAR-10
dataset across multiple parties. Each party holds a disjoint local subset of the data. We compare (i) a
baseline model trained solely on the local subset of Party 0, and (ii) a model trained on the union of
all mixed datasets produced by Algorithm 1 across the participating parties. The results in Table 4
show that training on the aggregated mixed representations consistently achieves higher accuracy as
the number of parties increases.

Table 4: Federated CIFAR-10 test accuracy (%). The baseline model is trained only on Party 0’s
local data, while the second model is trained on the union of mixed datasets produced by all parties
using Algorithm 1.

Number of Parties Baseline (Local Only) Mixup-Union (All Parties)
10 87.25 90.63
20 85.56 90.32
30 84.08 88.23

6 CONCLUSIONS

In this paper, we introduced a singularized mixup mechanism that mixes only two private images at
a time while injecting structured noise into the non-target component. This design directly addresses
the key vulnerability exploited in attacks on InstaHide, where repeated use of the same private image
across many mixtures enables clustering and subsequent reconstruction. By corrupting all but one
component in each mixture, our method prevents such clustering and limits what an adversary can
infer from any single mixed sample.

We analyzed security under a conservative threat model in which the attacker has full knowledge
of the mixing weights and evaluated both a linear inversion attack and a more powerful nonlinear
U-Net–based attack. Our experiments show that once the noise magnitude exceeds a modest thresh-
old, neither attack can recover the original image, even when given maximal information about the
mixing process. At the same time, using a conservative setting of τ = 10−6—well below the level
at which both attacks already fail—the mixed representations retain high utility, with only negligible
accuracy loss compared to InstaHide’s best k = 4 configuration.

While the method is tailored to image data, the singularization principle may extend to other modal-
ities with appropriate noise models. Exploring such extensions presents an interesting direction for
future work toward broadly applicable, attack-resistant data mixing schemes.

REPRODUCIBILITY STATEMENT

All source code used in this study is publicly available, along with detailed instructions to reproduce
the experiments described in this paper. The data utilized comes from publicly accessible benchmark
datasets. For additional details regarding the experimental setup and procedures, please refer to the
Appendix E.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Nicholas Carlini, Samuel Deng, Sanjam Garg, Somesh Jha, Saeed Mahloujifar, Mohammad Mah-
moody, Abhradeep Thakurta, and Florian Tramèr. Is private learning possible with instance en-
coding? In 2021 IEEE Symposium on Security and Privacy (SP), pp. 410–427. IEEE, 2021a.

Nicholas Carlini, Sanjam Garg, Somesh Jha, Saeed Mahloujifar, Mohammad Mahmoody, and Flo-
rian Tramer. Neuracrypt is not private. arXiv preprint arXiv:2108.07256, 2021b.

Sitan Chen, Xiaoxiao Li, Zhao Song, and Danyang Zhuo. On instahide, phase retrieval, and sparse
matrix factorization. arXiv preprint arXiv:2011.11181, 2020.

Shaltiel Eloul, Fran Silavong, Sanket Kamthe, Antonios Georgiadis, and Sean J Moran. Mixing
gradients in neural networks as a strategy to enhance privacy in federated learning. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3956–3965, 2024.

Yingwei Fu, Huaimin Wang, Kele Xu, Haibo Mi, and Yijie Wang. Mixup based privacy preserving
mixed collaboration learning. In 2019 IEEE International Conference on Service-Oriented System
Engineering (SOSE), pp. 275–2755. IEEE, 2019.

Chrystel Gaber, Gilles Macariot-Rat, Simona David, Jean-Philippe Wary, and Alain Cuaboz. Posi-
tion paper: Strengthening applets on legacy sim cards with singularization, a new moving target
defense strategy. In International Conference on Mobile, Secure, and Programmable Networking,
pp. 71–74. Springer, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, 2016.

Qijian He, Wei Yang, Bingren Chen, Yangyang Geng, and Liusheng Huang. Transnet: Training
privacy-preserving neural network over transformed layer. Proceedings of the VLDB Endowment,
13(12):1849–1862, 2020.

Yangsibo Huang, Zhao Song, Kai Li, and Sanjeev Arora. Instahide: Instance-hiding schemes for
private distributed learning. In International conference on machine learning, pp. 4507–4518.
PMLR, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny im-
ages.(2009), 2009.

Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Q Li, Y Zhang, J Ren, Q Li, and Y Zhang. You can use but cannot recognize: Preserving visual
privacy in deep neural networks. arxiv 2024. arXiv preprint arXiv:2404.04098.

Zhijian Liu, Zhanghao Wu, Ligeng Zhu, Chuang Gan, and Song Han. Facemix: Privacy-preserving
face attribute classification on the cloud. 2019.

Zhijian Liu, Zhanghao Wu, Chuang Gan, Ligeng Zhu, and Song Han. Datamix: Efficient privacy-
preserving edge-cloud inference. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XI 16, pp. 578–595. Springer, 2020.

Xinjian Luo, Xiaokui Xiao, Yuncheng Wu, Juncheng Liu, and Beng Chin Ooi. A fusion-denoising
attack on instahide with data augmentation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 1899–1907, 2022.

Gilles Macario-Rat and Mihail-Iulian Plesa. Singularization: A new approach to designing block
ciphers for resource-constrained devices. In International Conference on Attacks and Defenses
for Internet-of-Things, pp. 155–167. Springer, 2024.

S Nythia, S Priyaa, R Priyanka, and S Saranya. Face image recognition and scrambling for privacy
using neural networks. International Journal of Scientific & Engineering Research (IJE), India,
2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32, pp. 8024–
8035. Curran Associates, Inc., 2019.

Andreea Bianca Popescu, Ioana Antonia Taca, Anamaria Vizitiu, Cosmin Ioan Nita, Constantin
Suciu, Lucian Mihai Itu, and Alexandru Scafa-Udriste. Obfuscation algorithm for privacy-
preserving deep learning-based medical image analysis. Applied Sciences, 12(8):3997, 2022.

Sifat Ut Taki and Spyridon Mastorakis. Amalgam: A framework for obfuscated neural network
training on the cloud. In Proceedings of the 25th International Middleware Conference, pp. 238–
251, 2024.

Yinggui Wang, Yuanqing Huang, Jianshu Li, Le Yang, Kai Song, and Lei Wang. Adaptive hybrid
masking strategy for privacy-preserving face recognition against model inversion attack. arXiv
preprint arXiv:2403.10558, 2024.

Yuexin Xiang, Tiantian Li, Wei Ren, Tianqing Zhu, and Kim-Kwang Raymond Choo. A lightweight
privacy-preserving scheme using pixel block mixing for facial image classification in deep learn-
ing. Engineering Applications of Artificial Intelligence, 126:107180, 2023.

Hanshen Xiao, G Edward Suh, and Srinivas Devadas. Formal privacy proof of data encoding: The
possibility and impossibility of learnable encryption. In Proceedings of the 2024 on ACM SIGSAC
Conference on Computer and Communications Security, pp. 1834–1848, 2024.

A Yala et al. Neuracrypt: hiding private health data via random neural networks for public training
(2021).

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

A CHEN ATTACK

The attack described in Chen et al. (2020) simplifies the InstaHide problem by assuming that the
matrix X ∈ Rd×n of images is Gaussian, i.e., its entries are chosen i.i.d. from N (0, 1). Let
p1, . . . , pd ∈ Rn be the rows of X . Consider wi1, dots, wm ∈ Rn the unknown selection vectors
chosen from a distribution D. S ⊂ {1, . . . ,m} be the coordinates of the public imges and Sc =
{1, . . . , n} S be the coordinates of the private images. Let [v]S ∈ R|S| be the restriction of a vector
v to the coordinates indexed by S. Each selection sector generates an encoded image as:

x̃i = |Xwi| (5)

In InstaHide, the sign of each pixel from an encoded image is randomly flipped, but as the authors
remark, the two notations are interchangeable.

The attack goes like follows:

1. Learning the public coordinates of any selection vector In the first step, the attacker
determines the weights associated with the public images from each selection vector. Con-
sidering the matrix

N = Ep,x̃

[
x̃2 · ([p]S [p]⊺S − Id)

]
where x̃ = |⟨w, p⟩|, p ∼ N (0, Id). It can be proven that N is a rank-1 matrix proportional
to [w]S [w]

⊺
S . Moreover, N can be approximated by

N̂ =
1

d

d∑
i=1

x̃2
i · ([pi]S [pi]

⊺
S − Id) .

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

2. Recovering the Gram Matrix Since the previous steps recover the coordinates of the
public images in each selection vector, for the simplicty of the description, consider that all
images are private, i.e., Sc = {1, . . . , n}. Consider the matrix X̃ ∈ Rm×d where each line
is an encoded images:

X̃ =

 |⟨p1, w1⟩| · · · |⟨pd, w1⟩|
...

. . .
...

|⟨p1, wm⟩| · · · |⟨pd, wm⟩|

 (6)

We can use the columns of X̃ to estimate the covariance matrix M̃ of the folded Gaussian
distributionN fold(0,M), since each column is drawn independently from this distribution.
The covariance matrix M is, in fact, the rescaled m ×m Gram matrix whose entries are
proportional to the dot product of any two selection vectors; that is, the element at position
(i, j) in the matrix M is given by k · ⟨wi, wij⟩.

3. Floral submatrices
The previous step of the attack shows the dot product between any two selection vectors,
i.e., ⟨wi, wij⟩, thus the attacker knows how many private images are common between
two encoded images. In order to identify which private images are common (not only
how many), the attacker identifies in M floral submatrices. The rows/columns of a floral
submatrix can be indexed by all subsets of size k of a set of k+2 elements where its entries
are the intersection sizes between the subsets. More intuitively, the attacker exploits the
fact that the subsets of size k of of the set {1, . . . , k + 2} are uniquely identified by their
pairwise intersection sizes.

4. Determining the private images
Suppose the attacker has identified a floral matrix in the previous steps, which corresponds
to the selection vectors wi1, . . . , wit , where t =

(
k+2
k

)
. The structure of the floral matrix

encodes information about the indices of private images that are common between pairs of
selection vectors. Specifically, the row and column indices of the matrix indicate which
private images are shared. This allows the attacker to construct a system of equations of
the form |⟨wij , pl⟩| = x̃l for all l ∈ 1, . . . , d, where pl denotes the private images and x̃l

are known quantities.
From another perspective, each row or column of the floral submatrix can be indexed by a
subset of size k from a set of size k+2. Each element in such a subset represents the index
of a private image. For any given element in the floral matrix—which itself is a submatrix
of the Gram matrix M—the position of the element along the rows provides the attacker
with a set of k private image indices, while the position along the columns provides another
set of k indices. By intersecting these two sets, the attacker can determine which private
images are common between the selection vectors associated with the corresponding row
and column. Solving the resulting system of equations enables the attacker to recover the
indices of the private images.

B LUO ATTACK

In Luo et al. (2022), the authors observed that the method proposed by Carlini in Carlini et al.
(2021a) can be mitigated by applying data augmentation before the mixup process. To address this,
they introduce a new approach that successfully bypasses this mitigation strategy. Their method
operates as follows:

1. In the first step, the attacker computes the absolute value of each pixel in every encoded
image.

2. Next, a similarity score is calculated for every pair of encoded images to determine, with
high probability, whether a given pair is derived from the same private image. To com-
pute this score, the authors propose a comparative network that takes as input both high-
resolution and low-resolution versions of the image pairs. This approach yields better re-
sults than the standard ResNet architecture used by Carlini. Based on the similarity scores,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

the attacker clusters the encoded images, with each cluster corresponding to a distinct pri-
vate image.

3. For each cluster obtained in the previous step, the attacker re-weights all encoded images
using the weights associated with the corresponding private image. These weights can
be easily inferred from the associated encoded labels. Subsequently, a neural network
is trained to perform image relaxation and fusion. This strategy counteracts the effects of
geometric image augmentation by generating a set of features that are invariant to geometric
transformations. An initial version of the private image is then constructed in the fusion
step by combining these feature maps.

4. In the final step, the attacker trains an additional neural network to denoise the image pro-
duced in the previous stage.

C CARLINI ATTACK

The attack consists of two main stages. In the first stage, the attacker determines the two private
images used to generate each encoded image during the mixing process. In the second stage, the
attacker reconstructs the private images by solving a noisy linear system of equations:

1. The attacker computes the absolute value of each mixup encoding to counteract the random
sign changes introduced by the mask σi in (3).

2. To identify whether two encoded images share at least one common private image, the at-
tacker calculates a similarity function between each pair of encoded images. This similarity
function is approximated using a neural network trained on public data transformed via the
mixup algorithm. Using the similarity scores, the attacker constructs a weighted graph
where vertices represent encoded samples, and edge weights correspond to the similarity
function’s output.

3. Based on the weighted graph, the attacker identifies densely connected cliques, enabling
clustering of encoded samples that share a common private image. Each cluster is repre-
sented as a set Si, 1 ≤ i ≤ n, where each set contains encoded samples derived from the
same private image.

4. Since each encoded image is generated by mixing two private images, the attacker con-
structs a bipartite similarity graph connecting encoded images to the sets identified in the
previous step. Edge weights represent the distance between an encoded image xi and a set
Si. This step determines, for each encoded image, the two sets corresponding to the private
images used in its construction.

5. Using the bipartite graph, the attacker maps each encoded image to two sets, representing
the private images involved in its generation during the mixup process.

6. The attacker recovers the weights used to generate each encoded image by analyzing the
mixup of the labels, as described in (4). Since the labels are one-hot encoded, recovering
the associated weights is straightforward.

7. Finally, the attacker constructs a matrix B ∈ Rn×d, where each row corresponds to an
encoded image x̃i, i.e., Bi = x̃i. A sparse matrix M ∈ Rn×n is also constructed, where
each row contains two non-zero entries representing the weights wi1 and wi

2 associated
with the private images used to compute the corresponding encoded image. Let A ∈ Rn×d

represent the matrix of private images, where each row Ai = xi. The attacker solves the
noisy linear system B = M ·A+e, where e represents the public images used in the mixup.
This system can be efficiently solved using gradient descent.

D MORE RELATED WORK

Liu et al. (2020) proposed a different approach, where a classifier is trained on mixup samples and
images to produce mixup results that can later be de-mixed. Unlike previous methods, this approach
does not involve training on mixup samples followed by inference on original data. Instead, both
training and inference are performed on mixup data, with the inference process generating mixup
results that can then be used to recover the correct labels.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

In a more recent study, Wang et al. (2024) proposed a mixup-like approach to mitigate model inver-
sion attacks on face recognition systems. Instead of mixing images directly, the authors suggested
mixing samples in the frequency domain. Additionally, they employed a reinforcement learning
strategy to dynamically determine the number of images to mix, balancing privacy and utility. Sim-
ilarly, Xiang et al. (2023) introduced a mixing strategy to preserve image privacy during training.
Their method involves splitting each image into multiple blocks and replacing parts of these blocks
with corresponding blocks from other images with the same label. In another study, Li et al. pro-
posed a new privacy metric called Visual Feature Entropy (VFE), calculated for a region of an image
as the sum of squared gradients with respect to both axes. This metric aims to quantify the amount
of information that needs protection by analyzing the entropy of a region. The authors’ mixing strat-
egy involves shuffling pixels within an image based on the VFE metric. Although this method does
not involve computing a weighted sum, it can be interpreted as a form of intra-image data mixing.
Eloul et al. (2024) present the concept of mixing gradients in federated learning to enhance security
against gradient inversion attacks. Although their method does not involve using random weights for
gradient mixing, their straightforward approach of directly averaging gradients across a batch, com-
bined with modifications to the loss function, significantly improves resistance to gradient inversion
attacks.

The concept of data mixing is rooted in the broader idea of learnable obfuscation, which encom-
passes techniques designed to transform data in a way that allows algorithms to learn from the
transformed data while safeguarding the privacy of the original data He et al. (2020); Yala et al.;
Taki & Mastorakis (2024); Popescu et al. (2022); Nythia et al. (2017). For instance, in Nythia et al.
(2017), the authors propose using the Arnold transformation to scramble images before inputting
them into a face recognition system. This transformation rearranges image pixels by mapping each
pixel to a new location determined by a linear transformation.

In Popescu et al. (2022), a method combining Variational Autoencoders (VAEs) with a substitution
technique is introduced to protect medical images during neural network analysis. The approach
involves training a VAE to reconstruct the image and then applying a substitution table to the latent
space representation of the data. Similarly, Taki & Mastorakis (2024) presents a method to ensure the
privacy of both training data and neural network architecture. For image data, the authors propose
transforming it into a higher-dimensional space. To protect the architecture, they introduce random
subnetworks with synthetic parameters that do not affect the network’s accuracy or data flow.

The NeuraCrypt method, proposed in Yala et al., protects data privacy by transforming it with a ran-
dom neural network. This approach is extended to enable privacy-preserving collaborative training,
where all parties share transformed data with a central server. For the server to learn patterns from
the combined datasets, all parties must use the same neural network for data transformation. Fi-
nally, He et al. (2020) introduces a privacy-preserving method that applies a linear transformation to
each data sample. The authors also provide formal proofs demonstrating the information-theoretic
security of their approach under specific conditions.

A common characteristic of learnable obfuscation techniques is that the same transforma-
tion—though potentially generated using independently chosen random parameters—must be ap-
plied to all samples in the dataset being protected. This creates a notable vulnerability: such tech-
niques cannot provide security against chosen-plaintext attacks. This limitation, formally introduced
and proven in Xiao et al. (2024), highlights an inherent weakness in these methods. Informally,
learnable obfuscation can protect the privacy of plaintext data only under the assumption that the
attacker does not have prior knowledge of the original data.

At first glance, this assumption may seem reasonable, as protecting data already known to an at-
tacker might appear unnecessary. However, in practical scenarios, this assumption often fails. For
instance, to improve the generalization capabilities of a machine learning model, private datasets
are frequently augmented with publicly available data. For example, a private image dataset might
be enriched with images from CIFAR-100 Krizhevsky et al. (2009). To preserve the discriminative
properties of the data and enable the model to generalize, the added public data must undergo the
same transformation used to protect the private dataset.

This practice introduces a significant risk: an attacker with access to both the original public dataset
and its transformed version could potentially design algorithms to reverse-engineer the transfor-
mation applied to the private data. An example of this vulnerability is described in Carlini et al.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(2021b), where the authors successfully developed an algorithm to solve the NeuraCrypt challenge
Yala et al., effectively bypassing the intended privacy protections.

E EXPERIMENTAL DETAILS

All experiments were developed using the PyTorch framework and performed on an NVIDIA L4
GPU with 24 GB of available VRAM. Across all datasets, we consistently used a batch size of 128.
For optimization, we employed the AdamW optimizer with a weight decay of 1 × 10−4. The initial
learning rate was set to 0.001 for all benchmarks, and we utilized a cosine annealing learning rate
scheduler.

Our experimental evaluation was conducted on three distinct benchmarks using ResNet architec-
tures (He et al., 2016), with specific configurations detailed in Table 5. A key aspect of our method-
ology is the exclusive use of the feature extraction layers from these architectures; the final classifier
layers were omitted as our focus is on training features. For all datasets we apply similar transfor-
mations, which consist of a resize operation (224 pixels height and width) and a normalization. The
MNIST dataset is also adjusted such that it has three channels, making it compatible with the chosen
architectures.

Table 5: The configurations used within experiments for each dataset. The mean and standard
deviation values for MNIST are for a single channel, while for CIFAR datasets they correspond to
the (R, G, B) channels.

Dataset Architecture Epochs Mean Std.

MNIST ResNet18 120 0.1307 0.3081
CIFAR-10 ResNet18 200 [0.4914, 0.4822, 0.4465] [0.2470, 0.2435, 0.2616]
CIFAR-100 ResNet50 200 [0.5071, 0.4867, 0.4408] [0.2675, 0.2565, 0.2761]
Tiny-ImageNet ResNet50 200 [0.5071, 0.4867, 0.4408] [0.2675, 0.2565, 0.2761]

The training objective was to minimize the following loss function, which is designed for our Mixup
implementation:

L = − 1

N

N∑
i=1

C∑
j=1

yij log(softmax(oi)j) (7)

where N is the batch size, C is the number of classes, yi is the (potentially soft) label for sample i,
and oi is the model output for sample i. In PyTorch, this is implemented as:

loss = -(labels * torch.log_softmax(outputs, dim=1)).sum(dim=1).mean()

For the final classification step, we used a custom feed-forward neural network with three dense
layers. The first and second of these dense layers are followed by batch normalization, GELU
activation, and then a dropout. The precise structure of this neural network is described by the
following equation:
Classifier(x;ncls) = Flatten(x) → Linearin;1024 → BN1024 → GELU → Dropout(0.5)

→ Linear1024;512 → BN512 → GELU → Dropout(0.5)
→ Linear512;ncls (8)

The ncls term represents the number of classes that the classification must be made on (e.g., 10 for
MNIST). The in dimension of the flattened tensor x within the first linear layer is 25088 (512×7×7
for ResNet18 and ResNet34).

F ATTACK IMPLEMENTATION DETAILS

All attacks use the same preprocessing described in Sec. E, including resizing inputs to 224× 224,
ImageNet-style normalization, and converting MNIST to three channels. Experiments are executed
on a single NVIDIA L4 GPU (24 GB) with fixed random seed (0).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

For the linear reconstruction attack, we optimize a recovery tensor using the PyTorch Adam opti-
mizer for 200 steps with learning rate 0.05. We include anisotropic total variation regularization and
an ℓ2 penalty with default weights λtv = 10−3 and λ2 = 10−4. After each step, recovered tensors
are clamped back into the normalized image range. Recovery quality is measured using per-image
SNR in dB, reported as mean ± std. A single visualization panel is produced: columns correspond
to different τ values and, for each dataset, three aligned rows display the original, the Mixup input,
and the recovered image. The displayed index per dataset is chosen as the best-recovered example
at the largest τ .

For the non-linear attack, we train a U-Net denoiser on Tiny-ImageNet Mixup pairs and evalu-
ate zero-shot on CIFAR-10. The U-Net follows a three-level encoder–decoder design with base
width B = 48. The encoder consists of successive DoubleConv blocks with channel progres-
sion (3→B→2B→4B→8B), separated by 2 × 2 max-pooling. The decoder mirrors this structure
with transposed convolutions for upsampling, skip connections from encoder features, DoubleConv
blocks with channel progression (8B→4B→2B→B), and a final 1×1 convolution mapping to three
output channels. All layers use ReLU activations, and outputs are clamped to the normalized range.
Training uses Adam with batch size 32, learning rate 10−3, 30 epochs, and an ℓ1 loss augmented
with a small TV penalty (10−4). Partner selection is deterministic per index so the same samples
align across τ values. Evaluation again reports SNR (mean ± std). A single summary panel is
generated: the first row repeats the ground-truth image associated with the best reconstruction at the
largest τ , while the second and third rows show the corresponding Mixup and recovered images for
each τ (displayed as columns). Only the τ labels appear above columns.

All runs save a single figure per attack configuration along with a timestamped log containing the
full console output.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

G FULL FIGURE 3

Figure 3: Recovered images under the linear attack for decreasing noise levels τ

H THE USE OF LARGE LANGUAGE MODELS

We utilized Large Language Models (LLMs) in three specific ways during this work. First, after
conducting a manual review of the state of the art using traditional search engines such as Google
Scholar, we used LLMs to assist in identifying additional relevant papers. Second, LLMs were
employed to help implement the experiments described in this study. Third, LLMs were used for
grammar correction and minor improvements to the flow of the text. Importantly, LLMs were not
used to generate or write any paragraphs; their role in writing was limited to minor edits and en-
hancements.

18

	Introduction
	Contributions
	Singularized mixup
	InstaHide algorithm
	Singularization algorithm
	Practical Instantiation

	Security analysis
	Experiments
	Conclusions
	Chen attack
	Luo attack
	Carlini attack
	More related work
	Experimental Details
	Attack Implementation Details
	Full Figure 3
	The use of Large Language Models

