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Abstract

Large Language Models (LLMs) have recently advanced to power autonomous web1

agents. However, they still struggle with long-horizon tasks, often making mistakes2

such as repeating unnecessary actions. An LLM-based agent might fail to recognize3

that an item has already been added to a shopping cart and attempt to click the ‘add’4

button again. In contrast, humans easily identify when an item has been added, as5

they maintain an awareness of the task progression when interacting with the web6

interface, rarely repeating such actions. This distinction arises from the presence of7

a world model in humans (i.e., an internal representation that simulates interactions8

with the environment) and its absence in current LLM-based agents [LeCun, 2022].9

Realizing this absence, we propose World-Model-Augmented (WMA) Web Agents,10

which integrate world models to enhance the decision-making capabilities of LLM-11

based agents. We introduce a novel mechanism allowing agents to focus on12

state transition information for making informed action choices. Evaluations on13

WebArena prove that WMA Web Agent outperforms existing baselines, such as the14

Tree Search Agent [Koh et al., 2024b], by improving action-selection accuracy and15

reducing errors in web navigation tasks. We present the first successful integration16

of world models in LLM-based web agents, suggesting a guidance for effective17

automation in dynamic web environments.18

1 Introduction19

Advancements in Large language models (LLMs) have made them increasingly attractive for automat-20

ing complex tasks, such as web navigation [Shi et al., 2017, Kim et al., 2024]. These models, when21

used as digital agents, can generate action sequences (e.g., click [33]) to accomplish user-defined22

goals. Despite their success in simple, short-term tasks [Yao et al., 2022], LLM-based agents face23

significant challenges in more complex, long-horizon environments like WebArena [Zhou et al.,24

2023]. For example, while humans excel at web navigation tasks, web agents score only 14.3%25

accuracy compared to 84.2% for humans [Zhou et al., 2023]. This stark performance gap raises a26

critical question: Why do LLM-based agents, despite their advancements, still struggle to match27

human-level proficiency in web navigation?28

A key reason for this shortfall lies in how machines and humans approach complex tasks differ-29

ently. Human gather background knowledge about how the world works through observation and30

comparably interactions in a task-independent, unsupervised manner [LeCun, 2022]. This provides31

a foundation for world models in humans — internal representations of how actions affect the en-32

vironment [Craik, 1944, Jonassen and Henning, 1996, Ha and Schmidhuber, 2018]. These world33

models allow humans to predict the outcomes of their actions, enabling better decision-making in34

dynamic environments. Consider a task of booking a non-refundable flight ticket. Humans intuitively35

understand the binding nature of such transaction and make careful decisions to avoid mistakes.36

In contrast, existing LLM-based agents tend to operate in a reactive manner, relying heavily on37

trial-and-error. This approach introduces significant risks in real-world scenarios, such as making38
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irreversible decisions (e.g., purchasing non-refundable flight tickets). Koh et al. [2024b] attempts39

to address this issue with an inference-time tree search algorithm. While this approach improves40

decision-making during inference time through multi-step planning, it still relies on trial-and-error41

which makes it prone to irreversible and destructive actions.42

Recent research [Levine, 2021, LeCun, 2022] suggests that the absence of world models in machine43

intelligence is a fundamental limitation that hinders their performance as autonomous agents for long-44

horizon tasks. Acknowledging such absence, fields like robotics and deep reinforcement learning (RL)45

in game environment readily adopted world models. In robotics, systems like UniPi [Du et al., 2023]46

and UniSim [Yang et al., 2024] leverage world models to enhance decision-making and generalization47

through text-to-video decision-making and dynamic interaction simulations. In game environment,48

the Dreamer series [Hafner et al., 2020a, 2022, 2024] use world models to predict future states and49

optimize policy using imagined rollouts in a compact latent space, therefore enabling fast learning50

in real-world environments. Both fields require a deep understanding of environment dynamics,51

where actions taken by the agent continually reshape the environment. These examples underscore52

the transformative potential of world models in bridging the performance gap between humans and53

autonomous agents. We recognize such potential of world models, and hypothesize that expanding54

its application to the web environment will help LLM-based web agents to select proper actions and55

reduce the risk of destructive outcomes that often occur in traditional trial-and-error approaches.56

To this end, we introduce World-Model-Augmented (WMA) Web Agent, a LLM-based web agent57

with world model that compensates for the limited awareness of environment dynamics in vanilla58

LLMs during long-horizon tasks. Instead of providing naive information about a single static webpage,59

we present a novel abstraction scheme of the state observation for training our world model. This60

scheme specifically captures the state difference incurred by transition. We also present how the world61

model can be used to update action-selection policy without further training. Taking full advantage62

of our framework, WMA Web Agent chooses the optimal action for the best outcome.63

Experiments on WebArena [Zhou et al., 2023] show that our WMA Web Agent is significantly64

more accurate in their action-selection policy compared to baseline agents. We confirm that the65

world model trained within our framework can accurately simulate action execution, outperforming66

baselines such as naively prompted LLMs. Results of our experiments underscore the promising67

potential of world models in web navigation tasks. As the first work to introduce world models into68

web agents, we expect to open the doors for a more reliable and safer web navigation experience to69

the users with satisfying performance.70

The key contributions of our study are as follows:71

• We introduce WMA Web Agent, the first to incorporate a world model into web agents,72

enabling policy adaptation through simulated environment feedback.73

• We present a novel observation abstraction scheme focused on state differences from transi-74

tions, designed to increase information density for LLMs.75

• Through extensive experiments, we validate that our world model significantly improves the76

agent’s action-selecting policy. We also demonstrate that access to the predicted next state is77

crucial for accurately estimating the reward of each sampled action.78

2 Related Work79

Web Agent Benchmarks. Many benchmarks have been introduced to evaluate LLM-based agents’80

ability in web navigation [Kim et al., 2024]. MiniWoB [Shi et al., 2017] and MiniWoB++ [Liu et al.,81

2018] are among the first widely adopted benchmarks. More recently, WebShop [Yao et al., 2022]82

simulates e-commerce environments where agents are tested to execute tasks on the web based on83

given text instructions. These early benchmarks lay the groundwork for evaluating web agents. How-84

ever, they are limited to specific and constrained environments. For more generalizable evaluations,85

Mind2Web [Deng et al., 2024] curates web tasks across various domains, and WebArena [Zhou86

et al., 2023] further emphasizes functional correctness and more realistic scenarios such as posting87

AI-related articles on Reddit.1 Since WebArena closely resembles the complexity of real-world web88

interactions, we adopt it for our evaluation.89

1https://www.reddit.com/
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Figure 1: Overview of our framework. We start by collecting a dataset for training the world model
(Top). For effective learning and prediction on environment dynamics, we abstract the accessibility
tree to free-form description with a specific focus on state transition. Then, we perform inference-time
policy optimization by choosing the optimal action leading to the optimal next state (Bottom).

LLM-based Web Agents. In recent years, LLM-based agents have become popular in the web90

navigation domain. However, since many powerful proprietary LLMs do not provide access to model91

parameters, many studies of web navigation have been focusing on training-free methods where92

LLMs directly learn from user inputs (i.e., prompts) without task-specific training [Sodhi et al., 2023,93

Zheng et al., 2023]. For instance, Wilbur [Lutz et al., 2024] and Agent Workflow Memory [Wang94

et al., 2024b] leverage a verification model [Pan et al., 2024b] with prompt-based methods to collect95

successful trajectory data for guiding the agent’s policy at inference time. AutoEval [Pan et al.,96

2024b] and Tree Search Agent [Koh et al., 2024b] increase the number of trials and reasoning paths,97

further improving system performance. However, due to their trial-and-error nature, these approaches98

can not only be computationally inefficient in gathering trajectories as tasks become more complex99

but also are more prone to undesired results (e.g., booking a non-refundable ticket). Our WMA Web100

Agent reduce such risks via a world model, which predicts future observations and their rewards101

before actually making an action.102

World Model in Building Autonomous Agents. World models refer to systems that generate103

internal representations of the world, predicting the effects of their actions on environments [LeCun,104

2022]. In RL, simulating observations and environmental feedback using world models allow the105

policy model to learn [Sutton, 1990] or plan [Ha and Schmidhuber, 2018, Hafner et al., 2019b]106

without actually interacting with the environment. While some world models are trained with raw107

observations [Oh et al., 2015, Chiappa et al., 2017], others are built on latent representations [Hafner108

et al., 2019a, 2020b]. For instance, in the image domain Hafner et al. [2020b] train a world model109

by training it to first compute a posterior stochastic state based on the current image and then a110

prior stochastic state that tries to predict the posterior without access to the image. Within the field111

of LLMs, Zhang et al. [2024] converts visual observations into natural language and employs an112

LLM-based world model for text-based games, and Wang et al. [2024a] further converts observations113

into a structural format (e.g., JSON), improving LLMs’ reasoning over state transition functions. In114

web navigation, environments are built upon not only natural language but also more complex text115

modalities such as HTML and DOM trees. We address this by transforming them to a novel free-from116

description, highlighting the state difference between each time step.117

3 World-Model-Augmented Web Agents118

The key motivation of our work is to teach web agents to produce actions with an increased aware-119

ness of environment dynamics (i.e., cause-and-effect relationships between actions and the web120

environment) and thereby improve their ability to navigate complex environments. We introduce121

World-Model-Augmented (WMA) Web Agent, which integrates the concept of a world model aligned122

to our motivation. First, we build a world model by collecting data from interactions between the123
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agent and the environment. Then, we train the model on the collected dataset. During inference time,124

our WMA Web Agent improves its action-selection policy by using the world model, with enhanced125

understanding of the environment dynamics.126

Problem Description. As agents in most real-world scenarios frequently deal with information127

that is limited, unclear, or incomplete, we consider a Partially Observable Markov Decision Process128

(POMDP) environment E with a hidden state space S, action space A, observation space O, and129

transition function T : S ×A → S . Action space A is defined as language-guided web actions, such130

as CLICK, TYPE, and HOVER with action description. Observation space O is an accessibility tree of131

the webpage, a simplified version of DOM tree [Zhou et al., 2023]. The agent is asked to produce132

a sequence of actions to reach the goal state by interacting with the environment E . In a POMDP,133

the agent receives partial observations ot+1 from E after the action at has taken in place. Such state134

transition from st to st+1 is managed by the transition function T of the environment.135

3.1 Training a World Model136

3.1.1 Step I: Harvesting Agent-Environment Interaction Data137

Our goal in this step is to construct a training dataset D = {I, ot, at, ot+1} for world model ϕ. The138

ground-truth next state data is collected from the browser environment E . Generated by the interaction139

between the the agent θ and E , we construct D̃ from trajectory τ = {o0, a1, o1, ..., an} based on140

synthetic user instructions I .141

To illustrate the details of how our dataset D̃ is constructed, we explain the process of augmenting142

WebArena dataset [Zhou et al., 2023]. We base our augmentation strategy on existing remedies used143

when no annotated user instruction exists for a particular website. Because the original Webarena144

dataset lacks diversity in user instructions I for it to be fully robust, we augment it by synthetically145

generating I using an LLM. Our strategy also includes manually inspecting the quality of synthetic I146

to verify whether they are feasible in the given web environment. After creating a diverse set of I , we147

collect trajectories τ from interactions between θ and E by using prompting methods performing each148

synthetic I . To ensure the diversity of trajectories, we sample k number of trajectories for each I .149

3.1.2 Step II: Transition-focused Observation Abstraction150

Accessibility tree, a compact list of elements annotated with element id [Zhou et al., 2023], is the151

most common format for representing observation o in web environments due to its relative simplicity152

compared to the raw HTML format [Drouin et al., 2024, Koh et al., 2024a]. However, we still deem153

this format as suboptimal for training language models to learn the dynamics of the web environment154

for two reasons. First, although recent LLMs have advanced to process extremely long context155

lengths [Gu and Dao, 2023], the accessibility format results in observations quite burdensome, with156

about 4000 tokens long on average (Figure 2). Second, accessibility format only contains static157

information about a single page, with little or no information on state transition.158
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Figure 2: Distribution of sequence length for
each representation type of observation. Ac-
cessibility tree format (axtree) requires an ex-
tremely long input context length.

In RL settings with world models such as in robotics159

and game environments, estimated latent vector often160

replaces the full observation of visual input to avoid161

excessive memory footprint and promote effective162

learning [Doerr et al., 2018, Hafner et al., 2019c].163

Motivated by such simplified replacement of the orig-164

inal observation, we take a similar approach. In our165

framework, the original representation o (i.e., acces-166

sibility tree) is abstracted into a compact yet more167

informative format for LLMs’ comprehension.168

We use free-form description for abstracting the state169

in a more flexible and compact manner with more in-170

formation gain compared to a naive accessibility tree171

or HTML representation. Previous research naively172

summarizes [Sridhar et al., 2023] and retrieves [Deng173

et al., 2024] state observations, focusing only on reducing the input length. This causes the generated174

summary to be repetitive and uninformative sentences about the current static webpage. Therefore,175
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Figure 3: The overview of transition-focused observation abstraction. Through this process, we
increase the information density to allow LLMs to understand and learn dynamics effectively.

traditional state representation approaches are severely limited in capturing the critical differences176

between the dynamic transitions between consecutive states.177

Instead of summarizing ot+1, we provide a mechanism that formulates a free-form description that178

focuses on the state differences incurred from the transition between ot and ot+1 (i.e., ∆(ot, ot+1))179

for generating õt+1. To obtain ∆(ot, ot+1), we use the Hungarian’s algorithm that calculates a180

cost matrix for matching elements between ot and ot+1. Details for the full algorithm is provided181

in Algorithm 1. Then, the mapped results of the algorithm are used to construct a sequence that182

shows either updated, deleted, and added elements respectively denoted by the identifiers UPDATED,183

DELETED, and ADDED. Finally, we ask an LLM to generate a free-form description focusing on the184

effect of at on E by using ∆(ot, ot+1). Overview of observation abstraction is shown in Figure 3.185

3.1.3 Step III: Learning Environment Dynamics186

Using the dataset D̃ constructed from the previous steps, we train world model ϕ to learn environment187

dynamics. The primary function of ϕ is to predict the abstracted observation õ of the next state st+1,188

given three inputs: the user instruction I , the current observation ot, and the current action at. ϕ is189

trained to optimize the following objective function:190

Lϕ = − log
∑

(õ,o,a,I)∈D̃

p(õt+1|ot, at, I) (1)

Through this training process, the world model ϕ learns to model the environment dynamics in191

response to actions taken by the agent θ. In essence, it learns to approximate the transition function192

T that governs how the environment evolves in response to actions.193

3.2 Inference-time Policy Optimization with World Model194

The learned dynamics from the trained world model ϕ is incorporated by the agent θ during inference195

time. Our goal is to find an optimal policy at for the current timestep t while considering its effect196

on the environment. By simulating the transition T (st, at) using our world model ϕ from §3.1, we197

estimate the results of at on the environment. Overview of our inference pipeline is depicted in198

Figure 1 (Bottom).199

We begin by sampling k distinct action candidates {a1t , a2t , ..., akt } from the agent’s policy distribution200

πθ using top-p decoding algorithm [Holtzman et al., 2019], allowing exploration of diverse next201

states st+1 [Wang et al., 2022]. Then, with the world model ϕ, we simulate the execution of at to202

access next state information of st+1 without altering the actual environment. We obtain k number of203

observations õt+1 of the future timestep t+ 1 for each sampled action candidates:204

{õit+1}ki=1 = {ϕ(ot, ait, I)}ki=1 (2)

Lastly, we choose an action that leads to the most successful future state st+1, i.e., that yields the205

highest reward score. For evaluating the states, we adopt an off-the-shelf LLM used as a value function206

V (·) in Koh et al. [2024b] to evaluate the simulated next observations based on its accomplishment207

in its progression towards the user-defined goal I . This value function outputs a scalar reward score208

r ∈ [0, 1]. Specifically, we select the best action ât directly affecting E using:209

ât = argmax
at∈{a1

t ,...,a
k
t }

V (I, ot, at, ϕ(ot, at, I)) (3)
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Table 1: Trajectory-wise evaluation results on WebArena [Zhou et al., 2023].

Agent LLM Method Max Actions Success Rate
∆

Vanilla +Method

GPT-4
AutoEval [Pan et al., 2024b]

30
15.6% 20.2% -

BrowserGym (GPT-4) [Drouin et al., 2024] 14.9% 23.5% -
SteP [Sodhi et al., 2023] 14.9% 35.8% -

GPT-4o Tree Search Agent [Koh et al., 2024b] 5 15.0% 19.2% +28.0%
WMA (ours) 5 11.7% 15.5% +32.5%

GPT-4o-mini WMA (ours) 5 7.1% 13.7% +93.0%

Table 2: Success rates and relative change (∆) of the WMA agent on WA websites.
Website Vanilla CoT WMA ∆

CMS 8.2% 9.3% +13%
Map 0.9% 22.3% +2378%
Shopping 18.8% 19.3% +3%
Reddit 0.0% 5.3% -
Gitlab 3.1% 8.7% +181%

Overall 7.1% 12.7% +79%

This formulation allows the agent to make reasoned decisions from current state and each potential210

future state pair resulting from each potential action candidates. We highlight that our approach can211

be adapted to many versions of web agents, including both prompting-based web agents [Pan et al.,212

2024a, Wang et al., 2024b] or fine-tuned web agents [Gur et al., 2023, Lai et al., 2024].213

4 Experiments214

4.1 Experimental Setup215

Evaluation and Benchmarks. We use two evaluation setups: (1) end-to-end evaluation, for216

evaluating the pass rate of the end-to-end task completion of user instruction, and [Zhou et al., 2023,217

Lai et al., 2024] (2) step-wise evaluation, for calculating the accuracy of selecting the gold action218

in each step. The end-to-end evaluation test set is provided by the official WebArena benchmark219

[Zhou et al., 2023]. WebArena is designed to evaluate agents within the provided environment by220

interacting with it. It covers 812 real-life tasks across five different websites, spanning four key221

domains – e-commerce, social forums, collaborative software development, and content management.222

Agent LLMs. Following Koh et al. [2024b], GPT-4o (gpt-4o-0513) is used as our backbone agent223

tested for WebArena experiments. Additionally, we test with GPT-4o-mini (gpt-4o-mini-0718) to224

explore more resource-efficient configurations for general use.225

Baselines. For baseline agents, we incorporate prompting-based LLMs, leaving incorporation of226

domain-specific (e.g., shopping domain) techniques [Sodhi et al., 2023, Wang et al., 2024b] for227

future work. AutoEval [Pan et al., 2024b] leverages the critic from VLM evaluator in applying228

Reflexion [Shinn et al., 2024]. The most competitive baseline is Tree Search Agent [Koh et al.,229

2024b], which explores multiple trajectories and selects an optimal path using a search algorithm230

during inference time. The major difference between our WMA Web Agent and the Tree Search231

Agent is that WMA Web Agent only takes a peek at the future states via simulation and does not232

actually explore diverse states during inference time.233

4.2 Implementation Details234

Data Collection. We employ GPT-4o-mini as the agent to gather 14K instances from the WebArena235

envrionment. To ensure the uniqueness and quality of the collected data, heuristic filtering is applied236
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Table 3: Head-to-head comparison with Tree Search Agent [Koh et al., 2024b] on the performance,
inference time and API cost .

Method Shop. Shop. Admin Reddit Gitlab Map API Cost Inf. time (sec.)
Tree Search Agent 28.1 16.5 10.5 13.3 25.8 $2.7 678
WMA (ours) 20.8 14.3 10.5 13.3 18.6 $0.4 140

to remove identical instances. This process improves the overall diversity and relevance of the dataset,237

which is crucial for subsequent analysis. Detailed insights into the size and characteristics of the238

resulting dataset are discussed in §4.5.239

World Model. We use Llama-3.1-8B-Instruct [Dubey et al., 2024] as our backbone LLM for240

building our world model2. When training, we employ QLoRA [Dettmers et al., 2024] and liger241

kernel [Hsu et al., 2024] to reduce computational cost.242

Value Model. We explore two implementation setups for our value model: (1) prompted LLMs to243

predict the reward score, and (2) fine-tuned LLMs from the Mind2Web [Deng et al., 2024] data. In244

the latter setting, the reward score is calculated step-by-step based on its progress toward the goal,245

i.e., (t+ 1)/(len(τ)) assuming the human-annotated trajectory is the optimal path. Details of the246

implementation are in Appendix B.4.247

4.3 Main Results248

As shown in Table 1, our WMA Web Agent significantly improves vanilla agents by far for both GPT-249

4o-mini (13.7%) and GPT-4o (15.5%) on WebArena benchmark. Our WMA Web Agent outperforms250

the Tree Search Agent [Koh et al., 2024b], although the latter utilizes oracle observation of future251

states unlike ours. We provide a more detailed analysis comparing WMA Web Agent and Tree Search252

Agent in Table 3 and subsection 4.4, proving our method’s efficiency.253

We also look at the success rates and the relative performance improvements in each domain of the254

WebArena benchmark, with and without our WMA Web Agent 2. Our method shows 79% increase255

in performance overall, proving its effectiveness in web navigation in general. It shows significant256

improvement in domains that are deemed particularly challenging, such as the map domain, followed257

by Gitlab and Reddit. Also, our solution is also comparably easily integrated with other prompting258

baselines (e.g., AutoEval [Pan et al., 2024b]).259

4.4 Time and Cost Effectiveness of WMA Agents Compared to Tree Search Agent.260

We compare our WMA Agent with Tree Search Agent regarding time and API cost efficiency Koh261

et al. [2024b]. We show the results are shown in Table 3. Tree Search Agent takes about 678 seconds262

on average for conducting inference on a single instance since it explore diverse future states by263

interacting with the actual environment. However, WMA Agent takes only 140 seconds per instance264

by leveraging the simulated environment via the world model. While WMA Agent provide time- and265

cost-efficient exploration, it show comparable performance to Tree Search Agent in Reddit, Gitlab,266

and Shopping Admin domains.267

4.5 Ablations268

Table 4: Ablation results of obser-
vation abstraction.

Method SR

Vanilla CoT 7.1
w/o observation abstraction 6.4
WMA (ours) 12.7

Observation Abstraction. We evaluate the effectiveness of269

transition-focused observation abstraction format (described270

in §3.1.2) for training and predicting with our world model.271

Our approach is compared to a world model trained on full272

accessibility tree. The results of this comparison are presented273

in Table 4. Results prove that attempting to predict the full274

accessibility tree impairs the world model’s comprehension of275

the state, compared to our novel abstraction method.276

2https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct
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Table 5: Ablation on the training world model
using step-wise evaluation.

World Model Training MRR Hit@1

GPT-4o-mini ✗ 55.90 44.0
GPT-4o ✗ 68.94 57.0
WMA (ours) ✓ 75.82 67.0

Table 6: Ablation on the training value
model.

Value Model Training SR

GPT-4o-mini ✗ 12.2
Llama-3.1-8B ✓ 12.7

Prompted World Model vs. Fine-tuned World Model. Results shown in Table 5, compared to277

the world model trained on our collected agent trajectories (§3.1) proves that the prompted LLMs278

do not have enough knowledge on environment dynamics for successful task completion, consistent279

with our hypothesis.280

Choice of Implementation for the Value Model. We explore which implementation of the value281

model works best for WMA Web Agent. We compare two setups: (1) the prompted value model and282

(2) the fine-tuned value model. The results are shown in Table 6. Interestingly, we find that training283

our value model on Mind2Web shows a slightly better performance compared to GPT-4o-mini, which284

provides a cost-effective option for implementing the value model in WMA Agents.285

Table 7: Step-wise evaluation re-
sults that show the importance of
the access to the next state.

Method MRR Hit@1

w/o ot+1 62.04 45.1
WMA (ours) 75.82 67.0

Access to Next State in Value Score Calculation. To assess286

the impact of incorporating the next state when calculating the287

value score, we compare our reward calculation method to a288

Q-value function approach. Unlike WMA Web Agent, the Q-289

value function directly predicts the reward score based on the290

current observation-action pair (ot, at) without the future state.291

We also compare WMA Web Agent with a setting that uses292

ground-truth observation of the next state, similar to Koh et al.293

[2024b]. The results in Table 7 show that the access to the next state plays critical role in accurate294

prediction on the reward.295

5 Discussion and Future Work296

Self-refining with the Simulated Environmental Feedback. Currently, we incorporate our world297

model only for selecting optimal policy at inference time. However, leveraging the simulated feedback298

from our world model for refining the policy [Wang et al., 2022] might a direction that future work299

can explore to improve performance.300

Improving the Value Models. In this work, we utilize an off-the-shelf value model, as there is301

no available value model that is known to work well on various websites nor the feedback data for302

training the model. A promising direction to improve the current value model would be collecting and303

leveraging a massive dataset using pairwise feedback across diverse web interactions and learning a304

value model with the data.305

6 Conclusion306

We present the first framework to incorporate world models into LLM-based web agents, addressing307

the challenges associated with complex web navigation tasks. Experiments demonstrate that the308

World-Model-Augmented (WMA) Web Agent significantly improves action-selection policies by309

enhancing the agent’s awareness of environment dynamics. Our results on WebArena show that this310

approach substantially outperforms baseline LLM-based agents, reducing the need for trial-and-error311

and mitigating the risk of destructive actions.312

The introduction of world models in web agents marks a promising direction for future research in313

automating complex tasks. By enabling agents to predict the outcomes of their actions, we bridge the314

gap between human-like decision-making and machine autonomy. Our findings pave the way for315

developing more robust and safe digital agents capable of performing intricate tasks across dynamic316

web environments.317
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Appendix434

A Limitation435

Modality. As an initial step toward world models for web agents, we mainly focus on building436

text-based world models. In web navigation, however, visual information also plays a critical role437

in accurate perception of the environment [Liu et al., 2024, Zheng et al., 2024]. Future work might438

incorporate visual information in addition to textual information for improving the learning of439

dynamics in the environment [Koh et al., 2024b].440

Multi-step Planning. Our current approach demonstrates that simulating action execution via our441

world model significantly aids web agents in selecting actions with awareness of environmental442

dynamics within a single time step. However, the potential of the idea of using world models for443

web agents extends beyond this single-step prediction. Our model is trained to predict the abstracted444

next state õt+1 from the previous observation ot and the current action at. This world model can445

be extended for multi-step planning that generates a sequence of actions without interaction with446

the environment by recursively feeding the predicted state ot+1 back into the agent θ as the new447

observation, along with current at action from the agent, we can generate predictions for multiple448

steps into the future. This capability opens up exciting possibilities for more sophisticated planning449

strategies with reduced negative impact of repetitive trial-and-error. Future work could explore450

leveraging this multi-step prediction capability to enable web agents to reason about longer-term451

consequences of their actions, evaluate complex action sequences, and make more informed decisions452

in scenarios requiring extended foresight. Additionally, incorporating techniques such as Monte453

Carlo Tree Search [Koh et al., 2024b] or other planning algorithms could further enhance the agent’s454

ability to navigate complex, multi-step tasks in web environments.455
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B Implementation Details456

B.1 World Model457

B.1.1 Dataset Construction458

We leverage WebArena environment to collect agent trajectories. In total we obtain 14,200 instances459

using GPT-4o-mini with CoT prompt provided in Zhou et al. [2023].460

Transition-focused Observation Abastraction. For implementing Hungarian algorithm we use461

munkres python package3. We describe the algorithm used for transition-focused observation462

abstraction in Algorithm 1.

Algorithm 1: Observation Tree State Matching for ∆(ot, ot+1)

Input :States ot = [et0, . . . , e
t
n−1], ot+1 = [et+1

0 , . . . , et+1
m−1]. Each ei has name ni, role ri,

location li. Weights ωn, ωr, ωl.
Output :STaO

t+1

U ← ∅
if len(ot+1) ≤ τ · len(ot) then

# Construct cost matrix for Hungarian matching
Ci,j ← ωn · 1nt

i=nt+1
j

+ ωr · 1rti=rt+1
j

+ ωl · |lti − lt+1
j |

# Apply Hungarian algorithm to find optimal matching
M∗ ← argmin

M

∑
i,j Ci,j ·Mi,j

# Identify unmatched elements
U ← {j|M∗

i,j = 0,∀i ∈ {0, . . . , n− 1}}
end
if len(U) ≥ m− n or U = ∅ then

STaO
t+1 ← ot+1

else
# Construct TaO state based on unmatched and nearby elements
STaO
t+1 ← [et+1

j |j ∈ U or (len(U) ≤ x and minu∈U |u− j| ≤ y)]

end

463

B.2 Training464

We use hyperparameters of 2 epochs, 10−5 learning rate to train our world model and the value model.465

For efficient training, we use QLoRA and liger kernel. The models are trained using 8 RTX 4090466

GPUs and the training took around 3 GPU hours.467

B.3 Inference468

We use top-p decoding with p = 0.7 for sampling 20 actions from the model.469

B.4 WebArena Environment470

To ensure fair comparison and reproducibility, we conducted our experiments using the WebArena471

environment. Specifically, we utilized an Amazon Web Services (AWS) EC2 instance pre-configured472

with the Docker environment for WebArena4 This setup is identical to the experimental configuration473

employed by Zhou et al. [2023] in their original study. By using this standardized environment, we474

maintain consistency with previous research and facilitate direct comparisons of our results with475

those reported in the literature. The WebArena Docker environment encapsulates all necessary476

3https://pypi.org/project/munkres/
4https://github.com/web-arena-x/webarena/blob/main/environment_docker/README.md#pre-installed-

amazon-machine-image
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dependencies, web interfaces, and evaluation metrics, ensuring that our experiments are conducted477

under controlled and replicable conditions.478

C Qualitative Examples479
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User intent: Open my latest updated issue that has keyword "dependency" in its title to check if it is closed  

Tab 0 (current): Projects Â· Dashboard Â· GitLab  

[7] RootWebArea 'Projects Â· Dashboard Â· GitLab' focused: True url: 
http://ec2-3-139-65-91.us-east-2.compute.amazonaws.com:8023/ 
	[21] link 'Skip to content' url: http://ec2-3-139-65-91.us-
east-2.compute.amazonaws.com:8023/#content-body 
	[27] link 'Dashboard' url: http://ec2-3-139-65-91.us-
east-2.compute.amazonaws.com:8023/ 
		[28] image '' 
	[1941] button '' hasPopup: menu expanded: False 
	[57] image '' 
	[59] textbox 'Search GitLab' required: False 
	[5] StaticText '/' 
	[71] link 'Create new...' url: http://ec2-3-139-65-91.us-
east-2.compute.amazonaws.com:8023/projects/new 
		[72] image '' 
		[74] image '' 
	[88] link 'Issues' url: http://ec2-3-139-65-91.us-
east-2.compute.amazonaws.com:8023/dashboard/issues?
assignee_username=byteblaze 
		[89] image '' 
		[91] generic '15 assigned issues'

... (omitted) 
	
Action Candidate 1 (  Selected)

Action: click [88]

Next state prediction:

Let's think step by step about the expected changes after performing the current action of clicking on the 'Issues' link.  

Key changes in the accessibility tree based on this action would include: 
1. The RootWebArea title has changed to 'Issues Â· Dashboard Â· GitLab', indicating a transition from the project dashboard to the issues dashboard. 
2. A new button for managing issues labeled 'New issue' has been added to the page, allowing users to create new issues directly. 
3. A custom checkbox for filtering issues labeled 'Open only' has been introduced, enabling users to set the visibility of their issues. 
4. A new static text element states 'Age sort order', which indicates that users can sort issues based on their creation date. 
5. A new button labeled 'Filter by label' has been added, allowing users to apply labels to issues. 
6. A new button option 'Link' is introduced for each issue view link, indicating that users can access the corresponding issue details. 
7. A new link labeled 'Epoch talks' has been added, providing access to the specific issue. 
8. The issues list has been updated to include relevant fields such as 'Title', 'Description', and 'Updated', showcasing the current status of each issue. 
9. The 'Nov 12, 2022' and 'Nov 30, 2022' updated time fields provide context on when specific issues were last updated.  

Based on these changes, the next state of the webpage will reflect the issues dashboard where users can view, filter, and manage their issues 
related to their assigned projects.   

[Next State] The expected effect is that: 
1. The page will now display a list of issues relevant to the user, with fields marked as 'Title', 'Description', and 'Updated' to provide

2. Users can filter and sort the issues using the available options, such as the 'Open only' checkbox and the 'Age sort order' dropdown. 
3. Users will have the ability to create new issues using the 'New issue' button and will have access to relevant links for each issue. 
4. The user can then proceed to find the issue titled 'dependency' from among these issues and check if it is closed.

Value score: 0.5974999999999999

 details about 
each issue. 

Action Candidate 2

Action: type [59] [dependency] [1]

Next state prediction:

Let's think step by step about the expected changes after performing the action of typing "dependency" into the search box.  

Key changes in the accessibility tree based on this action would include:  
1. A new StaticText 'dependency' was added, indicating that the search term has been entered successfully.   
2. An additional StaticText 'dependency' was inserted, signifying the search is actively filtering the results. 
3. A new heading 'Search results for "dependency"' has been created, confirming that the search has been triggered and is returning relevant results. 
4. The 'Search GitLab' textbox remains in the same state, but this time it has a new attribute indicating that it is focused, indicating that the user can 
interact with it. 
5. The main content area of the page is now occupied by items specifically related to the search query (dependency). 
6. There are new links to individual projects, such as 'dependency-check', 'dependency-parser', and 'dependency-tracker', suggesting that these 
items match the search term.  

[Next State]  
The expected effect is that the webpage will display detailed search results related to the keyword "dependency". This will allow the user to view 

 such as 'dependency-check', 'dependency-parser', and 'dependency-tracker', which may potentially contain the updated issue with 
the keyword in the title. To proceed, the user will be able to check each of these project results to determine if the latest issues are closed.

Value score: 0.41574999999999995

project listings

Observation

Figure 4: An example inference of WMA Agents in Gitlab website (instance #175). Among the
sampled actions from the policy model (i.e., GPT-4o), WMA Agent selects the more proper action
click [88] that directly goes to the issue page by leveraging the learned environment dynamics.
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