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Abstract

The color refinement algorithm is mainly known as a heuristic method for graph iso-
morphism testing. It has surprising but natural characterizations in terms of, for example,
homomorphism counts from trees and solutions to a system of linear equations. Grebík
and Rocha (2021) have recently shown that color refinement and some of its characteriza-
tions generalize to graphons, a natural notion for the limit of a sequence of graphs. In
particular, they show that these characterizations are still equivalent in the graphon case.
The k-dimensional Weisfeiler-Leman algorithm (k-WL) is a more powerful variant of color
refinement that colors k-tuples instead of single vertices, where the terms 1-WL and color
refinement are often used interchangeably since they compute equivalent colorings. We show
how to adapt the result of Grebík and Rocha to k-WL or, in other words, how k-WL and its
characterizations generalize to graphons. In particular, we obtain characterizations in terms
of homomorphism densities from multigraphs of bounded treewidth and linear equations.
We give a simple example that parallel edges make a difference in the graphon case, which
means that the equivalence between 1-WL and color refinement is lost. We also show how to
define a variant of k-WL that corresponds to homomorphism densities from simple graphs
of bounded treewidth.

1 Introduction

The color refinement algorithm is usually used as an efficient heuristic in graph isomorphism
testing [12] even though it has more applications, e.g., in machine learning. It iteratively colors
the vertices of a (simple) graph, where initially all vertices get the same color. Then, in every
refinement round, two vertices v and w of the same color get assigned different colors if there is
some color c such that v and w have a different number of neighbors of color c. If these color
patterns computed for two graphs G and H do not match, G and H are said to be distinguished
by color refinement.

Indistinguishability by color refinement has various characterizations: A result of Dvořák
states two graphs G and H are not distinguished by color refinement if and only if the number of
homomorphisms hom(T, G) from T to G equals the correspondence number hom(T, H) from T
to H for every tree T [7], see also [5]. An older result due to Tinhofer [20, 19] states that G and
H are not distinguished by color refinement if and only if they are fractionally isomorphic, i.e.,
there is a doubly stochastic matrix X such that AX = XB, where A and B are the adjacency
matrices of G and H , respectively. A characterization that is more closely related to the color
refinement algorithm itself is given by stable partitions of the vertex set V (G) of a graph G, which
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are partitions where all vertices in the same class have the same number of neighbors in every
other class. The term equitable is also sometimes used for this but may not be confused with
equitable partitions from Szemerédi’s regularity lemma. The partition induced by the colors of
color refinement is the coarsest stable partition, and graphs G and H are fractionally isomorphic
if and only if their coarsest stable partitions have the same parameters, i.e., there is a bijection
between the partitions that preserves the size of every class C and the numbers of neighbors a
vertex in C has in some other class D [20]. This, in turn, is equivalent to there being some stable
partitions of G and H with the same parameters [18]. We collect all these characterizations
in Theorem 1. It is worth mentioning that fractional isomorphism can also be seen from the
perspective of logic; it corresponds to equivalence in the logic C2, the 2-variable fragment of
first-order logic with counting quantifiers [13]. This, however, does not play a role in this paper,
which is why we omit it.

Theorem 1 ([20, 19, 18, 7, 5]). Let G, H be graphs with adjacency matrices A, B, respectively.
The following are equivalent:

1. hom(T, G) = hom(T, H) for every tree T .

2. Color refinement does not distinguish G and H.

3. The coarsest stable partitions of V (G) and V (H) have the same parameters.

4. There is a doubly stochastic X such that AX = XB.

5. There are stable partitions of V (G) and V (H) with the same parameters.

The k-dimensional Weisfeiler-Leman algorithm (k-WL) is a variant of color refinement that
colors k-tuples of vertices instead of single vertices; here and also throughout the paper, k is an
integer with k ≥ 1. See [4] for an overview of the history of k-WL. Usually, no distinction is
made between 1-WL and color refinement as they, in some sense, compute equivalent colorings.
All of the previously described characterizations of color refinement generalize to k-WL: First
of all, k-WL does not distinguish graphs G and H if and only the number of homomorphisms
hom(F, G) from F to G is equal to the corresponding number hom(F, H) from F to H for every
graph F of treewidth at most k [7, 5]. The concept of fractional isomorphisms via non-negative
solutions to the following system Lk

iso(G, H) of linear equations, which has a variable Xπ for every
set π ⊆ V (G)×V (H) of size |π| ≤ k. Such a set π is called a partial isomorphism if the mapping
it induces is injective and preserves (non-)adjacency. The equivalence of k-WL to precisely this
system of linear equations is from [5], although it is already implicit in earlier work [13, 1, 11].

Lk
iso(G, H) :



















































∑

v∈V (G)

Xπ∪{(v,w)} = Xπ for every π ⊆ V (G) × V (H) of size

|π| ≤ k − 1 and every w ∈ V (H)
∑

w∈V (H)

Xπ∪{(v,w)} = Xπ for every π ⊆ V (G) × V (H) of size

|π| ≤ k − 1 and every v ∈ V (G)

X∅ = 1

Xπ = 0 for every π ⊆ V (G) × V (H) of size |π| ≤ k

that is not a partial isomorphism

Stable partitions of the vertex set V (G) of a graph G easily generalize to stable partitions of
V (G)k. The coloring computed by k-WL on G induces the coarsest stable partition of V (G)k and
two graphs G and H are not distinguished by k-WL if and only if the coarsest stable partitions
of V (G)k and V (H)k have the same parameters, which again is equivalent to there being some
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stable partitions with the same parameters. See, for example, [11], where this is implicitly treated.
Also note that equivalence in the logic C2 generalizes to equivalence in Ck+1, the k + 1-variable
fragment of first-order logic with counting quantifiers [4]. Let us state the generalization of
Theorem 1 to k-WL as Theorem 2.

Theorem 2 ([7, 5]). Let k ≥ 1 and G, H be graphs. The following are equivalent:

1. hom(F, G) = hom(F, H) for every graph of treewidth at most k.

2. k-WL does not distinguish G and H.

3. The coarsest k-stable partitions of V (G)k and V (H)k have the same parameters.

4. Lk+1
iso (G, H) has a non-negative real solution.

5. There are k-stable partitions of V (G)k and V (H)k with the same parameters.

Graphons emerged in the theory of graph limits as limit objects of sequences of dense graphs;
see the book of Lovász [16] for a detailed introduction to the theory of graph limits. Formally,
a graphon is a symmetric measurable function W : [0, 1] × [0, 1] → [0, 1], although it can be
quite useful to consider more general underlying spaces than the unit interval with the Lebesgue
measure. Grebík and Rocha recently generalized Theorem 1 to graphons [9]. A substantial
part of their work involves showing how to even state the characterizations of color refinement
that are found in Theorem 1 for graphons. Note that graphs and, more generally, (vertex- and
edge-)weighted graphs can be viewed as graphons by partitioning [0, 1] into one interval for each
vertex, cf. [16, Section 7.1]. This means that Theorem 1 and also a variant for weighted graphs
can in fact be restored from their result. In this paper, we show how to marry their result with
k-WL to obtain a variant of Theorem 2 for graphons. In the remainder of the introduction, we
get more formal with the goal of giving the reader a clear understanding of the results of this
paper without going into details too much. A reader interested in these details can then continue
with the main part of the paper. In Section 1.1, we first state and explain the result of Grebík
and Rocha, before we state and discuss our result and the structure of the main part of this
paper in Section 1.2.

1.1 Fractional Isomorphism of Graphons

Let us briefly give a formal definition of graphs, homomorphisms, and color refinement. A
(simple) graph is a pair G = (V, E), where V is a set of vertices and E ⊆

(

V
2

)

a set of edges. We
usually write V (G) := V and E(G) := E. A homomorphism from a graph F to a graph G is
a mapping h : V (F ) → V (G) such that uv ∈ E(F ) implies h(u)h(v) ∈ E(G). The number of
homomorphisms from F to G is denoted by hom(F, G), and t(F, G) := hom(F, G)/|V (G)||V (F )|

is the homomorphism density of F in G. Now, let us turn our attention to color refinement. The
initial coloring of the vertices of a graph G is obtained by letting crG,0(v) := 1 for every vertex
v ∈ V (G). Then, for every n ≥ 0, let

crG,n+1(v) := (crG,n(v), {{crG,n(w) | wv ∈ E(G)}})

for every v ∈ V (G). Here, {{·}} is used as the notion for a multiset. We say that color refinement
does not distinguish two graphs G and H if {{crG,n(v) | v ∈ V (G)}} = {{crH,n(v) | v ∈ V (H)}} for
every n ≥ 0.

Instead of the unit interval with the Lebesgue measure, we follow Grebík and Rocha, and
throughout the whole paper, let (X, B) denote a standard Borel space and µ a Borel probability
measure on X ; this has the advantage that we later can consider quotient spaces. We think of
(X, B, µ) as atom free, i.e., that there is no singleton set of positive measure, but do not formally
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require it. A kernel is a (B ⊗ B)-measurable map W : X × X → [0, 1], A symmetric kernel is
called a graphon. Grebík and Rocha have shown the following generalization of Theorem 1 to
graphons, whose characterizations we elaborate one by one.

Theorem 3 ([9]). Let U, W : X × X → [0, 1] be graphons. The following are equivalent:

1. t(T, U) = t(T, W ) for every tree T .

2. νU = νW .

3. W/C(W ) and U/C(U) are isomorphic.

4. There is a Markov operator S : L2(X, µ) → L2(X, µ) such that TU ◦ S = S ◦ TW .

5. There are U - and W -invariant µ-relatively complete sub-σ-algebras C and D, respectively,
such that UC and WD are weakly isomorphic.

For Characterization 2, the homomorphism density of a graph F in a graphon W : X × X →
[0, 1] is

t(F, W ) :=

∫

XV (F )

∏

ij∈E(F )

W (xi, xj) dµ⊗V (F )(x̄). (1)

Note that this coincides with the previous definition for graphs, i.e., when viewing a graph G as
a graphon WG we have t(F, G) = t(F, WG) [16, (7.2)].

Characterization 2 generalizes color refinement to graphons and requires more formal precision
than in the case of graphs. Grebík and Rocha first define the standard Borel space M of iterated
degree measures, which can be seen as the space of colors used by color refinement; Its elements
are sequences α = (α0, α1, α2, . . . ) of colors after 0, 1, 2, . . . refinement rounds. Then, for a
graphon W : X × X → [0, 1], they define the measurable function crW : X → M mapping every
x ∈ X to such a sequence (α0, α1, α2, . . . ). Then, the distribution on iterated degree measures
(DIDM) νW defined by νW (A) := µ(cr−1

W (A)) for every A ∈ B(M), i.e., as the push-forward of µ
via crW , is a probability measure on the space M. Note the similarity between Characterization
2 and color refinement not distinguishing two graphs: The multisets used in the definition of
color refinement indistinguishability can be seen as maps mapping a color to a natural number
stating how often it occurs in the graph. Intuitively, a DIDM does the same for a set of colors
and a number in [0, 1].

Characterization 3 generalizes the coarsest stable partitions of the vertex set V (G) of a
graph G to the minimum W -invariant µ-relatively complete sub-σ-algebra CW for a graphon
W : X × X → [0, 1]. Let us break down this term bit by bit, starting with µ-relatively complete
sub-σ-algebras of B. Let L2(X, µ) := L2(X, B, µ) denote the Hilbert space of all measurable real-
valued functions on X with ‖f‖2 < ∞ modulo equality µ-almost everywhere. For a sub-σ-algebra
C of B, we want to consider the subspace of all C-measurable functions of L2(X, C, µ). To make
this statement formally precise, a sub-σ-algebra C ⊆ B of B is called µ-relatively complete if Z ∈ C
for all Z ∈ B, Z0 ∈ C with µ(Z△Z0) = 0. The set of all µ-relatively complete sub-σ-algebras
of B is denoted by Θ(B, µ). As an example, the smallest µ-relatively complete sub-σ-algebra
that includes {∅, X} corresponds to the trivial partition of the vertex set of a graph. A kernel
W : X × X → [0, 1] defines the kernel operator TW : L2(X, µ) → L2(X, µ) by setting

(TW f)(x) :=

∫

X

W (x, y)f(y) dµ(y)

for every f ∈ L2(X, µ) and every x ∈ X . It is a well-defined Hilbert-Schmidt operator[16,
Section 7.5], and if W is a graphon, then TW is self-adjoint. In general, for an operator
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T : L2(X, µ) → L2(X, µ), a C ∈ Θ(B, µ) is called T -invariant if L2(X, C, µ) is T -invariant, i.e.,
T (L2(X, C, µ)) ⊆ L2(X, C, µ). Then, a C ∈ Θ(B, µ) is called W -invariant if it is TW -invariant.

Grebík and Rocha show that, for a graphon W : X × X → [0, 1], the minimum W -invariant
µ-relatively complete sub-σ-algebra CW of B can be obtained by iterative applications of TW

when starting from {∅, X}. From this, they define a quotient graphon W/CW . Formally, for
every C ∈ Θ(B, µ), there is a corresponding quotient space, i.e., a standard Borel space (X/C, C′)
with a Borel probability measure µ/C on X/C, and W/CW is defined on the space X/C × X/C.
Then, saying that two such quotient graphons are isomorphic corresponds to saying that two
coarsest stable partitions have the same parameters. As a side note, in their proof, Grebík and
Rocha show that every DIDM ν defines a kernel M×M → [0, 1]. They show that, for a graphon
W : X × X → [0, 1] and its DIDM νW , this kernel on M × M is actually isomorphic to W/CW .
Intuitively, we can view this as a canonical representation of W on the space of all colors.

Characterization 5 is similar to Characterization 3. Just as the coarsest stable partitions
of the vertex sets of two graphs have the same parameters if and only if there are some stable
partitions with the same parameters, the minimum U - and W -invariant µ-relatively complete
sub-σ-algebras can be replaced by some U - and W -invariant µ-relatively complete sub-σ-algebras
C. Note that there is a subtle difference in the way Grebík and Rocha phrase Characterization 5
as they use the conditional expectation instead of the quotient spaces: WC is defined as the
conditional expectation of W given C ×C. Intuitively, WC is obtained by averaging over the color
classes of C, while W/C is obtained by averaging over the color classes of C and then identifying
all elements of a color class. Then, the resulting graphons are required to be weakly isomorphic,
where two graphons U, W : X × X → [0, 1] are called weakly isomorphic if t(F, U) = t(F, W )
for every simple graph F . This is the usual notion of isomorphism used for graphons, and two
graphons are weakly isomorphic if and only if they have cut distance zero, cf. [16, Section 10.7].

Finally, Characterization 4 generalizes fractional isomorphisms. For standard Borel spaces
(X, B) and (Y, D) with Borel probability measures µ and ν on X and Y , respectively, an operator
S : L2(X, µ) → L2(Y, ν) is called a Markov operator if Sf ≥ 0 for every f ∈ L2(X, µ) with
f ≥ 0, S1X = 1Y , and S∗1Y = 1X . Here, 1X and 1Y denote the all-one functions on X
and Y , respectively, and S∗ denotes the Hilbert adjoint of S, which is the unique operator
S∗ : L2(Y, ν) → L2(X, µ) satisfying 〈Sf, g〉 = 〈f, S∗g〉 for all f ∈ L2(X, µ), g ∈ L2(Y, ν). Markov
operators are simply the infinite-dimensional analogue to doubly stochastic matrices. With this
in mind, the connection of Characterization 4 to the graph case is obvious.

1.2 Weisfeiler-Leman Indistinguishability of Graphons

Let us first state the definition of k-WL, which is important as there actually are two non-
equivalent definitions to be found in the literature. Following Grohe [10], we refer to these
distinct definitions as k-WL and oblivious k-WL. Both k-WL and oblivious k-WL operate on
k-tuples of vertices, but in terms of expressive power, k-WL is equivalent to oblivious k + 1-WL
in the sense that they distinguish the same graphs. Hence, from an efficiency point of view,
k-WL is more interesting as it needs less memory to achieve the same expressive power, but in
our case, oblivious k-WL is more interesting as the connections to other characterizations are
much cleaner, cf. the mismatch between the k in k-WL and the k + 1 in the system Lk+1

iso (G, H)
of linear equations in Theorem 2 or the k + 1 in the logic Ck+1. The reason that the k in k-WL
matches the k in “treewidth k” is just that one is subtracted from the bag width in the definition
of treewidth.

Let us start with k-WL. Let G be a graph. The atomic type atpG(v̄) of a tuple v̄ =
(v1, . . . , vk) ∈ V (G)k of vertices of G is the k × k-matrix A with entries Aij = 2 if vi = vj ,

Aij = 1 if vivj ∈ E(G), and Aij = 0 otherwise. Then, let wlkG,0(v̄) := atpG(v̄) and, for every
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n ≥ 0, define

wlkG,n+1(v̄) :=
(

wlkG,n+1(v̄), {{(atpG(v̄w),
(

wlkG,n+1(v̄[w/j])
)

j∈[k]
) | w ∈ V (G)}}

)

(2)

for every v̄ ∈ V (G)k. Here, v̄[w/j] denotes the k-tuple obtained from v̄ by replacing the jth
component by w; the k-tuple v̄[w/j] is usually called a j-neighbor of v̄. We say that k-WL does
not distinguish graphs G and H if {{wlkG,n(v̄) | v̄ ∈ V (G)k}} = {{wlkH,n(v̄) | v̄ ∈ V (H)k}} for every
n ≥ 0. The colorings computed by 1-WL and color refinement induce the same partition and, in
particular, 1-WL distinguishes two graphs if and only if color refinement does [10, Proposition
V.4]. For oblivious k-WL, we also let owlkG,0(v̄) := atpG(v̄), but then for every n ≥ 0, we define

owlkG,n+1(v̄) :=
(

owlkG,n+1(v̄),
(

{{owlkG,n+1(v̄[w/j] | w ∈ V (G))}}
)

j∈[k]

)

(3)

for every v̄ ∈ V (G)k. We say that oblivious k-WL does not distinguish graphs G and H if
{{owlkG,n(v̄) | v̄ ∈ V (G)k}} = {{owlkH,n(v̄) | v̄ ∈ V (H)k}} for every n ≥ 0. As mentioned before,
k-WL is equivalent to oblivious k+1-WL in the sense that two graphs are distinguished by k-WL
if and only if they are distinguished by oblivious k + 1-WL [10, Corollary V.7]. This equivalence
becomes clearer when diving into the details of this paper: intuitively, given a tree decomposition
of width k, we may dissect it into parts at bags of size k or at bags of size k + 1.

Let us state our main theorem, Theorem 4, before explaining its characterizations one by
one. As mentioned before, it is based on oblivious k-WL, so there is a mismatch by one when
comparing it to Theorem 2.

Theorem 4. Let k ≥ 1 and U, W : X × X → [0, 1] be graphons. The following are equivalent:

1. t(F, U) = t(F, W ) for every multigraph of treewidth at most k − 1.

2. νk
U = νk

W .

3. There is a (permutation-inv.) Markov iso. R : L2(Xk/Ck
W , µ⊗k/Ck

W ) → L2(Xk/Ck
U , µ⊗k/Ck

U )
such that T

k
U /Ck

U ◦ R = R ◦ T
k
W /Ck

W .

4. There is a (permutation-inv.) Markov operator S : L2(Xk, µ⊗k) → L2(Xk, µ⊗k) such that
T

k
U ◦ S = S ◦ T

k
W .

5. There are µ⊗k-relatively complete sub-σ-algebras C, D of B⊗k that are U -invariant and W -
invariant, respectively, and a Markov iso. R : L2(Xk/D, µ⊗k/D) → L2(Xk/C, µ⊗k/C) such
that T

k
U /C ◦ R = R ◦ T

k
W /D.

First, let us examine Characterization 1, which uses multigraph homomorphism densities. A
multigraph G = (V, E) is defined like a graph with the exception that E is a multiset of edges
from

(

V
2

)

. For a graphon W : X × X → [0, 1], the definition (1) of the homomorphism density
t(F, W ) of F in W also makes sense for a multigraph F . We define the treewidth of a multigraph
analogously to the case of simple graphs, i.e., we do not take the edge multiplicities into account.
Note that, since the class of multigraphs of treewidth k is closed under taking disjoint unions,
we could always assume the graphs in Characterization 1 to be connected. For example, in the
case k = 2, it can also be phrased in terms of trees with parallel edges.

Two graphons U, W are weakly isomorphic, i.e., t(F, U) = t(F, W ) for every graph F , if and
only if t(F, U) = t(F, W ) for every multigraph F [16, Corollary 10.36]. When restricting the
treewidth, however, parallel edges do make a difference, cf. Figure 1: These weighted graphs
have the same tree homomorphism densities as the coarsest stable partition of the graph on
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2
3

2
3

2
3

2
3

2
3

Figure 1: Two fractionally isomorphic weighted graphs that are distinguished by oblivious 2-WL.

the left is the trivial partition, and the graph on the right is obtained by averaging the edge
weights, cf. Characterization 5 of Theorem 3. However, already the multigraph C2, i.e., two
vertices connected by two parallel edges, distinguishes these weighted graphs, i.e., graphons that
are not distinguished by oblivious 2-WL (in the sense of Theorem 4) are also not distinguished
by color refinement (in the sense of Theorem 3), but the converse does not hold. Hence, while
the difference between color refinement and 1-WL (corresponding to oblivious 2-WL) usually is
neglected in the case of graphs, it is important to make a distinction in the more general case
of graphons. Another way to phrase this is that color refinement and oblivious 2-WL are two
different notions that coincide on the special case of simple graphs: if F is a multigraph and G
a simple graph, then t(F, G) is unaffected if we merge parallel edges of F into single edges since
they have to be mapped to the same edges of G anyway. That is, just as Theorem 1 can be
recovered from Theorem 3, Theorem 2 can be recovered from Theorem 4.

Characterization 2 generalizes oblivious k-WL. First, we define the the standard Borel space
M

k, which again can be seen as the space of colors used by oblivious k-WL. Also in this case, its
elements α = (α0, α1, α2, . . . ) are sequences of colors after 0, 1, 2, . . . refinement rounds. Based on
the definition (3) of oblivious k-WL for graphs, we define the measurable function ikW : Xk → M

k

mapping an x̄ ∈ Xk to a sequence (α0, α1, α2, . . . ). In particular, α0 corresponds to the “atomic
type” of x̄, which also further explains why oblivious 2-WL distinguishes the weighted graphs in
Figure 1: For the weighted graph on the right, α0 always contains the edge weight of 2

3 which is
nowhere to be found in the graph on the left. Hence, already the initial coloring distinguishes
them. To continue, we then use ikW to define the k-WL distribution (k-WLD) νk

W as the push-
forward of µ⊗k via ikW , a probability measure on Xk which again corresponds to the multiset of
colors computed by oblivious k-WL.

The operator TW : L2(X, µ) → L2(X, µ) of a graphon W : X × X → [0, 1] plays an important
role throughout Theorem 3, although it only becomes really apparent in the characterization via
Markov operators. In Theorem 4, we replace this single operator by a whole family T

k
W of oper-

ators on the product space L2(Xk, µ⊗k) := L2(Xk, B⊗k, µ⊗k). We define a set Fk of bi-labeled
graphs that serve as building blocks to construct precisely the graphs of treewidth at most k − 1,
and every such bi-labeled graph F ∈ Fk together with a graphon W : X × X → [0, 1] defines the
graphon operator TF →W . Then, Tk

W := (TF →W )F ∈Fk denotes the family of all these operators.
Characterization 4 states that there is a Markov operator on the product space L2(Xk, µ⊗k) that
“commutes” with all operators in the families T

k
U and T

k
W simultaneously. Moreover, this opera-

tor can be assumed to be permutation-invariant, i.e., reordering the k components of Xk yields
the same operator, an assumption that is implicitly made in the system Lk

iso of linear equations
as its variables are indexed by sets. Permutation invariance can be left out without changing
the equivalence to the other characterizations, i.e., if there is a (not necessarily permutation-
invariant) Markov operator S satisfying Characterization 4, then there also is a permutation
invariant one.

Characterizations 3 and 5 generalize (coarsest) stable partitions of V (G)k. For a graphon
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W : X × X → [0, 1], a C ∈ Θ(B⊗k, µ⊗k) is called W -invariant if it is T
k
W -invariant, i.e., T -

invariant for every operator T in the family T
k
W . In the case k = 1, this conflicts with the

definition of Grebík and Rocha, but it will always be clear from the context what we mean.
We show that the minimum W -invariant µ⊗k-relatively complete sub-σ-algebra Ck

W of B⊗k can
be obtained by iterative applications of the operators in T

k
W . Then, Characterization 3 states

that there is a Markov isomorphism from one quotient space to the other that “commutes”
with all operators in the families of quotient operators T

k
W /Ck

W and T
k
U /Ck

U simultaneously;
intuitively, for a C ∈ Θ(B⊗k, µ⊗k) and an operator T on L2(X, µ), its quotient operator T/C on
L2(X/C, µ/C) is defined by going from L2(X/C, µ/C) to L2(X, µ), applying T , and then going
back to L2(X/C, µ/C). A Markov operator is called a Markov embedding if it is an isometry, and
a Markov isomorphism is a surjective Markov embedding. There is a one-to-one correspondence
between Markov isomorphisms and measure-preserving almost bijections, cf. [9, Theorem E.3],
but for the ease of presentation, we stick to Markov isomorphisms.

Note that, in contrast to Theorem 3, there are no quotient graphons involved in Theorem 4,
just quotient operators. The reason for this is that, unlike TW , the operators in the family
T

k
W are not integral operators. For our proof, this also means that we do not have a canonical

representation of a graphon W : X × X → [0, 1] as a graphon M
k × M

k → [0, 1] (or as multiple
such graphons). Instead, we define canonical representations of the operators in T

k
W on the space

L2(Mk, νk
W ) by hand.

In Section 2, the preliminaries, we collect some more definitions and basics we need. Section 3
introduces bi-labeled graphs and graphon operators, which are the key to our main theorem. In
particular, we define the set Fk of bi-labeled graphs from which we are able to construct precisely
the multigraphs of treewidth k. For a graphon W , this set of bi-labeled graphs defines the family
of graphon operators T

k
W that takes the place of the usual integral operator TW . Section 4 is

the main section of this paper and closely follows Grebík and Rocha [9] in the definition of
all notions in and the proof of Theorem 4. In Section 5, we show that it is also possible to
define a variant of k-WL, which we call simple k-WL, that leads to a variant of Theorem 4
where the characterization by multigraph homomorphism densities is replaced by simple graph
homomorphism densities. This variant of Theorem 4, however, is less elegant and has an artificial
touch to it. Most of the proofs are left out as they are mostly analogous to the ones in Section 4.
We draw some conclusions and discuss some open problems in Section 6.

2 Preliminaries

2.1 Product Spaces

Recall that, throughout the whole paper, (X, B) denotes a standard Borel space, i.e., B is the
Borel σ-algebra of a Polish space, and µ a Borel probability measure on X . We often consider the
space (Xk, B⊗k, µ⊗k) with the product σ-algebra B⊗k of B and the product measure µ⊗k of µ
for k ≥ 1. The product of a countable family of standard Borel spaces is again a standard Borel
space [15, Section 12.B]. Moreover, for a countable family of standard Borel spaces, its product
σ-algebra is actually equal to the Borel σ-algebra of the product topology of the underlying
Polish spaces as Polish spaces are second countable [15, Section 11.A]. Hence, the product
space (Xk, B⊗k) is again a standard Borel space and B⊗k is equal to the Borel σ-algebra of the
product topology of the Polish space underlying (X, B). For simplicity, we identify the products
X × X × X and (X × X) × X in the usual way. Then, also B ⊗ B ⊗ B = (B ⊗ B) ⊗ B and
µ ⊗ µ ⊗ µ = (µ ⊗ µ) ⊗ µ [2, Section 18]. We treat higher-order products in the same way.

We often use the Tonelli-Fubini theorem, cf. [6, Theorem 4.4.5] and also [2, Theorem 18.3],
which states that, for σ-finite measure spaces (X, S, µ) and (Y, T , ν) and a non-negative function
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f on X × Y that is measurable for S ⊗ T , we have

∫

X×Y

f d(µ × ν) =

∫

X

∫

Y

f(x, y) dν(y) dµ(x) =

∫

Y

∫

X

f(x, y) dµ(x) dν(y).

In particular, the functions x 7→
∫

Y
f(x, y) dν(y) and y 7→

∫

X
f(x, y) dµ(x) are measurable for

S and T , respectively. If f is not necessarily non-negative but integrable with respect to µ × ν,
then the same equations hold and the aforementioned functions are measurable on sets X ′ and
Y ′ with µ(X \ X ′) = 0 and ν(Y \ Y ′) = 0, respectively.

2.2 Markov Operators

In general, for a measure space (X, S, µ) and 1 ≤ p ≤ ∞, the space Lp(X, µ) := Lp(X, S, µ)
consists of all measurable real-valued functions on X with ‖f‖p < ∞, and Lp(X, µ) := Lp(X, S, µ)
is obtained from Lp(X, µ) by identifying functions that are equal µ-almost everywhere. The space
L2(X, µ) plays a special role among these spaces as it is a Hilbert space with the inner product
given by 〈f, g〉 :=

∫

X
fg dµ. Besides L2(X, µ), the space L∞(X, µ) also plays an important role

in this paper. Note that, if µ is a probability measure, then we have ‖f‖2 ≤ ‖f‖∞ and, in
particular, the inclusion L∞(X, µ) ⊆ L2(X, µ).

Given two normed linear spaces (X, ‖·‖) and (Y, |·|), a function T : X → Y is called a (bounded
linear) operator if it is Lipschitz and linear. If (X, ‖·‖) = (Y, |·|), then we just say that T is an
operator on X. The operator norm of T is given by ‖T ‖ := sup{|T (x)| | ‖x‖≤ 1} < ∞, and
if ‖T ‖ ≤ 1, then T is called a contraction. For probability spaces (X, S, µ) and (Y, T , ν) and
an operator T : L2(X, µ) → L2(Y, ν), we call T an L∞-contraction if its restriction to L∞(X, µ)
yields a well-defined contraction L∞(X, µ) → L∞(Y, ν). To clearly distinguish this from T being
a contraction L2(X, µ) → L2(Y, ν), we sometimes use the term L2-contraction for this. Observe
that the composition of two contractions yields a contraction, and in particular, the composition
of L2- and L∞- contractions yields a L2- and a L∞-contraction, respectively.

For measure spaces (X, S, µ) and (Y, T , ν), the Hilbert adjoint of an operator T : L2(X, µ) →
L2(Y, ν), is the unique operator T ∗ : L2(Y, ν) → L2(X, µ) satisfying 〈Sf, g〉 = 〈f, S∗g〉 for all
f ∈ L2(X, µ), g ∈ L2(Y, ν). For standard Borel spaces (X, B) and (Y, D) with Borel probability
measures µ and ν on X and Y , respectively, an operator S : L2(X, µ) → L2(Y, ν) is called a
Markov operator if Sf ≥ 0 for every f ∈ L2(X, µ) with f ≥ 0, S1X = 1Y , and S∗1Y =
1X . Markov operators are both L2- and L∞-contractions [8, Theorem 13.2 b)]. A Markov
operator is called a Markov embedding if it is an isometry. For example, the Koopman operator
Tϕ : L2(X, µ) → L2(X, µ) of a measure-preserving measurable map ϕ : X → X , defined by
Tϕf := f ◦ ϕ for every f ∈ L2(X, µ), is a Markov embedding [8, Example 13.1]. A Markov
isomorphism is a surjective Markov embedding. Note that every Markov isomorphism S satisfies
S−1 = S∗ [8, Corollary 13.14]. Moreover, there is a one-to-one correspondence between Markov
isomorphisms and measure-preserving almost bijections, cf. [9, Theorem E.3]. See [8] for a
thorough treatment of Markov operators. There, the results are stated for complex Lp-spaces,
but this usually does not make a difference by the positivity of Markov operators, cf. [8, Lemma
7.5].

2.3 Quotient Spaces

Recall that a sub-σ-algebra C ⊆ B of B is called µ-relatively complete if Z ∈ C for all Z ∈
B, Z0 ∈ C with µ(Z△Z0) = 0. Note that requiring Z ∈ C for every Z ∈ B with µ(Z) = 0
instead would yield an equivalent definition. The set of all µ-relatively complete sub-σ-algebras
of B is denoted by Θ(B, µ) and clearly includes B itself. For a non-empty Φ ⊆ Θ(B, µ), we
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have
⋂

Φ :=
⋂

C∈Φ C ∈ Θ(B, µ) [9, Claim 5.4]. Hence, for a set X ⊆ B, there is a smallest
µ-relatively complete sub-σ-algebra including X , which we denote by 〈X 〉. Note that 〈C〉 =
{A△Z | A ∈ C, Z ∈ B with µ(Z) = 0} for a sub-σ-algebra C ⊆ B. Given C ∈ Θ(B, µ), we let
L2(X, C, µ) ⊆ L2(X, µ) denote the subset of all functions that are C-measurable. It is a standard
fact that, for C ∈ Θ(B, µ), the linear hull of {1A}A∈C is dense in L2(X, C, µ).

Claim 5 (Conditional Expectation, [2, Section 34]). Let C ∈ Θ(B, µ). Then, L2(X, C, µ) is a
closed linear subspace of L2(X, µ) and E(− | C) : L2(X, µ) → L2(X, µ) is a self-adjoint operator
such that

1. E(− | C) is the orthogonal projection onto L2(X, C, µ),

2.
∫

A f dµ =
∫

A E(f | C) dµ for every A ∈ C and every f ∈ L2(X, µ), and

3.
∫

X f · E(g | C) dµ =
∫

X E(f | C) · g dµ for all f, g ∈ L2(X, µ).

Let k ≥ 1 and consider L2(Xk, µ⊗k). Every permutation π : [k] → [k] induces a measure-
preserving measurable map π : Xk → Xk by setting π(x1, . . . , xk) := (xπ(1), . . . , xπ(k)) for all

x1, . . . , xk ∈ X , which allows us to consider its Koopman operator Tπ on L2(Xk, µ⊗k). Clearly,
the adjoint of Tπ is given by Tπ−1 . We call a C ∈ Θ(B⊗k, µ⊗k) permutation invariant if C is
Tπ-invariant for every permutation π : [k] → [k]. It is easy to see that this is the case if and only
if π(C) ⊆ C for every permutation π : [k] → [k], which again is equivalent to π(C) = C for every
permutation π : [k] → [k]. A trivial example of such a permutation-invariant sub-σ-algebra is
B⊗k itself.

Given a measure space (X, S, µ), a measurable space (Y, T ), and a measurable function
g : X → Y , the push-forward g∗µ is the measure on Y defined by g∗µ(A) := µ(g−1(A)) for every
A ∈ T . For a measurable function f : Y → [−∞, ∞], we then have

∫

Y f d(g∗µ) =
∫

X f ◦ g dµ [6,
Theorem 4.1.11]. The following claim states the existence of quotient spaces.

Claim 6 ([9, Theorem E.1]). Let C ∈ Θ(B, µ). There is a standard Borel space (X/C, C′), a Borel
probability measure µ/C on X/C, a measurable surjection qC : X → X/C, and Markov operators
SC : L2(X, µ) → L2(X/C, µ/C) and IC : L2(X/C, µ/C) → L2(X, µ) such that

1. IC is the Koopman operator of qC,

2. µ/C is the push-forward of µ via qC,

3. S∗
C = IC ,

4. SC ◦ E(− | C) = SC,

5. IC is an isometry onto L2(X, C, µ),

6. IC ◦ SC = E(− | C), and

7. SC ◦ IC is the identity on L2(X/C, µ/C).

Claim 7 essentially states that the quotient space (X/C, C′) is unique up to sets of measure
zero.

Claim 7 ([9, Corollary E.2]). Let (X, B) and (Y, D) be standard Borel spaces. Let µ be a
Borel probability measure on X and f : X → Y be a measurable function. Let C ∈ Θ(B, µ)
be the minimum µ-relatively complete sub-σ-algebra that makes f measurable. Then, for every
g0 ∈ L2(X, C, µ), there is a measurable map g1 : Y → R such that g0(x) = (g1 ◦f)(x) for µ-almost
every x ∈ X.

For C, D ∈ Θ(B⊗k, µ⊗k), an operator T : L2(Xk/C, µ⊗k/C) → L2(Xk/D, µ⊗k/D) is called
permutation invariant if Tπ/D ◦T = T ◦Tπ/C for every permutation π : [k] → [k]. For the special
case C = D = B⊗k, this means that an operator T on L2(Xk, µ⊗k) is permutation invariant
if Tπ ◦ T = T ◦ Tπ for every permutation π : [k] → [k]. Of course, this notion depends on the
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underlying space (X, B, µ), i.e., if we consider (Xk, B⊗k, µ⊗k) as the underlying space, then all
these operators mentioned before are trivially permutation invariant. However, since the intended
underlying space is always clear from the context, we just use the term permutation invariant.
It is not hard to prove that, if C ∈ Θ(B⊗k, µ⊗k) is permutation invariant, then so are SC and IC ,
i.e., Tπ/C ◦ SC = SC ◦ Tπ and Tπ ◦ IC = IC ◦ Tπ/C for every permutation π : [k] → [k].

2.4 Quotient Operators

For C ∈ Θ(B, µ) and an operator T : L2(X, µ) → L2(X, µ), we use the conditional expectation to
define the operators TC : L2(X, µ) → L2(X, µ) and T/C : L2(X/C, µ/C) → L2(X/C, µ/C) by

TC := E(− | C) ◦ T ◦ E(− | C) and T/C := SC ◦ T ◦ IC ,

respectively. These definitions reflect the same concept of a quotient operator via different
languages. The following lemma states some basic properties and shows how both definitions are
related.

Lemma 8. Let C ∈ Θ(B, µ) and T : L2(X, µ) → L2(X, µ) be an operator. Then,

1. (TC)∗ = (T ∗)C and (T/C)∗ = T ∗/C,

2. if T is self-adjoint, then so are TC, T/C,

3. IC ◦ T/C = TC ◦ IC ,

4. T/C ◦ SC = SC ◦ TC,

5. if C is T -invariant, then TC = T ◦E(− | C)
and IC ◦ T/C = T ◦ IC , and

6. if T is self-adjoint and C is T -invariant,
then T/C ◦ SC = SC ◦ T .

Proof. For 1, we have (TC)∗ = E(− | C)∗ ◦ T ∗ ◦ E(− | C)∗ = E(− | C) ◦ T ∗ ◦ E(− | C) = TC by
Claim 5 and (T/C)∗ = I∗

C ◦ T ∗ ◦ S∗
C = SC ◦ T ∗ ◦ IC = T ∗/C by 3 of Claim 6. This also immediately

yields 2. For 3, we have

IC ◦ T/C = IC ◦ SC ◦ T ◦ IC = E(− | C) ◦ T ◦ IC = E(− | C) ◦ T ◦ E(− | C) ◦ IC = TC ◦ IC

by 6 and 4 of Claim 6 and Claim 5. For 4, we have

T/C ◦ SC = SC ◦ T ◦ IC ◦ SC = SC ◦ E(− | C) ◦ T ◦ E(− | C) = SC ◦ TC

by 4 and 6 of Claim 6.
For 5, assume that C is T -invariant. By Claim 5, the expectation E(− | C) is the orthogonal

projection onto L2(X, C, µ). Hence, (T ◦ E(− | C))(L2(X, µ)) = T (L2(X, C, µ)) ⊆ L2(X, C, µ)
and, as E(− | C) is the identity on L2(X, C, µ), the first claim TC = T ◦ E(− | C) follows. Then,
continuing with 3, we get IC ◦ T/C = TC ◦ IC = T ◦ E(− | C) ◦ IC = T ◦ IC by 4 of Claim 6 and
Claim 5. Now, 6 follows from 2, 5, and 3 of Claim 6.

The following lemma is an application of the Mean Ergodic Theorem for Hilbert spaces to
Markov operators [8, Theorem 8.6, Example 13.24] and is essentially the essence of the proof of
the direction “ 4 =⇒ 5” of Theorem 3 by Grebík and Rocha [9].

Lemma 9. Let S : L2(X, µ) → L2(X, µ) be a Markov operator. There are C, D ∈ Θ(B, µ) with

1. L2(X, C, µ) = {f ∈ L2(X, µ) | (S ◦ S∗)f = f},

2. L2(X, D, µ) = {f ∈ L2(X, µ) | (S∗ ◦ S)f = f},

3. E(− | C) ◦ S = S ◦ E(− | D),

4. R := SC ◦ S ◦ ID : L2(X/D, µ/D) → L2(X/C, µ/C) is a Markov isomorphism, and

5. for all operators T1, T2 : L2(X, µ) → L2(X, µ) with T1 ◦ S = S ◦ T2 and S∗ ◦ T1 = T2 ◦ S∗,
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(a) C is T1-invariant, (b) D is T2-invariant, and (c) T1/C ◦ R = R ◦ T2/D.

Proof. The proof of the existence of C, D ∈ Θ(B, µ) satisfying 1 to 4 uses the Mean Ergodic
Theorem and is identical to the the proof of Theorem 1.2, (4) ⇒ (5), in [9]; we leave it out here.
To prove 5, let T1, T2 : L2(X, µ) → L2(X, µ) be bounded linear operators satisfying T1 ◦S = S◦T2

and S∗ ◦T1 = T2 ◦S∗. We get T1 ◦(S ◦S∗) = S ◦T2 ◦S∗ = (S ◦S∗)◦T1. Then, for f ∈ L2(X, C, µ),
we have (S ◦ S∗)f = f by 1 and get T1f = (T1 ◦ S ◦ S∗)f = (S ◦ S∗ ◦ T1)f = (S ◦ S∗)(T1f), which,
again by 1, implies T1f ∈ L2(X, C, µ). Therefore, C is T1-invariant, which proves 5a. Analogously,
we get that T2 ◦ (S∗ ◦ S) = (S∗ ◦ S) ◦ T2 and that D is T2 invariant, which proves 5b. Now, we
use 3 and the T2-invariance of D to obtain to obtain

T1/C ◦ R = SC ◦ T1 ◦ IC ◦ SC ◦ S ◦ ID = SC ◦ T1 ◦ E(− | C) ◦ S ◦ ID (Claim 6 6)

= SC ◦ T1 ◦ S ◦ E(− | D) ◦ ID (3)

= SC ◦ T1 ◦ S ◦ ID (Claim 6 3, 4)

= SC ◦ S ◦ T2 ◦ ID

= SC ◦ S ◦ ID ◦ T2/D (Lemma 8 5)

= R ◦ T2/D.

3 Graphon Operators

In this section, we present the key ingredient to Theorem 4. The key insight to go from color
refinement to k-WL is, for a graphon W , to replace the operator TW on L2(X, µ) by a family
T

k
W of operators on the product space L2(Xk, µ⊗k). This idea is somewhat already present in

the work of Grohe and Otto [11, Section 5.1], where they define a family of graphs and consider
a matrix X such that X is a fractional isomorphism between all these graphs simultaneously.
The graphon setting shows that the step of defining these graphs for the sake of them having
the right adjacency matrix is rather artificial; the operators we define are not integral operators
defined by a graphon.

The family T
k
W we define is closely related to oblivious k-WL and tree decompositions, or

more precisely, tree-decomposed graphs. In Section 3.1, we follow the approach of [17] of using
a set of bi-labeled graphs as building blocks that are then glued together to form larger graphs.
From our set Fk of bi-labeled graphs, we obtain precisely the multigraphs of treewidth at most
k − 1. In Section 3.2, we adapt the concept of homomorphism matrices of bi-labeled graphs
from [17] by defining the graphon operator of a bi-labeled graph and a graphon. The graphon
operators of our building blocks then yield the family T

k
W . We show how this family is related

to homomorphisms: on the level of bi-labeled graphs, we obtain all multigraphs of treewidth at
most k − 1, while we obtain all homomorphism functions of multigraphs of treewidth at most
k − 1 on the operator level.

3.1 Bi-Labeled Graphs

A bi-labeled graph G is a triple (G, a, b), where G is a multigraph and a ∈ V (G)k, b ∈ V (G)ℓ for
k, ℓ ≥ 0 are vectors of vertices such that both the entries of a and the entries of b are pairwise
distinct. When there is no fear of ambiguity, we sometimes just use the term graph to refer to a
bi-labeled graph. The multigraph G is called the underlying graph of G, and the vectors a and
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b are called the vectors of input and output vertices, respectively. That is, a bi-labeled graph is
a multigraph where additionally input and output labels are assigned to the vertices with every
vertex having at most one label of each type. Note that one usually does not require that every
vertex has at most one label of each type, cf. [17]., but this is needed to ensure that graphon
operators are well defined; the reason is that the diagonal in the product space (Xk, B⊗k, µ⊗k)
has measure zero (as long as our standard Borel space is atom free), a problem which one does
not face in the finite-dimensional case.

Two bi-labeled graphs G = (G, a, b) and G′ = (G′, a′, b′) are isomorphic if there is an
isomorphism ϕ : V (G) → V (G′) from G to G′ such that ϕ(a) = a′ and ϕ(b) = b′. For k, ℓ ≥ 0,
let Mk,ℓ denote the set of all (isomorphism types of) bi-labeled graphs with k input and ℓ
output vertices, and let Gk,ℓ ⊆ Mk,ℓ be the subset whose underlying graphs are simple. Let
M := ∪k,ℓ≥0Mk,ℓ and G := ∪k,ℓ≥0Gk,ℓ.

The transpose of a bi-labeled graph G = (G, a, b) ∈ Mk,ℓ is the bi-labeled graph G∗ :=
(G, b, a) ∈ Mℓ,k, and G is called symmetric if G∗ = G. The composition of two bi-labeled graphs
F1 = (F1, a1, b1) ∈ Mk,m and F2 = (F2, a2, b2) ∈ Mm,ℓ is the bi-labeled graph F1 ◦ F2 :=
(F, a1, b2) ∈ Mk,ℓ, where F is obtained from the disjoint union of F1 and F2 by identifying
vertices b1,i and a2,i for every i ∈ [m]. The Schur product of two bi-labeled graphs without
output labels F1 = (F1, a1, ()), F2 = (F2, a2, ()) ∈ Mk,0 is the bi-labeled graph F1 · F2 :=
(F, a1, ()) ∈ Mk,0, where F is obtained from the disjoint union of F1 and F2 by identifying
vertices a1,i and a2,i for every i ∈ [m]. One usually defines the Schur product for general bi-
labeled graphs in Mk,ℓ by also identifying output vertices, cf. [17]. This, however, can result
in vertices with multiple input or output labels, which we do not allow by our definition of a
bi-labeled graph as remarked earlier.

a1

b1

a2

b2

a3

b3

a1

b1

a2

b2

a3

b3

◦
a1

b1

a2

b2

a3

b3

=

Figure 2: Composition of bi-labeled graphs.

Treewidth is a graph parameter that measures how “tree-like” a graph is. Too see how the
concept is related to the just introduced bi-labeled graphs, let us first recall the usual definition
of treewidth via tree decompositions. Formally, a tree decomposition of a multigraph G is a pair
(T, β), where T is a tree and β : V (T ) → 2V (G) such that,

1. for every v ∈ V (G), the set {t | v ∈ β(t)} is non-empty and connected and,

2. for every uv ∈ E(G), there is a t ∈ V (T ) such that u, v ∈ β(t).

For every t ∈ V (T ), the set β(t) is called the bag at t. The width of the tree decomposition
(T, β) is max{|β(t)| | t ∈ V (T )} − 1. The treewidth tw(G) of a multigraph G is the minimum
of the widths of all tree decompositions of G. Note that treewidth is usually defined for simple
graphs and not for multigraphs, but for us, ignoring the edge multiplicities like in the previous
definition yields just the right notion for multigraphs. For the sake of completeness, note that path
decompositions and pathwidth of a multigraph G can be defined analogously by only considering
tree decomposition (T, β) where T is a path.

General tree decompositions are impractical to work with, and we rather use the following
restricted form of a tree decomposition: a nice tree decomposition of a multigraph G is a triple
(T, r, β) where (T, β) is a tree decomposition of G and r ∈ V (T ) a vertex of T , which we view as
the root of T , such that
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Figure 3: The bi-labeled graphs I3
2 , F 3
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Figure 4: The bi-labeled graph A3
12.

1. β(r) = ∅ and β(t) = ∅ for every leaf t of (T, r) and

2. every internal node s ∈ V (T ) of T is of one of the following three types:

Introduce node: s has exactly one child t with β(s) = β(t) ∪ v for some v ∈ V (G) \ β(t).

Forget node: s has exactly one child t with β(s) ∪ v = β(t) for some v ∈ V (G) \ β(s).

Join node: s has exactly two children t1, t2 with β(s) = β(t1) = β(t2).

The width of (T, r, β) is the width of (T, β). It is well-known that every graph G has a nice tree
decomposition of width tw(G).

Nice tree decompositions can be interpreted in terms of bi-labeled graphs: The vertices with
input labels (and also the vertices with output labels) form a bag. An introduce node adds a
fresh vertex with an input label. A forget node removes an input label from a vertex. A join
node glues the input vertices of a bi-labeled graph to the input vertices of another bi-labeled
graph. Hence, a join node is just the Schur product of the two bi-labeled graphs. The behavior of
introduce and forget nodes corresponds to the composition with certain bi-labeled graphs, which
we call introduce and forget graphs for this reason.

Definition 10 (Introduce, Forget, and Neighbor Graphs). Let k ≥ 1. For j ∈ [k], define

1. the j-introduce graph Ik
j := (([k],∅), (1, . . . , k), (1, . . . , j − 1, j + 1, . . . , k)) ∈ Gk,k−1,

2. the j-forget graph F k
j := Ik

j
∗

∈ Gk−1,k, and

3. the j-neighbor graph Nk
j := Ik

j ◦ F k
j ∈ Gk,k.

Then, let N k :=
{

Nk
1 , . . . , Nk

k

}

⊆ Gk,k be the set of all neighbor graphs.

Neighbor graphs correspond to a forget node that is immediately followed by an introduce
node for the very same label. Considering these neighbor graphs instead of individual introduce
and forget graphs has the advantage that our bi-labeled graphs always have both k input and k
output labels, which means that we can restrict ourselves to the space L2(Xk, µ⊗k) later on. For
our purposes, this is not a restriction as we can always add isolated vertices to a graph without
affecting its homomorphism density in a graphon. Moreover, it is also not a restriction that
the fresh vertex has to use the same label as the forgotten vertex since we may just inductively
re-label the whole bi-labeled graph.
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a1
. . .

ak

1k :

Figure 5: The bi-labeled graph 1k.

By viewing bi-labeled graphs constructed from neighbor graphs by composition and the Schur
product as tree decompositions, we are only halfway at our goal as we are missing a multigraph
that is being decomposed. We rather have to view these bi-labeled graphs as tree-decomposed
graphs, which we achieve by adding edges—but only between vertices in the same bag. For-
mally, we can add such an edge by the composition with an adjacency graph, a bi-labeled graph
consisting just of a single edge and some isolated vertices.

Definition 11 (Adjacency Graphs). Let k ≥ 1. For i 6= j ∈ [k], define the ij-adjacency graph

A
k
ij := (([k], {ij}), (1, . . . , k), (1, . . . , k)) ∈ Gk,k.

Then, let Ak :=
{

Ak
ij | i 6= j ∈ [k]

}

⊆ Gk,k be the set of all adjacency graphs.

Having defined the set N k of neighbor graphs and the set Ak of adjacency graphs, we can
formalize our view of tree-decomposed graphs as terms built from these bi-labeled graphs by
composition and the Schur product. For the sake of brevity, we define Fk := N k ∪ Ak, and for
simplicity, we additionally define the all-one graph

1k := (([k],∅), (1, . . . , k), ()) ∈ Gk,0.

for k ≥ 1. It introduces k fresh vertices with input labels and serves as the leaves of our tree
decompositions; this is much simpler than using k individual introduce graphs.

Definition 12. Let k ≥ 1. For a set F ⊆ Mk,k of bi-labeled graphs with k input and k output
labels, let 〈F〉◦,· denote the smallest set of terms such that

1. 1k ∈ 〈F〉◦,·,

2. F ◦ F ∈ 〈F〉◦,· for all F ∈ F , F ∈ 〈F〉◦,·, and

3. F1 · F2 ∈ 〈F〉◦,· for all F1,F2 ∈ 〈F〉◦,·.

Similarly, let 〈F〉◦ ⊆ 〈F〉◦,· be the smallest set of terms satisfying 1 and 2. For a term F ∈ 〈F〉◦,·,
let [[F]] denote the bi-labeled graph obtained from evaluating it.

Note that, for a set F ⊆ Mk,k and a term F ∈ 〈F〉◦,·, the bi-labeled graph [[F]] is well-defined
as we always have [[F]] ∈ Mk,0. For the specific set Fk of neighbor and adjacency graphs, a term
F ∈ 〈Fk〉◦,· is essentially a tree-decomposed graph, where the tree decomposition is rooted, the
multigraph being decomposed is the bi-labeled graph underlying [[F]], and the bag at the root is
given by the input vertices of [[F]]. As mentioned before, in terms of nice tree decompositions, the
Schur product corresponds to a join node, composition with a neighbor graph corresponds to an
introduce node followed by a forget node (when viewed from the root), and the composition with
an adjacency graph adds an edge to a bag. The height h(F) of a term F ∈ 〈Fk〉◦,· is inductively
defined by letting h(1k) := 0, h(N ◦F) := h(F) + 1 for all N ∈ N k, F ∈ 〈Fk〉◦,·, h(A ◦F) := h(F)
for all A ∈ Ak, F ∈ 〈Fk〉◦,·, and h(F1 · F2) := max {h(F1), h(F2)} for all F1,F2 ∈ 〈Fk〉◦,·. Then,
the height of F corresponds to the height of the tree of the tree decomposition when viewing F

as a tree-decomposed graph.
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Figure 6: The graph Pπ.

Lemma 13. The underlying graphs of the bi-labeled graphs obtained by evaluating the terms in
〈Fk〉◦ and 〈Fk〉◦,· are, up to isolated vertices, precisely the multigraphs of pathwidth and treewidth
at most k − 1, respectively.

Proof. It is easy to see that a term F ∈ 〈Fk〉◦,· encodes a tree decomposition of the underlying
graph of [[F]] of width k − 1. Conversely, a nice tree decomposition (T, r, β) of a graph G of
width at most k − 1 can be turned into a term F ∈ 〈Fk〉◦,· in a bottom-up fashion such that the
underlying graph of [[F]] is G with some additional isolated vertices: Note that a term fixes an
ordering of the vertices of the graph, which we have to keep in mind in the following. First, pad
the bag of every leaf to size k by adding k fresh isolated vertices. At an introduce node, add a
forget node below that removes one of the isolated vertices. At a forget node, add an introduce
node above adding a fresh isolated vertex. At a join node, re-order the vertices in one of the
terms such that the original vertices of G are at the same positions in both terms and, then,
identify every additional isolated vertex with the one at the same position in the other term.

Lemma 13 would have been simplified if we included more graphs in Fk: With individual
introduce and forget graphs, we would not have to deal with isolated vertices. However, the
price for this would be that we have to consider all product spaces L2(X1, µ⊗1), . . . , L2(Xk, µ⊗k)
instead of just L2(Xk, µ⊗k). Similarly, we could have included graphs in Fk that allow to re-label
input vertices; then we would not have to inductively re-label whole terms. But, also in this case
it pays off to keep the set Fk as simple as possible. Let us briefly define these permutation graphs
nevertheless since they come in handy when proving that the operators and sub-σ-algebras we
define are permutation invariant. Formally, for k ≥ 1 and a permutation π : [k] → [k], we define
the permutation graph

Pπ := (([k],∅), (1, . . . , k), (π(1), . . . , π(k)) ∈ Gk,k.

Moreover, for a tuple a ∈ V (F )k of vertices of a graph F , let π(a) := (aπ(1), . . . , aπ(k)). Then, for

a bi-labeled graph (F, a, b) ∈ Mk,ℓ, we have Pπ ◦ (F, a, b) = (F, π−1(a), b) for every permutation
π : [k] → [k] and (F, a, b) ◦ Pπ = (F, a, π(b)) for every permutation π : [ℓ] → [ℓ].

3.2 Graphon Operators

Graphon operators generalize the homomorphism density t(F, W ) of a multigraph F in a graphon
W : X × X → [0, 1] to bi-labeled graphs. To this end, let F = (F, a, b) ∈ Mk,ℓ be a bi-labeled
graph. To simplify notation, let t(F , W ) := t(F, W ) denote the homomorphism density of the
underlying graph of F in W , i.e., we ignore both the input and output labels. Now, let us first
take the input labels of F into account, that is, we view F as a multi-rooted multigraph and the
homomorphism density becomes a function by not fixing the vertices that have an input label.
Formally, the homomorphism function of F in W is the function fF →W : Xk → [0, 1] defined by

fF →W (xa1 , . . . , xak
) :=

∫

XV (F )\a

∏

ij∈E(F )

W (xi, xj) dµ⊗V (F )\a(x̄) (4)
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for all xa1 , . . . , xak
∈ X . The Tonelli-Fubini theorem immediately yields that

〈1Xk , fF →W 〉 = t(F , W ).

Then, when taking both input and output labels of F into account, we obtain an operator TF →W

instead of a function fF →W by, intuitively, “gluing” a given function f to the output vertices of
F to obtain the function TF →W f . The point of this definition is that an application of TF →W

to a homomorphism function fG→W yields the homomorphism function fF ◦G→W . Formally, the
F -operator of W is the mapping TF →W : L2(Xℓ, µ⊗ℓ) → L2(Xk, µ⊗k) defined by

(TF →W f)(xa1 , . . . , xak
) :=

∫

XV (F )\a

∏

ij∈E(F )

W (xi, xj) · f(xb1 , . . . , xbℓ
) dµ⊗V (F )\a(x̄) (5)

for every f ∈ L2(Xℓ, µ⊗ℓ) and all xa1 , . . . , xak
∈ X . Note that fF →W = TF →W 1Xℓ as an element

of L∞(Xk, µ⊗k) and, in particular,

〈1Xk , TF →W 1Xℓ〉 = t(F , W ).

The Tonelli-Fubini theorem and the Cauchy-Schwarz inequality allow to verify that Equation (5)
indeed yields a well-defined contraction. We stress that it is important that no vertex of F has
multiple input or output vertices.

Lemma 14. Let F ∈ Mk,ℓ be a bi-labeled graph and W : X × X → [0, 1] be a graphon. Then,
TF →W : L2(Xℓ, µ⊗ℓ) → L2(Xk, µ⊗k) is a well-defined L2- and L∞-contraction.

Proof. Let F = (F, a, b). First, note that x̄ 7→ W (xi, xj) for ij ∈ E(F ) is a function in
L∞(XV (F ), µ⊗V (F )): the measurability follows from the definition of the product σ-algebra and
the measurability of W . Then, since W is bounded by 1 by definition, we get that it is a function
in in L∞(XV (F ), µ⊗V (F )). More precisely, its ‖·‖∞-norm is at most ‖W ‖∞ since F does not have
loops, i.e., i 6= j. Now, consider an f ∈ L2(Xℓ, µ⊗ℓ). Then, x̄ 7→ f(xb1 , . . . , xbℓ

) is a function
in L2(XV (F ), µ⊗V (F )): Again, the measurability of these functions follows from the definition of
the product σ-algebra. Then, by the Tonelli-Fubini theorem, we get that the ‖·‖2-norm of this
function function is just ‖f‖2, which means that it is in L2(XV (F ), µ⊗V (F )). Note that, at this
point, it is important that the entries of b are pairwise distinct.

Define the function g on XV (F ) by

g(x̄) :=
∏

ij∈E(F )

W (xi, xj) · f(xb1 , . . . , xbℓ
)

for every x̄ ∈ XV (F ). By the previous considerations, g ∈ L2(XV (F ), µ⊗V (F )) with

‖g‖2 ≤ ‖W ‖e(F )
∞ · ‖f‖2 < ∞.

Then, the function being integrated in (5), which is obtained from g by fixing xa1 , . . . , xak
∈ X ,

is also measurable (see also [2, Theorem 18.1]). By the Tonelli-Fubini theorem, we have

∫

Xa

∫

XV (F )\a

g(x̄)2dµ⊗V (F )\a(x̄) dµ⊗a(x̄) =

∫

XV (F )

g(x̄)2dµ⊗V (F )(x̄)

≤ (‖W ‖e(F )
∞ · ‖f‖2)2 < ∞,
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where
∫

XV (F )\a

g(x̄)2dµ⊗V (F )\a(x̄)

is defined and finite for µ⊗a-almost all xa1 , . . . , xak
∈ X . Hence, for µ⊗a-almost all xa1 , . . . , xak

∈
X , we obtain a function in L2(XV (F )\a, µ⊗V (F )\a), to which the Cauchy-Schwarz inequality is
applicable, from g by fixing xa1 , . . . , xak

.
Again by the Tonelli-Fubini theorem and since the entries of a are pairwise distinct, TF →W f

is a measurable function defined almost everywhere, and we get

‖TF →W f‖2
2 =

∫

Xa

(

∫

XV (F )\a

g(x̄)dµ⊗V (F )\a(x̄)
)2

dµ⊗a(x̄)

≤

∫

Xa

∫

XV (F )\a

g(x̄)2dµ⊗V (F )\a(x̄) dµ⊗a(x̄) (Cauchy-Schwarz)

= ‖g‖2
2 ≤ (‖W ‖e(F )

∞ · ‖f‖2)2 < ∞.

Hence, TF →W f is a function in L2(Xk, µ⊗k). Now, for a function f ′ ∈ L2(Xℓ, µ⊗ℓ) such that
f and f ′ are equal µ⊗ℓ-almost everywhere, define g′ analogously to g. Then, g and g′ are equal
µ⊗V (F )-almost everywhere and, with the previous considerations, another application of the
Cauchy-Schwarz inequality and the Tonelli-Fubini theorem yields that

‖TF →W f − TF →W f ′‖2
2 ≤ ‖g − g′‖2

2 = 0.

Therefore, TF →W is a well-defined mapping L2(Xℓ, µ⊗ℓ) → L2(Xk, µ⊗k). Verifying the linearity
of TF →W is straight-forward, and as seen before, we have

‖TF →W f‖2 ≤ ‖W ‖e(F )
∞ · ‖f‖2,

i.e., TF →W is bounded since F and W are fixed.

Finally, note that if f ∈ L∞(Xℓ, µ⊗ℓ), then ‖g‖∞ ≤ ‖W ‖
e(F )
∞ · ‖f‖∞. From the previous

considerations, we may even assume that g is bounded by ‖W ‖
e(F )
∞ · ‖f‖∞. Then, the definition

of TF →W immediately yields that ‖TF →W f‖∞ ≤ ‖g‖∞ ≤ ‖W ‖
e(F )
∞ · ‖f‖∞.

Note that the definition of TF →W only depends on the isomorphism type of F , i.e., isomorphic
bi-labeled graphs F and F ′ define the same operator TF →W = TF ′→W . Moreover, if F does not
have any edges, then the definition of TF →W is independent of W and we just write TF . We just
have to be a bit careful since TF is still dependent on the standard Borel space (X, B) and the
Borel probability measure µ.

Example 15. 1. Define A := (([2], {12}), (1), (2)) ∈ G1,1 to be the edge with one input and
one output vertex. Let W : X × X → [0, 1] be a graphon. Then, TA→W = TW .

2. Let k ≥ 1 and π : [k] → [k] be a permutation. Then, TPπ is equal to the Koopman operator
Tπ of the measure-preserving measurable map Xk → Xk induced by π.

The operator TF →W was defined such that the application to a homomorphism function
fG→W yields the homomorphism function fF ◦G→W . The following lemma formalizes this by
stating that the composition of bi-labeled graphs corresponds to the composition of graphon
operators. Moreover, the analogous correspondence holds between the transpose and the Hilbert
adjoint and between the Schur product and the point-wise product.
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Lemma 16. Let W : X × X → [0, 1] be a graphon. Then,

1. TF ∗→W = T ∗
F →W for every F ∈ M,

2. if F ∈ M is symmetric, then TF →W is self-adjoint,

3. TF1◦F2→W = TF1→W ◦ TF2→W for all F1 ∈ Mk,m, F2 ∈ Mm,ℓ, k, ℓ, m ≥ 0, and

4. TF1·F2→W (c1 · c2) = (TF1→W c1) · (TF2→W c2) for all c1, c2 ∈ R, F1, F2 ∈ Mk,0, k ≥ 0.

Proof. 1: We have

〈TF →W f, g〉

=

∫

Xa

(

∫

XV (F )\a

∏

ij∈E(F )

W (xi, xj) · f(xb1 , . . . , xbℓ
) dµ⊗V (F )\a(x̄)

)

· g(xa1 , . . . , xak
) dµ⊗a(x̄)

=

∫

XV (F )

∏

ij∈E(F )

W (xi, xj) · f(xb1 , . . . , xbℓ
) · g(xa1 , . . . , xak

) dµ⊗V (F )(x̄)

=

∫

Xb

f(xb1 , . . . , xbℓ
) ·
(

∫

XV (F )\b

∏

ij∈E(F )

W (xi, xj) · g(xa1 , . . . , xak
) dµ⊗V (F )\b(x̄)

)

dµ⊗b(x̄)

= 〈f, TF ∗→W g〉

for all f ∈ L2(Xℓ, µ⊗ℓ), g ∈ L2(Xk, µ⊗k) by the Tonelli-Fubini theorem, which is applicable
since the product being integrated is a function in L1(XV (F ), µ⊗V (F )) by the Cauchy-Schwarz
inequality.

2: By 1, we have T ∗
F →W = TF ∗→W = TF →W .

3: Let F1 = (F1, a1, b1), F2 = (F2, a2, b2), and F1 ◦ F2 = (F, a1, b2). In the following, we
identify vertices b1,1, . . . , b1,m with a2,1, . . . , a2,m. Note that the sets V (F1)\a1 and V (F2)\b1 =
V (F2) \ a2 form a partition of V (F1 ◦ F2) \ a1. Then, we have

(TF1→W (TF2→W f))(xa1,1 , . . . , xa1,k
)

=

∫

XV (F1)\a1

∏

ij∈E(F1)

W (xi, xj) · (TF2→W f)(xb1,1 , . . . , xb1,m ) dµ⊗V (F1)\a1(x̄)

=

∫

XV (F1)\a1

(

∫

XV (F2)\a2

∏

ij∈E(F )

W (xi, xj) · f(xb2,1 , . . . , xb2,ℓ
) dµ⊗V (F2)\a2(x̄)

)

dµ⊗V (F1)\a1(x̄)

=

∫

XV (F )\a1

∏

ij∈E(F )

W (xi, xj) · f(xb2,1 , . . . , xb2,ℓ
) dµ⊗V (F )\a1(x̄)

for every f ∈ L2(Xℓ, µ⊗ℓ) and µ⊗a1 -almost all xa1,1 , . . . , xa1,k
∈ X by the Tonelli-Fubini theorem.
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4: We have

(TF1→W c1) · (TF2→W c2)(xa1,1 , . . . , xa1,k
)

=
(

∫

XV (F1)\a1

∏

ij∈E(F1)

W (xi, xj) · c1 dµ⊗V (F1)\a1(x̄)
)

·
(

∫

XV (F2)\a2

∏

ij∈E(F2)

W (xi, xj) · c2 dµ⊗V (F2)\a2(x̄)
)

=

∫

XV (F1)\a1

∫

XV (F2)\a2

∏

ij∈E(F1)

W (xi, xj) ·
∏

ij∈E(F2)

W (xi, xj) · c1 · c2 dµ⊗V (F2)\a2(x̄) dµ⊗V (F1)\a1(x̄)

=

∫

XV (F )\a1

∏

ij∈E(F )

W (xi, xj) · c1 · c2 dµ⊗V (F )\a1(x̄)

= TF1·F2→W (c1 · c2)

for all c1, c2 ∈ R and µ⊗a1 -almost all xa1,1 , . . . , xa1,k
∈ X by the Tonelli-Fubini theorem.

For a set F ⊆ Mk,k, every graphon W : X × X → [0, 1] induces a family of L∞-contractions
TF→W := (TF →W )F ∈F on L2(Xk, µ⊗k), cf. Lemma 14. When handling such families of op-
erators, we often use notation like TF→W ◦ T for an L∞-contraction T or TF→W /C for a
C ∈ Θ(B⊗k, µ⊗k) to denote the family obtained by applying the operation to every operator
in the family; for these examples, we obtain the families (TF →W ◦ T )F ∈F and (TF →W /C)F ∈F .
Moreover, if the graphs in F do not have any edges, we again abbreviate TF := (TF )F ∈F . Recall
that Fk is the set of all neighbor and adjacency graphs with k input and output labels. Let us
finally define the family

T
k
W := TFk→W ,

that replaces the single operator TW in Theorem 4, our characterization of oblivious k-WL.
Let us explore the connection between the family T

k
W and treewidth k−1 homomorphism func-

tions: Recall that the terms in Fk correspond to the tree-decomposed multigraphs of treewidth
at most k − 1 by Lemma 13. Given such a term F ∈ Fk, we can use the correspondence of bi-
labeled graph operations to their operator counterparts, cf. Lemma 16, to inductively compute
the homomorphism function f[[F]]→W of [[F]] in a graphon W using the operators Tk

W . Hence, the

operators in T
k
W yield all homomorphism functions of multigraphs of treewidth at most k − 1

in W . An important part of the proof of Theorem 4 consists of defining different families of
L∞-contractions indexed by Fk that we may use instead of Tk

W and still yield the same homo-
morphism functions. For example, we may replace T

k
W by the quotient operators T

k
W /C for an

appropriate C ∈ Θ(B⊗k, µ⊗k). This leads to the following definition.

Definition 17. Let k ≥ 1 and T = (TF )F ∈F be a family of L∞-contractions indexed by a set
F ⊆ Mk,k. For every term F ∈ 〈F〉◦,·, the homomorphism function of F in T is the function
fF→T ∈ L∞(X, µ) with ‖fF→T‖∞ ≤ 1 defined inductively by

1. fF→T := 1X for F = 1k,

2. fF→T := TF fF′→T for F = F ◦ F
′, where F ∈ F , and

3. fF→T := fF1→T · fF2→T for F = F1 · F2.

Moreover, the homomorphism density of F in T is defined as t(F,T) := 〈1X , fF→T〉.

As remarked above, given a term F ∈ Fk, we can use the correspondence of bi-labeled graph
operations to their operator counterparts to inductively compute the homomorphism function
f[[F]]→W and, in particular, the homomorphism density t([[F]], W ) of [[F]] in a graphon W using

the operators in T
k
W .
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Lemma 18. Let k ≥ 1. Let W : X × X → [0, 1] be a graphon. Then,

fF→Tk
W

= f[[F]]→W and t(F,Tk
W ) = t([[F]], W )

for every F ∈ 〈Fk〉◦,·.

Proof. We show that fF→Tk
W

= f[[F]]→W by induction on F ∈ 〈Fk〉◦,·. Then,

t(F,Tk
W ) = 〈1X , f

F→Tk
W

〉 = 〈1X , f[[F]]→W 〉 = t([[F]], W )

by definition of t(F,Tk
W ) and f[[F]]→W .

For the induction basis F = 1k, we have fF→Tk
W

= 1Xk by Definition 17 and fF→W =

T1k→W 1Xk = 1Xk by the definition of T1k→W . For the first case of the inductive step F = F ◦F′,
where F ∈ Fk and [[F′]] ∈ Mk,0, we have

fF→Tk
W

= TF →W fF′→Tk
W

= TF →W f[[F′]]→W = TF →W (T[[F′]]→W 1Xℓ)

= TF ◦[[F′]]→W 1Xℓ

= T[[F]]→W 1Xℓ

= f[[F]]→W

by Definition 17, the induction hypothesis, the definition of T[[F]]→W , and Lemma 16 3. For the

second case of the inductive step F = F1 · F2, where [[F]], [[F1]], [[F2]] ∈ Mk,0. Then, we have

f
F→Tk

W
= f

F1→Tk
W

· f
F2→Tk

W
= f[[F1]]→W · f[[F2]]→W = (T[[F1]]→W 1X0) · (T[[F2]]→W 1X0)

= T[[F1]]·[[F2]]→W 1X0

= T[[F]]→W 1X0

= f[[F]]→W

by Definition 17, the induction hypothesis, the definition of T[[F]]→W , and Lemma 16 4.

As remarked above, an essential ingredient of the proof of Theorem 4 is the definition of
families of L∞-contractions that replace T

k
W but still yield the same homomorphism functions.

The following lemma gives a sufficient condition under which this is possible. Recall that a
Markov embedding is a Markov operator that is an isometry. Unlike Markov operators in general,
Markov embeddings are compatible with point-wise products of functions, cf. [8, Theorem 13.9,
Remark 13.10]. This is crucial since we need the point-wise product of functions to get from
bounded pathwidth to bounded treewidth homomorphism functions.

Lemma 19. Let k ≥ 1. Let (X1, B1) and (X2, B2) be standard Borel spaces with Borel probability
measures µ1 and µ2 on X1 and X2, respectively. Let T1 and T2 be families of L∞-contractions
on L2(X1, µ1) and L2(X2, µ2), respectively, indexed by Fk. If I : L2(X2, µ2) → L2(X1, µ1) is a
Markov embedding such that T1 ◦ I = I ◦ T2, then

IfF→T2 = fF→T1 and t(F,T1) = t(F,T2)

for every F ∈ 〈Fk〉◦,·.

Proof. We show that IfF→T1 = fF→T2 by induction on F ∈ 〈Fk〉◦,·. Then, also

t(F,T1) = 〈1X1 , fF→T1〉 = 〈1X1 , IfF→T2〉 = 〈I∗1X2 , fF→T2〉 = 〈1X2 , fF→T2〉 = t(F,T2).

21



For the induction basis F = 1k, we have

IfF→T2 = I1X2 = 1X1 = fF→T1.

For F = F ◦ F
′, where F ∈ Fk, we have

IfF→T2 = (I ◦ (T2)F )fF′→T2 = ((T1)F ◦ I)fF′→T2 = (T1)F fF′→T1 = fF→T1

by the assumption and the induction hypothesis. Finally, for F = F1 · F2, we use that I is a
Markov embedding and, hence, satisfies I(f · g) = If · Ig for all f, g ∈ L∞(X2, µ2) [8, Theorem
13.9]. We have

IfF→T2 = I(fF1→T2 · fF2→T2 ) = IfF1→T2 · IfF2→T2 = fF1→T1 · fF2→T1 = fF→T1

by the induction hypothesis.

An important application of Lemma 19 is to replace the family T
k
W by the quotient operators

T
k
W /C for an appropriate C ∈ Θ(B⊗k, µ⊗k). To this end, we call a C ∈ Θ(B⊗k, µ⊗k) W -invariant

if C is invariant for every operator in the family T
k
W , i.e., C is TF →W -invariant for every F ∈ Fk.

Corollary 20. Let k ≥ 1. Let W : X × X → [0, 1] be a graphon and C ∈ Θ(B⊗k, µ⊗k) be
W -invariant. Then,

t(F, (Tk
W )C) = t(F,Tk

W/C) = t(F,Tk
W ) = t([[F]], W )

for every F ∈ 〈Fk〉◦,·.

Proof. The last equation is just Lemma 18. By Lemma 8 4 and 5, we have IC ◦Tk
W/C = (Tk

W )C ◦IC

and IC ◦Tk
W/C = T

k
W ◦ IC , where IC is a Markov embedding by Claim 6 5, Therefore, Lemma 19

yields the first two equations.

4 Weisfeiler-Leman and Graphons

In Section 4.1 to Section 4.5 we closely follow Grebík and Rocha [9] to prove Theorem 4 and
formally define all notions appearing in it. Many, but not all, of their proofs transfer without
too many changes. In Section 4.1, we start off by showing that the minimum W -invariant µ⊗k-
relatively complete sub-σ-algebra Ck

W of B⊗k for a graphon W can be obtained by iterative
applications of the operators T

k
W . Section 4.2 defines define the space M

k, i.e., the space of all
colors used by oblivious k-WL, and k-WL distributions, which generalize multisets of colors. In
Section 4.3, we define the function owlkW : Xk → M

k and the k-WL distribution νk
W for a graphon

W . In Section 4.4, we deviate from Grebík and Rocha [9]: They show that every distribution
on iterative degree measures ν defines a graphon on the space M; this graphon for νW is then
isomorphic to the quotient graphon W/CW . Since the operators in T

k
W are not integral operators,

we take the different route of showing that a k-WL distribution ν defines a family of operators
Tν on L2(Mk, ν); the family Tνk

W
then corresponds to T

k
W . These operators are essential in the

proof of Theorem 4 in Section 4.5.
Section 4.6 shows that one can combine all k-WL distributions ν1

W , ν2
W , . . . of a graphon W

into a single distribution to obtain a new characterization of weak isomorphism. Section 4.7
further explains how the characterization of Theorem 4 using Markov operators corresponds to
the system Lk

iso of linear equations.
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4.1 The Minimum W -Invariant Sub-σ-Algebra

For a family T = (Ti)i∈I of operators Ti : L2(X, µ) → L2(X, µ), where i ∈ I, and a C ∈ Θ(B, µ),
define

T(C) :=
⋂

{

D ∈ Θ(B, µ) | D ⊇ C and Ti(L
2(X, C, µ)) ⊆ L2(X, D, µ) for every i ∈ I

}

.

Then, T(C) ∈ Θ(B, µ), cf. Section 2.3, and C is called T-invariant if T(C) ⊆ C, which is equivalent
to requiring that C is Ti-invariant for every i ∈ I. Note that this operation is monotonous, i.e.,
for all C, D ∈ Θ(B, µ) with C ⊆ D, we have T(C) ⊆ T(D). By definition, the family T

k
W consists

of the two families TAk→W and TN k . The following definition uses these two individual families
to define the sub-σ-algebra Ck

W of B⊗k. Already at this point, one should notice the connection
to oblivious k-WL, cf. Section 1.2: the operators in TAk→W capture the concept of atomic types
while the operators in TN k correspond to the refinement rounds via j-neighbors used in oblivious
k-WL.

Definition 21. Let k ≥ 1 and W : X × X → [0, 1] be a graphon. Define Ck
W,n ∈ Θ(B⊗k, µ⊗k)

for every n ∈ N by setting Ck
W,0 := TAk→W (

〈{

∅, Xk
}〉

), Ck
W,n+1 := TN k (Ck

W,n) for every n ∈ N,

and Ck
W := Ck

W,∞ := 〈
⋃

n∈N
Ck

W,n〉.

Verifying that Ck
W is in fact the minimum W -invariant µ⊗k-relatively complete sub-σ-algebra

of B⊗k is mostly analogous to [9, Proposition 5.13]. A difference is given by the operators
in TAk→W , which are multiplicative, which implies that a single initial application guarantees
TAk→W -invariance for all subsequent sub-σ-algebras in the sequence. Moreover, we also verify
that Ck

W is permutation invariant, i.e., Ck
W is Tπ-invariant for every permutation π : [k] → [k].

Lemma 22. Let k ≥ 1 and W : X × X → [0, 1] be a graphon. Then,

1. Ck
W,0 =

〈
⋃

A∈Ak

{

(TA→W 1Xk)−1(A) | A ∈ B([0, 1])
}〉

,

2. Ck
W,0 is the minimum TAk→W -invariant µ⊗k-relatively complete sub-σ-algebra of B⊗k,

3. Ck
W,n+1 =

〈

Ck
W,n ∪

⋃

N∈N k

{

(TN 1A)−1(B) | A ∈ Ck
W,n, B ∈ B([0, 1])

}〉

for every n ∈ N,

4. Ck
W,n is TAk→W -invariant for every n ∈ N ∪ {∞},

5. Ck
W is the minimum W -invariant µ⊗k-relatively complete sub-σ-algebra of B⊗k, and

6. Ck
W,n is permutation invariant for every n ∈ N ∪ {∞}.

Proof. 1 and 2: Let C denote the minimum TAk→W -invariant µ⊗k-relatively complete sub-σ-
algebra of B⊗k and D denote the µ⊗k-relatively complete sub-σ-algebra of B⊗k from 1. We
prove that C = D = Ck

W,0. We start by proving C ⊆ D. Let A ∈ Ak. The function TA→W 1Xk

is D-measurable by definition of D. Hence, for a D-measurable function g ∈ L2(Xk, µ⊗k), their
product (TA→W 1Xk)·g = TA→W g is again D-measurable, where the equality holds since TA→W is
a multiplicative operator. That is, D is TAk→W -invariant, which yields C ⊆ D. For the inclusion
D ⊆ C on the other hand, 1Xk is trivially C-measurable and, since C is TAk→W -invariant, the
function TA→W 1Xk is C-measurable for every A ∈ Ak. Hence, D ⊆ C. We have established
C = D and it remains to prove that these are also equal to Ck

W,0. We have
〈{

∅, Xk
}〉

⊆ C and,

hence, Ck
W,0 = TAk→W (

〈{

∅, Xk
}〉

) ⊆ TAk→W (C) ⊆ C. On the other hand, for every A ∈ Ak,

the function TA→W 1Xk is Ck
W,0-measurable. Hence, D ⊆ Ck

W,0.
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3: Let D denote the µ⊗k-relatively complete sub-σ-algebra of B⊗k from 3, i.e., D is the min-
imum µ⊗k-relatively complete sub-σ-algebra of B⊗k that contains Ck

W,n and makes the maps

TN 1A for N ∈ N k and A ∈ Ck
W,n measurable. It is easy to see that D ⊆ Ck

W,n+1: We

have Ck
W,n ⊆ Ck

W,n+1 by definition of Ck
W,n+1. Moreover, for N ∈ N k and A ∈ B(Ck

W,n),

the function 1A is Ck
W,n-measurable and, hence by definition of Ck

W,n+1, the function TN 1A

is then Ck
W,n+1 measurable. It remains to prove that Ck

W,n+1 ⊆ D, i.e., that Ck
W,n ⊆ D and

TN (L2(Xk, Ck
W,n, µ⊗k)) ⊆ L2(Xk, D, µ⊗k) for every N ∈ N k. We have Ck

W,n ⊆ D by definition

of D. Let N ∈ N k. We have TN 1A ∈ L2(Xk, D, µ⊗k) for A ∈ Ck
W,n by definition of D. Since the

linear hull of {1A}A∈Ck
W,n

is dense in subspace L2(Xk, Ck
W,n, µ⊗k) and since L2(Xk, D, µ⊗k) is

closed, linearity and continuity of TN then yields that TN (L2(Xk, Ck
W,n, µ⊗k)) ⊆ L2(Xk, D, µ⊗k).

4: Let n ∈ N ∪ {∞} and A ∈ Ak. We have Ck
W,0 ⊆ Ck

W,n, which means that the function

TA→W 1Xk is Ck
W,n-measurable. Then, the claim follows as TA→W is multiplicative, cf. the proof

of 1 and 2.
5: We first show that Ck

W ⊆ C for every T
k
W -invariant C ∈ Θ(B⊗k, µ⊗k). We have

〈{

∅, Xk
}〉

⊆

C and, hence, Ck
W,0 = TAk→W (

〈{

∅, Xk
}〉

) ⊆ TAk→W (C) ⊆ C. From there on, induction yields

Ck
W,n+1 = TN k (Ck

W,n) ⊆ TN k(C) ⊆ C for every n ∈ N. Hence, Ck
W ⊆ C.

It remains to prove that Ck
W is T

k
W -invariant. By 4, it suffices to show that that Ck

W is TN -
invariant for N ∈ N k. This is essentially Proposition 5.13 of [9]: We first show that TN 1A ∈
L2(Xk, Ck

W , µ⊗k) for A ∈ Ck
W . To this end, note that

⋃

n∈N
Ck

W,n is an algebra and the σ-

algebra generated by it is Ck
W . Hence, from [6, Theorem 3.1.10], it easily follows that we can

approximate every set in Ck
W by a set in

⋃

n∈N
Ck

W,n w.r.t. the measure of their symmetric

difference. This implies that, for every A ∈ Ck
W , there is a sequence (An)n∈N with An ∈ Ck

W,n such

that 1An → 1A in L2(Xk, µ⊗k). Let N ∈ N k. By continuity of TN , we have TN 1An → TN 1A.
Note that, for n ∈ N, we have TN 1An ∈ L2(Xk, Ck

W,n+1, µ⊗k) ⊆ L2(Xk, Ck
W , µ⊗k), which is a

closed subspace by Claim 5. Hence, TN 1A ∈ L2(Xk, Ck
W , µ⊗k). Since the linear hull of {1A}A∈Ck

W

is dense in the closed subspace L2(Xk, Ck
W , µ⊗k), linearity and continuity of TN then yields that

L2(Xk, Ck
W , µ⊗k) is TN -invariant.

6: First, recall that B⊗k is permutation invariant. Moreover, if C ∈ Θ(B⊗k, µ⊗k), then
π(C) ∈ Θ(B⊗k, µ⊗k) for every permutation π : [k] → [k]. This implies that, if X ⊆ B⊗k is
a set with π(X ) ⊆ X for every permutation π : [k] → [k], then 〈X 〉 is permutation invariant.
Hence, 〈

{

∅, Xk
}

〉 is permutation invariant, and it suffices to show that, for a permutation-
invariant C ∈ Θ(B⊗k, µ⊗k), both TAk→W (C) and TN k(C) are permutation-invariant. Then,
induction yields that Ck

W,n is permutation invariant for every n ∈ N and, hence, also Ck
W since

π
(
⋃

n∈N
Ck

W,n

)

=
⋃

n∈N
π(Ck

W,n) ⊆
⋃

n∈N
Ck

W,n for every permutation π : [k] → [k].

It remains to show that, for a permutation-invariant C ∈ Θ(B⊗k, µ⊗k), both TAk→W (C) and
TN k (C) are permutation-invariant. We prove the statement for TAk→W (C); the proof for TN k (C)
is analogous. To this end, we show that, for an arbitrary C ∈ Θ(B⊗k, µ⊗k), we have

π(TAk→W (C)) = TAk→W (π(C)) (6)

for every permutation π : [k] → [k]. Then, if C is permutation invariant, we get π(TAk→W (C)) =
TAk→W (π(C)) = TAk→W (C) for every permutation π : [k] → [k].

To prove Equation (6), let π : [k] → [k] be a permutation and observe that Tπ ◦ TAk
ij

→W ◦

Tπ−1 = TAk
π(i)π(j)

→W for all i 6= j ∈ [k]. As a side note, the analogous observation for TN k(C) is
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Tπ ◦ TNk
j

→W ◦ Tπ−1 = TNk
π(j)

→W for every j ∈ [k]. We get that

TAk
ij

→W (L2(Xk, π(C), µ⊗k)) = TAk
ij

→W (Tπ−1(L2(Xk, C, µ⊗k)))

= Tπ−1(TAk
π(i)π(j)

→W (L2(Xk, C, µ⊗k))).

Hence, for D ∈ Θ(B⊗k, µ⊗k), we have

TAk
ij

→W (L2(Xk, π(C), µ⊗k)) ⊆ L2(Xk, D, µ⊗k)

⇐⇒ TAk
ij

→W (L2(Xk, C, µ⊗k)) ⊆ Tπ(L2(Xk, D, µ⊗k))

⇐⇒ TAk
ij

→W (L2(Xk, C, µ⊗k)) ⊆ L2(Xk, π−1(D), µ⊗k).

As the mapping Ak
ij 7→ Ak

π(i)π(j) is a permutation of Ak and we also have D ⊇ π(C) ⇐⇒

π−1(D) ⊇ C, this implies Equation (6).

4.2 Weisfeiler-Leman Measures and Distributions

Before defining the mapping owlkW : Xk → M
k, we have to define the space M

k, which can be
seen as the space of all colors used by oblivious k-WL. To this end, we have to state some facts
regarding spaces of measures first. For a separable metrizable space (X, T ), let P(X) denote the
set of all Borel probability measures on X . Let Cb(X) denote the set of bounded continuous real-
valued functions on X . We endow P(X) with the topology generated by the maps µ 7→

∫

f dµ
for f ∈ Cb(X). Then, for (µi)i∈N with µi ∈ P(X) and µ ∈ P(X), the Portmanteau theorem
states that the following three are equivalent [15, Theorem 17.20]:

1. µi → µ.

2.
∫

fdµi → µ for every f ∈ Cb(X).

3.
∫

fdµi → µ for every f ∈ Ud(X).

Here, Ud(X) denotes the set of bounded d-uniformly continuous real-valued functions on X
and may clearly be replaced by some uniformly dense subset. If (X, T ) is compact, which is the
case for the spaces we define, then Ud(X) = Cb(X) = C(X), where C(X) denotes the set of
continuous real-valued functions on X . The Borel σ-algebra B(P(X)) is then generated by the
maps µ 7→ µ(A) for A ∈ B(X) and also by the maps µ 7→

∫

f dµ for bounded Borel real-valued
functions f [15, Theorem 17.24]. If (X, T ) is Polish, then so is P (X) [15, Theorem 17.23], which
means that (P(X), B(P(X))) is again a standard Borel space for a standard Borel space (X, B).

It is a standard fact that a compact metrizable space K = (X, T ) is separable [15, Proposition
4.6]. Hence, if we let B be denote the Borel σ-algebra generated by T , then (X, B) is a standard
Borel space. The topological space P(X) is again compact metrizable [15, Theorem 17.22].

We are ready to define the space M
k. One should pay attention to the connection to oblivious

k-WL, cf. Section 1.2: Here, P k
0 = [0, 1](

[k]
2 ) is the space of possible “edge weights” of a tuple

x̄ ∈ Xk, generalizing possible atomic types. Moreover, oblivious k-WL defines k multisets of
colors in every refinement, which results in k probability measures on the previous space M

k
n in

the following definition.

Definition 23 (The Spaces M
k and P

k). Let k ≥ 1. Let P k
0 := [0, 1](

[k]
2 ) and inductively define

M
k
n :=

∏

i≤n P k
i and P k

n+1 :=
(

P
(

M
k
n

))k
for every n ∈ N. Let Mk := M

k
∞ :=

∏

n∈N
P k

i and, for

n ≤ m ≤ ∞, let pm,n : Mk
m → M

k
n be the natural projection. Finally, define

P
k :=

{

α ∈ M
k | (αn+1)j = (pn+1,n)∗(αn+2)j for all j ∈ [k], n ∈ N

}

.

25



As a product of a sequence of metrizable compact spaces, Mk is metrizable [6, Proposition
2.4.4] and also compact by Tychonoff’s Theorem [6, Theorem 2.2.8]. Moreover, as Mk is a product
of a sequence of second-countable spaces, the Borel σ-algebra of Mk and the product of the Borel
σ-algebras of its factors are the same, cf. Section 2.1.

Note that αn+1 ∈ P k
n+1 =

(

P
(

M
k
n

))k
and αn+2 ∈ P k

n+2 =
(

P
(

M
k
n+1

))k
for α ∈ M

k in
the definition of P

k, i.e., P
k is well-defined. This condition expresses that αn+2 ∈ P

k, which
can be thought of as a coloring after n + 2 refinement rounds, is consistent with αn+1 for every
n ∈ N, but it does not require that α0 is consistent with α1. One could add the additional
consistency condition that, for ij ∈

(

[k]
2

)

and u /∈ ij, the push-forward of (α1)u via the projection
to component ij is the Dirac measure of (α0)ij , but this would introduce an inconsistency in the
case k = 2 where there is no such u. For simplicity, we just leave this out; it does not cause any
problems for us.

In terms of graphs, an element (α0, α1, . . . ) of Mk can be thought of as a sequence of unfoldings
of a graph, cf. [5], of heights 0, 1, 2, . . . . These unfoldings, however, do not have to be related
in any way. The subspace P

k contains these sequences where each unfolding is a continuation
of the previous one. These sequences can also be viewed as a single, infinite unfolding: By the
Kolmogorov Consistency Theorem [15, Exercise 17.16], for all α ∈ P

k and j ∈ [k], there is a
unique measure µα

j ∈ P(Mk) such that (p∞,n)∗µα
j = (αn+1)j for every n ∈ N. Moreover, one

can verify that this mapping α 7→ µα
j is continuous, cf. [9, Claim 6.2].

Lemma 24. P
k is closed in M

k and P
k → P(Mk), α 7→ µα

j is continuous for every j ∈ [k].

Proof. To prove that P
k is closed, let αi → α with αi ∈ P

k for every i ∈ N and α ∈ M
k. Let

j ∈ [k] and n ∈ N. By definition of the product topology, we have ((αi)n+2)j → (αn+2)j , which
yields

∫

Mk
n

f d((αi)n+1)j
αi∈P

k

=

∫

Mk
n

f d(pn+1,n)∗((αi)n+2)j =

∫

Mk
n+1

f ◦ pn+1,n d((αi)n+2)j

→

∫

Mk
n+1

f ◦ pn+1,n d(αn+2)j

=

∫

Mk
n

f d(pn+1,n)∗(αn+2)j .

for every f ∈ C(Mk
n). Therefore, ((αi)n+1)j → (pn+1,n)∗(αn+2)j . Since also ((αi)n+1)j →

(αn+1)j and the metrizable space P(Mk
n) is Hausdorff, we get (αn+1)j = (pn+1,n)∗(αn+2)j .

Hence, α ∈ P
k.

Let j ∈ [k]. Let αi → α with αi ∈ P
k for every i ∈ N and α ∈ P

k. To prove that µαi

j → µα
j ,

we observe that
∫

Mk

f ◦ p∞,n dµαi

j =

∫

Mk
n

f d(p∞,n)∗µαi

j =

∫

Mk
n

f d((αi)n+1)j →

∫

Mk
n

f d(αn+1)j =

∫

Mk
n

f d(p∞,n)∗µα
j

=

∫

Mk

f ◦ p∞,n dµα
j

for every n ∈ N and every f ∈ C(Mk
n). This already proves the claim as the set

⋃

n∈N
C(Mk

n) ◦

p∞,n is uniformly dense in C(Mk) by the Stone-Weierstrass theorem [6, Theorem 2.4.11]; in
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particular, this set separates points by the definition of the product topology and the fact that
every metrizable space is completely Hausdorff.

Lemma 24 implies that P
k ∈ B(Mk) and that P

k → R, α 7→
∫

f dµα
j is measurable for every

bounded measurable real-valued function f on M
k and every j ∈ [k], cf. the definition of P(Mk).

This justifies the following definition of a k-WL distribution, which intuitively generalizes the
concept of a multiset of colors with the additional constraints that, first, that the non-consistent
sequences α ∈ M

k have measure zero and, second, it satisfies a variant of the Tonelli-Fubini
theorem w.r.t. the measures given by the mappings P

k → P(Mk), α 7→ µα
j .

Definition 25. Let k ≥ 1. A measure ν ∈ P(Mk) is called a k-Weisfeiler-Leman distribution
(k-WLD) if

1. ν(Pk) = 1 and

2.
∫

Mk

f dν =
∫

Mk

(

∫

Mk

f dµα
j

)

dν(α) for every bounded measurable f : Mk → R and every j ∈ [k].

4.3 The Mapping owl
k

W

Having defined the compact metrizable space Mk, we can finally define the mapping owlkW : Xk →
M

k and the k-WL distribution νk
W for a graphon W . To this end, let us first recall that oblivious

k-WL for a graph G initially colors a k-tuple v̄ ∈ V (G)k by its atomic type, which includes
the information of which vertices in v̄ are equal and which are connected by an edge. In our
case, this becomes somewhat simpler since we do deal with the case that entries of a k-tuple
x̄ ∈ Xk are equal; if our standard Borel space is atom free, such diagonal sets have measure
zero in the product space and do not matter. Hence, we only include the information W (xi, xj)

for every ij ∈
(

[k]
2

)

. Notice the connection to the operators TAk→W : by definition, we have
(TAk

ij
→W f)(x̄) = W (xi, xj) · f(x̄) for every f ∈ L2(Xk, µ⊗k) and µ⊗k-almost every x̄ ∈ Xk.

Let us also take a look at the substitution operation in the refinement rounds of oblivious k-
WL. Fix x̄ ∈ Xk and j ∈ [k] in the following. Define x̄[/j] := (x1, . . . , xj−1, xj+1, . . . , xk) ∈ Xk−1

to be the tuple obtained from x̄ by removing the jth component, and for y ∈ X , also x̄[y/j] :=
(x1, . . . , xj−1, y, xj+1, . . . , xk) ∈ Xk, which is the tuple obtained from x̄ by replacing the jth
component by y. The preimage of a set A ⊆ Xk under the map x̄[·/j] : X → Xk, y 7→ x̄[y/j] is

x̄[·/j]
−1

(A) = {y ∈ X | x̄[y/j] ∈ A} =: Ax̄[/j],

which we call the section of A determined by x̄[/j]. Note that, technically, Ax̄[/j] also depends

on j and not only on the (k − 1)-tuple x̄[/j] ∈ Xk−1, but we nevertheless stick to this notation.
The mapping x̄[·/j] is measurable, i.e., we have Ax̄[/j] ∈ B for every A ∈ B⊗k [2, Theorem 18.1

(i)]. If we let pj : Xk → X denote the projection to the jth component, which is measurable
by definition of B⊗k, then, the mapping x̄[·/j] ◦ pj : Xk → Xk, ȳ 7→ x̄[yj/j] is measurable as
the composition of measurable functions and we have (x̄[·/j] ◦ pj)∗µ⊗k = x̄[·/j]∗µ. To see the
connection to the operators TN k , note that the definition of TNk

j
yields that

(TNk
j

f)(x̄) =

∫

X

f(x̄[y/j]) dµ(y) =

∫

X

f ◦ x̄[·/j] dµ =

∫

Xk

fd (x̄[·/j]∗µ) (7)

for every f ∈ L2(Xk, µ⊗k) and µ⊗k-almost every x̄ ∈ Xk.
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Definition 26 (The Mapping owlkW ). Let k ≥ 1 and W : X × X → [0, 1] be a graphon. Define
owl

k
W,0 : Xk → M

k
0 by

owlkW,0(x̄) :=
(

W (xi, xj)
)

ij∈([k]
2 )

for every x̄ ∈ Xk. Inductively define owlkW,n+1 : Xk → M
k
n+1 by

owl
k
W,n+1(x̄) :=

(

owl
k
W,n(x̄),

((

owl
k
W,n ◦x̄[·/j]

)

∗
µ
)

j∈[k]

)

for every x̄ ∈ Xk. Then, let owlkW = owlkW,∞ : Xk → M
k be the mapping defined by (owlkW (x̄))n :=

(owlkW,∞(x̄))n := (owlkW,n(x̄))n for all n ∈ N, x̄ ∈ Xk. Finally, let νk
W := owlkW ∗µ⊗k ∈ P(Mk) be

the push-forward of µ⊗k via owl
k
W .

An immediate consequence of Definition 26, which we often use, is that owlkW,m

−1
(p−1

m,n(A)) =

owlkW,n

−1
(A) holds for all 1 ≤ n < m ≤ ∞ and every A ∈ B(Mk

n). In particular, we use it

to prove that the mapping owlkW,n is measurable for every n ∈ N ∪ {∞}, which actually is

needed for everything in Definition 26 to be well defined. Lemma 27 states not only that owl
k
W,n

is measurable but also that the minimum µ⊗k-relatively complete sub-σ-algebra that makes it
measurable is given by Ck

W,n, cf. [9, Proposition 6.6].

Lemma 27. Let k ≥ 1 and W : X × X → [0, 1] be a graphon. For n ∈ N ∪ {∞},

Ck
W,n =

〈{

owlkW,n

−1
(A) | A ∈ B(Mk

n)
}〉

.

Proof. Let Dn := 〈{owlkW,n

−1
(A) | A ∈ B(Mk

n)}〉. First, we prove Ck
W,n = Dn for every n ∈ N by

induction on n. For the induction basis n = 0, we have

D0 =
〈{

owl
k
W,0

−1
(A) | A ∈ B(Mk

0)
}〉

=
〈{

owl
k
W,0

−1
(A) | A ∈ B([0, 1](

[k]
2 ))
}〉

The Borel σ-algebra B([0, 1](
[k]
2 )) is generated by the sets of the form

∏

ij∈([k]
2 ) Aij where Aij ∈

B([0, 1]) and Aij = [0, 1] for all but at most one ij [15, Section 10.B]. Since it suffices to check

measurability of a function for a generating set [6, Theorem 4.1.6], we may replace B([0, 1](
[k]
2 ))

by a generating set in the definition of D0, which yields that

D0 =
〈{

owlkW,0

−1
(A) | A ∈ B([0, 1](

[k]
2 ))
}〉

=
〈{{

x̄ ∈ Xk | (W (xi, xj))
ij∈([k]

2 ) ∈ A
}

| A ∈ B([0, 1](
[k]
2 ))
}〉

=
〈{

{

x̄ ∈ Xk | W (xi, xj) ∈ A
}

| A ∈ B([0, 1]), ij ∈
(

[k]
2

)

}〉

=
〈

⋃

ij∈([k]
2 )
{{

x̄ ∈ Xk | W (xi, xj) ∈ A
}

| A ∈ B([0, 1])
}

〉

=
〈
⋃

A∈Ak

{

(TA→W )−1(A) | A ∈ B([0, 1])
}〉

= Ck
W,0. (Lemma 22 and Lemma 22 2)

For the inductive step, let n ∈ N. We have to prove that Ck
W,n+1 = Dn+1. Recall that

we have M
k
n+1 = M

k
n ×

(

P
(

M
k
n

))k
by definition and that the Borel σ-algebra B(P

(

M
k
n

)

) is
generated by the maps µ 7→ µ(A) for A ∈ B(Mk

n) [15, Theorem 17.24]. Hence, by definition of
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the product σ-algebra and since it suffices to check measurability of a function for a generating
set [6, Theorem 4.1.6], B(Mk

n+1) is the smallest σ-algebra containing
{

p−1
n+1,n(A) | A ∈ B(Mk

n)
}

and making the maps
M

k
n+1 ∋ α 7→ ((α)n+1)j(A)

for A ∈ B(Mk
n) and j ∈ [k] measurable. Again by [6, Theorem 4.1.6], this means that Dn+1 is

the smallest µ⊗k-relatively complete sub-σ-algebra of B⊗k containing

{

owlkW,n+1

−1
(p−1

n+1,n(A)) | A ∈ B(Mk
n)
}

=
{

owlkW,n

−1
(A) | A ∈ B(Mk

n)
}

and making the maps

Xk ∋ x̄ 7→ ((owlkW,n+1(x̄))n+1)j(A) =
((

owlkW,n ◦x̄[·/j]
)

∗
µ
)

(A)

=

∫

Mk
n

1Ad
(

owl
k
W,n ◦x̄[·/j]

)

∗
µ

=

∫

Xk

1A ◦ owlkW,n d x̄[·/j]∗µ

= (TNk
j

1A ◦ owlkW,n)(x̄),

for A ∈ B(Mk
n) and j ∈ [k] measurable, where the equalities hold µ⊗k-almost everywhere, cf. also

Equation (7).
To see that Dn+1 ⊆ Ck

W,n+1, we verify that Ck
W,n+1 contains the aforementioned sets and that

the aforementioned maps are measurable for it. We have

{

owlkW,n

−1
(A) | A ∈ B(Mk

n)
} def.

⊆ Dn

IH
⊆ Ck

W,n

def.
⊆ Ck

W,n+1.

By the induction hypothesis, owlkW,n is Ck
W,n-measurable, and since A ∈ B(Mk

n), so is 1A ◦ owlkW,n.

Hence, by definition of Ck
W,n+1, TNk

j
1A ◦ owlkW,n is Ck

W,n+1-measurable, which is just what we

wanted to prove.
It remains to verify that Ck

W,n+1 ⊆ Dn+1. By Lemma 22 3, it suffices to prove that Dn+1

contains Ck
W,n and makes the functions TN 1A for N ∈ N k and A ∈ Ck

W,n measurable. We have

Ck
W,n

IH
⊆ Dn =

〈{

owlkW,n

−1
(A) | A ∈ B(Mk

n)
}〉

⊆ Dn+1.

Let A ∈ Ck
W,n. By the induction hypothesis, we have A ∈ Dn. Since the preimage of a σ-

algebra is a σ-algebra, we have A = owlkW,n(B)△Z for some B ∈ B(Mk
n) and Z ∈ B⊗k with

µ⊗k(Z) = 0. Then, x̄ ∈ A ⇐⇒ owlkW,n(x̄) ∈ B for every x̄ /∈ Z, i.e., 1B ◦ owlkW,n = 1A, where

the equality holds µ⊗k-almost everywhere. Let j ∈ [k]. We know that Dn+1 makes the map
TNk

j
1B ◦ owlkW,n = TNk

j
1A measurable, but this is already what we wanted to show.

It remains to prove that

Ck
W =

〈{

owlkW
−1

(A) | A ∈ B(Mk)
}〉

,
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where, by definition, we have Ck
W = 〈

⋃

n∈N
Ck

W,n〉. It is easy to see that the Borel σ-algebra B(Mk)
is generated by the projections p∞,n. Hence, by [6, Theorem 4.1.6],

Ck
W =

〈

⋃

n∈N

Ck
W,n

〉

=

〈

⋃

n∈N

{

owlkW,n

−1
(A) | A ∈ B(Mk

n)
}

〉

=
〈{

owlkW,n

−1
(A) | n ∈ N, A ∈ B(Mk

n)
}〉

=
〈{

owlkW
−1

(p−1
∞,n(A)) | n ∈ N, A ∈ B(Mk

n)
}〉

=
〈{

owlkW
−1

(A) | A ∈ B(Mk)
}〉

By Lemma 27, Ck
W is the minimum µ⊗k-relatively complete sub-σ-algebra that makes owlkW

measurable. Hence owlkW : Xk → M
k is a measurable and measure-preserving mapping from the

measure space (Xk, B⊗k, µ⊗k) to (Mk, B(Mk), νk
W ) and we can consider the Koopman operator

Towlk
W

: L2(Mk, νk
W ) → L2(Xk, µ⊗k) of owl

k
W , which is a Markov embedding [8, Theorem 7.20].

More precisely, by Claim 7, it is an isometry onto L2(Xk, Ck
W , µ⊗k). In addition, the operator

SCk
W

of Claim 6 becomes a Markov isomorphism when restricted to L2(Xk, Ck
W , µ⊗k) which means

that Rk
W := SCk

W
◦ Towlk

W
is a Markov isomorphism.

Corollary 28. Let k ≥ 1 and W : X × X → [0, 1] be a graphon. Then, Rk
W : L2(Mk, νk

W ) →
L2(Xk/Ck

W , µ⊗k/Ck
W ) is a Markov isomorphism.

It remains to verify that νk
W is in fact a k-WLD. The following lemma can also be seen

as a justification of the definition of a k-WLD. In particular, it shows that Tonelli-Fubini-like
requirement in Definition 25 actually stems from the Tonelli-Fubini theorem. In other words, the
definition of a k-WLD is chosen such that it captures the essential properties of νk

W that make it
possible to define the analogue of Tk

W on the space L2(Mk, νk
W ). In the next section, we define

these operators on L2(Mk, ν) for an arbitrary k-WLD ν.

Lemma 29. Let k ≥ 1 and W : X × X → [0, 1] be a graphon. Then,

1. µ
owl

k
W (x̄)

j = (owlkW ◦x̄[·/j])∗µ for all j ∈ [k], x̄ ∈ Xk,

2. owlkW (Xk) ⊆ P
k, and

3. νk
W is a k-WLD.

Proof. 1: For n ∈ N and A ∈ B(Mk
n), we have

µ
owl

k
W (x̄)

j (p−1
∞,n(A)) = (p∞,n)∗µ

owl
k
W (x̄)

j (A) = ((owl
k
W (x̄))n+1)j(A) (Definition µ

owl
k
W (x̄)

j )

= ((owlkW,n+1(x̄))n+1)j(A) (Definition owlkW )

= (owlkW,n ◦x̄[·/j])∗µ(A) (Definition owlkW,n+1)

= (owlkW ◦x̄[·/j])∗µ(p−1
∞,n(A)).

That is, µ
owl

k
W (x̄)

j and (owlkW ◦x̄[·/j])∗µ both are probability measures that agree on the set
⋃

n∈N

{

p−1
∞,n(A) | A ∈ B(Mk

n)
}

, which generates B(Mk). By the π-λ theorem [15, Theorem 10.1

iii)], they agree on all of B(Mk).
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2: Let x̄ ∈ Xk. For j ∈ [k] and n ∈ N, we have

(pn+1,n)∗((owlkW (x̄))n+2)j = (pn+1,n)∗((owlkW,n+2(x̄))n+2)j (Definition owlkW )

= (pn+1,n)∗((owlkW,n+1 ◦x̄[·/j])∗µ) (Definition owlkW,n+2)

= (owlkW,n ◦x̄[·/j])∗µ

= ((owlkW,n+1(x̄))n+1)j (Definition owlkW,n+1)

= ((owl
k
W (x̄))n+1)j . (Definition owl

k
W )

Hence, owlkW (x̄) ∈ P
k.

3: By 2, we have νk
W (Pk) = µ⊗k(owl

k
W

−1
(Pk)) = µ⊗k(Xk) = 1. Let j ∈ [k]. Let f : Mk → R

be bounded and measurable. We have
∫

Mk

f dνk
W

def. νk
W=

∫

Mk

f dowlkW ∗µ⊗k =

∫

Xk

f ◦ owlkW dµ⊗k

T.-F.
=

∫

Xk−1

(

∫

X

f ◦ owlkW (x̄[y/j]) dµ(y)
)

dµ⊗k−1(x̄[/j])

(xj ∈ X arb.)

=

∫

Xk

(

∫

X

f ◦ owlkW (x̄[y/j]) dµ(y)
)

dµ⊗k(x̄)

=

∫

Xk

(

∫

Mk

f d(owlkW ◦x̄[·/j])∗µ
)

dµ⊗k(x̄)

1
=

∫

Xk

(

∫

Mk

f dµ
owl

k
W (x̄)

j

)

dµ⊗k(x̄)

=

∫

Mk

(

∫

Mk

f dµα
j

)

dowlkW ∗µ
def. νk

W=

∫

Mk

(

∫

Mk

f dµα
j

)

dνk
W .

4.4 Operators and Weisfeiler-Leman Measures

For a graphon W , the operator Rk
W : L2(Mk, νk

W ) → L2(Xk/Ck
W , µ⊗k/Ck

W ) is a Markov isomor-
phism by Corollary 28. Hence, if U is another graphon with νk

U = νk
W , then Rk

U ◦ (Rk
W )∗ is a

Markov isomorphism from L2(Xk/Ck
W , µ⊗k/Ck

W ) to L2(Xk/Ck
U , µ⊗k/Ck

U ). However, we still lack
that this Markov isomorphism “maps” the family T

k
W /Ck

W to T
k
U /Ck

U . To close this gap, we show
that we can define a family Tνk

W
of operators on L2(Mk, νk

W ) such that Rk
W “maps” Tνk

W
to

T
k
W /Ck

W . This replaces the graphon M × M → [0, 1] defined by Grebík and Rocha [9]. Let us
begin with operators for neighbor graphs as this is the interesting case; in particular, it shows
why we have the Tonelli-Fubini-like requirement in the definition of a k-WLD.

Lemma 30. Let k ≥ 1, and let ν ∈ P(Mk) be a k-WLD. Let j ∈ [k]. Setting

(TNk
j

→νf)(α) :=

∫

Mk

f dµα
j

for all f ∈ L∞(Mk, ν), α ∈ M
k defines an L∞-contraction that uniquely extends to an L2-

contraction L2(Mk, ν) → L2(Mk, ν).
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Proof. We show that the definition yields a well-defined contraction TNk
j

→ν on L∞(Mk, ν) such

that ‖TNk
j

→νf‖2 ≤ ‖f‖2 for every f ∈ L∞(Mk, ν). Then, TNk
j

→ν uniquely extends to a contrac-

tion on L2(Mk, ν) since L∞(Mk, ν) is dense in L2(Mk, ν).
The definition of a k-WLD immediately yields that, if A ∈ B(Mk) with ν(A) = 0, then

µα
j (A) = 0 for ν-almost every α ∈ M

k. Hence, if a property holds ν-almost everywhere, it holds

µα
j -almost everywhere for ν-almost every α ∈ M

k. Let f ∈ L∞(Mk, ν). Then, |f | ≤ ‖f‖∞

ν-almost everywhere, and hence, |f | ≤ ‖f‖∞ holds µα
j -almost everywhere for ν-almost every

α ∈ M
k. Thus, for ν-almost every α ∈ M

k, we have

∣

∣

∣

∫

Mk

f dµα
j

∣

∣

∣
≤

∫

Mk

|f | dµα
j ≤

∫

Mk

‖f‖∞ dµα
j = ‖f‖∞,

which yields that ‖TNk
j

→νf‖∞ ≤ ‖f‖∞. In particular, if f, g ∈ L∞(Mk, ν) are equal ν-almost

everywhere, then

‖TNk
j

→νf − TNk
j

→νg‖∞ = ‖TNk
j

→ν(f − g)‖∞ ≤ ‖f − g‖∞ = 0,

that is, TNk
j

→νf and TNk
j

→νg are equal ν-almost everywhere. Here we used that the mapping

TNk
j →ν is linear, which follows directly from the linearity of the integral. Recall that Pk → R, α 7→

∫

fµα
j is measurable for every bounded measurable R-valued function f on M

k by Lemma 24 and

the definition of P(Pk). Since P
k ∈ B(Mk) by Lemma 24 and ν(Pk) = 1, this combined with the

previous considerations yields that TNk
j

→ν is a well-defined mapping L∞(Mk, ν) → L∞(Mk, ν).

It remains to show that ‖TNk
j

→νf‖2 ≤ ‖f‖2 for every f ∈ L∞(Mk, ν). We have

‖TNk
j

→νf‖2
2 =

∫

Mk

(

∫

Mk

f dµα
j

)2

dν(α)
C.-S.
≤

∫

Mk

(

∫

Mk

f2 dµα
j

)

dν(α) (Cauchy-Schwarz)

=

∫

Mk

f2 dν (def. k-WLD)

= ‖f‖2
2

Note that we again used that |f | ≤ ‖f‖∞ holds µα
j -almost everywhere for ν-almost every α ∈ M

k

in order to apply the Cauchy-Schwarz inequality.

The following lemma states that Lemma 30 is indeed the right definition.

Lemma 31. Let k ≥ 1 and W : X × X → [0, 1] be a graphon. For every N ∈ N k,

1. TN ◦ Towlk
W

= Towlk
W

◦ TN→νk
W

,

2. (TN )Ck
W

◦ Towlk
W

= Towlk
W

◦ TN→νk
W

, and

3. TN /Ck
W ◦ Rk

W = Rk
W ◦ TN→νk

W
.
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Proof. 1: Let j ∈ [k]. We have

(TNk
j

◦ Towlk
W

f)(x̄) = (TNk
j

f ◦ owlkW )(x̄) =

∫

X

f ◦ owlkW (x̄[y/j]) dµ(y) (def.)

=

∫

Mk

f d(owlkW ◦x̄[·/j])∗µ

=

∫

Mk

f dµ
owl

k
W (x̄)

j (Lemma 29 1)

= (TNk
j

→νk
W

f)(owlkW (x̄)) (def. TNk
j

→νk
W

)

= (Towlk
W

◦ TNk
j

→νk
W

f)(x̄) (def.)

for µ⊗k-almost every x̄ ∈ Xk and every f ∈ L∞(Mk, νk
W ). This already proves the claim as

L∞(Mk, νk
W ) is dense in L2(Mk, νk

W ).
2: We have

(TN )Ck
W

◦ Towlk
W

= TN ◦ E(− | Ck
W ) ◦ Towlk

W
(Lemma 8 5 and Lemma 22 5)

= TN ◦ Towlk
W

(cf. Corollary 28)

= Towlk
W

◦ TN→νk
W

. (1)

3: We have

TN /Ck
W ◦ Rk

W = SCk
W

◦ TN ◦ ICk
W

◦ SCk
W

◦ Towlk
W

(def.)

= SCk
W

◦ E(− | Ck
W ) ◦ TN ◦ E(− | Ck

W ) ◦ Towlk
W

(Claim 6 4 and 6)

= SCk
W

◦ (TN )Ck
W

◦ Towlk
W

(def.)

= SCk
W

◦ Towlk
W

◦ TN→νk
W

(2)

= Rk
W ◦ TN→νk

W
. (def.)

Defining the operators for adjacency graphs is much simpler. Intuitively, every α ∈ M
k

contains the values W (xi, xj) for every ij ∈
(

[k]
2

)

at position 0.

Lemma 32. Let k ≥ 1, and let ν ∈ P(Mk) be a k-WLD. Let ij ∈
(

[k]
2

)

. Setting

(TAk
ij

→νf)(α) := (α0)ij · f(α)

for all f ∈ L2(Mk, ν), α ∈ M
k defines an L∞- and L2-contraction L2(Mk, ν) → L2(Mk, ν).

Proof. The mapping α 7→ (α0)ij is measurable by definition of the product σ-algebra Hence,
TAk

ij
→νf for f ∈ L2(Mk, ν) is measurable as the product of measurable functions. Moreover,

by definition of M
k, the function α 7→ (α0)ij is bounded by 1, which immediately yields that

‖TAk
ij

→νf‖2 ≤ ‖f‖2 for f ∈ L2(Mk, ν) and ‖TAk
ij

→νf‖∞ ≤ ‖f‖∞ for f ∈ L∞(Mk, ν). Moreover,

TAk
ij

→ν is linear as a multiplicative operator.

Analogously to Lemma 31, one can verify that Lemma 32 is in fact the right definition.

Lemma 33. Let k ≥ 1 and W : X × X → [0, 1] be a graphon. For every A ∈ Ak,
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1. TA→W ◦ Towlk
W

= Towlk
W

◦ TA→νk
W

,

2. (TA→W )Ck
W

◦Towlk
W

= Towlk
W

◦TA→νk
W

, and

3. TA→W /Ck
W ◦ Rk

W = Rk
W ◦ TA→νk

W
.

Proof. 1: Let ij ∈
(

[k]
2

)

. We have

(TAk
ij

→W ◦ Towlk
W

f)(x̄) = (TAk
ij

→W f ◦ owlkW )(x̄)

= W (xi, xj) · (f ◦ owlkW )(x̄) (def.)

= ((owl
k
W (x̄))0)ij · (f ◦ owl

k
W )(x̄) (def. owl

k
W )

= (TAk
ij

→νk
W

f)(owlkW (x̄)) (def. TAk
ij

→νk
W

)

= (T
owl

k
W

◦ TAk
ij

→νk
W

f)(x̄) (def.)

for µ⊗k-almost every x̄ ∈ Xk and every f ∈ L2(Mk, νk
W ).

2 and 3: Analogous to the proof of 2 and 3 of Lemma 31, respectively.

For a k-WLD ν ∈ P(Mk), define the family of L∞-contractions Tν := (TF →ν)F ∈Fk . Lemma 31
3 and Lemma 33 3 can then be rephrased as the following corollary.

Corollary 34. Let k ≥ 1 and W : X×X → [0, 1] be a graphon. Then, Tk
W /Ck

W ◦Rk
W = Rk

W ◦Tνk
W

.

Recall Definition 17, i.e., the homomorphism density of a term in a family of L∞-contractions.
In particular, this definition applies to the family Tνk

W
of the k-WLD νk

W of a graphon W .

Lemma 19 with the previous corollary yields that Tνk
W

and T
k
W /Ck

W give us the same homo-

morphism densities (and also functions), which are just the original homomorphism densities in
W .

Corollary 35. Let k ≥ 1. Let W : X × X → [0, 1] be a graphon and C ∈ Θ(B⊗k, µ⊗k) be
W -invariant. Then, t(F,Tνk

W
) = t([[F]], W ) for every F ∈ 〈Fk〉◦,·.

Proof. By Corollary 20, we have t(F,Tk
W/Ck

W ) = t([[F]], W ) since Ck
W is W -invariant by Lemma 22.

By Corollary 34, we have T
k
W /Ck

W ◦ Rk
W = Rk

W ◦ Tνk
W

, where Rk
W is a Markov isomorphism by

Corollary 28. Then, Lemma 19 yields t(F,Tk
W /Ck

W ) = t(F,Tνk
W

).

A permutation π : [k] → [k] extends to a measurable bijection π : Mk → M
k as follows: We

obtain a measurable bijection π : P k
0 → P k

0 by setting π((yij)ij) := (yπ(i)π(j))ij for (yij)ij ∈

[0, 1](
[k]
2 ). From there on, π inductively extends to a measurable bijection π : Mk

n → M
k
n by

component-wise application and, then, to a measurable bijection π : P k
n+1 → P k

n+1 by setting
π((µj)j∈[k]) = (π∗µπ(j))j∈[k] for every (µj)j∈[k] ∈ P k

n+1. Finally, we obtain the measurable

bijection π : Mk
n → M

k
n by component-wise application.

Let ν ∈ P(Mk) be a k-WLD and π : [k] → [k] be a permutation. By definition of π∗ν, the
extension π : Mk → M

k is a measure-preserving map from (Mk, B(Mk), ν) to (Mk, B(Mk), π∗ν)
by definition. The k-WLD ν is called π-invariant if π∗ν = ν, in which case we can view the
Koopman operator of π as an operator Tπ→ν : L2(Mk, ν) → L2(Mk, ν). The notation Tπ→ν

avoids confusion with the Koopman operator of π when viewing it as a map Xk → Xk, which
we denote just by Tπ. If we call a k-WLD ν ∈ P(Mk) permutation-invariant if it is π-invariant
for every permutation π : [k] → [k], then Lemma 36 yields that the k-WLD νk

W of a graphon W
is permutation invariant.

Lemma 36. Let k ≥ 1 and W : X ×X → [0, 1] be a graphon. For every permutation π : [k] → [k],

34



1. π ◦ owlkW = owlkW ◦π,

2. νk
W is π-invariant,

3. Tπ ◦ Towlk
W

= Towlk
W

◦ Tπ→νk
W

,

4. (Tπ)Ck
W

◦ Towlk
W

= Towlk
W

◦ Tπ→νk
W

, and

5. Tπ/Ck
W ◦SCk

W
◦T

owl
k
W

= SCk
W

◦T
owl

k
W

◦Tπ→νk
W

.

Proof. (1): We prove that π ◦ owlkW,n = owlkW,n ◦π by induction on n ∈ N. This yields (π ◦

owlkW (x̄))n = (owlkW ◦π(x̄))n for every x̄ ∈ Xk by induction on n ∈ N, which then implies the
claim. For the base case, we have

π(owl
k
W,0(x̄)) =

(

(owl
k
W,0(x̄))π(i)π(j)

)

ij∈([k]
2 )

=
(

W (xπ(i), xπ(j))
)

ij∈([k]
2 ) = owl

k
W,0(π(x̄))

for every x̄ ∈ Xk. For the inductive step, the induction hypothesis yields (π(owlkW,n+1(x̄)))i =

(owlkW,n+1(π(x̄)))i for every x̄ ∈ Xk and every i ≤ n. Moreover, we have

(π(owlkW,n+1(x̄)))n+1 =
(

π∗((owlkW,n+1(x̄))n+1)π(j)

)

j∈[k]

=
(

π∗

((

owlkW,n ◦x̄[·/π(j)]
)

∗
µ
))

j∈[k]

=
((

π ◦ owlkW,n ◦x̄[·/π(j)]
)

∗
µ
)

j∈[k]

=
((

π ◦ owlkW,n ◦π−1 ◦ π(x̄)[·/j])
)

∗
µ
)

j∈[k]

=
((

owlkW,n ◦π(x̄)[·/j])
)

∗
µ
)

j∈[k]
(IH)

= (owlkW,n+1(π(x̄)))n+1

for every x̄ ∈ Xk.
(2): We have

π∗νk
W = π∗(owlkW ∗µ⊗k) = (π ◦ owlkW )∗µ⊗k (1)

= (owlkW ◦π)∗µ⊗k = owlkW ∗(π∗µ⊗k) = owlkW ∗µ⊗k

= νk
W .

(3): We have

Tπ ◦ Towlk
W

f = f ◦ owlkW ◦π
(1)
= f ◦ π ◦ owlkW = Towlk

W
◦ Tπ→νk

W
f

for every f ∈ L2(Mk, νk
W ).

(4) and (5): Analogous to the proof of (2) and (3) of Lemma 31, respectively.

4.5 Homomorphism Functions and Weisfeiler-Leman Measures

For the proof of Theorem 4, Corollary 35 allows us to get from k-WLDs to homomorphism
densities, but getting to the other characterizations from there is arguably the most involved
part of the proof. As Grebík and Rocha have shown [9], the key tool needed for this is the Stone-
Weierstrass theorem: It yields that the set of homomorphism functions on M

k, which is yet to
be defined, is dense in the set C(Mk) of continuous functions on M

k. Then, the Portmanteau
theorem implies that equal homomorphism densities already imply equal k-WLDs.
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To apply the Stone-Weierstrass theorem, we have to define the homomorphism function of a
term on the set M

k. Recall that an α ∈ M
k is a sequence α = (α0, α1, α2, . . . ) that, intuitively,

corresponds to a sequence of unfoldings of heights 0, 1, 2, . . . of a graphon. However, as the
components α0, α1, α2 do not have to be consistent, cf. the definition of P

k, using different
components may lead to different functions. Hence, we define a whole set of functions for a single
term by considering all ways in which we may use the components to define a homomorphism
function. We could avoid this by defining homomorphism functions just on P

k instead of Mk; this,
however, would complicate things further down the road, which is why we just accept this small
inconvenience. Note the similarity between the following definition and the operators defined in
the previous section.

Definition 37. Let k ≥ 1. For every term F ∈ 〈Fk〉◦,· and every n ∈ N with n ≥ h(F), we
inductively define the set F F

n of functions M
k
n → [0, 1] as the smallest set such that

1. 1Mk
n

∈ F 1
k

n ,

2. α 7→ (α0)ij · f(α) ∈ F
A

k
ij◦F

n for every f ∈ F F
n ,

3. α 7→
∫

Mk
n

f d(αn+1)j ∈ F
N

k
j ◦F

n+1 for every f ∈ F F
n and every j ∈ [k],

4. f1 · f2 ∈ F F1·F2
n for all f1 ∈ F F1

n , f2 ∈ F F2
n , and

5. f ◦ pn,m ∈ F F
n for every f ∈ F F

m and every m ∈ N with n > m ≥ h(F).

Moreover, for every term F ∈ 〈Fk〉◦,·, define the set F F of functions M
k → [0, 1] by

F F := F F

∞ :=
⋃

h(F)≤n<∞

F F

n ◦ p∞,n.

With a simple induction, one can verify that for every term F ∈ 〈Fk〉◦,· and every n ∈ N∪{∞}
with n ≥ h(F), the set F F

n is non-empty and all functions in it are well-defined and continuous.
Recall that, for a term F ∈ 〈Fk〉◦,· and a k-WLD ν ∈ P(Mk), the operators Tν already define
the homomorphism function fF→Tν ∈ L∞(Mk, ν) by Definition 17. Note that the k-WLD ν
satisfying ν(Pk) = 1 is the reason why we only have this single function fF→Tν . Then, it should
come at no surprise that this single function is equal to all of the previous defined functions
ν-almost everywhere.

Lemma 38. Let k ≥ 1 and ν ∈ P(Mk) be a k-WLD. Let F ∈ 〈Fk〉◦,· be a term and n ∈ N with
n ≥ h(F). Then, every function in F F

n ◦ p∞,n is equal to fF→Tν ν-almost everywhere.

Proof. We prove the statement by induction on F and n. For the base case, we have 1Mk
n

◦p∞,n =
1Mk = f1k→Tν

ν-almost everywhere. For the inductive step, first consider α 7→ (α0)ij · f(α) ∈

F
A

k
ij◦F

n for an f ∈ F F
n , where we have

(α0)ij · f(p∞,n(α)) = (TAk
ij

→νf ◦ p∞,n)(α)
IH
= (TAk

ij
→νfF→Tν )(α) = fAk

ij
◦F→ν(α)

for ν-almost every α ∈ M
k. Next, consider α 7→

∫

Mk
n

f d(αn+1)j ∈ F
N

k
j ◦F

n+1 for an f ∈ F F
n and a
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j ∈ [k]. Since ν is a k-WLD, we have ν(Pk) = 1, which yields that

∫

Mk
n

f d(αn+1)j =

∫

Mk
n

f d(p∞,n)∗µα
j =

∫

Mk

f ◦ p∞,n dµα
j = (TNk

j
→νf ◦ p∞,n)(α)

IH
= (TNk

j
→νfF→ν)(α)

= fNk
j

◦F→ν(α)

for ν-almost every α ∈ M
k. For the product f1 · f2 ∈ F F1·F2

n of f1 ∈ F F1
n , f2 ∈ F F2

n , we have

(f1 · f2) ◦ p∞,n = (f1 ◦ p∞,n) · (f2 ◦ p∞,n)
IH
= fF1→Tν · fF2→Tν = fF1·F2→Tν

ν-almost everywhere. Finally, consider f ◦ pn,m ∈ F F
n for f ∈ F F

m and m ∈ N with n > m ≥
h(F). Then, f ◦ pn,m ◦ p∞,n = f ◦ p∞,m = fF→Tν holds ν-almost everywhere by the inductive
hypothesis.

Corollary 35 yields the following corollary to the previous lemma.

Corollary 39. Let k ≥ 1 and W : X × X → [0, 1] be a graphon. For every term F ∈ 〈Fk〉◦,· and
every function f ∈ F F, we have

t([[F]], W ) =

∫

Mk

fνk
W .

For every n ∈ N ∪ {∞}, define T k
n :=

⋃

F∈〈Fk〉◦,·,h(F)≤n F F
n and abbreviate T k := T k

∞. By
induction, we can use the Stone-Weierstrass theorem and the Portmanteau theorem to show that
the Stone-Weierstrass is actually applicable to all of these sets and, in particular, to T k, cf. [9,
Proposition 7.5].

Lemma 40. Let k ≥ 1. For every n ∈ N ∪ {∞}, the set T k
n is closed under multiplication,

contains 1Mk
n
, and separates points of Mk

n.

Proof. First, consider the case that n ∈ N. We trivially have 1Mk
n

∈ F 1
k

n ⊆ T k
n by definition.

Moreover, for f1, f2 ∈ T k
n , there are terms F1,F2 ∈ 〈Fk〉◦,· with h(F1) ≤ n and h(F2) ≤ n. such

that f1 ∈ F F1
n and f2 ∈ F F2

n . Then, f1 · f2 ∈ F F1·F2
n ⊆ T k

n as h(F1 ·F2) = max {h(F1), h(F2)} ≤ n.
We prove that T k

n separates points of Mk
n by induction on n. For the base case n = 0, let β 6=

γ ∈ M
k
0 . Then, there is an ij ∈

(

[k]
2

)

such that βij 6= γij , and the function α 7→ (α0)ij ∈ F
A

k
ij◦1

k

0

separates β and γ.
For the inductive step, assume that T k

n separates points of Mk
n. Let β 6= γ ∈ M

k
n+1. If there

is an 0 ≤ m ≤ n such that βm 6= γm, then pn+1,n(β) 6= pn+1,n(γ) ∈ M
k
n. Hence, by the inductive

hypothesis, there is an f ∈ T k
n such that f(pn+1,n(β)) 6= f(pn+1,n(γ)). By definition, f ∈ F F

n for
some term F ∈ 〈Fk〉◦,· with h(F) ≤ n. Therefore, f ◦ pn+1,n ∈ F F

n+1 ⊆ T k
n+1 is a function that

separates β and γ.
For the remaining case, assume that βn+1 6= γn+1. Then, there is an ij ∈

(

[k]
2

)

such that
(βn+1)ij 6= (γn+1)ij . By the inductive hypothesis and the Stone-Weierstrass theorem [6, Theorem
2.4.11], the linear hull of T k

n is uniformly dense in C(Mk
n). Since M

k
n is Hausdorff, it then

follows from the Portmanteau theorem [15, Theorem 17.20] that there is an f ∈ T k
n such that

∫

Mk
n

f d(βn+1)ij 6=
∫

Mk
n

f d(γn+1)ij . By definition, f ∈ F F
n for some term F ∈ 〈Fk〉◦,· with

h(F) ≤ n. Then, α 7→
∫

Mk
n

f d(αn+1)j ∈ F
N

k
j ◦F

n+1 ⊆ T k
n+1 is a function that separates β and γ.

Having proven the statement for every n ∈ N, one can also easily see that it holds in the case
n = ∞ from the definitions, cf. also the first case of the induction.
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A final application of the Stone-Weierstrass theorem and the Portmanteau theorem yields
that, for a sequence of graphons, convergence of their k-WLDs is equivalent to convergence of
treewidth k − 1 multigraph homomorphism densities.

Lemma 41. Let k ≥ 1. Let (Wn)n and W : X × X → [0, 1] be a sequence of graphons and a
graphon, respectively. Then, νk

Wn
→ νk

W if and only if t(F, Wn) → t(F, W ) for every multigraph F
of treewidth at most k − 1.

Proof. Note that the linear hull of T k is uniformly dense in C(Mk) by Lemma 40 and the Stone-
Weierstrass theorem [6, Theorem 2.4.11]. Hence, we have

νk
Wn

→ νk
W ⇐⇒

∫

Mk

f dνk
Wn

→

∫

Mk

f dνk
W for every f ∈ C(Mk) (Portmanteau theorem)

⇐⇒

∫

Mk

f dνk
Wn

→

∫

Mk

f dνk
W for every f in the linear hull of T k

⇐⇒

∫

Mk

f dνk
Wn

→

∫

Mk

f dνk
W for every f ∈ T k (Linearity of the integral)

⇐⇒ t([[F]], Wn) → t([[F]], W ) for every F ∈ 〈Fk〉◦,· (Corollary 39)

⇐⇒ t(F, Wn) → t(F, W ) for every multigraph F of tw. ≤ k − 1. (Lemma 13)

Since M
k is Hausdorff, this in particular means that the k-WLDs of two graphons are equal

if and only if their homomorphism densities are.

Corollary 42. Let k ≥ 1 and U, W : X × X → [0, 1] be graphons, Then, νk
U = νk

W if and only if
t(F, U) = t(F, W ) for every multigraph F of treewidth at most k − 1.

We are finally ready to prove Theorem 4. The majority of the work is already done and, at
this point, it is just about putting all the previous results together.

(Proof of Theorem 4). 1 =⇒ 2: This is just Corollary 42.
2 =⇒ 3: Let R := Rk

U ◦ (Rk
W )∗. By the assumption, R is well defined, and by Corollary 28,

it is a Markov isomorphism as the composition of two Markov isomorphisms. By Corollary 34,
we have

T
k
U /Ck

U ◦ R = T
k
U /Ck

U ◦ Rk
U ◦ (Rk

W )∗ = Rk
U ◦ T

k
νk

U
◦ (Rk

W )∗ = Rk
U ◦ T

k
νk

W
◦ (Rk

W )∗

= Rk
U ◦ (Rk

W )∗ ◦ T
k
W /Ck

W

= R ◦ T
k
W /Ck

W .

Similarly, Lemma 36 yields that R is permutation invariant.
3 =⇒ 4: Set S := ICk

U
◦ R ◦ SCk

W
, which is a Markov operator as the composition of Markov

operators. By Lemma 22 5, Ck
U and Ck

W are T
k
U - and T

k
W -invariant, respectively. Hence,

T
k
U ◦ S = T

k
U ◦ ICk

U
◦ R ◦ SCk

W
= ICk

U
◦ T

k
U /Ck

U ◦ R ◦ SCk
W

= ICk
U

◦ R ◦ T
k
W /Ck

W ◦ SCk
W

= ICk
U

◦ R ◦ SCk
W

◦ T
k
W

= S ◦ T
k
W .

by Lemma 8 5, 6. In a similar fashion, Lemma 22 6 implies that, if R is permutation invariant,
then so is S.

4 =⇒ 5: Follows immediately from Lemma 9.
5 =⇒ 1: We have t([[F]], U) = t(F,Tk

U/C) = t(F,Tk
W/D) = t([[F]], W ), for every F ∈ 〈Fk〉◦,·

by Corollary 20 and Lemma 19. Then, Lemma 13 yields the claim.
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4.6 Measure Hierarchies

Theorem 4 implies that the sequence ν1
W , ν2

W , . . . of k-WLDs of a graphon W characterizes W
up to weak isomorphism since every graph has some finite treewidth. Let us explore this a bit
more in depth by combining all these k-WLDs into a single measure.

First, for ∞ > k ≥ ℓ ≥ 1, let pk,ℓ denote the projection from M
k to M

ℓ defined as follows:
Inductively, define pk,ℓ : P k

n → P ℓ
n, which also directly extends to pk,ℓ : Mk

n → M
ℓ
n by applying

the function component-wise. For n = 0, let pk,ℓ : P k
0 → P ℓ

0 be defined by pk,ℓ((wij)
ij∈([k]

2 )) :=

(wij)
ij∈([ℓ]

2 ). For the inductive step, pk,ℓ : P k
n+1 → P ℓ

n+1 is defined by pk,ℓ((νj)j∈[k]) := (pk,ℓ
∗νj)j∈[ℓ].

It is not hard to see that this is well-defined as every pk,ℓ is continuous. Finally, again by apply-
ing the function component-wise, pk,ℓ extends to a continuous function pk,ℓ : Mk → M

ℓ. Then,
consider the inverse limit of the spaces M

k and the projections pk+1,k for k ≥ 1 defined by

M
∞ :=

{

(αk)k≥1 ∈
∏

k≥1

M
k
∣

∣

∣
pk+1,k(αk+1) = αk for every k ≥ 1

}

with the σ-algebra B(M∞) generated by the projections p∞,k : M∞ → M
k, α 7→ αk for every

k ≥ 1. Note that this notation is justified as M
∞ is again a standard Borel space [15, Exercise

17.16]. As a product of a sequence of metrizable compact spaces,
∏

k≥1 M
k is metrizable [6,

Proposition 2.4.4] and also compact by Tychonoff’s Theorem [6, Theorem 2.2.8]. Since pk+1,k is
continuous, this implies that M

∞ is closed and, hence, a metrizable compact space. Let

WL :=
{

(νk)k≥1 ∈
∏

k≥1

WL
k
∣

∣

∣
νk = pk+1,k

∗νk+1 for every k ≥ 1
}

,

where WL
k denotes the set of all k-WLDs. Then, by the Kolmogorov Consistency Theorem [15,

Exercise 17.16], for every ν ∈ WL, there is a unique ν∞ ∈ P(M∞) such that p∞,k
∗ν∞ = νk for

every k ≥ 1.

Lemma 43. Let (νn)n be a sequence with νn ∈ WL and ν ∈ WL. Then, ν∞
n → ν∞ if and only

if νk
n → νk for every k ≥ 1.

Proof. The set
⋃

1≤k<∞ C(Mk) ◦ p∞,k is uniformly dense in C(M∞) by the Stone-Weierstrass
theorem [6, Theorem 2.4.11], cf. also the proof of Lemma 24. Hence, we have

ν∞
n → ν∞ ⇐⇒

∫

M∞

f dν∞
n →

∫

M∞

f dν∞ for every f ∈ C(M∞) (Portmanteau theorem)

⇐⇒

∫

M∞

f ◦ p∞,k dν∞
n →

∫

M∞

f ◦ p∞,k dν∞ for all k ≥ 1, f ∈ C(Mk)

⇐⇒

∫

M∞

f dp∞,k
∗ν∞

n →

∫

M∞

f dp∞,k
∗ν∞ for all k ≥ 1, f ∈ C(Mk)

⇐⇒

∫

M∞

f dνk
n →

∫

M∞

f dνk for all k ≥ 1, f ∈ C(Mk)

⇐⇒ νk
n → νk for every k ≥ 1. (Portmanteau theorem)

One can show that, for every graphon W : X × X → [0, 1], the sequence (νk
W )k≥1 of its

k-WLDs is in WL and, hence, yields a measure ν∞
W ∈ P(M∞). Together, Lemma 41 and

Lemma 43 imply that these measures induce the same topology on the space of graphons as
multigraph homomorphism densities; note that this topology is different from the one induced
by simple graph homomorphism densities, cf. [16, Exercise 10.26] or [14, Lemma C.2].
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Corollary 44. Let (Wn)n and W : X × X → [0, 1] be a sequence of graphons and a graphon,
respectively. Then, the following are equivalent:

1. ν∞
Wn

→ ν∞
W .

2. t(F, Wn) → t(F, W ) for every multigraph F .

While simple graph and multigraph homomorphism densities yield different topologies, two
graphons are nevertheless weakly isomorphic if and only if they have the same multigraph homo-
morphism densities [16, Corollary 10.36]. Since M≤1(M∞) is Hausdorff, this yields the following
corollary.

Corollary 45. Let U, W : X × X → [0, 1] be graphons. Then, ν∞
U = ν∞

W if and only if U and W
are weakly isomorphic.

4.7 Operator Hierarchies

Recall the system Lk
iso of linear equations from the introduction: two simple graphs G and H are

not distinguished by oblivious k-WL if and only if Lk
iso(G, H) has a non-negative real solution. Let

us take a closer look at Lk
iso(G, H) to see that it is much closer related to the characterization T

k
U ◦

S = S◦Tk
W from Theorem 4 than it might seem at first glance. The variables of Lk

iso(G, H), which
are indexed by sets π ⊆ V (G)×V (H) of size |π| ≤ k, can be interpreted as permutation-invariant
matrices on V (G)1 × V (H)1, . . . , V (G)k × V (H)k. Instead of permutation-invariant operators
on all spaces L2(X1, µ⊗1), . . . , L2(Xk, µ⊗k), we only have a single permutation-invariant Markov
operator S on L2(Xk, µ⊗k). For an operator S on L2(Xk, µ⊗k), defining

S↓ := TF k
k

◦ S ◦ TIk
k

yields an operator on L2(Xk−1, µ⊗k−1). It is easy to see that (S↓ )∗ = S∗↓ since the adjoint of
a forget graph is the corresponding introduce graph and vice versa. Moreover, as long as S is
permutation-invariant, this definition is independent of the specific pair of forget and introduce
graphs, i.e., we have S ↓ = TF k

j
◦ S ◦ TIk

j
for every j ∈ [k] since TF k

k
◦ T(k...j) = TF k

j
and

T(j...k) ◦ TIk
k

= TIk
j
.

Lemma 46. Let k ≥ 1 and S be a permutation-invariant Markov operator on L2(Xk, µ⊗k).
Then, S↓ is a permutation-invariant Markov operator. Moreover, if TNk

k
◦ S = S ◦ TNk

k
, then

1. S ◦ TIk
k

= TIk
k

◦ S↓ , 2. TF k
k

◦ S = S↓ ◦ TF k
k

, and 3. T
N

k−1
k−1

◦S↓ = S↓ ◦T
N

k−1
k−1

.

Proof. First note that

S↓1Xk−1 = (TF k
k

◦ S ◦ TIk
k
)1Xk−1 = (TF k

k
◦ S)1Xk = TF k

k
1Xk = 1Xk−1 ,

where the last equality holds since µ is a probability measure. Since S∗ is also a Markov operator,
we also obtain (S↓ )∗1Xk−1 = S∗↓1Xk−1 = 1Xk−1 . Let f ∈ L2(Xk−1, µ⊗k−1) with f ≥ 0. Then,
TIk

k
f = f ⊗1X ≥ 0, and hence, (S◦TIk

k
)f ≥ 0. Therefore, also S↓f = (TF k

k
◦S◦TIk

k
)f ≥ 0. Hence,

S↓ is a Markov operator. For a permutation π : [k − 1] → [k − 1], we define the permutation
π′ : [k] → [k] by π′(i) := π(i) for i ∈ [k − 1] and π′(k) := k. Then,

Tπ ◦ S↓ = Tπ ◦ TF k
k

◦ S ◦ TIk
k

= TF k
k

◦ Tπ′ ◦ S ◦ TIk
k

= TF k
k

◦ S ◦ Tπ′ ◦ TIk
k

= TF k
k

◦ S ◦ TIk
k

◦ Tπ

= S↓ ◦ Tπ.
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Hence, S↓ is permutation invariant. Now, assume that TNk
k

◦ S = S ◦ TNk
k

. Then,

TIk
k

◦ S↓ = TIk
k

◦ TF k
k

◦ S ◦ TIk
k

= TNk
k

◦ S ◦ TIk
k

= S ◦ TNk
k

◦ TIk
k

= S ◦ TIk
k

◦ TF k
k

◦ TIk
k

= S ◦ TIk
k
,

where the last equality holds since µ is a probability measure. Then, we also obtain 2 by
considering S∗ and S∗↓ and then taking adjoints. Finally, note that the permutation invariance of
S yields that we also have TNk

k−1
◦S = S◦TNk

k−1
. Moreover, observe that N

k−1
k−1 ◦F k

k = F k
k ◦Nk

k−1.

Hence,

T
N

k−1
k−1

◦ S↓ = T
N

k−1
k−1

◦ TF k
k

◦ S ◦ TIk
k

= TF k
k

◦ TNk
k−1

◦ S ◦ TIk
k

= TF k
k

◦ S ◦ TNk
k−1

◦ TIk
k

= TF k
k

◦ S ◦ TIk
k

◦ T
N

k−1
k−1

= S↓ ◦ T
N

k−1
k−1

.

Given a permutation-invariant Markov operator S on L2(Xk, µ⊗k), repeated applications
of Lemma 46 yield a sequence S0, . . . , Sk of permutation-invariant Markov operators Si on
L2(X i, µ⊗i) by letting Sk := S and Si−1 := Si ↓ for i ∈ [k], which we call the operator hier-
archy defined by S. If S satisfies TNk

k
◦ S = S ◦ TNk

k
, then Lemma 46 yields that

1. Si(f ⊗ 1X) = Si−1(f) ⊗ 1X for every f ∈ L2(X i−1, µ⊗i−1) and every i ∈ [k],

2. S∗
i (f ⊗ 1X) = S∗

i−1(f) ⊗ 1X for every f ∈ L2(X i−1, µ⊗i−1) and every i ∈ [k],

3. S0 is the identity operator, and

4. Si ≥ 0 for every i ∈ [k].

Note that, by definition of Ii
i , the first condition just states that Si ◦ TIi

i
= TIi

i
◦ Si−1; the second

condition is the analogous statement for forget graphs. With this observation, one also gets
that the converse holds, i.e., if S0, . . . , Sk is a sequence of permutation-invariant operators Si on
L2(X i, µ⊗i), then S0, . . . , Sk are Markov operators satisfying TN i

i
◦ Si = Si ◦ TN i

i
.

As a final remark, note that in addition to Lemma 46, one can also easily prove that, if
TAk

12→U ◦ S = S ◦ TAk
12→W holds for graphons U, W : X × X → [0, 1] and k ≥ 3, then we also

have T
A

k−1
12 →U ◦ S↓ = S↓ ◦ T

A
k−1
12 →W . This inductively extends to operator hierarchies, and it is

not hard to see that this requirement corresponds to the equations for partial isomorphisms in
Lk

iso; we are just missing injectivity, which is not important as long as our standard Borel space
is atom-free.

5 Simple Weisfeiler-Leman

Theorem 4 show that oblivious k-WL corresponds to bounded treewidth multigraph homomor-
phism densities. The reason for this are the atomic types used by k-WL, or more accurately in our
setting, the adjacency graphs since subsequent applications of the same adjacency graph Ak

ij to
a term result in parallel edges. This cannot be prevented by simply disallowing such subsequent
applications: for the application of the Stone-Weierstrass theorem in the proof of Theorem 4,
it is crucial that the set T k of homomorphism functions is closed under multiplications. To
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Figure 7: Two ways of introducing parallel edges.

a1

b1

a2

b2

S2
2,{1} :

a1

b1

a2

b2

a3

b3

S3
2,{1,3} :

Figure 8: The graphs S2
2,{1} and S3

2,{1,3}.

achieve this, we have to close the set of terms under Schur product, which may also introduce
parallel edges if we have edges between input vertices, cf. Figure 7. To prevent this we have to
prevent edges from being added between input vertices in the first place. In the following, we
show how Theorem 4 and its proof has to be adapted for simple graph homomorphism densities.
In particular, what we refer to as simple (oblivious) k-WL is introduced. Not surprisingly, the
definitions become more similar to color refinement and the ones of Grebík and Rocha [9]. Only
proofs that significantly differ from their counterpart in Section 4 are included. At the end of
this section, we also briefly show how simple non-oblivious k-WL can be defined.

To prevent edges from being added between input vertices, we only allow certain combinations
of adjacency and neighbor graphs; after a bunch of adjacency graphs connecting a vertex j to
other vertices, we immediately follow up with a j-neighbor graph. Formally, for every (j, V ) in
the set Sk := {(j, V ) | j ∈ [k] and V ⊆ [k] \ {j}}, define the bi-labeled graph

S
k
j,V := N

k
j ◦ ©i∈V A

k
ij ∈ Gk,k.

Then, let F sk :=
{

Sk
j,V | (j, V ) ∈ Sk

}

⊆ Gk,k be the set of all these bi-labeled graphs. We have
to be a bit cautious as, in general, these graphs are not symmetric and, hence, their graphon
operators are not self-adjoint; in general, the set F sk is not even closed under transposition. Note
that, by definition, the Sk

j,V -graphon operator of a graphon W is given by

(TSk
j,V

→W f)(x̄) =

∫

X

(

∏

i∈V

W (xi, y)
)

· f ◦ x̄[y/j] dµ(y)

for µ⊗k-almost every x̄ ∈ Xk. Analogously to Lemma 13, one can observe that the underlying
graphs of [[F]] for terms F ∈ 〈F sk〉◦,· are, again up to isolated vertices, precisely the simple graphs
of treewidth at most k − 1. Basically, when constructing a term from a nice tree decomposition,
we just add all missing edges when a vertex is forgotten. This way, every edge is added the graph
as the bag at the root node of a nice tree decomposition is the empty set.

For the sake of brevity, we write Tsk
W := TF sk→W for a graphon W . Define Csk

W,n ∈ Θ(B⊗k, µ⊗k)

for every n ∈ N by setting Csk
W,0 :=

〈{

∅, Xk
}〉

, Csk
W,n+1 := T

sk
W (Csk

W,n) for every n ∈ N, and

finally, Csk
W := Csk

W,∞ := 〈
⋃

n∈N
Csk

W,n〉. Then, analogously to Lemma 22, one can show that Csk
W

is permutation-invariant and the minimum T
sk
W -invariant µ⊗k-relatively complete sub-σ-algebra

of B⊗k. We now deviate a bit from the definition of W -invariance and call a C ∈ Θ(B⊗k, µ⊗k)
simply W -invariant if C is invariant for every operator in the family (Tsk

W )Csk
W

, i.e., C is (TF →W )Csk
W

-

invariant for every F ∈ F sk. The reason for this is that, since T
sk
W is not closed under taking
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adjoints, Csk
W might not be invariant under these adjoints. In contrast, Csk

W is trivially both
(Tsk

W )Csk
W

-invariant and (Tsk
W )∗

Csk
W

-invariant. In fact, it is easy to see that Csk
W is also the minimum

simply W -invariant µ⊗k-relatively complete sub-σ-algebra of B⊗k.
For a separable metrizable space (X, T ), let M≤1(X) denote the set of all measures of total

mass at most 1. We endow M≤1(X) with a topology analogously to P(X), i.e., with the topology
generated by the maps µ 7→

∫

f dµ for f ∈ Cb(X). Then, for measures that all have the same
total mass, the Portmanteau theorem is still applicable as we can scale them to have total mass
of one. Let P sk

0 := {1} be the one-point space and inductively define

M
sk
n :=

∏

i≤n

P sk
i and P sk

n+1 :=
(

M≤1

(

M
sk
n

))Sk

for every n ∈ N. Let M
sk := M

sk
∞ :=

∏

n∈N
P sk

i and, for n ≤ m ≤ ∞, let pm,n : Msk
m → M

sk
n be

the natural projection. Finally, define

P
sk :=

{

α ∈ M
sk | (αn+1)(j,V ) = (pn+1,n)∗(αn+2)(j,V ) for all (j, V ) ∈ Sk, n ∈ N

}

.

By the Kolmogorov Consistency Theorem [15, Exercise 17.16], for all α ∈ P
k and (j, V ) ∈ Sk,

there is a unique measure µα
(j,V ) ∈ P(Mk) such that (p∞,n)∗µα

(j,V ) = (αn+1)(j,V ) for every

n ∈ N. Analogously to Lemma 24, the set P
sk is closed in M

sk and, for every (j, V ) ∈ Sk, the
mapping P

sk → P(Msk), α 7→ µα
(j,V ) is continuous. To adapt the definition of k-WLD, we add

a third requirement of absolute continuity and Radon-Nikodym derivatives, cf. the definition of
distributions over iterated degree measures [9].

Definition 47. Let k ≥ 1. A measure ν ∈ P(Msk) is called a simple k-Weisfeiler-Leman
distribution (simple k-WLD) if

1. ν(Psk) = 1,

2.
∫

Msk f dν =
∫

Msk

(

∫

Msk f dµα
j,∅

)

dν(α) for all bounded measurable f : Msk → R, j ∈ [k], and

3. µα
j,V 4 µα

j,∅ and 0 ≤
dµα

j,V

dµα
j,∅

≤ 1 for ν-almost every α ∈ M
sk and every (j, V ) ∈ Sk.

Let W : X × X → [0, 1] be a graphon. Define owlskW,0 : Xk → M
sk
0 by owlskW,0(x̄) := 1 for every

x̄ ∈ Xk. Inductively define owlskW,n+1 : Xk → M
sk
n+1 by

owlskW,n+1(x̄) :=

(

owlskW,n(x̄),
(

A 7→

∫

owlsk
W,n

−1(A)x̄[/j]

∏

i∈V

W (xi, y) dµ(y)
)

(j,V )∈Sk

)

for every x̄ ∈ Xk. Then, let owlskW = owlskW,∞ : Xk → M
sk be the mapping defined by (owlskW (x̄))n :=

(owlskW,∞(x̄))n := (owlskW,n(x̄))n for all n ∈ N, x̄ ∈ Xk. Finally, let νsk
W := owlskW ∗µ⊗k ∈ P(Msk) be

the push-forward of µ⊗k via owlskW . Analogously to Lemma 27, one can show that

Csk
W,n =

〈{

owlskW,n

−1
(A) | A ∈ B(Msk

n )
}〉

.

for n ∈ N ∪ {∞}. Defining Rsk
W := SCsk

W
◦ Towlsk

W
yields a Markov isomorphism from L2(Msk, νsk

W )

to L2(Xk/Csk
W , µ⊗k/Csk

W ), cf. Corollary 28. Let us explicitly state the adaptation of Lemma 29
since the proof requires some additional work.
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Lemma 48. Let k ≥ 1 and W : X × X → [0, 1] be a graphon. Then,

1. µ
owl

sk
W (x̄)

j,∅ = (owlskW ◦x̄[·/j])∗µ for all j ∈ [k], x̄ ∈ Xk,

2. owlskW (Xk) ⊆ P
sk, and

3. νsk
W is a simple k-WLD.

Proof. For 1, observe that µ
owl

sk
W (x̄)

j,∅ is a probability measure. Then, the proof is analogous to

Lemma 29 1. The proof of 2 is analogous to Lemma 29 2. For 3, we get νsk
W (Psk) = 1 and

∫

Msk f dνsk =
∫

Msk

(

∫

Msk f dµα
j,∅

)

dνsk
W (α) for every bounded measurable f : Msk → R and every

j ∈ [k] as in the proof of Lemma 29 3. Let (j, V ) ∈ Sk. Let x̄ ∈ Xk and let

C :=
〈{

x̄[·/j]
−1

(owlskW
−1

(A)) | A ∈ B(Msk)
}〉

be the minimum µ-relatively complete sub-σ-algebra that makes owlskW ◦x̄[·/j] measurable. Then,
E(y 7→

∏

i∈V W (xi, y) | C) ∈ L2(X, C, µ) and hence, by Claim 7, there is a measurable function

g : X → R such that E(y 7→
∏

i∈V W (xi, y) | C) = g ◦ owlskW ◦x̄[·/j] µ-almost everywhere. Note

that 0 ≤ g ≤ 1 holds µ-almost everywhere. For every n ∈ N and every A ∈ B(Msk
n ), we have

µ
owl

sk
W (x̄)

j,V (p−1
∞,n(A)) = (p∞,n)∗µ

owl
sk
W (x̄)

j,V (A) = (owl
sk
W (x̄))n+1(A)

= (owlskW,n+1(x̄))n+1(A)

=

∫

owlsk
W,n

−1(A)x̄[/j]

∏

i∈V

W (xi, y) dµ(y)

=

∫

x̄[·/j]−1(owlsk
W

−1(p−1
∞,n(A)))

∏

i∈V

W (xi, y) dµ(y)

=

∫

x̄[·/j]−1(owlsk
W

−1(p−1
∞,n(A)))

E(y 7→
∏

i∈V

W (xi, y) | C) dµ

(Claim 5)

=

∫

x̄[·/j]−1(owlsk
W

−1(p−1
∞,n(A)))

g ◦ owlskW ◦x̄[·/j] dµ

=

∫

p−1
∞,n(A)

g d(owlskW ◦x̄[·/j])∗µ

=

∫

p−1
∞,n(A)

g dµ
owl

sk
W (x̄)

j,∅ .

Since
⋃

n∈N

{

p−1
∞,n(A) | A ∈ B(Msk

n )
}

generates B(Msk), the π-λ theorem [15, Theorem 10.1 iii)]

yields that µ
owl

sk
W (x̄)

j,V (A) =
∫

A g dµ
owl

sk
W (x̄)

j,∅ for every A ∈ B(Msk). Therefore, µα
j,V 4 µα

j,∅ and

0 ≤
dµα

j,V

dµα
j,∅

≤ 1 for every α ∈ owlskW (Xk). By definition of νsk
W , this holds νsk

W -almost everywhere.

Hence, νsk
W is a simple k-WLD.

Let ν ∈ P(Msk) be a simple k-WLD and (j, V ) ∈ Sk. By definition of a k-WLD, we have

0 ≤
dµα

j,V

dµα
j,∅

≤ 1 for ν-almost every α ∈ M
sk. Hence, analogously to Lemma 30, one can show that

setting

(TSk
j,V

→νf)(α) :=

∫

Msk

dµα
j,V

dµα
j,∅

· f dµα
j,∅ =

∫

Msk

f dµα
j,V
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for all f ∈ L∞(Msk, ν), α ∈ M
sk defines an L∞-contraction that uniquely extends to an L2-

contraction L2(Msk, ν) → L2(Msk, ν).

Lemma 49. Let k ≥ 1 and W : X × X → [0, 1] be a graphon. For every S ∈ F sk,

1. TS→W ◦ Towlsk
W

= Towlsk
W

◦ TS→νsk
W

,

2. (TS→W )Ck
W

◦ Towlsk
W

= Towlsk
W

◦ TS→νsk
W

, and 3. TS→W /Ck
W ◦ Rsk

W = Rsk
W ◦ TS→νsk

W
.

Proof. Let (j, V ) ∈ Sk such that S = Sk
j,V . For x̄ ∈ Xk, let Cx̄ denote the minimum µ-relatively

complete sub-σ-algebra that makes owlskW ◦x̄[·/j] measurable. As seen in the proof of Lemma 48,
we have

E(y 7→
∏

i∈V

W (xi, y) | Cx̄) =
dµ

owl
sk
W (x̄)

j,V

dµ
owlsk

W
(x̄)

j,∅

◦ owlskW ◦x̄[·/j]

µ-almost everywhere. Then, we have

(Towlsk
W

◦ TS→νsk
W

f)(x̄) =

∫

Msk

dµ
owl

sk
W (x̄)

j,V

dµ
owlsk

W
(x̄)

j,∅

· f d(owlskW ◦x̄[·/j])∗µ (Definition and Lemma 48 1)

=

∫

X

E(y 7→
∏

i∈V

W (xi, y) | Cx̄) · f ◦ owlskW ◦x̄[·/j] dµ

=

∫

X

∏

i∈V

W (xi, y) · E(f ◦ owl
sk
W ◦x̄[·/j] | Cx̄)(y) dµ(y) (Claim 5)

=

∫

X

∏

i∈V

W (xi, y) · f ◦ owlskW ◦x̄[y/j] dµ(y)

= (TS→W ◦ Towlsk
W

f)(x̄)

for every f ∈ L∞(Msk, ν) and µ⊗k-almost every x̄ ∈ Xk. As L∞(Msk, νsk
W ) is dense in L2(Msk, νsk

W ),
this implies 1. From there on, 2 and 3 are analogous to Lemma 31 2 and 3, respectively.

For k ≥ 1 and a simple k-WL distribution ν ∈ P(Msk), let Tν := (TS→ν)S∈F sk . Then, for a
graphon W : X × X → [0, 1], we have

T
sk
W /Csk

W ◦ Rsk
W = Rsk

W ◦ Tνsk
W

and T
sk
W

∗
/Csk

W ◦ Rsk
W = Rsk

W ◦ T
∗
νsk

W
,

where the first equation is just Lemma 49 and the second equation follows from the first since
Rsk is a Markov isomorphism. As before, a permutation π : [k] → [k] naturally extends to a
measurable bijection π : Msk → M

sk, and the π-invariance, and more general the permutation
invariance, of a simple k-WLD can be defined analogously to Section 4.4. The analogous result
to Lemma 36 holds as well; in particular, νsk

W is permutation invariant for a graphon W . Let
C ∈ Θ(B⊗k, µ⊗k) be simply W -invariant; recall that this definition is a bit quirky as it means
that C is (Tsk

W )Csk
W

-invariant. Corollary 20 can then be adapted to the also somewhat quirky
statement, that

t(F,Tνsk
W

) = t(F, ((Tsk
W )Csk

W
)C) = t(F, (Tsk

W )Csk
W

/C) = t(F,Tsk
W ) = t([[F]], W )

holds for every F ∈ 〈F sk〉◦,·. To prove this, one has to apply Lemma 19 twice this time: first, to
get from T

sk
W to (Tsk

W )Csk
W

and, second, to get from there to ((Tsk
W )Csk

W
)C and (Tsk

W )Csk
W

/C.
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For a term F ∈ 〈F sk〉◦,· and every n ∈ N with n ≥ h(F), the set F F
n of functions M

sk
n → [0, 1]

is defined similarly to Definition 37. More precisely, while we could just use the old definition,
it can actually be simplified as the distinct cases for adjacency and neighbor graphs can be
subsumed by the function

α 7→

∫

Msk
n

f d(αn+1)(j,V ) ∈ F
S

k
j,V ◦F

n+1

for every f ∈ F F
n and every j ∈ [k]. From there, we analogously obtain the set F F of continuous

functions M
sk → [0, 1]. Lemma 38 and Corollary 39 adapt in a straight-forward fashion.

For every n ∈ N ∪ {∞}, define T sk
n :=

⋃

F∈〈F sk〉◦,·,h(F)≤n F F
n and abbreviate T sk := T sk

∞ .

Lemma 40 also adapts easily, i.e., for every n ∈ N ∪ {∞}, the set T sk
n is closed under multipli-

cation, contains 1Msk
n

, and separates points of M
sk
n . Here, one has to observe that the all-one

function distinguishes two measures if their total mass is different, which means that the Port-
manteau theorem is still applicable in this case. From there, we obtain the following analogue
to Lemma 41.

Lemma 50. Let k ≥ 1. Let (Wn)n and W : X × X → [0, 1] be a sequence of graphons and
a graphon, respectively. Then, νsk

Wn
→ νsk

W if and only if t(F, Wn) → t(F, W ) for every simple
graph F of treewidth at most k − 1.

Since P(Msk) is Hausdorff, this also means that the simple k-WLDs of two graphons are
equal if and only if their treewidth k − 1 simple graph homomorphism densities are. With the
Counting Lemma [16, Lemma 10.23], we also obtain the following additional corollary, which
does not hold for k-WLDs as the Counting Lemma does not hold for multigraphs.

Corollary 51. Let k ≥ 1. The mapping W0 → P(Msk), W 7→ νsk
W is continuous when W0 is

endowed with the cut distance.

Having outlined the necessary changes for simple graphs, we obtain the following variant
of Theorem 4 for simple graph homomorphism densities. Note the quirky characterization via
Markov operators, which is quite artificial in this case; this again stems from the fact that the
family T

sk
W of operators is not closed under taking adjoints.

Theorem 52. Let k ≥ 1 and U, W : X × X → [0, 1] be graphons. The following are equivalent:

1. t(F, U) = t(F, W ) for every simple graph of treewidth at most k − 1.

2. νsk
U = νsk

W .

3. There is a (permutation-inv.) Markov iso. R : L2(Xk/Csk
W , µ⊗k/Csk

W ) → L2(Xk/Csk
U , µ⊗k/Csk

U )
such that T

sk
U /Csk

U ◦ R = R ◦ T
sk
W /Csk

W .

4. There is a (permutation-inv.) Markov operator S : L2(Xk, µ⊗k) → L2(Xk, µ⊗k) such that
(Tsk

U )Csk
U

◦ S = S ◦ (Tsk
W )Csk

W
and S∗ ◦ (Tsk

U )Csk
U

= (Tsk
W )Csk

W
◦ S∗.

5. There are µ⊗k-rel. comp. sub-σ-algebras C, D of B⊗k that are simply U -invariant and simply
W -invariant, respectively, and a Markov iso. R : L2(Xk/D, µ⊗k/D) → L2(Xk/C, µ⊗k/C)
such that (Tsk

U )Csk
U

/C ◦ R = R ◦ (Tsk
W )Csk

W
/D.

Proof. 1 =⇒ 2: Follows from Lemma 50.
2 =⇒ 3: Analogous to Theorem 4 as we have both T

sk
U /Csk

U ◦ Rsk
U = Rsk

U ◦ Tνsk
U

and (Rsk
W )∗ ◦

T
sk
W /Csk

W = Tνsk
W

◦ (Rsk
W )∗ since Rsk

W is a Markov isomorphism.
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Figure 9: The (isomorphism types of) graphs in Fns1.

3 =⇒ 4: Set S := ICsk
U

◦ R ◦ SCsk
W

, which is a Markov operator as the composition of Markov
operators. Then,

(Tsk
U )Csk

U
◦ S = (Tsk

U )Csk
U

◦ ICsk
U

◦ R ◦ SCsk
W

= ICsk
U

◦ T
sk
U /Csk

U ◦ R ◦ SCsk
W

(Lemma 8 3)

= ICsk
U

◦ R ◦ T
sk
W /Csk

W ◦ SCsk
W

= ICsk
U

◦ R ◦ SCsk
W

◦ (Tsk
W )Csk

W
(Lemma 8 4)

= S ◦ (Tsk
W )Csk

W
.

Note that we neither used that Csk
U is T

sk
U -invariant nor that Csk

W is T
sk
W -invariant. Since R

is a Markov isomorphism, we also have T
sk
U

∗
/Csk

U ◦ R = R ◦ T
sk
W

∗
/Csk

W , which means that we

obtain (Tsk
U

∗
)Csk

U
◦ S = S ◦ (Tsk

W

∗
)Csk

W
in an analogous fashion. This implies the claim. Moreover,

analogously to Theorem 4, if R is permutation invariant, then so is S.
4 =⇒ 5: Follows immediately from Lemma 9.
5 =⇒ 1: Analogous to Theorem 4.

Also in this case, it is possible to define the space M
s∞ and, for a graphon W : X × X →

[0, 1], the measure νs∞
W ∈ P(Ms∞). Then, one obtains the following lemma corresponding to

Corollary 44, where we now have a third characterization in terms of the cut distance δ�, cf. [16,
Theorem 11.5].

Lemma 53. Let (Wn)n and W : X × X → [0, 1] be a sequence of graphons and a graphon,
respectively. Then, the following are equivalent:

1. νs∞
Wn

→ νs∞
W .

2. t(F, Wn) → t(F, W ) for every simple graph F .

3. Wn
δ�−−→ W .

One can easily adapt the definitions of this section to obtain a non-oblivious variant of simple
k-WL. To this end, let Fnsk to be the set of all bi-labeled graphs

Fk+1,j1 ◦ ©i∈V Ak+1,ij1 ◦ Ik+1,j2 ∈ Gk,k

for j1, j2 ∈ [k + 1], V ⊆ [k + 1] \ {j1}. Note that every term in 〈F sk+1〉◦,· can be turned into
a term in 〈Fnsk〉◦,· by essentially re-grouping the introduce and forget graphs. For k = 1, the
isomorphism types in Fnsk are shown in Figure 9; they all are symmetric in this special case.
All definitions and results from this section transfer to the set Fnsk and, in particular, one can
obtain a variant of Theorem 52 without the mismatch of the k of simple k-WL and the k of the
treewidth.
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6 Conclusions

We have shown how oblivious k-WL and the work of Grebík and Rocha [9] can be married, or
in other words, how oblivious k-WL and some of its characterizations generalize to graphons. In
particular, we obtained that oblivious k-WL characterizes graphons in terms of their homomor-
phism densities from multigraphs of treewidth at most k − 1. This was made possible by using
a special set of bi-labeled graphs as building blocks for the multigraphs of treewidth k − 1 and
considering the graphon operators these bi-labeled graphs. Additionally, we have shown how
oblivious k-WL can be modified to obtain a characterization via simple graphs: simple oblivious
k-WL corresponds to homomorphism densities from simple graphs of treewidth at most k − 1.
However, the characterizations obtained this way are less elegant as the set of bi-labeled graphs
one uses as building blocks is not closed under transposition, i.e., the corresponding family of
operators is not closed under taking Hilbert adjoints.

The original goal of this work was to define a k-WL distance of graphons and to prove that
it yields the same topology as treewidth k homomorphism densities, cf. [3], where the result of
Grebík and Rocha is used to prove such a result for the tree distance. However, this does not work
out as hoped since multigraph homomorphism densities define a topology different from the one
obtained by the cut distance, cf. [16, Exercise 10.26] or [14, Lemma C.2]. Moreover, the quirky
characterization of simple k-WL via Markov operators, which stems from the non-symmetric
bi-labeled graphs used as building blocks, is also not well-suited to define such a distance. Hence,
it remains an open problem to define such a distance.

Acknowledgments: We would like to thank Jan Grebík for pointing out Section 4.6.
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