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Abstract

In Bayesian persuasion, an informed sender strategically discloses information to
a receiver so as to persuade them to undertake desirable actions. Recently, Markov
persuasion processes (MPPs) have been introduced to capture sequential scenarios
where a sender faces a stream of myopic receivers in a Markovian environment.
The MPPs studied so far in the literature suffer from issues that prevent them
from being fully operational in practice, e.g., they assume that the sender knows
receivers’ rewards. We fix such issues by addressing MPPs where the sender has no
knowledge about the environment. We design a learning algorithm for the sender,
working with partial feedback. We prove that its regret with respect to an optimal
information-disclosure policy grows sublinearly in the number of episodes, as it
is the case for the loss in persuasiveness cumulated while learning. Moreover, we
provide lower bounds for our setting matching the guarantees of our algorithm.

1 Introduction

Bayesian persuasion [Kamenica and Gentzkow, |2011] studies how an informed sender should
strategically disclose information to influence the behavior of a self-interested receiver. Bayesian
persuasion has received a growing attention over the last years, since it captures several fundamental
problems arising in real-world applications, such as, e.g., online advertising [Bro Miltersen and
Sheffet, 2012| [Emek et al.|[2014, Badanidiyuru et al.,|2018| Bacchiocchi et al.l 2022], voting [|Cheng
et al., 2015, |Alonso and Camara, 2016, (Castiglioni et al.,|2020a, |Castiglioni and Gatti} 2021]], traffic
routing [Vasserman et al.l 2015 [Bhaskar et al.,|2016} |Castiglioni et al.| 2021a], recommendation sys-
tems [Mansour et al., 2016], e-commerce [[Castiglioni et al., 2022], security [Rabinovich et al., 2015
Xu et al.,|2016], marketing [Babichenko and Barman, 2017, /Candogan, 2019], clinical trials [Kolotilin|
2013]], and financial regulation [Goldstein and Leitner, |[2018].

Most of the works on Bayesian persuasion focus on one-shot interactions, where information dis-
closure is performed “one shot”. Despite real-world problems are usually sequential, there are only
few exceptions that consider multi-step information disclosure [Wu et al., 2022, |Gan et al., 2022,
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2023| [Bernasconi et al., 2022} |2023b;, Iyer et al., 2023| [Lin et al.| [2024]. Specifically, Wu et al.|[2022]
initiated the study of Markov persuasion processes (MPPs), which model scenarios where a sender
sequentially faces a stream of myopic receivers in an unknown Markovian environment. In each
state of the environment, the sender privately observes some information—encoded in an outcome
stochastically determined according to a prior distribution—and faces a new receiver, who is then
called to take an action. The outcome and the receiver’s action jointly determine the agents’ rewards
and the next state. In an MPP, the goal of the sender goal is to disclose information about the outcome
at each state, so as to persuade the receivers to take actions maximizing sender’s long-term rewards.

The MPP formalism finds application in several real-world settings, such as e-commerce and rec-
ommendation systems [Wu et al.,[2022]]. For example, an MPP can model the problem faced by an
online streaming platform recommending movies to its users. The platform has an informational
advantage over users (e.g., it has access to views statistics), and it exploits available information
to induce users to watch suggested movies, so as to maximize views. The MPPs studied by [Wu
et al.| [2022] rely on some limiting assumptions that prevent them from being fully operational in
practice. For instance, they make the assumption that the sender has perfect knowledge of receiver’s
rewards. In the online streaming platform example, this assumption requires that the platform knows
everything about users’ (private) preferences over movies, which is unrealistic in practice.

1.1 Original Contributions

We relax the assumptions of [Wu et al.| [2022], by addressing MPPs where the sender does not
know anything about the environment. We consider settings in which they have no knowledge about
transitions, prior distributions over outcomes, sender’s stochastic rewards, and receivers’ ones. Ideally,
the goal is to design learning algorithms that are persuasive and attain regret sublinear in the number
of episodes of learning 7'. The regret is the difference between sender’s rewards cumulated over the
episodes and what would have been obtained by always using an optimal information-disclosure
policy. Persuasiveness is about ensuring receivers are incentivized to take desired actions. Learning in
MPPs without knowledge of receivers’ rewards begets considerable additional challenges compared
to the case of [Wu et al.| [2022]. Indeed, the latter design a sublinear-regret algorithm that is persuasive
at every episode with high probability, while we show that this is not attainable in our setting.
Intuitively, this is due to the fact that, since the sender does not know receivers’ rewards, some
episodes must be used to learn how to be “approximately” persuasive. As a consequence, in this work
we look for algorithms that attain sublinear regret while ensuring that the cumulative violation of
persuasiveness grows sublinearly in 7. This is the most natural requirement in all the cases where
persuasiveness cannot be achieved at every episode, and it has already been addressed in related
settings (see, e.g., [Bernasconi et al.,[2022} |(Cacciamani et al., [2023| /Gan et al., 2023])).

As a warm-up, we start studying a full feedback case where, after each episode, the sender observes
the reward associated with every possible action in all the state-outcome pairs encountered during the
episode. We propose an algorithm, called Optimistic Persuasive Policy Search (OPPS), which uses
information-disclosure policies computed by being optimistic with respect to both sender’s expected
rewards and persuasiveness requirements. We show that, under full feedback, OPPS attains (’)(\/T)
regret and violation. Then, we switch to the partial feedback case, where the sender only observes the
rewards for the state-outcome-action triplets actually visited during the episode. We extend the OPPS
algorithm to this setting, by adding a preliminary exploration phase having the goal of gathering as
much feedback as possible about persuasiveness. After that, the algorithm switches to an optimistic
approach over information-disclosure policies that are “approximately” persuasive. We prove that
OPPS with partial feedback attains O(7®) regret and O(T*~“/2) violation, where o € [1/2,1] is a
parameter controlling the amount of exploration. Finally, we provide a lower bound showing that the
trade-off between regret and violation achieved by means of OPPS is tight.

1.2 Related Works

We refer to Appendix [A]for additional related works.

The work most related to ours is [Wu et al.| 2022], studying MPPs where the sender knows everything
about receivers’ rewards, with the only elements unknown to them being their rewards, transition
probabilities, and prior distributions. Moreover, [Wu et al|[2022] also assume that the receivers know
everything about the environment, so as to select a best-response action, and that all rewards are



deterministic. In contrast, we consider MPPs in which sender and receivers have no knowledge of
the environment, including their rewards, which we assume to be stochastic. Other related works
are [Gan et al.}[2022], studying Bayesian persuasion problems where a sender sequentially interacts
with a myopic receiver in a multi-state environment, and [[Bernasconi et al.| [2023bjf], addressing MPPs
with a farsighted receiver. These two works considerably depart from ours, as they both assume that
the sender knows everything about the environment, including transitions, priors, and rewards. Thus,
they are not concerned with learning problems. Finally, [Bernasconi et al., [2022]] studies settings
where a sender faces a farsighted receiver in a sequential environment with a tree structure, addressing
the case in which the only elements unknown to the sender are the prior distributions over outcomes,
while rewards are deterministic and known. The tree structure considerably eases learning, as it
intuitively allows to factor the uncertainty about transitions in the rewards at the leaves of the tree.

Our work is also related to learning in one-shot Bayesian persuasion played repeatedly [[Castiglioni
et al., [2020b, [2021b, |[Zu et al., 2021l Bernasconi et al.l [2023al], and works on online Markov decision
processes (MDPs) [Auer et al.,| 2008, |[Even-Dar et al., 2009, Neu et al., | 2010} |Rosenberg and Mansour,
2019, Jin et al.l 2020]], in particular those on constrained MDPs [Wei et al 2018| Zheng and Ratliff,
2020, |[Efroni et al., 2020, |Qiu et al., 2020} |Stradi et al., [2024]).

2 Preliminaries

2.1 Bayesian Persuasion

The classical Bayesian persuasion framework introduced by [Kamenica and Gentzkow|[201 1] models
a one-shot interaction between a sender and a receiver. The latter has to take an action a from a finite
set A, while the former privately observes an outcome w sampled from a finite set 2 according to a
prior distribution p € A(€2), which is known to both the sender and the receiver The rewards of
both agents depend on the receiver’s action and the realized outcome, as defined by the functions
rs,rr : . x A — [0,1], where rg(w,a) and rg(w, a) denote the rewards of the sender and the
receiver, respectively, when the outcome is w € ) and action a € A is played. The sender can
strategically disclose information about the outcome to the receiver, by publicly committing to a
signaling scheme ¢, which is a randomized mapping from outcomes to signals being sent to the
receiver. Formally, ¢ : Q@ — A(S), where S denotes a suitable finite set of signals. For ease of
notation, we let ¢(-|w) € A(S) be the probability distribution over signals employed by the sender
when the realized outcome is w € ), with ¢(s|w) being the probability of sending signal s € S.

The sender-receiver interaction goes as follows: (i) the sender publicly commits to a signaling
scheme ¢; (ii) the sender observes the realized outcome w ~ p and draws a signal s ~ ¢(-|w);
and (iii) the receiver observes the signal s and plays an action. Specifically, after observing
s under a signaling scheme ¢, the receiver infers a posterior distribution over outcomes and
plays a best-response action b®(s) € A according to such distribution. Formally, b%(s) €
argmaxseA . cq H(w)o(slw)rr(w, a), where the expression being maximized encodes the (un-
normalized) expected reward of the receiver. As it is customary in the literature (see, e.g., [Dughmi
and Xul 2016])), we assume that the receiver breaks ties in favor of the sender, by selecting a best
response maximizing sender’s expected reward when multiple best responses are available.

The goal of the sender is to commit to a signaling scheme ¢ that maximizes their expected reward,
which is computed as follows: Y ¢, p(w) 3=, o g @(s|w)rg(w, b%(s)).

2.2 Markov Persuasion Processes

An MPP [Wu et al., [2022]] generalizes one-shot Bayesian persuasion to settings where the sender
faces a stream of receivers in an MDP, with each receiver myopically taking an action maximizing
immediate reward. An (episodic) MPP is a tuple M := (X, A, Q, p, P, {rs }i—1, {rr}i_1):

« T is the number of episodes[|

* X, A, and ( are finite sets of states, actions, and outcomes, respectively.

o p: X — A(Q) is a prior function defining a probability distribution over outcomes at each
state. We let p(w|x) be the probability of sampling outcome w € Q) in state z € X.

’In this work, we denote by A(X) the set of all the probability distributions having set X as support.
*We denote an episode by ¢ € [T, where [a . .. ] is the set of all integers from a to b and [b] := [1...b].



* P: X xQx A— A(X) is atransition function. We let P(2’|z,w, a) be the probability of
going from x € X to ' € X by taking action a € A, when the outcome in state x is w € €.

o {rs:}#_, is a sequence specifying a sender’s reward function rg; : X x Q x A — [0,1] at
each episode ¢. Givenz € X, w € Q,and a € A, each rg(x,w, a) for t € [T] is sampled
independently from a distribution vg(z,w, a) € A([0, 1]) with mean rs(x,w, a).

 {rr.}1_, is a sequence defining a receivers’ reward function rg; : X x Q x A — [0,1] at
each episode ¢. Givenz € X,w € Q,anda € A, each rg ;(z,w, a) for t € [T] is sampled
independently from a distribution v (z, w, a) € A([0,1]) with mean rg(z,w, a).

We focus w.l.o.g. on loop-free episodic MPPs, as customary in online learning in MDPs (see,
e.g., [Rosenberg and Mansour, 2019]). In a loop-free MPP, states are partitioned into L + 1 layers
Xo, ..., Xy, such that X := {z¢} and X}, := {x}, with z¢ being the initial state starting the
episode and z 1, being the final one, in which the episode ends. Moreover, by letting K :=[0... L —1]
for ease of notation, P(x'|x,w,a) > 0 only when 2’ € X411 and 2 € X, for some k € K

At each episode of an episodic MPP, the sender commits to a signaling policy ¢ : X x Q — A(S),
which defines a probability distribution over a finite set S of signals for the receivers for every
state * € X and outcome w € (). For ease of notation, we denote by ¢(-|z,w) € A(S) such
probability distributions, with ¢(s|z,w) being the probability of sending a signal s € S in state x
when the realized outcome is w. Similarly to one-shot Bayesian persuasion, a myopic receiver acting
at state z € X and receiving signal s € S infers a posterior distribution over outcomes and plays a
best-response action. We denote by b?(s, z) € A the best response played by such a receiver under
the signaling policy ¢ (assuming ties are broken in favor of the sender).

As customary in Bayesian persuasion (see, e.g., [Arieli and Babichenko, 2019]), a revelation-principle-
style argument allows to focus w.l.o.g. on signaling policies that are direct and persuasive. Formally,
a signaling policy is direct if the set of signals coincides with the set of actions, namely S = A. Intu-
itively, signals should be interpreted as action recommendations for the receivers. Moreover, a direct
signaling policy is said to be persuasive if it incentivizes the receivers to follow recommendations.
Formally, ¢ : X x Q — A(A) is persuasive if for every state « € X and recommendation a € A,

Z p(wlz)d(alz,w)(rr(z,w,a) — rr(z,w, v (a, z))) > 0.

weN
Intuitively, the inequality above states that a receiver acting at state x is better off following sender’s
recommendation to play action a, since by doing so they get an (unnormalized) expected reward
greater than or equal to what they would obtain by playing a best-response action b%(a, ).

Algorithm [I] shows the interaction between

sender and receivers at ¢ € [T]. Sender Algorithm 1 Sender-Receivers Interaction at ¢ € [7']

and receivers do nor know anything about  1: The rewards rs ;(z,w, a), 7r,+(2, w, a) are sampled
the transition function P, the prior function ~ 2: Sender publicly commits to ¢; : X x € — A(A)
L, and the rewards ey (x, w, a)7 ey (x, w, a) 3 fThe state of the MPP is initialized to xg
(including their distributions). At the end of 4 for k=0,....,L—1do
. 5: Sender observes outcome wy, ~ (k)

each episode, the sender gets to know the ) Sender d dati
triplets (zy,wg, a)—for all k& € K—that . ender draws recommendation aj ~ ¢(-[x, W)

P » bk Wk Ak . . 7: A new Receiver observes ay and plays it
are visited during the episode, and an addi- g.  Tpe MPP evolves to 211 ~ P(-|zx, wi, ax)
tional feedback about rewards. In this work, o¢. Sender observes the next state Ty 1
we consider two types of feedback. The first 10: end for
one—called full feedback—encompasses all  11: Sender observes feedback for every k € [0... L — 1]:
agents’ rewards for the pairs (xy,wy) visited o full = [rs,i(zk, wk, a), rr,t(Tk, Wk, a)]aca
during the episode, i.e., the rewards for all the * partial = st (Tk, Wk, ax), TRt (Tk, Wk, Ox)

triplets (zy,wy,a) for a € A. The second
type—called partial feedback—only consists in agents’ rewards for the visited triplets (xy, wy, ak)E]

Notice that Algorithm[T]assumes that receivers always play recommended actions. This is standard
in settings where the sender has not enough information to be persuasive at every episode, and

“The loop-free property is w.1.0.g. since any episodic MPP with finite horizon H that is not loop-free can be
cast into a loop-free one by duplicating states H times, i.e., z € X is mapped to new states (z, k) with k € [H].

3In this work we use the adjective full to refer to a type of feedback that is not the most informative one.
Indeed, a full feedback according to the classical terminology used in online learning [Cesa-Bianchi and Lugosi,
2006, |Orabona, 2019]] would encompass agents’ rewards for all the possible triplets (z, w, a), while full feedback
in our terminology only consists in the rewards for the triplets with x = x;, and w = wy, for some k € K.



it motivates why learning algorithms are designed to guarantee that the cumulative violation of
persuasiveness grows sublinearly in 7', or, equivalently, that the per-round violation of persuasiveness
goes to zero as T’ grows [Bernasconi et al.| [2022, |Cacciamani et al.| 2023} |Gan et al.| | 2023]). Indeed,
this ensures that it is in the receivers’ best interest to stick to recommendations.

3 The Learning Problem

In this section, we formally introduce the learning problem tackled in the rest of the paper. First, in
Section [3.1] we extend the notion of occupancy measure to MPPs. In Section we formally intro-
duce learning objectives. Finally, in Section[3.3] we provide some preliminary elements needed by our
algorithms, developed in Sections ]and [5] The proofs of all our results are in Appendixes [D]and|[E]

3.1 Occupancy Measures in MPPs

Next, we extend the well-known notion of occupancy measure of an MDP [Rosenberg and Mansour,
2019]] to MPPs. Given a transition function P, a signaling policy ¢, and a prior function u, the
occupancy measure induced by P, ¢, and y is a vector g7 # € [0, 1]IX*2xAXX] whose entries are
specified as follows. For every « € Xy, w € Q,a € A, and 2’ € X4 with k € I, it holds:

qP’¢’“(x,w,a,x/) = P{($k,Wk,ak,$k+1) = (37,0.),0,, Z‘/) | P7¢7/’('}7

which is the probability that the next state is x’ after the receiver plays action a in state x when
the realized outcome is w, under transition function P, signaling policy ¢, and prior p. Moreover,
we also let ¢ H(z, w,a) := Zz'eka qPOH(z,w, a, 2, ¢D O (z,w) = Y oacA gPoH (z,w, a),
and ¢© %1 (z) ==Y oo ¢"PH (@, w), for the ease of notation.

The following lemma characterizes the set of valid occupancy measures and it is a generalization to
the MPP setting of a similar lemma by Rosenberg and Mansour| [2019].

Lemma 1. A vector q € [0, 1]X>*®*A%X1 s 4 valid occupancy measure of an MPP if and only if

(2) Z ZZ Z q(z,w,a,2') =1 Vkek,

zeX, weQacAr' €Xyqy

(i4) Z Z Z q(z' w,a,z) =q(x) Vke[l...L—1],Vx e X,
' €Xp_1 wENaEA

(#i1) P! = P and pf = p,

where P is the transition function of the MPP and . its prior function, while P? and p9 are the
transition and prior functions, respectively, induced by q (see definitions below).

As it is the case in standard MDPs, a valid occupancy measure g € [0, 1]1X*2xAxX] induces a
transition function P? and a signaling policy ¢¢. Moreover, in an MPP, a valid occupancy measure
also induces a prior function 9. These are defined as follows:

q(z,w,a)

q(z,w,a,z) q(z,w)
q(z, w) '

q(:mw,a) q(ﬂ;‘)

Thus, using valid occupancy measures is equivalent to using signaling policies. In the following, we
denote by Q C [0, 1]IX*xAxX] the set of all the valid occupancy measures of an MPP.

P |z, w,a) = ; ¢l(alz,w) =

s pl(wlz) ==

3.2 Learning Objectives

Our goal is to design learning algorithms for the sender in an episodic MPP. We would like algorithms
that prescribe sequences of signaling policies ¢; that maximize sender’s cumulative reward over
the T" episodes, while at the same time guaranteeing that the violation of persuasiveness constraints
is bounded. Notice that, differently from Wu et al.| [2022], we do not aim at designing learning
algorithms whose policies ¢, are persuasive at every episode ¢ with high probability, since this is
unattainable in our setting in which the sender does not know anything about the environment (see
Theorem[6). Thus, in this paper we pursue a different objective, formally described in the following.



Baseline First, we introduce the baseline used to evaluate sender’s performances. This is defined as
the value of the optimization problem faced by the sender in the offfine version of the MPP. Such a
problem is concerned with expectations of the stochastic quantities in the episodic MPP. By exploiting
occupancy measures, the problem can be formulated as the following linear program:

I;leaé( Z Z Z g(z,w,a)rs(z,w,a) s.t (1a)

zeEX weQacA

Zq(x,w,a) (TR(x,w,a)—rR(x,w,a’)) >0 VzeX,VwecQVacAVd #ac A (1b)
weN

Intuitively, Problem (T)) computes an occupancy measure (or, equivalently, signaling policy) maximiz-
ing sender’s expected reward subject to persuasiveness constraints. By letting 5 € [0, 1]1X*2xAl be
the vector whose entries are the mean values g (x, w, a) of sender’s rewards, our baseline is defined
as OPT := rg q*, where ¢* € Q denotes an optimal solution to Problem (I). In the following, we
denote by ¢* an optimal signaling policy, defined as ¢* := ¢ .

Metrics We evaluate the performances of learning algorithms by means of two distinct metrics.
The first one is the (cumulative) regret Ry, which accounts for the difference between the cumulative
sender’s expected reward obtained by always playing ¢* and that achieved by using the signaling
policies ¢; prescribed by the algorithm. Formally,

Ry :=T-OPT — Z req = Z ré (" — @),

te[T] te[T]

where we let ¢; := ¢"*%** be the occupancy measure induced by ¢;. The second metric used to
evaluate learning algorithms is the (cumulative) violation Vi, which is formally defined as follows:

Z Z Z ZQt T,w, a rR(x,w,bd)(a,x)) —rR(x,w7a)),

te[T) zeX weacA

Intuitively, V1 encodes the overall expected loss in persuasiveness over the 1" episodes. Our goal is
to develop learning algorithms that prescribe signaling policies ¢; guaranteeing that both R and Vi
grow sublinearly in T, namely Ry = o(T') and V = o(T

3.3 Estimators and Confidence Bounds

Before delving in algorithm design, we introduce estimators and confidence bounds for the stochastic
quantities involved in an MPP, namely, transitions, priors, sender’s rewards, and receivers’ ones. In
the following, we let N;(x, w, a,2’) € N be the number of episodes up to ¢ € [T'] (this excluded) in
which the tuple (z,w, a, ') is visited. Formally, N;(x,w, a,z’) := reft—1] 1,{z,w,a,x’}, where
the indicator function is 1 if and only if the tuple is visited at 7. Similarly, we define the counters
Ni(z,w,a,), Ne(x,w), and N¢(z) in terms of their respective indicators 1. {z,w,a}, 1,{z,w}, and
1,{x}, which are equal to 1 if and only if (z,w, a), (z,w), and x, respectively, are visited at 7.

Next, we define the estimators employed by our algorithms. At the beginning of each episode

t € [T), the estimated probability of going from z € X to 2’ € X by playing a € A, when the
outcome realized in state = is w € €, is equal to P; (2'|z,w, a) := %
for every x € X and w € (), the estimated probability of sampling outcome w from the prior

probability distribution at state z is defined as 7, (w|z) := % Finally, for every state

x € X, outcome w € €, and action a € A, the estimated sender’s and receivers’ rewards are defined
_ L Zre[t—l] rs,r(z,w,a)l{z,w,a} 47 o Zre[t—l] rr,r(z,w,a)l.{z,w,a}

as s, (.’I}7 Wy a’) T max{1,N¢(z,w,a)} » ANA TR ¢ (l‘, W, CL) T max{1,N¢(z,w,a)}

Moreover,

Appendix [B|formally defines the confidence bounds employed by our algorithms. For the transition
function P, ateach ¢t € [T], forevery z € X, w € Q, and a € A, we provide a confidence bound
€:(x,w, a) for the probability distribution over next states associated with the triplet (z,w, ), where
the dlstance between distributions is expressed in || - ||1-norm (see LemmaE]) Similarly, we provide a
confidence bound (;(z) in terms of || - ||1-norm for the prior 1(z) at each state z € X (see Lemma[3).
Moreover, for every z € X, w € Q, and a € A, we provide confidence bounds g ¢+(x, w ,a) and
&r.i(z,w, a) for sender’s and receivers’ rewards, respectively, associated with the triplet (as, w,a)



(see Lemmas [6|and[7] for the full feedback case, while Lemmas [8| and [9] for the partial feedback one).
In conclusion, for ease of presentation, for a confidence parameter 6 € (0, 1), we refer to the event in
which all the confidence bounds hold—called clean event—as £(§). By combining all the lemmas in
Appendix £(6) holds with probability at least 1 — 49 (by applying a union bound).

4 The Full Feedback Case

We first address settings with full feedback, as a warm-up towards the analysis of partial feedback.

4.1 The OPPS Algorithm With Full Feedback

We propose an algorithm called Optimisitc Persuasive Policy Search (OPPS). At each episode, the
algorithm solves a variation of the offline optimization problem (Problem (), called Opt-0Opt,
obtained by substituting mean values with upper/lower confidence bounds. Specifically, Opt-Opt
is optimistic with respect to both sender’s rewards and persuasiveness constraints satisfaction. For
reasons of space, we defer Opt-0pt to Problem (2) in Appendix[C] Crucially, by using occupancy
measures, Opt-0Opt can be formulated as an LP, and, thus, solved efficiently. Notice that, since
confidence bounds for P and y are expressed in terms of ||-||1-norm, in order to formulate Opt-0pt as
an LP we need some additional variables and linear constraints, as described in detail in Appendix [C]

Algorithm [2] provides the pseudocode of
OPPS with full feedback. Ateacht € [T],
the algorithm first updates all the estima- Require: X, A, T', confidence parameter § € (0,1)
tors and confidence bounds according to 1 Initialize all estimators to 0 and all bounds to 4+-oco
the feedback received in previous episodes 2 fort=1,...,T"do - _

. . . . . 3: Update all estimators Py, [t,,Ts,t, Tr,+ and bounds
(Line[3). Then, it commits to the signaling . > ’

li induced b imal soluti €t,Ct,€s,¢, ER,+ glven new observations
policy ¢ induced by an optimal solution G « Solve Opt-Opt (Problem (@)
g+ to Opt-0pt, computed in L1ne Notice by T
that, the occupancy measure ¢; respltmg Run Algorithm|[I]by committing to ¢,
from. committing to ol (qnc.l used in the Observe full feedback from Algorithm|[T]
definitions of Rz and Vr) is in general dif- end for
ferent from g;, as the former is defined in
terms of the true (and unknown) transition and prior functions, namely P and p.

Algorithm 2 Optimistic Persuasive Policy Search (full)

A

4.2 Algorithm Analysis With Full Feedback

Next, we prove the guarantees of OPPS with full feedback. The first crucial component is the following
lemma, which shows that Opt-Opt admits a feasible solution at every episode with high probability.

Lemma 2. Given 6 € (0, 1), under event £(5), Opt-0pt admits a feasible solution at every t € [T).

Intuitively, Lemma [2]is proved by showing (a) that Problem [I] always admits a feasible solution,
which is the occupancy measure ¢° induced by the signaling policy that fully reveals outcomes to the
receiver, and (b) that ¢° is a feasible solution to Opt-0pt at every episode, under £ (). Point (b) holds
thanks to the fact that Opt-0Opt optimistically accounts for persuasiveness constraints satisfaction, by
using suitable upper and lower confidence bounds.

The second crucial component of our analysis is a relation between the occupancy measures g;
computed by the OPPS algorithm and the occupancy measures ¢g; that actually result from committing
to ¢, under the true transitions and priors. This is formally stated by the following lemma.

Lemma 3. Givenany ¢ € (0,1), under the clean event £(), with probability at least 1 — 20, it holds
that S yeiq llae = @l < O (L2 X]/TTATQ o (TIXTRIAT) )

Intuitively, Lemma [3]is proved by an inductive argument that relates the uncertainty associated with
both the transition and the prior functions to the || - ||;-norm difference between ¢; and ¢; cumulated
over the episodes. Lemmas [2] and [3| pave the way to our two main theorems for the full feedback
setting. The first theorem bounds the regret R achieved by OPPS, while the second one bounds its
cumulative violation V. Formally:



Theorem 1. Given any § € (0, 1), with probability at least 1 — 76, Algorithm [Z] attains regret
Ry <O (LQ\X|\/T|A\|Q\ ln(1/5)) .
Theorem 2. Given 6 € (0,1), with probability at least 1 — 75, Algorithm [2| attains violation

Ve <O (L2|X\ TIA] 1n(1/5)) :

In conclusion, in the full feedback case, OPPS attains R and Vp growing as (5(\/T ). Intuitively,
this is made effective by the fact that all the estimators concentrate at a 1/v/T rate. As shown next,
achieving such regret and violation bounds is not possible anymore under partial feedback.

4.3 Lower Bound
We conclude the section by showing that the regret and violation bounds attained by the OPPS
algorithm with full feedback are tight. Formally:

Theorem 3. Let § € (0,1/4). For every algorithm that guarantees Ry < O(\/T) with probability at
least 1 — 0, there exists an absolute constant 1) > 0 and a problem instance in which the algorithm
must have Vip > Q(+/T) with probability larger than 1).

5 The Partial Feedback Case

In this section, we switch the attention
to partial feedback. The crucial aspect
that makes the case of partial feed- Require: X,Q, A, T, 6 € (0,1),a € [0,1]

back more challenging than the one of I N« .(Toﬂ )

full feedback is that, after committing In}t}ahze all estimators to 0 and all bounds to +o0o
to a signaling policy &;, the sender Initialize counter C'(z,w, a) to 0 for all (z,w, a)

. fort=1,...,Tdo .
does not observe §ufﬁc1ent feedbaqk Update all estimators Pg¢,fi,,7s,:,Tr,t and bounds
about the persuasiveness of ¢;. This

€t,Ct,Es.t, ER,e given new observations

Algorithm 3 Optimistic Persuasive Policy Search (partial)

makes a.chieving sublinear violationin . ift < N|X||||A| then

the partial feedback case much harder 7. (z,w,a) = argming, , e xxoxa C2,w,a)
than in the full feedback case. In order R Solve Opt-0pt with its objective

to overcome such a challenge, some 8: 9t < modified as Ywex d(@,w, a, x')
episodes of learning must be devoted ;. C(z,w,a) « C(z,w,a) + 1

to the estimation of the quantities in- 10: else

volved in persuasiveness constraints. 11: @ <+ Solve Opt-0pt (Problem (2), Appendix [C)
This is necessary to build a suitable ap- 12:  endif _

proximation of such constraints to be  13: ¢ = ¢*" o

exploited in the remaining episodes, 14~ Run Algorithm [T]by committing to ¢

in which an optimistic approach simi- }2 end(?(l))serve partial feedback from Algorithm [T]

lar to that employed with full feedback
must be adopted to control the regret. As a result, there is a trade-off between regret and violation
that is determined by the amount of exploration performed. In the rest of this section, we design an
algorithm that is able to optimally control such a trade-off.

5.1 The 0PPS Algorithm With Partial Feedback

We extend the OPPS algorithm introduced in Section []to deal with the partial feedback case. The
idea behind the new algorithm is to split episodes into two phases. The first one is an exploration
phase with the goal of building a sufficiently-good approximation of persuasiveness constraints, so as
to achieve sublinear violation. Such a phase lasts for the first N|X||€2|| A| episodes, where we let
N := [T*] with « € [0, 1] being a parameter controlling the length of the two phases, given as input
to the algorithm. The second phase is instead devoted to achieving sublinear regret, and it follows
the same steps of OPPS with full feedback (Algorithm [2). The first phase works by considering
each (z,w,a) € X x Q x A for N episodes. When (x,w, a) is considered at episode ¢ € [T, the
algorithm commits to a signaling scheme induced by an occupancy measure g; that maximizes the
probability ), v q(z,w,a,x") of visiting such a triplet, while at the same time satisfying all the
constraints of the Opt-0pt problem. Crucially, such a procedure does not guarantee that every triplet



is visited N times. Indeed, there might be triplets (x,w, a) that are visited with very low probability.
This can be the case when either transitions and priors place very low probability on (x,w) or action
a is associated with very low receivers’ rewards, and, thus, it must be recommended with very low
probability to satisfy the optimistic persuasiveness constraints defined in Opt-Opt.

Algorithm [3| provides the pseudocode of OPPS with partial feedback. Notice that the variables
C(x,w, a) (initialized in Line 3| and updated in Line [9) are counters used to keep track of how
many times each triplet (z,w, a) is considered during the first phase, namely when ¢ < N|X||2||A|.
Moreover, the algorithm ensures that every triplet is considered exactly N times during the first
phase, by selecting them accordingly as in Line[7] Let us also observe that Algorithm [3|updates all
the estimators and bounds (by using partial feedback) and selects the signaling policy ¢, as done by
Algorithm[2} The main difference with respect to Algorithm 2]is that g; used to define ¢ is computed
in a different way during the first (exploration) phase (see Line|8).

5.2 Algorithm Analysis With Partial Feedback

In the following, we prove the guarantees attained by OPPS with partial feedback. We start by stating
the following result on the regret attained by the algorithm.

Theorem 4. Given any 6 € (0, 1), with probability at least 1 — 70, Algorithm E] attains regret

Ry < O (NLIX|| Al + L2 X | TTAT I (s))

In order to prove Theorem ] we split the analysis into two cases: one targets exploration episodes
in the first phase of the algorithm, while the other is concerned with the subsequent (exploitation)
phase. In the first NV episodes in which the OPPS algorithm explores without being driven by the
Opt-0Opt objective, the algorithm incurs in linear regret. Instead, in the second phase, OPPS employs
an optimistic approach, since the algorithm is driven by the objective of the Opt-Opt problem. Thus,
in the second phase, the algorithm attains regret sublinear in 7'. The two cases combined give the
regret bound provided in Theorem[] Next, we state the result on the violations attained by OPPS.

Theorem 5. Given any ¢ € (0,1), with probability at least 1 — 99, Algorithmattains cumulative
violation Vi < O (p (\A|% +AVN + LWT)) , where p = (|X ||| A])?/2\/In (/5.

Proving Theorem [5] requires a non-trivial
analysis. The result follows by showing

that uniformly exploring over feasible so- 11— Lower Bound .
lutions to the Opt-Opt problem leads to ---  Algorithm 3 .
a violation bound of the order of O(VN) & |7 Bern. et al. [2022]

during the exploration phase. Intuitively,
this follows by upper bounding the occu-
pancy measure in each triplet (z, w, a) with
an occupancy of a previous (exploration)
episode, relative to the best response of the
follower in state x upon receiving action
recommendation a. Theorems [ and 3] es-
tablish the trade-off between regret and vi-
olation achieved by the OPPS algorithm. In-
deed, by recalling the definition of N (see

Llneﬂ]m Algorlthm@, 1t1s easy to see that Figure 1: Trade-off between regret and violation achieved by
the algorithm attains regret R < O(T“)  Algorithm [3] compared with the lower bound in Theorem [6]}
and violation Vi < O (Tl—a/z)’ where The figure also shows the regret upper bound obtained in a
o related setting by |[Bernasconi et al.|[2022], with the blue area
representing the gap that we are able to close in our setting.

Order of T in Vp

D=

Order of T in Ry

a € [1/2,1] is the parameter controlling the
trade-off, given as input to the algorithm.

5.3 Lower Bound

We conclude the section and the paper by showing that the regret and violation bounds attained by the
OPPS algorithm (see Theoremsand are tight for any choice of « € [1/2,1]. We do so by devising
a lower bound matching these bounds (Theorem [6)). Its main idea is to consider two instances of



episodic MPP involving a receiver with two actions a1, a such that only a; provides positive reward
to the sender. In one instance, receiver’s rewards by playing a; are higher than those obtained by
taking as, while in the second instance the opposite holds. As a result, recommending action a;
results in low regret in the first instance and high violation in the second one, while recommending
action as results in low violation in the second instance and high regret in the first one. This leads to
the trade-off formally stated by the following theorem.

Theorem 6. Given o € [1/2,1], there is no learning algorithm achieving both Ry = o(T®) and
Vi = o(T"~°/?) with probability greater or equal to a fixed constant ¢ > 0.

Theorem [6] shows that the bounds in Theorems 4] and [5] are tight for any o € [1/2, 1]. See Figure/l]
for a graphical depiction. Theorem [6] also proves that it is impossible to achieve sublinear regret
while being persuasive at every episode with high probability, when the sender has no information
about the receivers. Notice that, in our MPP setting with partial feedback, we deal with a trade-off
between regret and violation that is similar to the one faced by |[Bernasconi et al.|[2022]] in related
settings. Differently from them, we are able to achieve an optimal trade-off for any a € [1/2,1].
Indeed, [Bernasconi et al.[[2022]] only obtain optimality for a € [1/2,2/3], leaving as an open problem
matching the lower bound for the other values of the parameter « (see Figure[I). Crucially, we are
able to achieve trade-off optimality by using a clever exploration method. Indeed, when considering
a triplet (z,w, a) in the first phase, the OPPS algorithm does not simply commit to a signaling policy
that maximizes the probability of visiting such a triplet, but it rather does so while also optimistically
accounting for persuasiveness constraints. This allows to reduce the violation cumulated during the
first phase, thus achieving trade-off optimality.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction state all the main contributions made by the
paper.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: All the assumptions are clearly stated in Section[2.1]and Section[2.2]
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate “Limitations” section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
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technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All the theoretical results clearly state their assumptions, while all their proofs
are provided in the Appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
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* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Justification: The paper does not include experiments.
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* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
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whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: The paper does not include experiments.
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» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: The paper does not include experiments.
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* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: The paper does not include experiments.
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* The answer NA means that the paper does not include experiments.

* The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The paper conforms with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed, since the work is mainly
theoretical.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

18



16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not involve LLMs as any important, original, or non-standard
components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

The appendix is organized as follows:

* In Appendix [A] we report the related works concerning the online learning in Markov
decision processes and online Bayesian persuasion literatures.

* In Appendix[B]we describe the estimators and the confidence bounds related to the stochastic
quantities of the Markov persuasive processes.

* In Appendix [C] we report the per-round optimization problem performed by the algorithms
we present.

* In Appendix [D|we report the omitted proofs related to the full-feedback setting.
* In Appendix [E| we report the omitted proofs related to the partial-feedback setting.

A Related works

Sequential Bayesian persuasion The work that is most related to ours is [Wu et al.} 2022]], which
introduces MPPs. Specifically, Wu et al.|[2022] study settings where the sender knows everything
about receivers’ rewards, with the only elements unknown to them being their rewards, transition
probabilities, and prior distributions over outcomes. Moreover, they also assume that the receivers
know everything they need about the environment, so as to select a best-response action, and that
all rewards are deterministic. In contrast, we consider MPP settings in which sender and receivers
have no knowledge of the environment, including their rewards, which we assume to be stochastic.

Moreover, Wu et al.| [2022] obtain a regret bound of the order of O(v/T /D), where D is a parameter
related to receivers’ rewards. Notice that such a dependence is particularly unpleasant, as D may be
exponentially large in instances in which there are some receivers’ actions that are best responses only
for a “small” space of information-disclosure policies. Other works related to ours are [|Gan et al.,
2022]], which studies a Bayesian persuasion problem where a sender sequentially interacts with a
myopic receiver in a multi-state environment, and [Bernasconi et al.| 2023b|, which addresses MPPs
with a farsighted receiver. These two works considerably depart from ours, as they both assume
that the sender knows everything about the environment, including transitions, priors, and rewards.
Thus, they are not concerned with learning problems, but with the problem of computing optimal
information-disclosure policies. Finally, [Bernasconi et al.l [2022] studies settings where a sender
faces a farsighted receiver in a sequential environment with a tree structure, addressing the case in
which the only elements unknown to the sender are the prior distributions over outcomes, while
rewards are deterministic and known. The tree structure considerably eases the learning task, as it
allows to express sender’s expected rewards linearly in variables defining information-disclosure
policies. Intuitively, this allows to factor the uncertainty about transitions in the rewards at the leaves
of the tree.

Online Bayesian persuasion It is also worth citing some works that study learning problems in
which a one-shot Bayesian persuasion setting is played repeatedly [Castiglioni et al., [2020b} 2021b,
Zu et al.,[2021} Bernasconi et al.,|2023a]]. These works considerably depart from ours, since they do
not consider any kind of sequential structure in the sender-receiver interaction at each episode.

Online learning in constrained MDPs Our paper is also related to the problem of designing
no-regret algorithms in online constrained Markov decision processes. The literature on online
learning in Markov decision processes is extensive (see, e.g., |Auer et al.| [2008]], Even-Dar et al.
[2009], Neu et al.|[2010]] for fundamental works on the topic). In such settings, two types of feedback
are usually investigated. The full-information feedback setting [Rosenberg and Mansour, [2019],
in which the entire reward function is observed after the learner’s choice and the partial feedback
setting [Jin et al., 2020], where the learner only observes the reward gained during the episode. Over
the last decade, there has been significant attention to the field of online Markov decision processes in
presence of constraints. The majority of previous works on this topic have focused on settings where
constraints are stochastically sampled from a fixed distribution (see, e.g., Zheng and Ratliff] [2020]).
Wei et al.| [[2018]] deal with adversarial reward and stochastic constraints, assuming known transition
probabilities and full information feedback. [Efroni et al.| [2020] propose two approaches to address
the exploration-exploitation dilemma in episodic constrained MDPs. These approaches guarantee
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sublinear regret and constraint violation when transition probabilities, rewards, and constraints are
unknown and stochastic, and the feedback is partial. |Q1u et al.| [2020] provide a primal-dual approach
based on optimism in the face of uncertainty. This work shows the effectiveness of such an approach
when dealing with episodic constrained MDPs with adversarial rewards and stochastic constraints,
achieving both sublinear regret and constraint violation with full-information feedback. Finally, Stradi
et al.[[2024] propose a best-of-both-worlds algorithm in constrained Markov decision processes
with full information feedback. While the previous works are related to ours, the aforementioned
techniques cannot be easily generalized to our setting as they are not designed to properly handle the
presence of outcomes and IC constraints.

B Confidence bounds

In this section, we further describe the estimators and confidence bounds for the stochastic quantities
involved in an episodic MPP, namely, transitions, priors, sender’s rewards, and receivers’ ones.

B.1 Transition probabilities

First, we introduce confidence bounds for transition probabilities P(z’'|x,w, a), by generalizing
those introduced by [Rosenberg and Mansour| [2019] for MDPs to MPPs. In the following, we let
Ny(z,w, a), respectively Ny(z,w,a,z’), be the counter specifying the number of episodes up to
episode t € [T (excluded) in which the triplet (z,w, a), respectively the tuple (z, w, a, x’), is visited.
Then, the estimated probability of going from = € X to 2’ € X by playing action a € A, when the
outcome realized in state x is w € (2, is defined as follows:

Ne(z,w,a,2’)
max {1, Ny(x,w,a)}
For any 6 € (0, 1), the confidence set at episode ¢ € [T for the transition function P is P; :=

Py (2|7, w,a) =

T,w,a T,w,a . oo . .
(rw,a)exxaxa Pr > where Py is a set of transition functions defined as:
‘T7w7a._ 3) . D
P, .—{P ‘ P(lz,w,a)— Pt(-\x,w,a)ng et(x,w,a)},

where P(|z,w,a) and P,(-|z,w,a) are vectors whose entries are the values P(z/|x,w,a) and
Pi(2'|z,w, a), respectively, while €;(z,w, a) is a confidence bound defined as:

 [2 Xk 42| n (TIXT201AY5)
(2,0, a) = max {1, Ny(z,w,a)}

The following lemma formally proves that P is a suitable confidence set for the transition function
of an MPP.

Lemma 4. Given any ¢ € (0, 1), with probability at least 1 — 6, the following condition holds for
everyr € X,w € Q, a € A andt € [T] jointly:

||P('|x,w,a) 7Pt('|x7w7a)||1 < Et(szaa)'

Lemmad]can be easily proven by applying the same analysis as presented in [Auer et al.|2008] and
employing a union bound over all z, w, a, and t..

B.2 Prior distributions

Next, we introduce confidence bounds for prior distributions. For every state z € X, we define
7 (-|z) € A(Q) as the estimator of the prior distribution at 2 built by using observations up to
episode t € [T'] (this excluded). Formally, the entries of vector 7i,(-|«) are such that, for every w €

Zre[tq] 1-{z,w}
max{1, Ny(z)} ’

where N;(z) is the number of visits to state x up to episode ¢ (excluded), while 1..{z,w} is an
indicator function equal to 1 if and only if the pair (z,w) is visited at episode 7.

iy (wlz) =

The following lemma provides confidence bounds for priors.
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Lemma 5. Given any 6 € (0, 1), with probability at least 1 — 6, the following holds for all x € X
and t € [T jointly:

() = (o)l < Gl),

where we let (;(x) := 1/%.

Lemma 5] follows by applying Bernstein’s inequality and a union bound over all states and episodes.

B.3 Sender’s and receivers’ rewards

Finally, we introduce estimators for rewards. In the following, present the results related to sender’s
rewards and receiver’s rewards under full and partial feedback. For every x € X, w € ,and a € A,
the estimated sender’s and receivers’ rewards built with observations up to episode ¢ € [T'] (this
excluded) are defined as follows:

>orepp—1) TS (@, w,a) 1 {z,w, a}
max{1, Ny(z,w,a)} ’

ZTG[tfl] TR,T(‘I'7 w, a/)]l‘r{x,w, a}
max{1, Ny(z,w,a)} )

Foi(z,w,a) =

Tri(z,w,a) =

where 1..{x,w,a} is an indicator function equal to 1 if and only if the triplet (x,w, a) is visited
during episode 7.

The following lemma provides confidence bounds for sender’s rewards, when full feedback is
available.

Lemma 6. Given any ¢ € (0, 1), with probability at least 1 — ¢, the following condition holds for
everyx € X,w € Q, a € A andt € [T) jointly:

’7‘5’(.’1},&1,&) —Fg,t(x,w,a)‘ S fSJ(Z‘,W,Cl),

where £s (7, w, a) := min {1, \/ 711011&??;',‘(52/5)))} }

Lemma [6]follows by applying Hoeffding’s inequality and a union bound over all z, w and .

The following lemma provides confidence bounds for receiver’s rewards, when full feedback is
available.

Lemma 7. Given any ¢ € (0, 1), with probability at least 1 — 6, the following condition holds for
everyr € X,w € Q, a € A andt € [T] jointly:

‘TR((E,W,G) - ?R,t(wiva” S gR,t(xawva)a

where £ (T, w, a) := min {1, 1/ %}

Lemma 7] follows by applying Hoeffding’s inequality and a union bound over all z, w and ¢.

The following lemma provides confidence bounds for sender’s rewards, when only partial feedback
is available.

Lemma 8. Given any ¢ € (0, 1), with probability at least 1 — ¢, the following condition holds for
everyx € X,w € Q, a € A andt € [T jointly:

|TS($7w7a') —Fs’,t(.’ﬁ,w,a)‘ S €S7t($,w,a),

where SSf(I w a) — min{l In(3T1X12]1Al/5) }

Lemma 8] follows by applying Hoeffding’s inequality and a union bound over all z, w, a, and t.

Finally, the following lemma provides confidence bounds for receiver’s rewards, when only partial
feedback is available.
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Lemma 9. Given any ¢ € (0, 1), with probability at least 1 — 6, the following condition holds for
everyr € X,w € Q, a € A andt € [T] jointly:

|TR(‘T7w7a) - ?R7t($7w7a)| < gR,t(xawva’)a

. In(3TIX[120[A|
where (g (T, w, @) 1= min {1, HwE({IN—M/;))}}

Lemma 9] follows by applying Hoeffding’s inequality and a union bound over all z, w, a, and ¢.

C Optimistic optimization problem

In the following section we describe the linear program solved by Algorithm [2]and Algorithm [3|
namely Opt-0pt. Intuitively, Opt-0pt is the optimistic version of Program (T)), since the objective
is guided by the optimism and the confidence bounds of the estimated parameters are chosen to make
constraints easier to be satisfied. Notice that the confidence bounds on the transitions and the prior
are applied to the || - ||; differences between the empirical and the real mean of the distributions. Thus,
in order to insert the aforementioned confidence bounds in a LP-formulation, the related constraints
must be linearized by means of additional optimization variables.

The linear program solved by Algorithm [2]and Algorithm[3]is the following.

max Z ZZ Z q(x,w,a,m’)(?s,t(m,w,a)+§S,t(x,w,a)) s.t. (2a)

q,C€
X, weQacAxr' €Xyqq

Y D dwwaa)=1 Vke[0...L—1] (2b)

re€X) weQacA ' €Xpq

Z Z Z q(xlvwvavx) = Z Z Z q(as,w,a,x’)

' EXp_1 WEQ aEA weENacAx' €X i1
Vke[0...L -1,V € X; (2¢)

q(z,w,a,2') — P2 |z,w,a) Z q(z,w,a,2") < e(x,w,a,x)
" €X k1
Vkel0...L—1,V(z,w,a,2') € Xy x A x Ax Xpy1 (2d)
Pi(2' |z, a,w) Z q(z,w,a,2") — q(z,w,a,2") < e(z,w,a,z’)
" €Xp 41

Vkel0...L—1,V(z,w,a,2') € Xy x A x Ax Xpy1 (2e)
Z e(z,w,a,2") < &(z,w,a) Z q(z,w,a,x)

v’ €Xky1 ' E€X k41

Vkel0...L—1,VY(z,w,a) € X x 2 x A (2f)
q(z,w) — Iy (w|x) Z q(z,w') < ((z,w) Vkel0...L—1,Y(z,w) € X; x Q (2g)

w'eN
iy (w|z) Z q(z,w') — q(z,w) < ((z,w) Vke[0...L—1],V(z,w) € X x Q (2h)
w'eN

D Cw) < Gl@) Y qlz,w), Vkel0...L—1],Vz e X;, (2i)
we weN

Z Z q(x,w,a,x')(FRyt(:c,w,a)+§R7t(x,w,a)

WEQ &' EX 11
—Tri(r,w,ad") + £R7t(x,w,a’)) >0
Vkel0...L—1],Y(z,a) € X; x A,Va' € A (2))
q(z,w,a,z') >0 Vkel0...L—1,V(z,a,2") € Xp x @ x A x Xp11, (2k)
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where Objective (2a) maximizes the upper confidence bound of the sender reward, Constraint (2b)
ensures that the occupancy measure sums to 1 for every layer, Constraint is the flow constraint,
Constraint (2d) is related to the confidence interval on the transition functions, Constraint is
still related to the confidence bounds on the transition function, Constraint 2f) allows to write
linearly the constraints related to the transition functions even if the interval holds for the || - ||1,
Constraint @]) is related to the confidence interval on the outcomes, Constraint @]) is still related to
the confidence bounds on the outcomes, Constraint allows to write linearly the constraints related
to the outcomes even if the interval holds for the || - |1, Constraint (2j) is the optimistic constraint for
the Incentive Compatibility (IC) property and, finally, Constraint d%b ensures that the occupancy are
greater than zero.

Lemma 2. Given 6 € (0, 1), under event £(5), Opt-0pt admits a feasible solution at every t € [T).

Proof. First we notice that under the clean event £(¢) the true transition function P and the prior
w1 are included in the their confidence interval; thus, they are available in the constrained space
defined by Opt-0pt. Then, we focus on the incentive compatibility constraints. Referring as ¢° to an
incentive compatible occupancy measure, under £(§), we have that:

qo(mv w, a, xl) (?R,t(x,w; a) + gR,t(‘ra w, CL) - ?R,t(wiv C_l) + gR,t(xa OJ,E)) Z
we,x’'€Xp 1

Y @war) (ra,w a) - ra(r,w,a) >0,
we, ' €Xpy1

forany k € [L — 1], (z,a) € X}, x A,Va € A. As aresult, if ¢° is incentive compatible, it belongs
to the optimistic decision space, which concludes the proof. O

D Full feedback

In this section we report the omitted proof related to Algorithm 2] Notice that the bound on the
transition function estimations still hold when the feedback is partial.

D.1 Transition functions

We start by showing that the estimated occupancy measures which encompass the information related
to the outcomes and the transitions concentrate with respect to the true occupancy measures.
Lemma 3. Given any § € (0, 1), under the clean event £(0), with probability at least 1 — 26, it holds
that Yye iz lge — @il < © (L2|X|\/T|A\|Q\ In (T|X|IQHA\/5)) .

Proof. We start noticing that, for any (z,w,a) € X x Q x A, we have:

Z |th7¢taMt (x,w,a,x’) _ qP,¢t,u(x7w7a7x/)‘

'€ X () +1
= Z lg" 00t (2, w, a) P2 |2, w, a) — ¢70H (2, w,a) P2 |2, w, a)|
'€ Xk (a)+1
< T [P (w0, )Pl 0) — gD 0, a) Py, )|
2! € X ()41
Y g, )P . a) — PO 0, ) P, )|
'€ Xp(a) 41
= Y e (mw,a) — PO @,w,a)| Pl w, a)
'€ Xk (a)+1
+ Z PRz, w, a) |Pa |z, w, a) — P(2|z,w,a)|
I/Exk(m)+1

= ‘qpt7¢t7m(xaw7a) - qu,u(x’w’a)} + qP"bt’“(gc,w,a)HPt(-|m,w,a) — P(|z,w,a)l.
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Thus, summing over ¢ € [T] and (z,w, a) € X x © x A we obtain:

Slla—alh <> > (!CJP"¢"“” (z,w,a) — ¢"? (2,0, a)|

te[T] te[T) zeX,weN,acA
+ g™ (@,w,0) [P, w,a) = P(Jz,w, )]l )
Next, we focus on the first part of the equation, noticing that:
a7 (2,0, 0) = "0, 0,0)

< ‘th7¢t7#t(xaw7a) - th,¢t7#(x7w7a)‘ + |th,¢t7lL(x7w,a) - qP,¢t,#(x7w’a)‘

Bound on |¢"¢04 (2w, a) — ¢"?(2,w,a)| We bound this term by induction. At the first
layer we have:

Z Z Z ’qP”"’b"’”t(xo,wo,ao) —qp“d’““(ﬂfo,wmao)’

20€EXo woEN ap€A

37> |pelwo, wo)dr(aolzo, wo) — plwo, wo) i (aolzo, wo)|

wo€EN ap€EA
< Z |t (20, wo) — (o, wo)]
wo€EN
= ¢ (20) Y (o, wo) — plo, wo)| -

wo€EN

observing that Xo = {z(}. Now we show that, if the result holds for zj_1, it holds for x, as follows,

DD > ld e wn wps an) — ¢ (g, wis ag)|

2 €EXg W €N ar€A

= Z Z Z Z Z Z g7t (T, w1, 1)

T 1E€EXk_1 Wrk-1€EQar_1€EATLEXE WpENar€EA
P(ag|vg—1, wp—1, ag—1) e (g, W)+

Lp—1,Wk—1, ak—l)Pt(Ik|$k—la Wk—1, ak_l),LL(iL'k, wk)|¢t(aklxka wk)

= Z Z Z Z Z|th’¢t’“t($k71,wk71,ak71)'

Tp 1€EXp_1 wrk—1€Qar_1EATLEX L WLEN

_ th’th“u(

- Py(xp|ep—1, wr—1, Gr—1) e (T, W)+

- qP"d)"“(xkq, Wh—1, @—1) Pe(@p|Tp—1, wk—1, ak—1) (@), wi)|

< Z Z Z Z Z|th’¢t’“t($k—1,wk—1,ak_1)-

Tp 1€EXp 1 wr_1€EQar_1€EATLEXE WL EN
Py(zl|zr—1, wp—1, ag—1) pe(Th, wi)+

— g0 (w1, ap—1) Py(@g|Tr—1, wr—1, ag—1) e (Th, wr )|+

+ Z Z Z Z Z g7t Pt (21, wh—1, Ag—1)-

Tp-1€EXk—1 Wrk—1€Qar_1€ATLEX) wEEN
- Py(xp|rp—1, wr—1, Gk—1) e (T, W)+

— gt (g1, ap—1) Py(wk |t 1, Wh—1, ak—1) (g, wi )|

< X ST Jd e @k wiens ako) — ¢ (@p o1, Wk, k1)

T 1€EXkp1kwr-1€Qar_1€A
+ Z qptm’“(xk) Z e (T, wr) — p(n, w)| -
TR €Xg wrEN

Thus, by induction hypothesis, it follows,

Z Z Z |70k (g, wr, ar) — g0 (ak, wk, ar) |

rrE€EXK WwpEQarEA
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k
I I

Bound on |¢” % (z,w, a) — ¢"?*#(2,w,a)| Tobound this term, we proceed again by induction.
Thus, we notice that:

DY D It (@, wa1) — PP (@, wr a0

1€X1 w1€Qa1€EA

=D DT DD Inlwe, wo) e (aolwo, wo) Pe(ws |, wo, ao) (a1, wi)dy(as |21, wr)

woENag€EAT1EXT w1 ENaEA
— p(xo, wo) Pt (aolxo, wo)P(x1|xo, wo, ao) (@1, wi) s (ar |z, wi)]

= > (o, wo)di(aolwo,wo) D |Pi(ai|zo, wo,a0) = P(a1|zo, wo, a0)|

wo€EN ap€A z1€X1
Z Z (21, w1)Pe(ar|zy, wr)|
w1€Na1€EA
< 0> g (o, wo, ao) || Pi(- |0, wo, ag) — P(:|zo, wo, ao) 1
woEN apEA

Now, we proceed with the induction step,

S0 D a0 @k wis ak) — 670 (wk, wi, ax)|

T €XE wr€Qar€A

= Z Z Z Z ZZ|qP”’¢t’”(ﬂfk71»wk717ak71)~

Tp_1E€EXp—1 Wk—1€Qar_1€EATLEXL WEENQ arEA
- Pi(zp|p—1,wk—1, k1) (X, wi) Ot (ak| Tk, wi)+

—q L1, Wh—1, Ak—1) P(Tr|Tr—1, Wh—1, ar—1) (@, wi ) Ot (ar| Tk, wi)|

= Z Z Z Z Podeb (zy 1 wp—1, ap—1) P2 or—1,Wk—1, ar—_1)

T 1€EXK_1wrk_1€EQar_1€A T EX,

P7¢t,u(

— g0 (g, w1, ap—1) P2k |Th—1, wp—1, ak—1)|

P7
< E E E E SO (1, w1, ap—1) Pe(@h|Tp—1, Wk—1, ak—1)
T 1€EXK_1 Wrk_1€EQag_ 1€Aﬂ7k€Xk

— gD (g wp—1, ag—1) Py(2n|mp—1, Wr—1, ar—1)|

+ E E E E qPoM (g, Wk, ap—1) Py (wk|Tr—1, wr—1, ax—1)
Tp 1€EXp_1 wrk_1€Qa_ 1€Aaxc;CEX;C

— g0 (g, w1, ag—1) Pk | TR -1, wh—1, ak—1)|

< Z Z Z lg" P (w1, wi—1, ak—1) — ¢ (@p—1, wh—1, ag—1)]

T 1€EXk—1wp-1€Qar_1€A
P,¢¢,
+ E E E g (@1, W1, k1)
Tp—1€Xk—1wp-1€Qar_1€A

NP |rp—1, wr—1, ak—1) — P(:|Tp—1,wr—1, ax—1)||1-
Thus by induction hypothesis we obtain,

Z Z Z |C]Pt’¢t’u(1’k,wk7ak)_qP’(bt’M(xkawk,ak”

T EXL W EQar€A

k—1
SZ Z Z Z qp7¢t’u(xs7w57as)||Pt('|x57ws,as)_P('|$S7ws7as)”1.

s=0zx;€Xsws€Nas€A
Returning to the quantity of interest we have:

L—1k—1
Z lae — @l <2 Z Z Z Z Z Z quJt’u (75, ws, as)|| P (|25, ws, as)+
te(T) te[T] k=0 s=0z,€X; ws€ENQas€A
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L-1 k

Pllzgwsa)li+ D0 DD S g™ @)l lzs) = pClz)lh 3)

te[T] k=0 s=0 z,€X,

We proceed bounding the first term in Inequality (3). Fixing a layer &k € |
Azuma-Hoeffding inequality and noticing that || P;(-|xg, wk, ak)
with probability 1—26:

> Z S > a s we a)IPifws wss a0) = Pllas,ws, a0)

te[T] s=0 zs€Xs ws€Qas€A

X||Q[|lA
kzl Z Z Z Q‘Xk(a:s)+1|ln(T\ 4'15 I fl) 1 }+J§2‘X | '2T1 (L)
t1 sy Asy Ws s n|{—
5=0t€[T] s E€Xs ws €Q as €A max {1, Ne(ws,ws, as)} 0

s=0
k—

TIX||Q4]\ 2 / L
\/2T|XS|IXS+1|A||Q|1H ('('5||> +3 2X,[y /2T In (5)
s=0 s=0
< |X|¢2T|Am|m (TSR o forn (),

Finally summing over L, we have, with probability at least 1 — 2 (which derives from a union bound
between Azuma-Hoeffding inequality and the bound on the transitions):
L—-1k—1

Z ZZ Z Z qu@’” $87w87a5)||Pt< |xs7ws7a5) —P(~|xs,w5,as)||1

te[T) k=0 s=0 z,€X, ws€Na€A

< L|X\/2T|A|Q| In (TX|(|59”A|> +2L|X|, /2T In (’;)

To bound the remaining term in Inequality (3), we proceed as follows,
L-1 k

SN ST @)l (lre) — ) |

te[T] k=0 s=0 z,€X,

0,...,L — 1], employing
— P(:|zk, wg, ar) |1 < 2, we have,

IN

H

L-1 k
<3SN ST ) e Cles) — ples) i+
te[T] k=0 s=0 z,€X,
L—-1 k
+ oS (@0 () — PO () e Clas) — L)
te[T] k=0 s=0 z,€ X,
L-1 k
< >3 @)l = alle) i+
te[T] k=0 s=0 z,€ X,
L—-1 k
+ Z 2 Pt b, # ) qP’d)t”u(J?S))
te[T] k=0 s=0 z,€X,
L—-1 k
< 2 q"w e (lze) = e+

L-1 k

+ Z Z Z Z Z 2|qP¢,¢t,u(xs7ws7as) _qP7¢t,M(xS7wsvas)‘~

te[T) k=0 s=0z,€X; w:€Qas;EA

The second term is bounded by the previous analysis paying an additional L factor, while, to bound
the first terms we apply the Azuma-Hoeffding inequality and proceed as follows:

L—-1 k
Z ZZ Z qu)t’u () Z |t (s, ws) — (s, ws)|
te[T)] k=0 s=0 z,€X wWsEN
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b(
L

L
< Lot lee) = el + 2211 27 (5)
te[T

Z 29 In(T1X]/0) hi(QXV‘s) +2L|X |\ /2T In (g)
i .eXS max{1, N¢(zs)}
< 2L\/2L|X|QT1n <T|5X|> +2LIX| /2T In <§)

with probability at least 1 — 24, given the union bound over the Azuma-Hoeffding and the bound on the
outcomes. Finally, with a union bound between the bound on the transitions and the outcomes (which
are both encompassed by the clean event) and the Azuma-Hoeffding inequalities, with probability at
least 1 — 44, we have:

. T|X L
> g =@l <O<L\/L|X|QTln< '5 ') + L|X|[TIn <5>+

te(T)
TX|2||A L
+ L*X |/ T| A9 In ('“') + L*|X|y/Tn (5))
<o <L2|X| 714)/In (TX'(LQ”A')) ,

which concludes the proof. O

rs€Xs

HM“ ™
gMF i~

D.2 Regret

In the following section we show that Algorithml attains @(\F ) regret. This is done showing
that the confidence intervals over transitions, outcomes and sender reward concentrate at a rate of

O(1/VT).

Theorem 1. Given any § € (0, 1), with probability at least 1 — 76, Algorithm E] attains regret
Rr <O (LQ\X|\/T|A\|Q\ 1n(1/5)) .
Proof. We notice that the regret can be decomposed as follows:
Rp=Y ri@ —a)= Y ril@ —@)+ Y rd@—a)
te(T) te[T] te(T]
The second term is bounded by Holder inequality and applying Lemma 3] To bound the first term we
notice that, under the clean event, and by definition of the linear program solved by Algorithm[2} it
holds:
(rs+2854) "G > (Pse+&s0) "G > (T +Es4) '@ > 14"
Thus, we have,
Z re(q" —q) <2 Z 940 =2 Z €50 +2 Z £+ (@ —aqv).
te[T] te[T] te[T] te[T]

The second term is bounded by Holder inequality and applying Lemma [3] which holds under the
clean event, with probability at least 1 — 2J. To bound the first term we employ Lemma [I10| which
holds under the clean event, with probability at least 1 — §, and a union bound, which concludes the
proof. O

D.3 Violations
In the following section we show that Algorithm [2| attains @(\/T) violations. This is possible

since, in the full-feedback setting, the incentive compatibility constraints collapse to standard linear
constraints.
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Theorem 2. Given § € (0, 1), with probability at least 1 — 76, Algorithm |2 attains violation

Ve < O (L21X|/TTATIMn (5) ) -

Proof. In the proof, we compactly denote the receivers’ best response in a given state-action pair
(z,a) € X x Aattimet € [T] as b'(a,z) == b*"' (a,z). Furthermore, by employing the definition
of the linear program and summing over (z,w, a), for any episode ¢, under the clean event, it holds:

Z z]\t(x7 w, a) (?R,t(l‘a w, CL) +£R,t(x; W, a) _FR,t<xa w, bt(a> .'17)) + ER,t(aj? W, bt(a/7 m))) Z 07
rzeX,weN,acA
which, in turn, implies that:
Z @ (w,w,a) (rr(z,w,a)+28r4(z,w,a) —rr(z,w,b'(a,z)) + 26p¢(z,w,b' (a, z))) > 0.
rzeX,weN,acA

Thus, noticing that, in the full-feedback setting, we have &g (2, w,a) = Epi(z,w, b (a,z)), we
obtain:

Z qt(z,w,a) (TR(x,w,bt(a,x)) - TR(:c,w,a)) <4 Z G (z,w,a)épi(z,w,a)

rzeEX,WEN,a€EA rzeX,weN,a€A

<4 Z @($7W)§R,t(x7w)a

rzeX,weN

In(3T|X1[2]/9)

where &g (2, w) = (LN (5]

Now we combine the previous equations to bound the first term of the last inequality as follows:

Z Z @(%W,a) (TR(x7wabt(aax)) —TR($,UJ,GJ)) 4

te[T) zeX,weN,acA

<4Z Z qt(z,w)€pt(x,w)

te[T] zeX,weR

—42 Z (x,w)épi(x,w) +4Z Z (@ (7, w) — @t (2, w))€R (2, W)

te[T] xeX,we te[T) zeX,wen

PPV w&u(w)w(m T|A||Q|1n<T'X'[;””A'>> )

te[T) reX,weR

*42 Z ]l{xw}éfoerZlZ Z (qt(z,w) — 1{z,w})

te[T] xeX,we te[T] xeX,we

+ 0O <L2|X T|A||Q|In <T|X|(SQ|A|>>

*42 Z xwthwar‘lZZQt z))

te[T] z€X,we te[T) v€X
L0 <L2|X 714][]In <T|X|59|A|>>
X
<4 > Li(w,w)éra(e,w) +4X]| 2T =~
te[T) zeX,wen
T|X]|Q||A
+0 <L2|X T|A||Q|In <||5||>> (6)
< \/9L|X|QITha?’T%(IQI +0 <L2|X| T|A||2| In (T|X|(|SQ||A>> N
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<0 <L2|X| il (£ '('SQ'A')> ,

where Inequality (3) holds by Hélder inequality and Lemma 3] which holds under the clean event,
with probability at least 1 — 24, Inequality (6) follows by Azuma-Hoeffding and Inequality (7) by
Cauchy-Schwarz inequality and observing that 1 + Ztem % < 3VT.

Finally, returning to the quantity of interest, we bound the cumulative violations as follows:

Vp = Z Z @(z,w,a) (rr(z,w,b'(a,z)) — rr(z,w,a))

te[T) zeX,weN,acA

Z Z qi(z,w,a) (TR(ac,w,bt(a,x)) — TR(x,w,a))

te[T) zeX,we,acA

+ Z Z (Qt(wiaa) - ?]}(1’,&)7@)) (rR(x,w,bt(a,x)) - TR(wiaa))

te[T) zeX,weR,acA

<Z thxwa (rr(z,w,b'(a,z)) —rp(z,w,a) +Z Z\thwa —qi(z,w,a)]

te[T)zeX,weR,acA te[T]|z€X,weN,acA

Z Z @(z,w,a) (rr(z,w, b (a,2)) — rr(z,w,a))
te[T) zeX,weN,acA
0 <L2X| T|4]|92 In <T|X '('SQ"A'>>

T|X|[|9|A
<0 <L2X| T|A]|Q|In ("(L”)) :

where the last steps hold by Holder inequality, Lemma[3]and the previous bound on the estimated
occupancy measure. The final result holds with probability at least 1 — 7§ employing a union bound
over the clean event, which holds with probability at least 1 — 46, the Azuma-Hoeffding inequality
used above, which holds with probability at least 1 — ¢ and Lemma which, under the clean event,
holds with probability at least 1 — 24. O

D.4 Lower Bound

Theorem 3. Let § € (0,1/4). For every algorithm that guarantees Ry < O(\/T) with probability at
least 1 — 0, there exists an absolute constant ¢ > 0 and a problem instance in which the algorithm

must have Vp > Q(\/T) with probability larger than 1.

Proof. We consider two instances with a single possible outcome and a single state. In the following,
we omit the dependence on the sender and receiver utility from these parameters. We assume that the
sender’s utility in the first instance is a deterministic function given by ri(a;) = land r(az) =0,
while the receiver’s utility is given by rR(al) ~ Be(1/2 + e) and 7% (as) ~ Be(1/2). Meanwhile,
the sender’s ut111ty in the second instance is 7%(a1) = 1 and r(az) = 0, while the follower’s utility
is equal to rR(al) ~ Be(1/2 + ¢) and r%(az) ~ Be(1/2 + 2¢), for some € € (0,1/2). Thus, the
sender’s regret in the first instance is given by:

T
Ry =Y ¢'(as),
t=1

since the optimal signaling scheme is the one that always recommends action a; € A in the first
instance. In the following, we define P! (respectively, IP’Q) as the probability measure induced by
recommending, at each round, signaling schemes according to some algorithm in the first (respectively,
second) instance. Then, we bound the probability that the regret in the first instance is larger than a
constant C' € N as follows:

T
P! (Rp < CVT) = P! (Z ¢'(az) < Cﬁ) >1-, ®)
t=1

30



for some 7 € (0, 3/4). Furthermore, by Pinsker’s inequality and Equation (8] the following holds.

T
P? (Z ¢'(az) < cﬁ) > 15— /Dxr (PP, ©)
t=1

where we denote with D, (-, -) the Kullback-Leibler divergence between two probability measure.
By means of the well known divergence decomposition, we have:

Dk (P, P?) < TDgp(Be(1/2 + 2¢),Be(1/2)) < 16€T, (10)

where in the latter inequality we used the well known property ensuring that D, (Be(p), Be(q)) <

gz ;_qt);; . Furthermore, by means of the latter inequality and Equation (10} we have:

T
P2 (Z ¢ (az) < Cﬁ) >1-—n—V16eT

t=1

We now consider the receiver’s violations in the second instance which can be computed as follows:
T T
Vi =Y ¢'(a1) (Thlaz) —Th(a1)) =€y ¢'(ar).
t=1 t=1
Then, by means of Equation (9) we get:

P2 (vj% > (T — C\FT)) = p? (ez ¢t (ar) > e(T — Cﬁ))

t=1

— p? (T— > ¢Haz) > T—Cﬁ)

t=1

T
= P? (Z #'(az) < Cﬁ) >1—n—V16€2T.

. . _ 1 .
Finally, by setting € = TovT e get:

P'(RE<CVT) 21—
Then, the latter result implies that:

P2 (V2 > (T — V) =P* (V2 > (WT)) >

which concludes the proof. O

E Partial feedback

E.1 Regret

Lemma 10. Under the event £(0), with probability at least 1 — 6, it holds:

T|X||Q]|A
> &8s 0 <\/L|XIIQ|AT1H (||(|5||>>

te(T]

71X |9 A
> ha <O <\/L|X||Q|AT1H (||(|5||>>

te(T)
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Proof. We bound the quantity of interest as follows:

1
Z SStqt Z Z fgyt(x,w,a)llt{x,w,a}+L\/2Tlng (11)

te[T] te[T] zeX,weN,acA

= In(3T'| X1|€2|A[/6) 1
- Z Z maX{17Nt(x7w7a)}]lt{wiva}+L\/E

te[T) zeX,weN,acA

Vgln EEES VN + Iy f2Tm (12

rzeX,weN,aeA

3T|X|]A]| 1
S\/91n<§ \/|X|Q|A|IEXZ Nr(z,w,a) + Ly[2Tn < (13)

JZWEN,aEA

< \/9L|X|Q||A|T1n <3TX15|Q”A|) + Lm, (14)

where Inequality holds by the Azuma-Hoeffding inequality with probability 1 — d, Inequality
follows by observing that 1 + 3, e[ % < 3V/T, Inequality (13) follows from the Cauchy-Schwarz
veXwe.aca Nr(2,w,a) < LT. With the
same analysis, we can prove that the same upper bound holds for Ztem f;}ﬂt , concluding the
proof. O

IN

inequality, and Inequality (T4) holds, noticing that >

Theorem 4. Given any 6 € (0, 1), with probability at least 1 — 70, Algorithm E] attains regret

Rr <O (NL|X|\Q|\A| + L2|X|/TIA[Q] 1n(1/5)) :
Proof. As a first step, we decompose the sender’s regret as follows:

Rp = Z ré(d" —q)

te[T]
=Y @+ Y -
te[T] te[T]
- T|X|Q2]|A
<l @)+ o (L2|X| 7140 n ('('ﬂ')) (15)
te[T]

We observe that the last inequality holds under the event £(¢), with a probability of at least 1 — 24,
and it is derived by applying the Holder inequality and employing Lemma 3] To bound the first term
in Equation (I3]), we notice that under £(§), we have:

(rs + 2§S,t)Tth > (Fsu + fs,t)T@s > (Fsu + fs,t)Tq* > qu*,

for each ¢t > N|X||Q||A| because of the optimality of ;. Thus, rearranging the latter chain of
inequalities we have:

Sl - = Y i@ -da+ Y i -a)

te[T] tSN|X|Q|A] t>N|X]|Q[| A

< NLX[A +2 [ 3 8@ —a)+ 3 &l

te[T) te[T)

< NLIX[|Q||A| + O <L2X| T| Al In (T|X||Q||A>> _

]

In the first inequality above, we employ the fact that the support of each reward function belongs to
[0, 1], while in the second inequality, we make use of Lemma the Holder inequality, and Lemma
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which hold with a probability of at least 1 — 34. Substituting the latter inequality into Equation (T3],

we obtain:
R TIX||Q]|A
T§O<NLX|Q||A|+Z/2|X| I'|A|92| 1n <||6|||)>

Finally, we observe that the previous upper bound holds with probability at least 1 — 7. This follows
by employing a union bound and observing that £(4) holds with a probability at least 1 — 44, which
concludes the proof. O

E.2 Violations

In the following we denote the receivers’ best response in a given action a € A and state z € X as
bt (a,x) = b®" (a, x).
Lemma 11. Under the event £(§) the following holds:

st0<L2|X TA||Q|1n<T')('(5M>>+Z Y el w b 0, 2))

te[T) zeX,weN,acA
with probability at least 1 — 36.

Proof. As a first step, we observe that by employing the definition of {r ; and noticing that ; is a
feasible solution to LP (2)) for each ¢ € [T'] under the event £(4), we have:

Z Gi(z,w, a) (rR(x7w,a) + 2pi(z,w,a) — rr(z, w, b (a,z)) + 2pt(z,w, b (a, ac))) >
zeX,weN,acA

Z Gt (w,w,a) (Tre(z,w,a) + Ere(w,w,a) — Tre(z,w, b (a,z)) + Epe (2, w, b (a, z))) > 0.
rzeEX,weN,acA

Then, rearranging the above inequality we get:

Z @t (z,w, a) (TR,t(x,w,bt(a,:c)) — TR,t(x,w,a))

zeX,weN,acA

S 2 Z a\t(x7w7 a) (SR,t(x7w7 a) + £R,t(x7w7 bt(a7x))) . (16)
reX,weN,acA

Furthermore, we can decompose the receivers’ violations as follows:

Vp = Z Z (qt(z,w,a) £ G (z,w,q)) (rr(z,w, b (a,z)) — rr(z,w,a))

te[T) zeX,weN,acA

<0 <L2|X| T|A||Q|In (T|X|(|SQHA>) +

Z Z @t (x,w,a) (TR(x,w, bi(a,r)) — rr(z,w, a))

te[T) zeX,weN,acA

o <L2|X| T|A||9|In (T|X|(|SQHA>> +

Z Z (Gt (z,w,a) £ qt(z,w,a)) (§R7t(9:, w,a) + Er (e, w, b (a, x)))

te[T) zeX,weN,acA

o <L2|X| T|A||Q|In (T|X|(|SQHA>>

+ Z Z @ (z,w,a) (28r (7, w,a) + 28R, (2, w, b (a,2)))

te[T] zeX,weN,acA
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<0 <L2|X| T|A[|Q|In <T|X|(|SQHA>> +2) > alrw,a)ri(r,w, b (a,x)),

te[T| zeX,weQ,acA

where the first and third inequalities hold by Lemma [3} the second inequality is a consequence
of Inequality (I6), and the third inequality follows by means of Lemma [I0] which holds with a
probability of at least 1 — §. Therefore, employing a union bound over the events of Lemma 3|and
Lemma 10} the previous result holds with probability at least 1 — 34, under the clean event. O

Theorem 5. Given any ¢ € (0,1), with probability at least 1 — 99, Algorithmatmins cumulative
violation Vi < O (p (\A|% + |A|VN + LQ\/T)) , where p := (| X||Q|A])3/2/In (1/s).

Proof. As a preliminary observation, we notice that Algorithm 3]is divided into IV epochs of length
¢ =|X||€||A|, where in each epoch, Algorithm [3| maximizes the probability of visiting each triplet
(z,w, a). In the following, we define ¢;(z,w, a) € [T as the round in which Algorithmmaximizes
the occupancy of the triplet (z,w, a) in the epoch j € [V — 1]. Formally:

ti(z,w,a) ={te[jl+1,...,(j+1)¢] | Z q(x,w, a, ") is the objective function of Program (2) }
r'eX

Furthermore, for each occupancy measure ¢; with ¢ € [T, the following holds:
q(z,w,a) = q(z,w, bt(av z)) < Qtj(;c,w,bi(a,a:))(xa w, bt(av r)) (I7)

for each j € [N — 1] where ¢ € Q is an occupancy measure that satisfies the IC constraints of the
offline optimization problem (see Program (T))). The first equality above follows by observing that
there always exists an occupancy that satisfies the IC constraints that recommends action b*(a, z) € A
instead of a € A in the state x € X with the same probability of ¢;. The inequality, on the other
hand, follows by observing that the space of occupancy measures satisfying the IC constraint of the
offline optimization problem (I)) is always a subset of the feasibility set of Program (2)).

Furthermore, by Lemma [IT) we have that:

st0<L2|X TA||Q|1n<T')('(5M>>+Z Y el w b (0,2))

te[T) zeX,weN,acA

We focus on bounding the second term in the inequality above in the first N/ rounds of Algorithm 3]
Thus, with probability at least 1 — § we have:

Z Z q(z,w,a)ép+(x,w, b (a,z))

t<NlzxeX,we,acA

¢
< Z Z qt(z,w, a)ép.i(z,w, b (a, )+

t=1 zeX,weN,acA

N¢
+ Z Z qt(x,aha) (fR,t(wivbt(avx)))

t=C+1zeEX,WwEN,a€A
N—-1(j+1)¢

< LIX[|Q| Al + Z Z Z q(z,w, a)ép (2, w, b (a,r)) (18)

reX,weN,acA \ j=1 t=j¢

N—1(j+1)¢

oo+ Y [T Y alnwd) (Eralew, ) {0 x) = a'})

reX,weN,a€EA [a’€A \ j=1 t=j¢

< LIX||Qf|Al+
N-1 (5+1)e
+ Z Z Z Gt (20,0) (T, w, @) Z ((ri(w,w,a")1{b"(a,z) = a'}) (19)
rzeX,weNaEA |a’€A \ j=1 t=j4
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N— (7+1)¢

SL|‘XVHQH14|_|_ Z Z Z t(:pwa JULLJ(Z Z tha:wa) (20)

rzeX,weEN,a€EA |a’€A \ j=1 t=4¢

< LixX|IoA + %m (2l

(G+1)e 1
Qt zwa) x,w, CL
wEX,o;LaEA agél le ’ tzjz \/maX{LNt(wiva/)}
2T X||192]| A
< LIX||Q|A] +e\/1n <L||||>
g q n(z,w,a)
> X Z lawal @)

reX,weN,a€A |a’'€A \ j=1 max{l N (x W a)}

< oAl oy (Z2AT).

tj(afwa) wval) 1
) ( > > Z e[ N, (e )} + L|A| 2N1n5> (22)

rzeX,weN,acA |a’'€A \ j=1

§L|X|Q|A|+3g¢n (22,

]

N
Z Z Z]]-ti(w,w,a') +L|A| 2Nln%

rzeX,weEN,a€A |a’EA i=1

2T X ||| A
Smxwwwn (2L,

]

> [Z\/NNg(z,w,a’) + L|A] 2N1n% (23)

rzeX,weN,a€A La’€A

< LIX||9|A] + 3£|A|\/1n <2TXL|Q”A|) S VNwww,d) + Ly/2N %

zeX,weN,a’€A

< L|X]|QI[A] + 3€|A|\/1n <2TXL|Q”A|) <\/LN€ +Ly/2N 2) , (24)

where we let N;(z,w,a) = ZKJ. 14, (2,w,0)(z,w, a) for the the sake of simplicity. Furthermore, we
notice that Inequality (T8) follows observing that &, (2, w, a) < 1 foreach (z,w,a) € X xQx A and
t € [T), and because the occupancy defines a probability distribution over each layer k € [0, ..., L].
Inequality (T9) holds thanks to Inequality (I7). Inequality (20) follows because each indicator
function takes value of at most one. Inequality follows by observing that the number of times
that the triplet (x,w,a’) is visited overall is always greater or equal to the the number of times
such a triplet has been visited during the rounds in which Algorithm [3| maximizes the exploration
of that triplet. Inequality (22) holds with probability at least 1 — § and follows from the Azuma-
Hoeffding inequality, and Inequality holds, noticing that Nrp(z,w,a) < LNY
and employing the Cauchy-Schwarz inequality.

rzeX,weN,a€A

We focus on bounding the cumulative violations suffered in the remaining 7" — N/ rounds of
Algorithm 3] With probability at least 1 — § the following holds:

Z Z q(z,w,a)ér (2, w, b (a, x))

t>NLzeX ,weN,acA
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< Z (Z Z qt(mvwva/)gﬁ’,,t(fﬁaw,a/)]].t{bt(a,x) = a/}>

rzeX,weN,a€A \a’'€At>N{L
2T X9 A 1
< X ) Daeeean 3 e
zeX,weN,acA a’€A t>N/ \/maX{L Nt(xa w,a )}
ETEIETE 1
< A|\/ qtN(x7w7a)(x7w7a) Z
z€X, wEQ acA t>N? \/max{l, Nye(z,w,a)}
2T X ||| A T— N¢{
BN Y ey S AR (.0
zeX,weN,acA \/ma'X{l NNZ(:E w a’)}
- A|\/1n (2T|X||Q||A|> NNg (z,w,a) +L,/2N1n5 (T — N¢) 6)
- reX,weN,acA N \/max{l,NNg(a:,w,a)}

<2|A|¢ WMM /Qm;. 2

Inequality (25)) holds thanks to Inequality and observing that the indicator function takes value of
at most one. Inequality holds, noticing that ZmeX,weQ,aeA Nr(z,w,a) < LN{ and employing
the Cauchy-Schwarz inequality. Inequality (26) holds with probability at least 1 — § and follows by
employing the Azuma-Hoeffding and observing the following:

N
Nye(z,w,a) > Z 1, (z,w, a)

1
1
qt,, (z,w,a) fLUQNlng

1
NQtN(w,w,a)('r7wa a) — L4/2N In g’
which can be written as follows:

Nn¢(z,w,a) + Ly/2N In 3

N
Finally, thanks to Lemma [IT]and employing Inequality (24) and Inequality we get:

Ve <O (p (|A|;;V + |A|\/N+L2ﬁ)> .

With p := (| X||2]]A])3/2+/In (1/s), such a result holds with a probability of at least 1—94, employing
a union bound and observing that £(¢§) holds with a probability of at least 1—44, Lemma holds with
a probability of at least 1 — 34, and both Inequality and Inequality hold with a probability
of atleast 1 — 6. O

=~
Il

T
I

Y

2 qtN(x,w,a) ({I?, W, a)~

E.3 Lower bound

Theorem 6. Given « € [1/2,1], there is no learning algorithm achieving both Ry = o(T%) and
Vr = O(Tl_o‘/Q) with probability greater or equal to a fixed constant ¢ > 0.

Proof. We consider two instances with a single possible outcome and a single state. In the following,
we omit the dependence on the sender and receiver utility from these parameters. We assume that the
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sender’s utlhty in the first instance is a deterministic function given by rs(ar) = land ri(az) =0,
while the receiver’s utility is given by rR(al) Be(1/2 + ¢€) and rR(ag) Be(1/2). Meanwhile,
the sender’s utlllty in the second instance is 7% (a1) = 1 and 7 (a2) = 0, while the follower’s utility
is equal to TR(al) ~ Be(1/2 + €) and r%(as) ~ Be(1/2 + 2¢), for some € € (0,1/2). Thus, the
sender’s regret in the first instance is given by:

T
Rp =Y ¢'(ay),
t=1

since the optimal signaling scheme is the one that always recommends action a; € A in the first
instance. In the following, we define P! (respectively, ]P’g) as the probability measure induced by
recommending, at each round, signaling schemes according to some algorithm in the first (respectively,
second) instance. Then, we bound the probability that the regret in the first instance is larger than a
constant C' € N as follows:

P! (R} < 0) (Z ¢t (az) < c) >1-—n, (29)

for some 7 € (0, 1). Furthermore, by Pinsker’s inequality and Equation (29) the following holds.

T
’ (Z ¢'(az) < C) =1 —=n—Dgr(P',P?), (30)

where we denote with Dy, (-, -) the Kullback-Leibler divergence between two probability measure.
By means of the well known divergence decomposition, we have:

Dy (P, P?) < E!

> ¢t(a2)‘| Dy (Be(1/2 + 2¢),Be(1/2)) < 16€*E*

t=1

Zcbt(@)] , (31

t=1

where in the latter inequality we used the well known property ensuring that D j,(Be(p), Be(q)) <
(r—a)®
q(1-q)"

Then, by reverse Markov inequality and Equation (29) we get:

Zcbt(az)] <P! (Z ¢ (az) > 0) (T—-C)+C <n(T-C)+C,
t=1

t=1
Furthermore, by means of the latter inequality and Equation (3I)) we have:

(Z(btag <C’>>1n V16€2(n(T — C) + C)

t=1

‘We now consider the receiver’s violations in the second instance which can be computed as follows:

T T
ng = ng)t(al) (?%(ag) - ﬁ%(al)) = EZ¢t(a1).

Then, by means of Equation (30) we get:

T
P* (V> (T - O)) <62¢t ) > (T — C)>

t=1
T
—P2<T—Z¢t(a2)zT—C>
. t=1
(ZgbtaQ <C’>>177 V16€2(n(T — C) + O).

t=1

Finally, by setting C' = T—; and € = T and n = ~5— we get:
Pl(Rngo) zl—n
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T Tl 1
P(RL<Z—)>1— >
< r= 2) _2,

since « € [1/2, 1]. Then, the latter result implies that:

1
P2 <ng > 32T1_“/2> >P? (VE>e(T—C))>1—n—+/16e2(n(T — C) +C)

N T TN
- 2 16 2 2 4’

which concludes the proof. O
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