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Abstract

Gradient-based bilevel optimisation is a pow-
erful technique with applications in hyperpa-
rameter optimisation, task adaptation, algorithm
discovery, meta-learning more broadly, and be-
yond. It often requires differentiating through the
gradient-based optimisation process itself, leading
to "gradient-of-a-gradient” calculations with com-
putationally expensive second-order and mixed
derivatives. While modern automatic differentia-
tion libraries provide a convenient way to write
programs for calculating these derivatives, they
oftentimes cannot fully exploit the specific struc-
ture of these problems out-of-the-box, leading to
suboptimal performance. In this paper, we anal-
yse such cases and propose Mixed-Flow Meta-
Gradients, or MixFlow-MG — a practical algo-
rithm that uses mixed-mode differentiation to con-
struct more efficient and scalable computational
graphs yielding over 10x memory and up to 25%
wall-clock time improvements over standard im-
plementations in modern meta-learning setups.

1. Introduction

Bilevel optimisation (BLO) is a commonly used tool to solve
problems in meta-learning and deep learning (Liu et al.,
2021; Zhang et al., 2024). In this problem setting, an inner-
loop optimisation of parameters 6 incrementally searches
for optimal values 6*, in a process that depends on (fixed)
meta-parameters 7). In an outer-loop meta-optimisation, we
search for optimal meta-parameters n*. For instance, 1 may
include hyperparameters of the inner update (Bengio, 2000)
or even their per-weight versions (Sutton, 1992).

This framework offers a powerful approach to automating
the design and optimisation of learning systems, leading
to significant advancements in various machine learning
domains. It has applications ranging from hyperparameter
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optimisation (Bengio, 2000; Franceschi et al., 2018), data
weighting (Hu et al., 2023b; Calian et al., 2025), and fast
task adaptation (Finn et al., 2017), to neural architecture
search (Liu et al., 2018), adaptive reinforcement learning
(Xu et al., 2018; Zahavy et al., 2020), algorithm discovery
(Oh et al., 2020), and more.

In gradient-based bilevel optimization, the meta-parameter
update requires backpropagating through the inner loop,
leading to second-order derivatives (gradients of gradients)
— a notoriously computationally expensive process both in
terms of memory and FLOPs. Updating outer parameters ev-
ery 1" inner steps (truncated backpropagation through time,
Truncated-BPTT; Werbos, 1990) still results in computa-
tional cost scaling linearly with 7'. Consequently, we are
often restricted to small inner and outer models 6 and 7
and short horizons 7', limiting the exploration of the full
potential of BLO. While Truncated-BPTT can be effective
for smaller meta-models 1 (Xu et al., 2018; Shaban et al.,
2019), its applicability to large neural networks with billions
of parameters (Gemini et al., 2023; OpenAl et al., 2023) re-
mains an open question. Moreover, given the demonstrated
impact of scale on model performance (Kaplan et al., 2020;
Hoffmann et al., 2022b), the trend of scaling inner mod-
els 6 is likely to continue. This necessitates more efficient
BLO algorithms to support modern and future generations
of models and to explore larger backpropagation horizons
T whilst keeping the cost of experiments affordable.

In this paper, we first analyse standard implementations for
Truncated-BPTT-based bilevel gradients in modern frame-
works for automated differentiation and highlight their in-
herent inefficiencies. We then propose Mixed-Flow Meta-
Gradients, or MixFlow-MG — a simple reparameterization
of the inner-loop learning dynamics that exposes the under-
lying symmetry of the problem and uses mixed-mode auto-
matic differentiation to seamlessly exploit it. Finally, we use
modern hardware and libraries for tensor programming to
demonstrate that the proposed algorithmic technique, whilst
requiring only minor code modifications, yields significant
performance improvements in common meta-learning sce-
narios. In a representative setting, MixFlow-MG demon-
strates reductions up to 95% in the active memory con-
sumption and 25% reduction in wall-clock time, thus
allowing to scale bilevel gradient setups by more than an
order of magnitude in a compute-efficient way.
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While numerous approximations for the (Truncated-)BPTT-
based numerical procedure, such as implicit (Rajeswaran
et al., 2019; Lorraine et al., 2020; Blondel et al., 2022; Choe
et al., 2023) and forward-mode gradients (Silver et al., 2021;
Shen et al., 2024) have been proposed recently, we focus
on calculating exact gradients to isolate and address the
core computational bottlenecks. The presented ideas can be
seamlessly incorporated into approximate methods as well.

2. Background
2.1. Bilevel Optimisation

In the general form, BLO can be posed as the following
constrained optimisation problem:

min V (1), where V(i) = By oy V(07 (n),y) (1)

s.t. 6% (n) = argmainEwNXL(G,n,x) (2)

where 7) are the outer meta-parameters, 6 are the inner model
parameters, V' and L are validation and train losses calcu-
lated on the data points y ~ Y and x ~ X, respectively. Note
that standard network training regimes are a special case,
where the validation loss in Equation (1) is minimised by
tuning the meta-parameters 7 by hand.

Typically 6*(n) in Equation (1) is approximated with T
steps of gradient-based methods (Maclaurin et al., 2015):

min V(?’]) = ]Ey~YV(6T(77)7 y)7
n 3

(0is1,vi41) = (05, v5,m, ) i=0...T-1

where v; is an arbitrary state at step 4, such as an optimiser’s
momentum, and ®(6;,v;,n, ;) is an update that involves
calculating the gradient OL(6;,n,z;)/00; and is differen-
tiable by 1. This ensures that meta-parameters 7, in their
turn, can also be optimised with gradient methods, giving
rise to quantities involving second-order derivatives of the
loss function L(8,n, z). In particular, such schemes require
computing left- or right-hand side products of the second-
order derivatives with arbitrary vectors.

2.2. Primer on Automatic Differentiation

A convenient way to compute the quantities involving
second-order derivatives in Equation (3) is provided by mod-
ern automatic differentiation libraries such as JAX (Brad-
bury et al., 2018) or PyTorch (Paszke et al., 2017). This
section explains fundamental concepts upon which these
libraries are built, which is important for understanding how
to design efficient algorithms for solving equations (3).

Let us consider arbitrary f(z) : R® — R™ with the corre-
sponding Jacobian J = 9 f/0x € R™*™. Autodiff provides
two types of differentiation for such functions: forward

and reverse. Forward mode calculates Jacobian-by-vector
product (JVP) Jv with arbitrary vector v at a computational
cost proportional to a single forward pass (Baur & Strassen,
1983). By carrying out JVPs with n input’s basis vectors, the
full Jacobian J can be recovered column-by-column, hence
requiring O(n) forward passes in total. Reverse mode, on
the other hand, computes vector-by-Jacobian product (VIP)
vJ and recovers the Jacobian one row at a time, in total
requiring O(m) forward passes for computing the full Jaco-
bian; however, by design, it operates in two passes — forward
and backward — and requires storing all intermediate activa-
tions during the forward pass to use them in the backward
pass, resulting in significantly higher memory requirements.

For neural networks, typical objects for differentiation are
loss functions L : R™ — R that output scalars. This is why
reverse mode is the default choice, since it recovers the
whole Jacobian Jy, in O(1) forward passes.

Certain classes of differential programs, such as those imple-
menting second-order optimisation in Section 2.1, require
computing products with second-order derivatives of the
corresponding loss functions. One example is Hessian-by-
vector products (HVPs) 92 L/0x?v. HVPs can be cheaply
evaluated using repeated VJP and/or JVP products (Pearl-
mutter, 1994), and there are three computationally tractable
ways available in practice:

rL,_ 0 (0
8x2v e@x

_ %U) = VJP(e, JVP(L,v))

reverse-over-forward

0 (ea—L)v: JVP(VJP(e,L),v)
Ox \ Ox

forward-over-reverse

— ’Ui (eal) = VJP(U,VJP(67L)) 9
Ox \ Or

reverse-over-reverse

where v € R" is an arbitrary vector and e = (1)1, is a unit
vector. Note that forward-over-forward mode was purpose-
fully omitted due to its prohibitive computational cost of
O(n) forward passes.

One crucial observation is that forward-over-reverse mode
avoids storing activations from the inner backward pass, of-
ten making it the most memory efficient choice in practice.
In addition, it has lower I/O overhead (no need to read/write
activations), potentially leading to reductions in wall-clock
time. This advantage becomes even more apparent when
calculating OL/Ox relies on the gradient checkpointing tech-
nique (Griewank & Walther, 2000), as it is effectively a no-
op for forward-mode differentiation. This property forms
the core of a highly efficient algorithm for gradient-based
BLO which will be described further in the paper.
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2.3. Automatic Differentiation in BLO

Several works (e.g., Franceschi et al., 2017) explore the
trade-offs between forward- and reverse-mode differentia-
tion for meta-parameters 7 in gradient-based BLO in Equa-
tion (3). In this context, the computational cost of reverse-
mode differentiation for the validation loss .Jy, with respect
to 7 is comparable to the computation of the inner- and
outer losses themselves, i.e. O(|n]) + O(T6]), but requires
storing all intermediate activations in memory that are not
necessary in forward-mode differentiation. However, this
memory efficiency comes at the price of the increased com-
putational cost, which becomes O(|n| x |8]). The overall
consensus is that when the number of meta-parameters is
small, one should consider forward-mode differentiation
to avoid incurring extra memory costs. However, in many
modern applications (Finn et al., 2017; Wichrowska et al.,
2017; Oh et al., 2020), 77| can be much larger, often even
comparable in size to the number of model parameters |6)|
(e.g., n are themselves the parameters of a neural network,
as in Finn et al. (2017)), thus making forward-mode differ-
entiation prohibitively expensive. In such cases, a straight-
forward implementation uses reverse mode at both levels
of the corresponding program, as shown in Algorithm 1.
All of the open-source repositories for gradient-based meta-
optimisation that we verified use this implementation (e.g.,
Arnold et al., 2020; Metz et al., 2022). We therefore re-
fer to Algorithm 1 as a standard or default autodiff-based
implementation further in the text.

The aforementioned autodiff libraries (Paszke et al., 2017,
Bradbury et al., 2018) compile the computational graph
that is defined by a user’s program (in just-in-time or dy-
namic regime) before executing it. Compilation allows for
leveraging advanced optimisations and memory allocation
algorithms, which can make all three differentiation modes
theoretically equivalent in terms of compute- and memory
efficiency in many use cases (Dagréou et al., 2024; Blondel
& Roulet, 2024).

Nevertheless, their corresponding hidden constants can sub-
stantially differ in practice. The practical differences stem
from various factors, including: the underlying model’s
structure, inputs’ size, autodiff framework and hardware
backend, compiler’s configuration and flags, custom op-
timisations, etc. Moreover, these frameworks only have
limited contextual information about a given problem’s na-
ture, hence often failing to capture and exploit inherent
symmetries and structural bottlenecks of the problem at
hand, which can lead to suboptimal low-level programs in
practice, as we will demonstrate further in the paper.

In the following section we identify an algorithmic improve-
ment based on the fact that a standard computational graph
for bilevel gradients includes symmetric matrices, such as
Hessians, which are never fully instantiated or explicitly

defined in the code. By exploiting their hidden symmetry
in a non-intrusive way, we achieve substantial memory sav-
ings with minimal code changes in the user programs. Our
benchmarks show that modern compilers are not able to
make such improvements on their own.

3. MixFlow-MG: Mixed-mode Differentiation
for Bilevel Gradients

We are now going to decompose equations (3) in order to
expose the Hessian matrix. This will allow us to employ a
more memory-efficient algorithm for calculating the outer
gradients.

Firstly, we propose reparameterising equations (3) to have
gradients VL; = OL(6;,n,x;)/00; as a separate argument
in the combined update function Y:

(0ir1,vie1) = ®(0;5,v5,m,2;) = Y(VLi, 05,v5,m,2;). (4)

After applying the chain rule to the gradient of the validation
loss with respect to 1 and using the fact that the validation
loss V' in (3) does not depend on the last-step state vy, we
obtain (in vector notation)

WOVt OV der OV )i
dn ~ 90p dn  dvp dn  \9bp dn

Then, after unrolling one step for Y;,1 (Appendix A.2), we
get the following recurrent relation for the total derivatives:

dY;4 _ (3Ti+1 N 0T 327[/ 8Ti+1) dTi+
dn 00; OVL; 06? dv; dn
OTHI (92L i 8Ti+1
OVL; Ondo; on

(6)

Equation (6) allows to unroll the loop “backwards”, from
i =T —11to0 0. According to Equation (5), for calculating
dV /dn it needs to be multiplied by the vector (0V /00 0)
from the left, hence it only requires one VJP. However, it
can be noticed that Equation (6) contains explicit vector-by-
hessian and vector-by-mixed-derivatives-matrix products;
the default autodiff implementation will perform them in
reverse-over-reverse mode, which can be suboptimal in prac-
tice.

To circumvent this, we transform the relation using classical
results. Assuming that the function approximator and loss
function have continuous second-order derivatives, which is
typically the case for neural networks, the following identi-
ties hold (c.f. Schwarz’s theorem):

T 2L T L
ondo; — 00;0n

2L
26?

_ 0L

- 00?’




MixFlow-MG: Scalable Meta-Learning via Mixed-Mode Differentiation

Algorithm 1 Standard Truncated-BPTT (Equation (3))

Algorithm 2 Mixed-mode Truncated-BPTT (Equation (4))

Input: 7, 0y, vo, inputs {z;} -, val_x
Output: 0V /o

1:

2: function ©(0,v,n, x;)

3: VL < grad(L)(0,x;)

4: ... arbitrary operations on 6, v, VL

5: (8,v) < optimizer(6,v, VL)

6: ... arbitrary operations on 6, v

7: return 6, v

8:

9: function VALLOSS(7, 0o, vo, {;} =, val_x)

10: (9,’1}) <« (90,1)0)

11: fori < 1toT do

12: empty line

13: (97U) (_q)(ovv7naxi)
14: return V (0, val_z)

15:

16: OV < grad(ValLoss)(n, 0, vo, {x;} 1, val_z)
17: return OV

Input: 7, 6, vy, inputs {z;},, val_x
Output: 0V /0n

1:
2: function V'(VL.0,v,n,x;)

3 empty line

4 ... arbitrary operations on 0, v, 90
5: (8,v) < optimizer(8,v,00)

6: ... arbitrary operations on 6, v

7 return 0, v

8

9

. function VALLOSS(7, 6, vo, {x;}L,, val_x)
10: (G,U) <~ (90,’1)0)
11: for: < 1to1 do

12: VL « fwdrev_grad(L)(0, x;)
13: (va) eT(vLaeﬂjanazi)
14: return V (0, val_z)

15:

16: OV « grad(ValLoss)(n, 0, vo, {x:} 1!, val_z)
17: return OV

Combining them with Equation (6) we can rewrite the
vector-by-hessian (VHP) and vector-by-mixed-derivatives-
matrix (VMP) products into their transposed versions, i.e.
hessian-by-vector (HVP) and mixed-derivatives-matrix-by-
vector (MVP) products:

normal VJP T
—_——
OV L a2L( aml)T
v — == (v @)
OVL; 06? 002 \" 9V L;
inefficient VHP efficient HVP
normal VIP\"
—_——
O O°L 0L ( 8Ti+1)T
v = v (8)
OV L; 0ndo; 0;0n\ 0VL;
inefficient VMP efficient MVP

Proposition 3.1. Reparamererisation (4) and identities (7),
(8) allow for replacing the default reverse-over-reverse dif-
ferentiation for recurrent relation (6) with more efficient
forward-over-reverse or reverse-over-forward alternatives.

Since mixed-mode differentiation constitutes the core algo-
rithmic improvement in this technique, we call it Mixed-
Flow Meta-Gradients or MixFlow-MG.

While advanced autodiff compilers and memory allocation
algorithms can make all three differentiation modes equiv-
alent in terms of compute- and memory efficiency in most

of cases (Dagréou et al., 2024; Blondel & Roulet, 2024),
their practical performance can vary remarkably, which we
demonstrate in Section 5. In general case, it is recommended
trying all three options for choosing the best one for a setup
at hand; the proposed reparameterisation (4) makes this
probing straightforward. In Section 5 we demonstrate how
MixFlow-MG leverages forward-over-reverse differentiation
for significant performance gains in practice.

3.1. Implementation in JAX

JAX (Bradbury et al., 2018) is a powerful library for dif-
ferential tensor programming. It relies on the functional
paradigm, where stateless functions can be transformed
and returned by other functions; one of its key transforma-
tions is grad(f) which accepts a scalar-valued function
f(z) :R™ > R and returns a new function g(z) : R” - R"
that computes the gradient of f with respect to z, i.e.

9(x) = 0f[0(x).

The default autodiff-based implementation uses this conve-
nient notation for computing second-order derivatives in the
original training loop (3), as shown in Algorithm 1. This
however can be highly suboptimal as it fails to exploit the
problem’s inherent symmetries, as discussed in Section 2.3.
Our proposed reparameterisation (4), outlined in Algorithm
2, allows to use mixed-mode differentiation via custom fw-
drev_grad transformation, which defines a VJP rule for cal-
culating HVPs in forward-over-reverse mode. This requires
changing only a few lines of code; our implementation can
be found in Appendix A.4.
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Figure 1. Peak HBM and step time across the number of (per inner
step) transformations M in Equation (9) (GPU).

3.2. Motivating Example

To illustrate the effects of MixFlow-MG, we consider the
following simple BLO problem (Equation (3)), similar to
Finn et al. (2017): 7 defines the initialisation point 6y =
n for the inner optimisation; the inner loss is a standard
L2 loss which is independent of n; the update dynamics
®(6;,v;,7m,x;) is a standard stateless (v = &) gradient step.

The inner model yy; is the following M -step recursive map:
yi(0,x) = i (2 sin(yi-1)) @, ©)

where yo(0,z) = Oz, = € RE*D g ¢ RP*D . We used
B =1024 and D = 4096 in our experiments and kept the
number of inner updates T = 2 for simplicity. The compu-
tational graph gets longer as the number of (per inner step)
transformations M increases, meaning we can study the ef-
fects on memory and runtime by adjusting M. For the sake
of demonstration, we minimised the effects of compiler’s
optimisation by disabling all loop fusions.

Figure 1 demonstrates how the metrics change across the
number of per-step transformations M. The HBM and step-
time scales much better when using mixed-mode differenti-
ation, with memory and wall-clock reductions up to 85% as
M increases. The corresponding code and XL A-generated
computational graphs are given in Appendices A.6 and A.7.

4. Scaling to Large Models

This section investigates device memory patterns and mem-
ory optimisation techniques in gradient-based bilevel opti-
misation for the case when the underlying models get larger.

The standard implementation of Truncated-BPTT for BLO
(Algorithm 1) loops over 7T inner updates ¢ to obtain 6
for calculating the outer (validation) loss. If done naively,
this algorithm requires storing intermediate activations A,
and outputs 0;, v, for each of ¢ = 1..T inner steps, hence
the peak memory consumption for one meta update scales

400
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memory
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w
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HBM footprint with allocations (GiB)

0 “static memory
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Figure 2. Device memory footprint for an outer update when using
autodiff for one step of bilevel optimisation. The memory can be
divided into static (checkpoints, inputs, parameters, states) and
dynamic (activations for backpropagation). The dynamic memory
can be reduced by exploiting the problem structure (see Figure
3). X-axis: instruction number in a compiled computation graph.
Y-axis: the amount of occupied device memory.

as O(T - (JA| + 16| + |v])). While it can be affordable for
small setups, real-world models are too large to be adapted
for meta-training this way due to high cost and scarcity of
the high bandwidth on-device memory: typically, one inner
step already uses all available on-accelerators memory.

Gradient checkpointing (Griewank & Walther, 2000) for
inner steps is often used in practice (e.g. in Arnold et al.
(2020); Metz et al. (2022)) to bring the memory footprint
down to O(|A] + T - (|0| + |v])), since only activations for
the current step are kept in memory at any moment of time
during meta-backpropogation, and T - (|6 + |v|) parame-
ters are getting checkpointed during the outer-loop unroll.
Typically the size of activations and partial derivatives |A|
is substantially larger than the size of parameters and opti-
miser states || + |v| due to the dependency of the former
on both the latter and inputs’ sizes. This makes gradient
checkpointing instrumental for scaling, and following this
common practice, we keep it enabled in all our benchmarks.

One important distinction to make is that checkpoints, in-
puts, parameters, and states require O(7-(|6|+|v|) bytes that
get allocated at the beginning of a program for the whole
execution time and written to only once. For this reason,
we refer to this type of memory as static. On the contrary,
O(|A|) bytes are allocated during outer-level backpropaga-
tion and re-purposed for new activations at every inner step,
hence we refer to it as dynamic memory. Typical memory
footprint for a single outer step can be found in Figure 2.
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Figure 3. HBM footprints for each stage of optimisation for 489M chinchilla transformer on GPU: 1 — block rematerialization, 2 —
saving inner gradients, 3 — mixed-mode differentiation. Each optimisation is responsible for reducing a specific chunk of HBM.

In addition to enabling gradient checkpointing for inner loop
unrolling, we found the following two optimisations impor-
tant for amplifying the gains of the proposed algorithm:

1. Block rematerialisation: for neural networks with
block-residual connections x;,1 = f;(x;) + x;, such as
residual networks (He et al., 2016) and transformers
(Vaswani, 2017), gradient checkpointing can be applied
to each of the blocks f; to substantially reduce memory
footprint at the theoretical cost of one forward pass;
this is a known optimisation, hence we keep it enabled
for both baseline and the proposed method to avoid
running out of memory even for smallest networks.

Saving inner gradients: 0L /06 can be saved (in addi-
tion to per-inner step inputs and parameters ) as part
of inner-loop gradient checkpointing to avoid incurring
one extra backward pass during the outer-level gradient
propagation; we have not found this optimisation in
previous works and existing libraries, hence it can be
considered as an additional contribution of this paper;
we enable it only for MixFlow-MG.

Both these optimisations plus mixed-mode differentiation,
as introduced in Section 3, complement each other. Fig-
ure 3 include the ablation study for 489M Chinchilla model
(on MAML; our full benchmark setup is described in the
next section). In particular, block rematerialisation under
forward-over-reverse differentiation does not require storing
intermediate per-block checkpoints thanks to the forward
mode at the outer level. This allows to almost completely
remove block #3 in Figure 3 thus drastically reducing peak
memory usage. Note that some portion of extra memory is
still claimed for calculating activations and JVPs on-the-fly,
this is why forward mode differentiation typically requires
3 times more memory than the basic forward pass.

We also observed that, while saving inner gradients is crucial
both for memory and step-time reductions on GPUs, it was
only important for the latter on TPUs, which shows the dif-

ference in the compilers’ efficiency for these two backends.
More details on this can be found in Appendix A.8.

5. Benchmarking Language Modelling Tasks

The primary goal of this section is to demonstrate the bene-
fits of MixFlow-MG on a representative set of BLO setups.
Without limiting generalisation, we chose the language mod-
elling domain for the inner-level optimisation, where the
standard loss is the next-token-prediction loss NT' P(0, x).
We use the Chinchilla family of language models (Hoff-
mann et al., 2022a) with RoPE (Su et al., 2024) and the
Adam optimiser (Kingma, 2014). When a meta model is
present, we use the same architecture as for the inner model.

Firstly, we explain the rationale behind choosing the perfor-
mance metrics. Then, we select a diverse class of real-world
problems to demonstrate possible gains in practice. Further,
we investigate different properties of MixFlow-MG using
various model structures and data regimes. Finally, com-
bining all findings, we provide practical recommendations
on efficiently scaling bilevel gradient setups by orders of
magnitude beyond any existing frameworks.

Benchmarking was performed in JAX (Bradbury et al.,
2018) on TPUv5p and H100 using the OpenXLA back-
end and libraries from DeepMind et al. (2020). While we
observe consistent behaviour across setups and tasks, results
may vary depending on library versions, hardware, compiler
flags, and other factors beyond the scope of this work.

We listed the minimal changes required for implement-
ing MixFlow-MG in Section 3.1 and included the relevant
Python code for JAX and PyTorch in Appendix A.4.

5.1. Metrics

MixFlow-MG operates on a per-inner-step basis, i.e. it ad-
dresses dynamic memory. In our metrics we focus solely on
dynamic memory and defer to Appendix A.3 for practical
recommendations on how to reduce static memory.
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Figure 4. Joint sweep over tasks, models, and hyperparameters from Table 1: peak dynamic HBM and step time ratio between default and
mixed-mode differentiation, sorted by value in descending order (higher is better, and values > 1 mean that MixFlow-MG improves over
the default autodiff implementation). All variations win both memory- and compute-wise, with highly correlated gains between tasks.

Table 1. Sweep over tasks: hyperparameters and values.
Parameter Values

Task

Model size (x10%)

# of inner updates (1)
Batch size

Sequence length

{learning_lr, maml, loss_weighting}
57,106, 163, 217, 306}
2,4,8

2048, 4096, 8192}

We measure peak dynamic High Bandwidth Memory
(HBM) (device memory) and wall-clock step time. Where
more appropriate, we report two performance metrics which
are defined as a ratio of the corresponding measurements be-
tween the default implementation and the proposed changes,
i.e. higher values indicate stronger gains over the baselines.

Peak dynamic HBM ratio is the ratio between the peak
usages of dynamic HBM (Section 4)
H B Maau — HBMgit,
H B Mwixpiow-vc — HBM, If/}?flglow-MG

(10)

Step Time ratio is the ratio between wall-clock time per
meta step

(1)

Tdefault / TMixFlow—MG-

5.2. Sweeping over Bilevel Optimisation Tasks

To recap, a typical setup for the gradient-based BLO Equa-
tion (3) is comprised of an inner loop that updates model
parameters 6 for T' steps, and an outer loop that updates
7 by backpropagating 9V /9n through the inner loop steps
by unrolling it backwards; the particular dependence of the
inner-loop optimisation on 7 defines the problem setup.

We consider the following three common BLO setups:

* Hyperparameter Learning: similar to Bengio (2000)
and Maclaurin et al. (2015), n are the per-parameter
learning rates for the inner optimiser, so that

0i+1 = g(n?aNTP(glaxl)/ae’wa’mU’L) )

with g a function that includes optimiser’s transforma-
tions for converting gradients into parameter updates.

* Model-Agnostic Meta-Learning (MAML, Finn et al.
(2017)): n defines the initialisation point wqy = 7 for
the inner optimisation and the inner loss is otherwise
independent of 7:

* Meta-learning Adaptive Loss Weighting: inspired by
Hu et al. (2023a), this setup uses 7 to calculate per-data
point loss weighting factors:

L(eianaxi) = a(n’xi) ' NTP(elaxl)

We sweep over the hyperparameters in Table 1, totalling in
135 distinct configurations per task and sort all results by
gains, in descending order. Figure 4 shows memory gains
and step-time wins for the runs that fit in available device
memory (80 GiB for GPU and 96 GiB for TPU).

MixFlow-MG delivers substantial improvements across the
board. We observe that memory footprint and step time are
reduced for all hyperparameter combinations. Remarkably,
memory usage is decreased by approximately 75% (nearly
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4x less memory) for 80% of configurations, with peak reduc-
tions exceeding 90% (over 10x less memory) on both GPUs
and TPUs. Previously, memory constraints severely limited
the scale of bilevel optimization. These results open the
door to training models of much larger size and complexity.
Wall-clock time wins reach 25% for GPU and 20% for TPU,
with a median improvement of 12% for both.

Wall-clock gains are almost uniform across configurations,
while memory gains vary significantly. We investigate this
in the following, and disentangle factors contributing to the
memory behaviour to showcase MixFlow-MG’s properties.

5.3. Model and Data Scaling

The dynamic memory requirements of transformer models
using the default implementation scale as O( BL(S +kS?)),
where L is the number of layers, S the context length, B the
batch size, and k a compiler-dependent constant. This scal-
ing arises from the self-attention blocks and holds even with
block rematerialisation enabled in the default implementa-
tion. However, as detailed in Section 4, our proposed mixed-
mode differentiation with block rematerialisation offers a
significant advantage: its memory usage is independent of
the number of layers, scaling only as O( B(S+kS?)), where
k represents the corresponding constant for mixed-mode gra-
dients and is significantly smaller than k. This reduction
stems from the forward-over-reverse mode, which requires

only a single memory buffer for activations, as opposed to
number of blocks buffers for the default implementation.

This difference in memory scaling leads to a substantial
reduction in peak dynamic HBM usage, quantified by the
ratio:

BL(S+kS?) L(1+kS) (12)
B(S +kS?) 1+kS
The factor L in the enumerator ensures that MixFlow-MG is
an algorithmic improvement for models with block-residual
connections, such as residual networks and transformers.

To validate this theoretical estimate, we benchmark combi-
nations of transformer models, context lengths, batch sizes,
and number of updates. In the previous section we observed
that MixFlow-MG shows highly correlated gains across all
tasks, so we report metrics only for the MAML setup here.

Figure 5 shows the gains for different models, batch sizes
B, context lengths .S, and inner-loop lengths 71" for GPUs,
with similar dynamics observed for TPUs. These empirical
results closely align with Equation (12): discounting minor
compilation effects, the gains are constant across B and T’
and sub-linearly increase towards kL/ k for larger S.

The impact of scaling different architectural components of
a Chinchilla transformer is shown in Figure 6. The memory
gains scale linearly with the number of layers L, confirming
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our theoretical analysis. While the gains could be expected
to be near-constant for the other structural parameters, the
real numbers differ in practice, especially for small models
on GPUs. This can be attributed to compilation effects: the
smaller a computational graph, the more memory optimi-
sations a low-level compiler can find in limited time, e.g.
GPUs may be able to schedule the fixed-size thread warps
more efficiently for small graphs.

In the real world transformers simultaneously scale across
all components (Hoffmann et al., 2022a). Figure 7 shows
the peak dynamic HBM gains across a reduced version of
the original Chinchilla scaling ladder, with models ranging
from 44M to 16B parameters. We observe that the gains get
larger for bigger models, eventually converging to 23-25x
(96%) dynamic memory reductions for TPUs and 10x (90%)
for GPUs. We hypothesise that the convergence happens
due to the underspecified compiler’s behaviour given the
fact that starting from 1B transformers, the corresponding
default computational graphs outgrow any available memory
by more than one order of magnitude, which can be too far
from typical compilation targets.

6. Conclusion

In this paper, we examined the practical aspects of gradient-
based methods for bilevel optimisations, identifying inef-
ficiencies in default autodiff-based implementations. To
address them, we proposed MixFlow-MG that uses mixed-
mode differentiation for the most computationally de-
manding components in the corresponding programs. We
achieved this by introducing a simple generic reparame-
terisation technique that can be effortlessly integrated into
standard implementations. We conducted detailed analysis
of the proposed algorithm and identified its scaling proper-
ties. Our empirical benchmarks demonstrated significant
practical improvements, including up to 10x total mem-
ory reductions and 25% lower wall-clock time in modern

meta-learning setups. Importantly, as the domain models
become larger and more sophisticated, the positive effect
of using MixFlow-MG compounds, allowing to drastically
reduce scaling costs. We believe that our work will help to
facilitate research in gradient-based bilevel optimisation by
opening up a larger class of models for experimenting whilst
minimising the need for extra computational resources. We
included a minimalistic implementation in JAX and PyTorch
for MixFlow-MG in Appendix A.4 for reference and easy
adoption.
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A. Appendix
A.1. Author Contributions

Turii Kemaev: MixFlow-MG concept, project leadership, algorithm and benchmarks design, implementation, and analysis;
Dan A. Calian, Luisa M. Zintgraf, Gregory Farquhar: algorithm analysis, benchmarks design, testing implementation;
Hado van Hasselt: advising the project, algorithm refinement and analysis.

All authors contributed to paper writing.
A.2. Derivations for MixFlow-MG

To expose second-order derivatives in the update equations Equation (3), we propose reparameterising them to have gradients
VL;=0L(6;,n,x;)]00; as a separate argument in the combined update function Y:

(0is1,vi41) = ®(0;,v3,m, ;) = Y(VL;, 0;,0,m, x;). (13)

After applying the chain rule to the gradient of the validation loss with respect to 1 and using the fact that the validation loss
V in (3) does not depend on the last-step state v, we obtain

dor
dV. oV ddy OV dup [ OV dn
B g (o
dn 907 dn  Ovr dny 001 dur
—— dn /. (14)
=0

_ (al 0) dYr
- 89T d?]

To calculate this total derivative, let us unroll one step for for Y;,1:

dp  OvVL; dn 00; dn " ov; dn an
oY1 (0°Ld; O°L Y1 d0; OV duv; 0T
S ovL, (aegm7+anaei)+ 90, dn " ov; dn oy
_ (3Ti+1 N 011 32L) do; N 0T 11 du; N (3Ti+1 9L N 6Ti+1)
96, T avL, 067 ) dn " ov, dy T\ avL, oma6, oy

dY,;1 0Y;41dVL, . Y41 dl;  OYiiq du; N 0Y ;1

Rewriting this in the block-matrix form results in

df;q do;
dp | _(9Tix N vy O*°L 9T \| dy . oY1 0°L N 8Ti+1' (15)
dviy 00, OVL; 06? ov; dv; OV L; 0ndb; on
dn dn
Or, alternatively,
(P+0)x0O
—
dTHl _ 8Ti+1 i aTHl 027[/ 8Ti+1 dTi +0T,,;+1 82L + 8Ti+1 (16)
dp | 96 OVL; 007 Ov; dn OV L; 0ndb; on ’
—_—
(P+0O)xP (P+O)xM

where P, O, and M are the sizes of 6, v, and 7 correspondingly.
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Figure 8. Static and dynamic peak HBM w.r.t. model size.

Assuming that the function approximator and loss function have continuous second-order derivatives, which is typically the
case for neural networks, the following identities hold (c.f. Schwarz’s theorem):

PLT L LT 8L

002 002" 0ndo;  00:;0n
Combining them with Equation (16) we can rewrite the vector-by-hessian (VHP) and vector-by-mixed-derivatives-matrix

(VMP) products into their transposed versions, i.e. hessian-by-vector (HVP) and mixed-derivatives-matrix-by-vector (MVP)
products:

normal VJP r
T
i1 0L a2LT( O i1 )T 2Lt 8L 82L( BTM)T
v — = — (v =<since — =—= ;=| —=|v
OvVL; 60? 80? OV L; 89? 391.2 80? OvVL;
—_——— ——
inefficient VHP efficient HVP
normal VJP r
T
0T L[ L T( aTM)T gine 2L 0L L ( ‘”"“)T
v = v = =—— =] — (v
| —
inefficient VMP efficient MVP

A.3. Handling static device memory

In the terminology introduced in Section 4, static device memory is used for storing inputs and outputs, parameters 6, states
v, and checkpointed gradient and allocated at the beginning of the on-device computation for its whole lifetime. So far, the
reported performance metrics reflected only changes in dynamic memory usage because MixFlow-MG operates on per-inner
step basis, i.e. it does not change the static memory allocations.

Figure 8(a) shows dynamic and static memory distribution for the chinchilla scaling experiments from Section 5.3. As can
be seen, MixFlow-MG reduces dynamic memory by 10-25x, thus turning static memory into the dominating part of the
allocated device memory. This gets exacerbated by the fact that, as models and their optimizers’ states become larger, the
overall dynamic-to-static ratio shrinks from 50-100 to 5-10 for default implementation, as depicted in Figure 8(b). In total,
this causes peak HBM memory gains to reduce from 10-25x (Figure 7) to 4-6x (Figure 8(c)).

Fortunately, the static memory factor can be reduced by several folds with the following techniques or their combinations:
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* For distributed setups with D interconnected devices, static tensors can be efficiently (i.e. with minimal communication
overhead) distributed using Fully-Sharded Data Parallelism (FSDP) (Rajbhandari et al., 2020), thus reducing the static
memory allocation per device by D times.

* For momentum-based inner-level optimisers, such as Adam (Kingma, 2014), one can use the technique proposed in
Maclaurin et al. (2015) to invert per-step updates during backward pass instead of storing them in static device memory;
moreover, combining it with per-inner update remat from Section 4 can allow to avoid computational overheads; the
same principle holds for arbitrary optimisers applied to the class of reversible networks (Behrmann et al., 2019; Kitaev
et al., 2020; Mangalam et al., 2022).

 The default per-inner update rematerialisation strategy can be improved using dynamic programming (Griewank, 1992),
allowing to reduce static memory usage from linear to logarithmic by T (the number of inner updates per each outer
update).

All of these techniques are fully compatible with MixFlow-MG and allow to achieve the 10-25x gains shown in Figure 7
with affordable (if not zero) compute overhead. We leave the implementation details of these methods outside the scope of
this paper, as they can be found in the corresponding original works.

A.4. Python code for mixed-mode bilevel gradients in JAX and PyTorch

Code Listing 1. JAX implementation for fwdrev_grad in Algorithm 2

def get_fwdrev_grad_fn(inner_loss_fn):
"""Returns a function implementing ‘grad(inner_loss_fn) ‘.

The returned function has a custom-defined VJP rule for implementing
forward-over—-reverse mode for Hessian-by-vector products that emerge 1in

the meta gradient / bilevel optimisation scenario. This custom rule can save
a substantial amount of memory and compute compared with default JAX autodiff.

Args:
inner_loss_fn: a function implementing inner loss calculation. It must
accept ‘params' as the first argument.

Returns:
A function implementing ‘grad(inner_loss_fn) ' with a custom-defined VJP
rule for forward-over-reverse Hessian-by-vector products.

mmn

@jax.custom_vijp
def fwdrev_grad_fn (params, =*inputs):
"""Pure implementation."""
return jax.grad(inner_loss_fn) (params, =xinputs)

def fwdrev_grad_fn_forward_pass (params, =*inputs):
"""Forward pass implementation. """
return fwdrev_grad_fn (params, =*inputs), (params, inputs)

def fwdrev_grad_fn_backward_pass(residuals, ct):
"""Backward pass implementation."""
(params, inputs) = residuals
grad_loss_fn = jax.grad(inner_loss_fn, argnums=range (len (inputs) + 1))
_, hvp_ct = jax.jvp(lambda p: grad_loss_fn(p, =*inputs), (params,), (ct,))
return hvp_ct

fwdrev_grad_fn.defvip(

fwdrev_grad_fn_forward_pass, fwdrev_grad_fn_backward_pass

)

return fwdrev_grad_fn
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Code Listing 2. PyTorch implementation for fwdrev_grad in Algorithm 2

def get_fwdrev_grad_fn (inner_loss_fn):
"""Returns a function implementing ‘grad(inner_loss_fn) ‘.

The returned function has a custom—-defined VJP rule for implementing
forward-over—-reverse mode for Hessian-by-vector products that emerge in

the meta gradient / bilevel optimisation scenario. This custom rule can save

a substantial amount of memory \& compute compared with default implementation.

Args:
inner._loss_fn: a function implementing inner loss calculation. It must
accept ‘params' as the first argument.

Returns:
A function implementing ‘grad(inner_loss_fn) ' with a custom-defined VJP

rule for forward-over-reverse Hessian-by-vector products.
mmn

class FwdRevGrad (torch.autograd.Function) :

@staticmethod

def forward(context, params, =xinputs):
"""Forward pass Iimplementation."""
context.save_for_backward(params, xinputs)
return torch.func.grad(inner_loss_fn) (params, =inputs)

@staticmethod
def backward(context, ct):
"""Backward pass implementation."""

params, *inputs = context.saved_tensors
grad_loss_fn = torch.func.grad(loss, argnums=tuple (range (len(inputs) + 1)))
_, hvp_ct = torch.func.jvp(lambda p: grad_loss_fn(p, =inputs), (params,), (ct,))

return hvp_ct

return FwdRevGrad.apply

A.5. Python snippet for per-inner step gradient checkpointing with saving inner gradients

Code Listing 3. Python snippet for optimisations in Section 4

def inner_step(...): # Implements one inner step.
d_params = grad_fn (params, inputs)
d_params = Jjax.tree.map (
lambda x: jax.ad_checkpoint.checkpoint_name (x, ’'inner_grads’), d_params
)
def outer_step(...): # Implements the outer step.
inner_step = jax.checkpoint (
inner_step, policy=jax.checkpoint_policies.save_only_these_names (’inner_grads’))
new_params, ... = jax.lax.scan(inner_step, ...)
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A.6. Python code for the motivating example

Code Listing 4. Python implementation for the motivating example

def get_toy_task(seed, B, M, T, D, use_loop_fusion, use_mixed_mode) :
"""Returns a toy task and example arguments.

Args:
seed: a random seed.
a batch size.
number of inner steps.
number of inner updates.
data and inner model size.
use_loop_ fusion: whether to use loop fusion.
use_mixed _mode: whether to use mixed mode.

B
M:
T
D

[URI)

Returns:
A jitted function with arguments that correspond to the toy task.

mmn

rngl, rng2, rng3 = jax.random.split (jax.random.PRNGKey (seed), 3)

params = jax.random.normal (rngl, (D, D))
xs, targets = jax.random.normal (rng2, (2, T, B, D))
val_x, val_target = jax.random.normal (rng3, (2, B, D))

def toy_task(params, xs, targets, val_x, val_target):

def apply (params, Xx):

y = Jjnp.matmul (x, params)
def f(y, 1):
return i » (2 + Jjnp.sin(y)) ** jnp.cos(y), ()

if use_loop_fusion:
for i in range(l, M + 1):

vy, _ = f(y, 1)
else:
vy, _ = jax.lax.scan(f, y, jnp.arange(l, M + 1))
return y

def loss(params, x, target):
return jnp.mean ((apply (params, x) - target) == 2)

def meta_loss (params) :
if use_mixed_mode:
grad_fn = get_fwdrev_grad_fn(loss)
else:
grad_fn = jax.grad(loss)

def inner_step (params, x_and_target):
d_params = grad_fn (params, =x_and_target)
params = jax.tree.map (lambda p, dp: p - le-3 * dp, params, d_params)
return params, ()

params, _ = jax.lax.scan(inner_step, params, (xs, targets))
return loss (params, val_x, val_target)

meta_grad = jax.grad(meta_loss) (params)
return meta_grad

return jax.Jjit (toy_task), (params, xs, targets, val_x, val_target)
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Figure 9. HLO graph for the motivational example. Data nodes are depicted in orange, compute operations (multiplications, trigonometric
functions etc.) in gray. It can be seen that the mixed-mode version contains far fewer data blocks. Also, this example demonstrates the
complexity of the underlying low-level programs and the huge role of compiler in optimising raw computational graphs.

A.7. Compiled computational graphs for the motivating example

See Figure 9.

A.8. Detailed ablations on all used optimisations

See Figure 10 and Table 2 for ablations on 489M model and Table 3 for step time measurements on 44M model, which fits
into single-core device memory.

Table 2. Case study for 489M transformer.

Optimisations ‘ 489M transformer ‘

Mixed | Block | Save GPU TPU
mode | remat | grads | HBM (G) Time (s) | HBM (G) Time (s)

- - - 371.2 N/A 273.9 N/A

- - + 363.7 N/A 176.6 N/A

- + - 180.1 N/A 123.7 N/A

- + + 182.4 N/A 130.8 N/A

+ - - 286.0 N/A 168.1 N/A

+ - + 289.2 N/A 176.8 N/A

+ + - 174.8 N/A 43.8 5.13

+ + + 54.8 5.45 46.9 4.12

A.9. Sweeps over data regimes for TPUs

See Figure 11.

A.10. Models and hyperparameters

For sweeps in Figure 5 we used hyperparameters from Table 4. For benchmarks in Figure 6 we used the models from Table 5.
For scaling plots in Figure 7 and Figure 8 we used models from Table 6 with batch size 4 and 2 inner steps per outer update.
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Table 3. Case study for 44M transformer.

Optimisations ‘ 44M transformer ‘
Mixed | Block | Save GPU TPU
mode | remat | grads | HBM (G) Time (s) | HBM (G) Time (s)
- - - 94.2 N/A 70.2 0.75
- - + 76.6 N/A 45.8 0.70
- + - 54.2 1.33 32.8 1.05
- + + 54.5 1.30 34.1 1.03
+ - - 76.4 N/A 45.1 0.88
+ - + 76.6 N/A 45.5 0.70
+ + - 45.2 1.51 12.7 1.17
+ + + 16.4 1.19 12.9 0.94
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Figure 10. All combinations of the used optimisation from Section 4 for 489M model. Note that GPU required saving inner gradients for
peak memory gains, while TPU needs it only for reducing step time. Mixed-mode differentiation and model blocks’ rematerialisations are
critical for both cases.

[ ] [} | 0\./0 'Y

2 204 o 207 2 o 20—y .
c
z . . x 18 o ° o model_size
I 151 o 157% 157 ° —— 106M
€ o o / —— 278M
E by o o —— 587M
€ 104 o 10 o ¢ 104
2 v — 1.0
~ ® — 2.6B
©
& 54 54 5 - — 4.5B

2000 4000 6000 8000 2 4 6 8 2 4 6 8

Sequence length

Batch size

Number of inner updates (T)

Figure 11. Sweep over data regimes for chinchilla models for TPUs. For GPUs see Figure 5. The results are more noisy due to TPU-
specific optimisations and memory layout (e.g. memory padding).
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Table 4. Sweep over data regimes in Figure 5: hyperparameters, values, and descriptions. When plotting each of three per-axis plots, we
used the maximum values for the other two axes (e.g. for the sequence length plot we used batches of size 8 with 8§ inner updates).

Parameter Values Description

Model size (x 106) {106, 278, 587, 1018, 2639, 4516} Parameters in inner transformer
# of inner updates (1) {2,4,6,8 Inner updates per outer update
Batch size 2,4,6,8 Inner model’s batch size
Sequence length 1024, 2048, 4096, 8192} Context length

Table 5. Chinchilla models used in sweeps over each of the components, Section 5.3

Sweep over | d_model ffw_size kv_size n_heads n_layers

d_model | 128-2048 1024 16-256 8 16
ffw_size 384 512-8192 32 8 16
n_heads 768 1024 24-384 2-32 16
n_layers 256 1024 32 8 4-64

Table 6. Chinchilla models from Hoffmann et al. (2022a) used in scaling benchmarks, Section 5.3.

Parameters (million) | d_model ffw_size kv_size n_heads n_layers

44 512 2048 64 8 8

90 640 2560 64 10 13

140 768 3072 64 12 15
196 896 3584 64 14 16
278 1024 4096 64 16 18
489 1280 5120 128 10 21
587 1408 5632 128 11 21
724 1536 6144 128 12 22
1,018 1792 7168 128 14 23
1,429 2048 8192 128 16 25
1,609 2176 8704 128 17 25
2,007 2304 9216 128 18 28
2,639 2560 10240 128 20 30
3,802 2816 11264 128 22 36
4,516 3072 12288 128 24 36
6,796 3584 14336 128 28 40
9,293 4096 16384 128 32 42
11,452 4352 17408 128 32 47
12,295 4608 18432 128 36 44
12,569 4608 18432 128 32 47
13,735 4864 19456 128 32 47
16,183 5120 20480 128 40 47
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